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(ABSTRACT)



Conventional synchronization methods based on locks and condition variables are inher-
ently non-scalable, non-composable, and error-prone. Transactional synchronization is an
alternative programming model for managing contention in accessing shared data objects,
which exhibits excellent scalability and composability properties, besides programming ease.
Transactional API for multiprocessor synchronization, called Transactional Memory, utilizes
contention managers to guarantee that whenever two transactions have a conflict on a shared
data object, one of them is aborted. While transactional memory has been well studied in
the context of multiprocessors, few results are known for them for distributed systems where
nodes communicate via message-passing links. Compared with multiprocessor transactional
memory systems, the design of distributed transactional memory systems is more challenging
because of the need for distributed cache-coherence protocols and the underlying (higher)
network latencies involved. The choice of the combination of the contention manager and the
cache-coherence protocol is critical for the performance of distributed transactional memory
systems.

In this dissertation proposal, we study the design of contention managers and cache-coherence
protocols for distributed transactional memory systems. We approach this design problem
by first establishing the relationship and combinative behavior of contention managers and
cache-coherence protocols on the performance of distributed transactional memory systems.
We consider the Greedy contention manager — a contention manager with excellent proper-
ties for multiprocessors — for distributed transactional memory systems. We establish upper
and lower bounds for the competitive ratio of the Greedy manager’s makespan—i.e., the ratio
of the makespan (the last completion time for a given set of transactions) of the combination
of the Greedy manager and an arbitrary cache-coherence protocol to the makespan of an
optimal off-line clairvoyant scheduler without considering a cache-coherence protocol. We
show that, in the worst case, the competitive ratio is O(N2 · s), where N is the maximum
number of transactions that request the same object and s is the number of objects. On
the other hand, the best-case competitive ratio is Ω(s), which matches the performance of
the Greedy manager for multiprocessors. This result motivates the need to design cache-
coherence protocols to improve the worst-case performance with the Greedy manager.

We propose a class of distributed cache-coherence protocols with location-aware property,
called LAC protocols. In LAC protocols, the duration of a transaction requesting node to
locate an object is determined by the communication delay between the requesting node and
the node that holds the object. We prove the worst-case competitive ratio of the Greedy
manager/LAC protocol combination, and show that LAC is an efficient choice for the Greedy
manager to improve system performance.

We also present a novel DHT (distributed hash table)-based cache-coherence protocol, called
the DHTC protocol. DHTs provide good load balancing and scalability properties. A com-
mon DHT also has a fully decentralized structure, which is essential for loosely-organized
applications. We show that the DHTC protocol guarantees an O(N · s) competitive ra-
tio, which is a significant improvement over an arbitrary cache-coherence protocol/Greedy
manager combination.
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To improve the performance of distributed transactional memory in the presence of arbitrary
node failures and node joins and departures, we develop a quorum-based cache-coherence
protocol. We construct a novel quorum system called, the dynamic high available B-Grid
quorum system or DHB-Grid. We show that the performance of DHB-Grid is asymptotically
optimal when the failure probability p, i.e, the maximum probability that a node fails,
approaches 0, and degrades gracefully when p increases. We present efficient adjustment
algorithms for DHB-Grid to accommodate network changes, and show an O(log n) message
complexity for each adjustment, where n is the number of nodes. Based on the DHB-Grid
system, we develop DHBC, a quorum-based cache-coherence protocol, which exhibits high
availability and low message complexity properties.

We have focused on the Greedy manager and studied its performance for distributed trans-
actional memory because it provides a provable worst-case performance. Fundamental and
open problems that we propose to solve (post-prelim) include designing novel contention
managers for distributed transactional memory and establishing their performance bounds.
In addition, the design of cache-coherence protocols with such contention managers is also
proposed.
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Chapter 1

Introduction

The design of non-blocking synchronization algorithms for accessing objects shared by mul-
tiple processes or threads has been of tremendous interest in the last two decades [47]. Con-
ventional synchronization methods for single and multiprocessors based on locks, semaphores,
and condition variables suffer from many drawbacks such as non-scalability, non-composability,
potential for deadlocks/livelocks, lack of fault tolerance, and most importantly, the difficulty
to reason about their correctness and the consequent programming difficulty. In non-blocking
synchronization algorithms [47, 52], processes/threads do not need to wait when competing
to access shared objects. Instead, a concurrent process/thread may either abort its own
atomic operation (retrying later, optionally), or abort the atomic operation of the conflict-
ing process/thread. Compared with lock-based synchronization algorithms that use mutually
exclusive critical sections to serialize access to shared objects, non-blocking synchronization
algorithms are designed to avoid requiring critical sections all together. These algorithms al-
low multiple processes/threads to make progress on accessing a set of shared objects without
ever blocking each other.

Transactional synchronization [27, 64] is a non-blocking synchronization model for manag-
ing contention in accessing shared resources. A transaction, like a critical section, is an
explicitly delimited sequence of steps (e.g., a piece of code) that is executed atomically by a
single thread. To guarantee atomicity, a transaction ends by either committing (i.e., all of
its updates take effect), or by aborting (i.e., updates do not effect). The concurrency con-
trol mechanism for transactions is optimistic: if a transaction aborts, it is typically retried
until it commits. Transactional API for multiprocessors, called Transactional Memories,
have been proposed in hardware [22, 27], in software [23, 28, 64], and in hardware/software
combination [6]. 1

1Transactional processing, the semantic ancestor of transactional memory, has been a highly successful
abstraction for handling concurrency in database systems. Transactional memory is an attempt at apply-
ing the transaction concept to non-database systems, in particular, for in-memory operations. Database
transactions often require an expensive commit protocol (e.g., to obtain the classical ACID properties). In
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Transactions read and write shared objects. Two transactions conflict if they access the
same object and one access is a write. A non-blocking synchronization abstraction is said
to be obstruction-free if it guarantees that any thread, if run by itself (i.e., without any
contention), will make progress in a finite number of steps. Apparently, transaction syn-
chronization is obstruction-free. Obstruction-freedom introduces livelocks, which can be
effectively minimized by a contention manager module. Contention managers guarantee
atomicity by making sure that whenever a conflict occurs, only one of the transactions in-
volved can proceed.

Despite the large body of work on transactional memory for multiprocessors, few results are
known for them for distributed systems, exceptions being [4, 30, 45]. In this proposal, we
consider the design of transactional memory in a distributed system consisting of a network
of nodes that communicate by message-passing links. The system is subject to arbitrary
crash failures of nodes. In addition, nodes can potentially join or leave unpredictably. 2

1.1 Distributed Transactional Memory Model

Different models of transactional memory for distributed systems have been recently pro-
posed. Herlihy and Sun [30] propose three competing models:

• Control flow model. This model has long been used to provide fault-tolerance in
databases and distributed systems. In this model, data objects are typically immobile,
and computations move from node to node via remote procedure calls (or RPCs). A
deadlock detection mechanism is required to detect and resolve deadlocks. Atomicity is
guaranteed by a commit protocol which ensures that a transaction’s tentative changes
either take effect at all nodes or are all discarded.

• Data flow model. In this model, transactions are immobile (running on a single node)
and data objects move from node to node. Here, a contention manager is responsible
for mediating between conflicting accesses to the same object and avoid deadlocks and
livelocks. A transaction that finishes without being interrupted by a synchronization
conflict simply commits.

• Hybrid model. In this model, data objects are migrated depending on a number of
heuristics such as size and locality.

These transactional models make different trade-offs. In the control flow model, an object’s
home node must mediate all accesses to that object. Hence, it is likely to become a bottleneck

contrast, transactional memory can be viewed as a “lighter-weight” version of transactional processing, with
no commit protocol required in most cases, thereby seeking to gain the benefits of transactional processing
(e.g., semantic simplicity, fault tolerance), without incurring all its associated overhead.

2The definitions of node crashes and leaves are different: the node which crashes does not inform the
system; on the other hand, the node which intends to leave the system informs its neighbors before leaving.
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Figure 1.1: The data flow model of distributed transactional memory

if that object is a “hot spot”. On the other hand, in the data flow model, there may be some
applications that prefer to store objects at dedicated repositories instead of letting them
migrate among nodes. Past work on multiprocessors [29] suggests that the data flow model
can provide better performance than the control flow model on exploiting locality, reducing
communication overhead, and supporting fine-grained synchronization.

We consider the data-flow model in [30] to support the transactional memory API in a
distributed system. As shown in Figure 1.1, transactions are immobile (running at a single
node), but objects move from node to node. Transaction synchronization is optimistic:
a transaction commits only if no other transaction has executed a conflicting access. A
contention manager module is responsible for mediating between conflicting accesses to avoid
deadlocks and livelocks. The core of this design is an efficient distributed cache-coherence
protocol. A distributed transactional memory system uses a distributed cache-coherence
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protocol to support object operations. For example, when a transaction attempts to access
an object, the cache-coherence protocol must locate the current cached copy of the object,
move it to the requesting node’s cache, and invalidate the old copy.

Similar to [30], each node is assumed to have a transactional memory proxy module that
provides interfaces to the application and to proxies at other nodes. This module performs
the following functions:

• Data Object Management : An application informs the proxy to open an object when
it starts a transaction. The proxy is responsible for fetching a copy of the object
requested by the transaction, either from its local cache or from other nodes. When
the transaction asks to commit, the proxy checks whether any object opened by the
transaction has been modified by other transactions. If not, the proxy makes the
transaction’s tentative changes to the object permanent; otherwise discards them.

• Cache-Coherence Protocol Invocation: The proxy is responsible for invoking a cache-
coherence protocol when needed. When a new data object is created in the local cache,
the proxy calls the cache-coherence protocol to publish it in the network. When an
object is requested by a read access and is not in the local cache, the proxy calls the
cache-coherence protocol to look-up the object and fetch a read-only copy. If it is a
write request, the proxy calls the cache-coherence protocol to move the object to its
local cache.

• Contention Management : When a transaction requests for an object that is currently
used by an active local transaction, the proxy can either abort the local transaction and
make the object available, or it can postpone a response to give the local transaction a
chance to commit. This decision is made by a globally consistent contention manage-
ment policy that avoids deadlocks and livelocks. An efficient contention management
policy should guarantee progress: at any time, there exists at least one transaction that
proceeds to commit without interruption. For example, the Greedy contention man-
ager in [14] guarantees that the transaction with the highest priority can be executed
without interruption, using a globally consistent priority policy that issues priorities
to transactions.

1.2 Measures of Quality

Distributed transactional memory differs from multiprocessor transactional memory in two
key aspects. First, multiprocessor transactional memory designs extend built-in cache-
coherence protocols that are already supported in modern multiprocessor architectures. For
example, directory-based cache-coherence protocols are used in many large multiprocessor
systems [40, 54]. Distributed systems with nodes linked by communication networks typi-
cally do not come with such built-in protocols. A distributed cache-coherence protocol has
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to be designed. As mentioned before, when a transaction attempts to access an object, the
cache-coherence protocol must locate the current cached copy of the object, and move it
to the requesting node’s cache, invalidating the old copy. For example, in [30], Herlihy and
Sun present a Ballistic cache-coherence protocol based on hierarchical clustering for tracking
and moving up-to-date copies of cached objects, and suggest a finite response time for each
transaction.

Secondly, the communication costs for distributed cache-coherence protocols to locate the
copy of an object in distributed systems are orders of magnitude larger than that in mul-
tiprocessors and are often non-negligible. Such costs are often determined by the different
physical locations of nodes that invoke transactions, as well as that of the performance of
the cache-coherence protocol used. These costs directly affect the system performance.

For multiprocessor transactional memory systems, the performance of a contention manager
A is evaluated by its competitive ratio, which is the ratio of the makespan (the last completion
time of a given set of transactions) of A to the makespan of an optimal off-line clairvoyant
scheduler Opt [3, 14]. For distributed transactional memory systems, the cache-coherence
protocol used also affects the makespan. Hence, we have to evaluate the performance of a
distributed transactional memory system by taking into account its contention management
algorithm as well as the underlying cache-coherence protocol.

We use makespan(Opt) to denote the makespan of the optimal clairvoyant off-line schedul-
ing algorithm. We evaluate the performance of the combination of a contention manager A
and a cache-coherence protocol C by measuring its competitive ratio:

Definition 1 (Competitive Ratio). The competitive ratio of the combination (A,C) of a
contention manager A and a cache-coherence protocol C is:

CR(A,C) =
makespan(A,C)

makespan(Opt)
.

Hence, the design of a distributed transactional memory system involves the design of the
contention manager and the cache-coherence protocol. Our first goal is to design an efficient
contention manager A and a cache-coherence protocol C that will minimize CR(A,C). In
addition, there are many other measures of quality that we need to consider depending on the
underlying network environment. For example, for dynamic environments, we are concerned
about load balancing, scalability and availability, etc. We describe these metrics specifically
in Chapter 6, where we apply quorum systems to quantitatively define these metrics.

1.3 Summary of Current Research and Contributions

Toward minimizing CR(A, C), we adopt a “lexicographic-like” design strategy: we first
select a contention manager, which can guarantee a provable performance under the cache-
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coherence protocol with the worst performance. In other words, we first determine the worst-
case performance provided by a given contention manager. We then design a cache-coherence
protocol to improve performance. Our rationale for this contention manager-first approach
(as opposed to cache-coherence protocol-first) is that the performance of cache-coherence
protocols is related to contention managers. By first selecting a contention manager, we can
determine the performance range that a cache-coherence protocol can achieve.

Now, what contention manager should we select? Motivated by the past work on trans-
actional memory for multiprocessors, we consider the Greedy contention manager in [14]
for distributed transactional memory systems. The pending commit property of the Greedy
manager also applies to distributed systems: at any time, the transaction with the highest
priority will be executed and will never be aborted by other transactions. This property is
crucial for contention managers to guarantee progress.

We establish the upper and lower bounds of the competitive ratio of the Greedy manager’s
makespan with an arbitrary cache-coherence protocol. We show that, in the worst case, the
competitive ratio is O(N2 ·s), where N is the maximum number of transactions that request
the same object and s is the number of objects. On the other hand, the best-case competitive
ratio is Ω(s), which matches the performance of the Greedy manager for multiprocessors.
Hence, we need to design cache-coherence protocols to improve the worst-case performance
with the Greedy manager.

We propose a class of distributed cache-coherence protocols with location-aware property,
called LAC protocols. In LAC protocols, the duration of a transaction requesting node
to locate an object is determined by the communication cost between the requesting node
and the node that holds the object. A lower communication delay implies lower locating
delay. In other words, nodes that are “closer” to the object will locate the object more
quickly than nodes that are “farther” from the object in the network. We show that the
performance of the Greedy manager with LAC protocols is improved. We prove this worst-
case competitive ratio and show that LAC is an efficient choice for the Greedy manager to
improve the performance of the system.

We also present a novel DHT (distributed hash table)-based cache-coherence protocol, called
the DHTC protocol. DHTs provide good load balancing and scalability properties. A com-
mon DHT also has a fully decentralized structure, which is essential for loosely-organized
applications. Traditional DHT applications often focus on immobile objects. In contrast,
the DHTC protocol is able to efficiently track moving objects. We show that the DHTC
protocol guarantees an O(N · s) competitive ratio, which is a significant improvement over
an arbitrary cache-coherence protocol/Greedy manager combination.

To improve the performance of distributed transactional memory systems in the presence of
node failures and arbitrary node joins and departures, we propose a quorum-based cache-
coherence protocol. Given a finite universe U = {1, ..., n}, a set system S = {S1, ..., Sm} is a
collection of subsets Si ⊆ U . A quorum system is a set system S that satisfies the intersection
property : Si ∩ Sj ̸= ∅ for every Si, Sj ∈ S. We present the construction of a novel quorum
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system called, the dynamic high available B-Grid quorum system or DHB-Grid. We use a
probabilistic failure model, where we assume that each node fails independently, and that the
failure probability of each node does not exceed p, i.e., the maximum probability that a node
fails. We show that the performance of the DHB-Grid system is asymptotically optimal when
p approaches 0, and degrades gracefully when p increases. We propose efficient adjustment
algorithms for the DHB-Grid system to adjust to network changes (e.g., node joins, node
departures), and show an O(log n) message complexity for each adjustment, where n is the
number of nodes. Based on the DHB-Grid system, we propose DHBC, a quorum-based
cache-coherence protocol, which exhibits asymptotically optimal load, availability and probe
complexity.

To summarize, our research contributions include:

1. We identify that the performance of distributed transactional memory systems is de-
termined by two factors: the contention manager and the cache-coherence protocol
used. We show that, for a single object, the optimal off-line clairvoyant scheduler for
a set of transactions with the ideal cache-coherence protocol visits all nodes along the
shortest Hamiltonian path. This is the first such result;

2. We present a proof of the worst-case competitive ratio of the Greedy contention man-
ager with an arbitrary cache-coherence protocol. We show that this ratio can sometimes
lead to the worst choice of transaction execution. In addition, we establish the upper
and lower bound of the competitive ratio of the Greedy manager;

3. We present location-aware cache-coherence protocols called LAC protocols. We show
that the worst-case performance of the Greedy manager with an efficient LAC protocol
is improved and predictable. We prove an O(N log N · s) competitive ratio for the
Greedy manager/LAC protocol combination, where N is the maximum number of
nodes that request the same object, and s is the number of objects;

4. We design a DHT-based cache-coherence protocol, called the DHTC protocol, to im-
prove the performance when combined with the Greedy manager. We show that the
DHTC protocol guarantees an O(N · s) competitive ratio, which is a significant im-
provement over an arbitrary cache-coherence protocol/Greedy manager combination;

5. We design a quorum-based cache-coherence protocol. We show that the performance
of a distributed transactional memory system is determined by the performance of the
utilized quorum system. We construct a novel quorum system called, the dynamic high
available B-Grid quorum system or DHB-Grid, and develop DHBC, a cache-coherence
protocol based on DHB-Grid with high availability and low message complexity prop-
erties.
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1.4 Proposed Post Preliminary-Exam Work

Based on our current research results, we proposed the following work:

• Contention Manager Design for Distributed Transactional Memory. Our cur-
rent results on the combinative behavior of contention managers and cache-coherence
protocols for distributed transactional memory is based on a fixed selection of con-
tention managers. Specifically, we select the Greedy manager which can guarantee a
worst-case performance without considering the design of cache-coherence protocols.
This raises two fundamental and open questions in the design of contention managers:

1. Can we select other contention managers and then design a compatible cache-
coherence protocol, with a combined worst-case performance which is better than
that of existing solutions? Various contention managers have been developed in
the past [67]. The excellent properties of the Greedy contention manager for
multiprocessors motivate our selection of that contention manager for distributed
systems. However, this does not preclude the possibility of other contention man-
agers with better performance. For example, it may be possible to establish the
worst-case performance of a randomized contention manager, and then design a
cache-coherence protocol to improve that worst-case performance. Note that for
the Greedy manager, the worst-case competitive ratio is at least Ω(s) (in our cur-
rent proposed design, we only guarantee a O(N · s) worst-case competitive ratio),
where s is the number of objects and N is the maximum number of transactions
requiring accesses to the same object. Thus, establishing improved worst-case
performance of other contention managers may result in significant improvement
in system performance.

2. Can we construct a contention manager which is explicitly designed for distributed
transactional memory (as opposed to adapting those which have been designed
for multiprocessors) and improve the worst-case system performance? Our cur-
rent work only considers contention managers that have been designed for mul-
tiprocessors. There are few results on the behavior of contention managers in
a distributed systems context. Hence, it is attractive to focus on the design of
contention managers which are dedicated to distributed systems. For the existing
(multiprocessor) contention managers, the performance degrades for distributed
transactional memory, due to the latency and the dynamic nature of the under-
lying network, which are not considered for multiprocessors. Hence, the design
of such contention manager must take into account these factors to improve the
worst-case performance.

• Contention Manager and Cache-Coherence Protocol Design in the Proba-
bilistic Model. Our current results propose a probabilistic model of network node
failures, where each node may fail independently with a probability less than p, i.e., the
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maximum probability that a node fails. In our proposed DHBC protocol, we mainly
focus on the availability, scalability, and message complexity properties during system
changes. In the future, we propose to focus on the design of contention managers
and cache-coherence protocols and analyze their combinative performance based on
probabilistic models. Hence, instead of evaluating the performance of the combination
of contention managers and cache-coherence protocols by its worst-case performance,
we propose to evaluate the expected performance of such combination based on fail-
ure probabilistic distributions. This will yield a fundamentally different direction —
with consequently different models and protocols – for the design of cache-coherence
protocols for distributed transactional memory in dynamic environments.

1.5 Proposal Outline

The rest of this dissertation proposal is organized as follows. In Chapter 2, we overview
the transactional memory literature and discuss past and related efforts. We investigate the
worst-case and best-case performance of the Greedy manager for distributed transactional
memory in Chapter 3. By doing so, we determine the performance range that a cache-
coherence protocol can achieve with the Greedy manager. In Chapter 4, we present location-
aware cache-coherence protocols, which can improve the performance when combined with
the Greedy manager. We present a DHT-based cache-coherence protocol design in Chapter 5.
Chapter 6 presents the DHB-Grid quorum system and the DHBC protocol for dynamic
environments. We conclude the proposal in Chapter 7.



Chapter 2

Past and Related Work

2.1 Transactional Memory: Overview

The idea of transactional memory is motivated by database transactions, which is a unit of
work performed within a database management systems. A database transaction must be
ACID [20]: atomicity, consistent, isolated and durable to guarantee reliability. In transac-
tional memory, concurrent threads synchronize via transactions when they access to shared
memory. A transaction, in the transactional memory semantics, is a delimited sequence of
steps to be executed atomically by a single thread [39]. Atomicity implies an all-or-nothing
execution: the sequence of steps (i.e., reads and writes) logically occur at a single instant in
time; intermediate states are not visible to other transactions.

The first idea of providing hardware support of transactions was originated in a 1986 pa-
per by Knight [36]. The term “transactional memory” was proposed by Herlihy and Moss
in [27], where they first proposed transactional memory as an architectural support for lock-
free data structures. The idea was soon popularized and has been the focus of research
efforts since then. Despite the early attempts in providing hardware support of transac-
tional memory (HTM) [27, 70], Shavit and Touitou proposed software transactional memory
(STM) [64] in 1995, which provides transactional memory semantics in a software runtime
library. Since then transactional memory APIs for multiprocessors have been proposed both
for hardware [22, 28, 50, 57, 60] and software [7, 8, 23, 24, 29, 33, 46, 48, 52, 63, 65]. Hy-
brid transactional memories, which allows the implemented STMs make use of advantages
of HTMs such that they can be used in conjunction to improve the performance, have also
been proposed in the past [6, 37, 51, 66].

10
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2.2 Contention Management: Application and Theory

Contention managers were first proposed in [29], and were widely applied in recent software
transactional memory proposals for multiprocessors [8, 15, 16, 28, 68]. For an STM with the
obstruction-free property, a contention manager is responsible to ensure that the system as
a whole makes progress. A comprehensive survey on contention managers is due to Scherer
and Scott [67], where contention managers are empirically evaluated.

The main advantage of obstruction-free synchronization algorithm is because it supports
a clean separation of concerns of correctness and progress. The core of an obstruction-free
algorithm must maintain data invariants (guaranteeing correctness), and need only guarantee
progress when only one thread is running. On the other hand, guaranteeing progress is the
responsibility of the contention manager, since transactions are often restarted.

Although transactional memory has long been the research interest, relatively fewer works
have been devoted to its theoretical ramifications [17, 18, 49]. The first theoretical analysis
of contention management was presented in [14], where a O(s2) upper bound is given for the
Greedy manager on multiprocessors with s being the number of shared objects. Attiya et
al. [3] formulated the contention management problem as the non-clairvoyant job scheduling
paradigm [9, 53] and improved the bound of the Greedy manager to O(s). No contention
manager reviewed in the literature guarantee the same worst-case performance as the Greedy
manager in the semantics of multiprocessors.

2.3 Distributed Transactional Memory

Despite the large body of work of transactional memory in multiprocessor semantics, few pa-
pers in the past [4, 30, 45] investigate transactional memory for distributed systems consisting
of a network of nodes. Providing transactional memory support for a cluster of memories in
a distributed system is studied both in [4] and [45]. However, the behavior of transactional
memory in networks is not considered in both papers. Among these efforts, Herlihy and
Sun’s work [30] calls our attention mostly. They present a Ballistic cache-coherence protocol
based on hierarchical clustering for tracking and moving up-to-date copies of cached objects,
and suggest a finite response time for each transaction request. They evaluate the perfor-
mance of the Ballistic protocol by measuring its stretch, which describes the optimality of
the duration that moving objects in the network are fetched. Our work, in contrast, studies
distributed transactional memory in a more comprehensive way. We argue that the perfor-
mance of the distributed transactional memory depends on the combination of the employed
contention manager and cache-coherence protocol. Hence, our effort focus on the design of
efficient contention managers and cache-coherenc protocols and make a judicious choice of
their combination.
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2.4 Quorum Systems

We employ dynamic quorum systems to support distributed transactional memory in dy-
namic enviroments. Quorum system is a basic tool for reliable agreement in distributed
systems [12, 13, 55, 44, 58, 59, 71]. Researchers have also designed quorum systems in a
dynamic environment, e.g. [2, 19, 21, 42, 56, 73]. To apply quorum systems in partitioned
networks, Herlihy [26] presented dynamic quorum adjustment method for partitioned data.
This method permitted an object’s quorum to be adjusted dynamically in response to fail-
ures and recoveries. A transaction that is unable to progress using one set of quorums may
switch to another, more favorable set, and transactions in different partitions may progress
using different sets. Karumanchi et al. [34] proposed strategies that use local knowledge
about the reachablility to judiciously select quorums in partitionable mobile ad hoc net-
works. They designed an update/query protocol to let nodes update their locations when
needed. Epidemic quorums [32] have also been applied for managing replicated data, which
enables highly available agreement even when a quorum is not simultaneously connected.

Quorum system is widely used in loosely-organized networks, such as ad hoc networks. One
of the most popular applications is implementing location service. In the work of Haas
and Liang [21], a uniform random quorum system is used for mobility management. Nodes
form a virtual backbone. When a node moves, it updates its location with one quorum
containing the nearest backbone node. Each source node then queries the quorum containing
its nearest backbone for the location of the destination. Probabilistic quorum systems are
proposed for dynamic systems [1, 11, 43], where quorums intersect with a probability. Luo
et al. [41] present a Probabilistic quorum system for ad hoc networks (Pan), a collection of
protocols for the reliable storage of data in mobile ad hoc networks. A gossip-based protocol
is designed for quorum access and an asymmetric quorum construction is applied. These
work has noticed the highly dynamic and unpredictable topology changes in ad hoc networks.
Motivated by the B-Grid quorum system in [55], we design a novel dynamic high availability
B-Grid quorum system (DHB-Grid) for dynamic environments, which is dedicated to support
distributed transactional memory for dynamic systems.



Chapter 3

Performance Bounds of the Greedy
Manager for Distributed
Transactional Memory

In this chapter, we establish the upper and lower bounds of the competitive ratio of the
Greedy manager’s makespan with an arbitrary cache-coherence protocol. We show that,
in the worst case, the competitive ratio is O(N2 · s), where N is the maximum number of
transactions that request the same object and s is the number of objects. On the other
hand, the best-case competitive ratio is Ω(s), which matches the performance of the Greedy
manager for multiprocessors.

3.1 System Model and Problem Statement

3.1.1 Metric-Space Network Model.

We consider the metric-space network model of distributed systems, similar to the one pro-
posed in [30]. We use a complete undirected graph G = (V, E), where |V | = n, to model
the cost of the underlying network. The cost of an edge connecting any two nodes vi and
vj, denoted d(i, j), is measured by the communication cost between vi and vj provided by
the underlying routing and other network protocols. We scale the metric so that 1 is the
smallest cost between any two nodes. All n nodes are assumed to be contained in a metric
space of diameter Diam.

13
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3.1.2 Transaction Model.

We are given a set of m ≥ 1 transactions T1, ..., Tm and a set of s ≥ 1 objects R1, ..., Rs. Since
each transaction is invoked on an individual node, we use vTi

to denote the node that invokes
the transaction Ti, and VT = {vT1 , ..., vTm}. We use Ti ≺ Tj to represent that transaction Ti

is issued a higher priority than Tj by the contention manager (see distributed transactional
memory model).

Each transaction is a sequence of actions, each of which is an access to a single object. Each
transaction Tj requires the use of Ri(Tj) units of object Ri for one of its actions. If Tj

updates Ri, i.e., a write operation, then Ri(Tj) = 1. If it reads Ri without updating, then
Ri(Tj) = 1

n
, i.e., the object can be read by all nodes in the network simultaneously. When

Ri(Tj) + Ri(Tk) > 1, Tj and Tk conflict at Ri. We use v0
Ri

to denote the node that holds Ri

at the start of the system, and vj
Ri

to denote the jth node that fetches Ri. We denote the set

of nodes that requires the use of the same object Ri as V Ri
T := {vTj

|Ri(Tj) ≥ 0, j = 1, ..., m}.

An execution of a transaction Tj is a sequence of timed actions. Generally, there are four
action types that may be taken by a single transaction: write, read, commit, and abort. When
a transaction is started on a node, a cache-coherence protocol is invoked to locate the current
copy of the object and fetch it. The transaction then starts its action sequence and may
perform local computations (not involving access to objects) between consecutive actions.
A transaction completes either with a commit or an abort. The duration of transaction Tj

running locally (without taking into account the time for fetching objects) is denoted as τi.

3.1.3 Distributed Transactional Memory Model.

We apply the same data-flow model proposed in Chapter 1.

3.1.4 Problem Statement.

We evaluate the performance of a distributed transactional memory system by measuring
its makespan. Given a set of transactions accessing a set of objects under a contention
manager A and a cache-coherence protocol C, makespan(A,C) denotes the duration that
the given set of transactions are successfully executed under the contention manager A and
cache-coherence protocol C.

It is well-known that optimal off-line scheduling of tasks with shared resources is NP-
complete [10]. While an online scheduling algorithm does not know a transaction’s object
demands in advance, it does not always make optimal choices. An optimal clairvoyant off-
line algorithm, denoted Opt, knows the sequence of object accesses of the transaction in
each execution.
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We use makespan(Opt) to denote the makespan of the optimal clairvoyant off-line schedul-
ing algorithm. From Definition 1, we evaluate the performance of the combination of a
contention manager A and a cache-coherence protocol C by measuring its competitive ratio:

CR(A,C) =
makespan(A,C)

makespan(Opt)
.

Thus, our goal is to solve the following problem: Given a contention manager, how to design
a cache-coherence protocol to minimize the competitive ratio?

3.2 Competitive Ratio of the Greedy Manager

3.2.1 Motivation and Challenge.

The past works on transactional memory systems for multiprocessors motivate our selection
of the contention manager. The major challenge in implementing a contention manager is
to guarantee progress: at any time, there exists some transaction(s) which will run uninter-
ruptedly until they commit. The Greedy contention manager proposed in [14] satisfies this
property. Two non-trivial properties are established for the Greedy manager in [14] and [3]:

• Every transaction commits within a bounded time.

• The competitive ratio of the Greedy manager is O(s) for a set of s objects, and this
bound is asymptotically tight.

The core idea of the Greedy manager is to use a globally consistent contention management
policy that avoids both deadlocks and livelocks. For the Greedy manager, this policy is based
on the timestamp at which each transaction starts. This policy determines the sequence of
priorities of the transactions and relies only on local information, i.e., the timestamp assigned
by the local clock. To make the Greedy manager work efficiently, the local clocks must be
synchronized. The sequence of priorities is determined at the beginning of each transaction
and will not change over time. In other words, the contention management policy serializes
the set of transactions in a decentralized manner.

At first, transactions are processed greedily whenever possible. Thus, a maximal independent
set of transactions that are non-conflicting over their first-requested objects is processed each
time. Secondly, when a transaction begins, it is assigned a unique timestamp which remains
fixed across re-invocations. At any time, the running transaction with the highest priority
(i.e., the “oldest” timestamp) will neither wait nor be aborted by any other transaction.

These good properties of the Greedy manager for multiprocessors motivate us to study its
performance in distributed systems. In a networked environment, the Greedy manager still
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guarantees transaction progress: the priorities of transactions are assigned when they start.
At any time, the transaction with the highest priority (the earliest timestamp for the Greedy
manager) never waits and is never aborted due to a synchronization conflict.

However, as discussed in Chapter 1, it is much more challenging to evaluate the Greedy
manager’s performance in distributed systems, due to the cost involved for locating and
moving objects among processors/nodes. While for multiprocessors, this cost can be ignored
due to built-in cache-coherence protocols, for distributed systems, this cost — which depends
on the cache-coherence protocol used — can be high, and may constitute the major part of
the makespan. Hence, in order to evaluate the Greedy manager’s performance in distributed
systems, the underlying cache-coherence protocol must be taken into account.

One unique phenomenon for transactions in distributed systems is the cost of “overtaking”.
Suppose there are two nodes, vT1 and vT2 , which invoke transactions T1 and T2, respectively,
that require write accesses to object R1. Assume that T1 ≺ T2. An overtaking may be caused
due to the following reasons:

(1) Due to the locations of nodes in the network, the cost for vT1 to locate the current cached
copy of R1 may be much larger than that for vT2 .

(1) Due to the order of the sequence of actions of each transaction, T2’s request for R1 may
be ordered earlier than that of T1’s, e.g., the write access to the object is the first action
of T2 and the second of T1.

In both the cases, T2’s request may be ordered first and R1 is moved to vT2 first. Then, T1’s
request has to be sent to vT2 since the object has been moved to vT2 . The success or failure
of an overtaking is defined by its result:

Overtaking Success: If T1’s request arrives at vT2 after T2’s commit, then T2 is committed
before T1.

Overtaking Failure: If T1’s request arrives at vT2 before T2’s commit, the contention manager
of vT2 will abort the local transaction and send the object to vT1 .

A transaction is aborted when an overtaking failure occurs. Overtaking failures are unavoid-
able for transactions both in multiprocessors and in distributed systems. For multiproces-
sors, the aborted transaction is re-invoked immediately and the cost of the re-invocation is
negligible. However, in distributed systems, it may take much more time for the aborted
transaction to locate the new position of the object. Such failures may significantly increase
the makespan of a set of transactions. Thus, we have to design efficient cache-coherence
protocols to relieve the impact of overtaking failures. We will now show the impact of such
failures on the competitive ratio of the Greedy manager.
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3.2.2 Competitive Ratio Analysis

Let the makespan of a set of transactions which require accesses to an object Ri, be denoted
as makespani. It is composed of three parts:

(1) Traveling Makespan (makespand
i ): the total time that Ri travels in the network.

(1) Execution Makespan (makespanτ
i ): the duration of transactions’ executions involving

Ri, including all successful and aborted executions; and

(1) Idle Time (Ii): the time that Ri waits for a transaction request.

Let the makespan for all move requests for Ri by an optimal off-line algorithm Opt, be
denoted as makespani(Opt). For the set of nodes V Ri

T that invoke transactions with requests
for object Ri, we build a complete subgraph Gi = (Vi, Ei), where Vi = {V Ri

T

∪
v0

Ri
} and the

cost of ei(j, k) is d(j, k). We use H(Gi, v
0
Ri

, vTj
) to denote the cost of the minimum-cost

Hamiltonian path that visits each node from v0
Ri

to vTj
exactly once. Now, we have:

Theorem 1.
makespand

i (Opt) ≥ min
vTj

∈V
Ri
T

H(Gi, v
0
Ri

, vTj
)

makespanτ
i (Opt) =

∑
vTj

∈V
Ri
T

τj

Proof. The execution of the given set of transactions with the minimum makespan schedules
each transaction exactly once, which implies that Ri only has to visit each node in V Ri

T once.
In this case, the node travels along a Hamiltonian path in Gi starting from v0

Ri
. Hence, we

can lower-bound the traveling makespan by the cost of the minimum-cost Hamiltonian path.
On the other hand, object Ri is kept by node vTj

for a duration τj for a successful commit.
The execution makespan is lower-bounded by the sum of τj. The theorem follows.

The problem of finding a minimum cost Hamiltonian path in a graph is generalized as the
traveling salesman path problem (or TSPP) [38, 5], a problem closely related to the Traveling
Salesman Problem (TSP) that replaces the constraint of a cycle by a path. It is well-known
that finding such an algorithm is NP-hard. For an undirected metric-space network, where
edge lengths satisfy the triangle inequality, the best known approximation ratio is 5/3 due
to Hoogeveen [31].

Generally, the shortest way to visit all the vertices of an arbitrary graph may not be a
simple path, i.e., it may visit some vertices or edges multiple times. However, Gi is a metric
completion graph where the cost between any pair of nodes is the cost of the shortest path
connecting the nodes. Under this condition, the shortest way to visit all the vertices of Gi

is a simple path that visits each vertex exactly once.
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Now we focus on the makespan of the Greedy manager with a given cache-coherence protocol
C. As mentioned before, to implement distributed transactional memory, a distributed
cache-coherence protocol is needed, and the cost for locating and moving objects must be
taken into account. We define these costs:

Definition 2 (Locating Cost). In a given metric-space network, the locating cost δC(i, j) is
the cost for a transaction running on a node i to successfully locate an object held by node j
under a cache-coherence protocol C.

The locating cost does not include the cost for moving the object. When the object is
located, we assume that the cost for moving the object from node j to node i is d(i, j). We
use the metric stretch to evaluate the responsiveness of a cache-coherence protocol.

Definition 3 (Stretch). The stretch of a cache-coherence protocol C for a given metric-space
network G = (V,E) is the maximum ratio of the locating cost to the cost between two nodes:

Stretch(C) = max
i,j∈V

δC(i, j)

d(i, j)
.

Let Ni = |V Ri
T |, i.e, Ni represents the number of transactions that request access to object

Ri. We have the following theorem:

Theorem 2.
CRi(Greedy, C) = O(max[N2

i , Ni · Stretch(C)])

Proof. Given a subgraph Gi, we define its priority Hamiltonian path as follows:

Definition 4 (Priority Hamiltonian Path). The priority Hamiltonian path for a subgraph
Gi is a path which starts from v0

Ri
and visits each node from the lowest priority to the highest

priority.

Formally, the priority Hamiltonian path is v0
Ri
→ vTNi

→ vTNi−1
... → vT1 , where Ni = |V Ri

T |
and T1 ≺ T2 ≺ ... ≺ TNi

. We use Hp(Gi, v
0
Ri

) to denote the cost of the priority Hamiltonian
path for Gi.

We first analyze the worst-case traveling makespans of the Greedy manager. At any time t
during the execution, let set A(t) contains nodes whose transactions have been successfully
committed, and let set B(t) contains nodes whose transactions have not been committed.
We have B(t) = {bi(t)|b1(t) ≺ b2(t) ≺ ...}. Hence, Ri must be held by a node rt ∈ A(t).

Due to the property of the Greedy manager, the transaction requested by b1(t) can be
executed immediately and will never be aborted by other transactions. However, this request
can be overtook by other transactions if they are closer to r(t). In the worst case, the
transaction requested by b1(t) is overtook by all other transactions requested by nodes in
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B, and each overtaking is failed. In this case, the only possible path that Ri can travel is
r(i)→ b|B(t)|(t)→ b|B(t)|−1(t)→ ...→ b1(t). The cost of this path is composed of two parts:
the cost of r(i) → b|B(t)|(t) and the cost of b|B(t)|(t) → b|B(t)|−1(t) → ... → b1(t). We can
prove that each part is at most Hp(Gi, v

0
Ri

) by triangle inequality (note that Gi is a metric
completion graph). Hence, we know that the worst traveling cost for a transaction execution
is 2Hp(Gi, v

0
Ri

). Hence, we establish the upper bound of makespand
i (Greedy, C):

makespand
i (Greedy, C) ≤ 2Ni ·Hp(Gi, v

0
Ri

),

The upper bound of the execution makespan can be proved directly. For any transaction Tj,
it can be overtook at most Ni − j times. In the worst case, they are all overtaking failures.
Hence, the worst execution cost for Tj’s execution is

∑
j≤k≤Ni

τk. By summing them over all
transactions, we have:

makespanτ
i (Greedy, C) ≤

∑
1≤j≤Ni

j · τj

We now prove the upper bound of the idle time. If at time t, the system becomes idle for
the Greedy manager, there are two possible reasons:

(1) A set of transactions S invoked before t have been committed and the system is waiting
for new transactions. There exists an optimal schedule that completes S at time at most
t, has idle till the next transaction is released, and possibly has additional idle intervals
during [0, t]. In this case, the idle time of the Greedy manager is less than that of Opt.

(2) A set of transactions S is invoked, but the system is idle since objects haven’t been
located. In the worst case, it takes Ni · δC(i, j) time for Ri to wait for the invoked
requests. On the other hand, it only takes d(i, j) time to execute all transactions in the
optimal schedule with the ideal cache-coherence protocol. The system will not stop after
the first object has been located.

Figure 3.1: Example 1: A 3-node network

The total idle time is the sum of these two parts. We now have:

Ii(Greedy, C) ≤ Ni · Stretch(C) · Ii(Opt)
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Figure 3.2: Example 1: Link path evolution of the directory hierarchy built by Ballistic
protocol

The theorem follows.

Example 1 : in the following example, we show that for the Ballistic protocol [30], the upper
bound in Theorem 2 is asymptotically tight, i.e., the worst-case traveling makespan for a
transaction execution is the cost of the longest Hamiltonian path.

Consider a network composed of 3 nodes A,B and C in Figure 3.1. Based on the Ballistic
protocol, a 3-level directory hierarchy is built, shown in Figure 3.2. Suppose ϵ << α. Nodes
i and j are connected at level l if and only if d(i, j) < 2l+1. A maximal independent set of
the connectivity graph is selected with members as leaders of level l. Therefore, at level 0,
all nodes are in the hierarchy. At level 1, A and C are selected as leaders. At level 2, C is
selected as the leader (also the root of the hierarchy).

We assume that an object is created at A. According to the Ballistic protocol, a link path
is created: C → A → A, which is used as the directory to locate the object at A. Suppose
there are two transactions TB and TC invoked on B and C, respectively. Specifically, we
have TB ≺ TC .

Now nodes B and C have to locate the object in the hierarchy by probing the link state of
the leaders at each level. For node C, it doesn’t have to probe at all because it has a no-null
link to the object. For node B, it starts to probe the link state of the leaders at level 1.
In the worst case, TC arrives at node A earlier than TB, and the link path is redirected as
C → C → C and the object is moved to node C. Node B probes a non-null link after the
object has been moved, and TB is sent to node C. If TC has not been committed, then TC

is aborted and the object is sent to node B.

In this case, the traveling makespan to execute TB is d(A,C) + d(C, B) = 2α, which is the
longest Hamiltonian path starting from node A. On the other hand, the optimal traveling
makespan to execute TB and TA is d(A,B)+d(B, C) = ϵ+α. Hence, the worst-case traveling
makespan to execute TB is asymptotically the number of transactions times the cost of the
optimal traveling makespan to execute all transactions.
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Theorem 2 gives the makespan upper bound of the Greedy manager for each individual
object Ri. In other words, they give the bounds of the traveling and execution makespans
when the number of objects s = 1. We can now derive the competitive ratio of (Greedy, C)
for s objects. Let N = max1≤i≤s Ni, i.e., N is the maximum number of nodes that request
the same object.

Theorem 3.
CR(Greedy, C) = O(max[N2 · s,N · Stretch(C)])

Proof. We first derive the bounds of makespand and makespanτ in the optimal schedule.
Consider the set of write actions of all transactions. If s+1 transactions or more are running
concurrently, the pigeonhole principle implies that at least two of them are accessing the same
object. Thus, at most s writing transactions are running concurrently during time intervals
that are not idle under Opt. Thus, makespanτ (Opt)) satisfies:

makespanτ (Opt) ≥
∑m

i=1 τi

s
.

In the optimal schedule, s writing transactions run concurrently, implying that each object
Ri travels independently. From Theorem 1, makespand(Opt) satisfies:

makespand(Opt) ≥ max
1≤i≤s

min
vTj

∈V
Ri
T

H(Gi, v
0
Ri

, vTj
).

Hence, we bound the makespan of the optimal schedule as:

makespan(Opt) ≥ I(Opt) +

∑m
i=1 τi

s
+ max

1≤i≤s
min

vTj
∈V

Ri
T

H(Gi, v
0
Ri

, vTj
).

Note that, whenever the Greedy manager is not idle, at least one of the transactions that is
processed will be completed. However, from Theorem 2, we know that it may be overtook
by all transactions with lower priorities, and therefore the penalty time cannot be ignored.
Using the same argument of Theorem 2, we have:

makespanτ (Greedy, C) ≤
s∑

i=1

Ni∑
k=1

k · τk.

The traveling makespan of transaction Tj is the sum of the traveling makespan of each object
that Tj involves. We have:

makespand(Greedy, C) ≤
s∑

i=1

2Ni ·Hp(Gi, v
0
Ri

) ≤ s · 2N2 · max
1≤i≤s

min
vTj

∈V
Ri
T

H(Gi, v
0
Ri

, vTj
).
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Hence, the makespan of the Greedy manager satisfies:

makespan(Greedy, C) ≤ I(Greedy, C) +
s∑

i=1

Ni∑
k=1

k · τk + s · 2N2 · max
1≤i≤s

min
vTj

∈V
Ri
T

H(Gi, v
0
Ri

, vTj
).

The theorem follows.

Theorem 3 provides an upper bound on the competitive ratio of the Greedy manager. In
other words, it describes the worst-case performance of the Greedy manager. On the other
hand, what is the best performance that we can expect with the Greedy manager? Can we
prove a lower bound on the competitive ratio of the Greedy manager? We have:

Theorem 4.
makespand

i (Greedy, C) ≥ Hp(Gi, v
0
Ri

)

makespanτ
i (Greedy, C) ≥

∑
vTj

∈V
Ri
T

τj

Proof. In the best case, no overtaking occurs for transactions requesting object Ri. In this
case, object Ri travels along the priority Hamiltonian path in graph Gi. Each transaction is
scheduled exactly once. The theorem follows.

In the best case, the cache-coherence protocol C provides a constant stretch. Hence, we can
establish a lower bound for the Greedy manager:

Theorem 5.
CR(Greedy, C) = Ω(s)

Proof. The theorem can be proved by using the same argument of Theorem 3 combined with
Theorem 4.

3.3 Conclusion

Theorem 3 and 5 give the performance range of the Greedy manager for distributed transac-
tional memory. Hence, the design goal is to minimize the cost of the dominating part among
the three parts of the total makespan. From Theorem 3, we observe that the dominating
part is often either the traveling makespan or the idle time. In the following chapter, we
propose a class of cache-coherence protocols which provide an O(N log N · s) competitive
ratio, which significantly improves the bound of Theorem 3.



Chapter 4

Location-Aware Cache-Coherence
Protocols for Distributed
Transactional Memory

In this chapter, we propose a class of distributed cache-coherence protocols with location-
aware property, called LAC protocols. In LAC protocols, the duration for a transaction
requesting node to locate the object is determined by the communication delay between the
requesting node and the node that holds the object. The lower communication delay implies
lower locating delay. In other words, nodes that are ”closer” to the object will locate the
object more quickly than nodes that are ”further” from the object in the network. We show
that the performance of the Greedy manager with LAC protocols is improved. We prove
this worst-case competitive ratio and show that LAC is an efficient choice for the Greedy
manager to improve the performance of the system.

4.1 Cache Responsiveness

To implement transactional memory in a distributed system, a distributed cache-coherence
protocol is needed: when a transaction attempts to read or write an object, the cache-
coherence protocol must locate the current cached copy of the object, move it to the re-
questing node’s cache and invalidate the old copy.

The cache-coherence protocol has to be responsive so that every transaction commits within
a bounded time. We prove that for the Greedy manager, a cache-coherence protocol is
responsive if and only if δC(i, j) is bounded for any G that models a metric-space network.

Let
V Ri

T (Tj) = {vTk
|vTk
≺ vTj

, vTk
, vTj
∈ V Ri

T }

23



Bo Zhang Chapter 4. Location-Aware Cache-Coherence Protocols 24

for any graph G. Let
∆C [V Ri

T (Tj)] = max
vRi

∈V
Ri
T

δC(i, j)

and
D[V Ri

T (Tj)] = max
vRi

∈V
Ri
T (Tj)

d(vRi
, vTj

).

We have the following theorem.

Theorem 6. A transaction Tj’s request for object Ri with the Greedy manager and cache-
coherence protocol C is satisfied within time

|V Ri
T (Tj)| · {∆C [V Ri

T (Tj)] + D[V Ri
T (Tj)] + τj}.

Proof. The worst case of response time for Tj’s move request of object Ri happens when
Tj’s request overtakes each of the transaction that has a higher priority. Then the object is
moved to vTj

and the transaction is aborted just before its commit. Thus, the penalty time

for an overtaking failure is δC(i, j) + d(vRi
, vTj

) + τj, where vRi
∈ V Ri

T (Tj). The overtaking

failure can happen at most |V Ri
T (Tj)| times until all transactions that have higher priority

than Tj commit. The lemma follows.

Theorem 6 shows that for a set of objects, the responsiveness for a cache-coherence protocol
is determined by its locating cost.

4.2 Location-Aware Cache-Coherence Protocols

We now define a class of cache-coherence protocols which satisfy the following property:

Definition 5 (Location-Aware Cache-Coherence Protocol). In a given network G that mod-
els a metric-space network, if for any two edges e(i1, j1) and e(i1, j1) such that d(i1, j1) ≥
d(i1, j1), there exists a cache-coherence protocol C which guarantees that δC(i1, j1) ≥ δC(i2, j2),
then C is location-aware. The class of such protocols are called location-aware cache-coherence
protocols or LAC protocols.

By using a LAC protocol, we can significantly improve the competitive ratio of traveling
makespan of the Greedy manager, when compared with Theorem 2. The following theorem
gives the upper bound of CRd

i (Greedy, LAC).

Theorem 7.
CRd

i (Greedy, LAC) = O(Ni log Ni)
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Proof. We first prove that the traveling path of the worst-case execution for the Greedy
manager to finish a transaction Tj is equivalent to the nearest neighbor path from v0

Ri
that

visits all nodes with lower priorities than Tj.

Definition 6. Nearest Neighbor Path: In a graph G, the nearest neighbor path is constructed
as follows [62]:

1. Starts with an arbitrary node.

2. Find the node not yet on the path which is closest to the node last added and add the edge
connecting these two nodes to the path.

3. Repeat Step 2 until all nodes have been added to the path.

The Greedy manager guarantees that, at any time, the highest-priority transaction can
execute uninterrupted. If we use a sequence {v1

Ri
≺, ...,≺ vNi

Ri
} to denote these nodes in

the priority-order, then in the worst case, the object may travel in the reverse order before
arriving at v1

Ri
. Each transaction with priority p is aborted just before it commits by the

transaction with priority p−1. Thus, Ri travels along the path v0
Ri
→ vNi

Ri
→ ...→ v2

Ri
→ v1

Ri
.

In this path, transaction invoked by by vRj
i

is overtaken by all transactions with priorities

lower than j, implying

d(v0
Ri

, vNi
Ri

) < d(v0
Ri

, vk
Ri

), 1 ≤ k ≤ Ni − 1

and
d(vj

Ri
, vj−1

Ri
) < d(vj

Ri
, vk

Ri
), 1 ≤ k ≤ j − 2.

Clearly, the worst-case traveling path of Ri for a successful commit of the transaction invoked
by vj

Ri
is the nearest neighbor path in Gj

i starting from vRj−1
i

, where Gj
i is a subgraph of Gi

obtained by removing {v0
Ri

, ..., vj−2
Ri
} in Gi and G1

i = Gi.

We use NN(G, vi) to denote the traveling cost of the nearest neighbor path in graph G
starting from vi. We can easily prove the following equation by directly applying Theorem
1 from [62].

NN(Gj
i , v

j−1
Ri

)

minvk
Ri

∈Gj
i
H(Gi, v

j−1
Ri

, vk
Ri

)
≤ ⌈log(Ni − j + 1)⌉+ 1 (4.1)

Theorem 1 from [62] studies the competitive ratio for the nearest tour in a given graph,
which is a circuit on the graph that contains each node exactly once. Hence, we can prove
Equation 4.1 by the triangle inequality for metric-space networks. We can apply Equation 4.1
to upper-bound makespand

i (Greedy, LAC) :

makespand
i (Greedy, LAC) ≤

∑
1≤j≤Ni

NN(Gj
i , v

j−1
Ri

)
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≤
∑

1≤j≤Ni

min
vk

Ri
∈Gj

i

H(Gj
i , v

j−1
Ri

, vk
Ri

) · (⌈log(Ni − j + 1)⌉+ 1).

Note that
min

vTj
∈V

Ri
T

H(Gi, v
0
Ri

, vTj
) ≥ min

vk
Ri

∈Gj
i

H(Gj
i , v

j−1
Ri

, vk
Ri

).

Combined with Theorem 2, we derive the competitive ratio for traveling makespan of the
Greedy manager with a LAC protocol as:

CRd
i (Greedy, LAC) =

makespand
i (Greedy, LAC)

makespand
i (Opt)

≤
∑

1≤j≤Ni

(⌈log(Ni − j + 1)⌉+ 1) ≤ log(Ni!) + Ni.

The theorem follows.

Example 2 : We now revisit the scenario in Example 1 by applying LAC protocols. Note that
TB ≺ TC and d(A,B) < d(A,C). Due to the location-aware property, TB will arrive at A
earlier than TC . Hence, the traveling makespan to execute TB and TC is d(A,B) + d(B, C),
which is optimal in this case.

Now we change the condition of TB ≺ TC to TC ≺ TB. In this scenario, the upper bound of
Theorem 7 is asymptotically tight. TC may be overtook by TB and the worst case traveling
makespan to execute TC is d(A,B) + d(B, C), which is the nearest neighbor path starting
from A.

Remarks: the upper bounds presented in Theorem 2 also applies to LAC protocols. However,
for LAC protocols, the traveling makespan becomes the worst case only when the priority
path is the nearest neighbor path.

4.3 makespan(Greedy, LAC) for Multiple Objects

Theorem 7 give the makespan upper bound of the Greedy manager for each individual object
Ri. In other words, they give the bounds of the traveling and execution makespans when
the number of objects s = 1. Based on this, we can further derive the competitive ratio of
the Greedy manager with a LAC protocol for the general case. Let N = max1≤i≤s Ni, i.e.,
N is the maximum number of nodes that requesting for the same object. Now,

Theorem 8. The competitive ratio CR(Greedy, LAC) is

O(max[N · Stretch(LAC), N log N · s)].
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Proof. We first prove that the total idle time in the optimal schedule is at least N ·Stretch(LAC)·
Diam times the total idle time of the Greedy manager with LAC protocols, shown as Equa-
tion 4.2.

I(Greedy, LAC) ≤ N · Stretch(LAC) ·Diam · I(Opt) (4.2)

If at time t, the system becomes idle for the Greedy manager, there are two possible reasons:

1. A set of transactions S is invoked before t have been committed and the system is waiting
for new transactions. There exist an optimal schedule that completes S at time at most t, is
idle till the next transaction released, and possibly has additional idle intervals during [0, t].
In this case, the idle time of the Greedy manager is less than that of Opt.

2. A set of transactions S are invoked, but the system is idle since objects haven’t been
located. In the worst case, it takes Ni · δLAC(i, j) time for Ri to wait for invoked requests.
On the other hand, it only takes d(i, j) time to execute all transactions in the optimal
schedule with the ideal cache-coherence protocol. The system won’t stop after the first
object has been located.

The total idle time is the sum of these two parts. Hence, we can prove Equation 4.2 by
introducing the stretch of LAC.

Now we derive the bounds of makespand and makespanτ in the optimal schedule. Consider
the set of write actions of all transactions. If s + 1 transactions or more are running con-
currently, the pigeonhole principle implies that at least two of them are accessing the same
object. Thus, at most s writing transactions are running concurrently during time intervals
that are not idle under Opt. Thus, makespanτ (Opt)) satisfies:

makespanτ (Opt) ≥
∑m

i=1 τi

s
.

In the optimal schedule, s writing transactions run concurrently, implying each object Ri

travels independently. From Theorem 2, makespand(Opt) satisfies:

makespand(Opt) ≥ max
1≤i≤s

min
vTj

∈V
Ri
T

H(Gi, v
0
Ri

, vTj
).

Hence, we bound the makespan of the optimal schedule by

makespan(Opt) ≥ I(Opt) +

∑m
i=1 τi

s
+ max

1≤i≤s
min

vTj
∈V

Ri
T

H(Gi, v
0
Ri

, vTj
).

Note that, whenever the Greedy manager is not idle, at least one of the transactions that are
processed will be completed. However, from Theorem 3 we know that it may be overtook
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by all transactions with lower priorities, and therefore the penalty time cannot be ignored.
Use the same argument of Theorem 3, we have

makespanτ (Greedy, LAC) ≤
s∑

i=1

Ni∑
k=1

k · τk.

The traveling makespan of transaction Tj is the sum of the traveling makespan of each object
that Tj involves. With the result of Theorem 7, we have

makespand(Greedy, LAC) ≤
s∑

i=1

Ni∑
j=1

NN(Gj
i , v

j−1
Ri

)

≤ s ·
N∑

j=1

min
vk

Ri
∈Gj

i

H(Gj
i , v

j−1
Ri

, vk
Ri

) · (⌈log(N − j + 1)⌉+ 1)

≤ s · (⌈log(N !)⌉+ Ni) · max
1≤i≤s

min
vTj

∈V
Ri
T

H(Gi, v
0
Ri

, vTj
).

Hence, the makespan of the Greedy manager with a LAC protocol satisfies:

makespan(Greedy, LAC) ≤ I(Greedy, LAC) +
s∑

i=1

Ni∑
k=1

k · τk

+s · (⌈log(N !)⌉+ N) · max
1≤i≤s

min
vTj

∈V
Ri
T

H(Gi, v
0
Ri

, vTj
).

The theorem follows.

Remarks: Theorem 8 generalizes the performance of makespan of (Greedy,LAC). In order
to lower this upper bound as much as possible, we need to design a LAC protocol with
Stretch(LAC) ≤ s log N . In this case, the competitive ratio for (Greedy, LAC) is O(N log N ·
s). Compared with the O(s) bound for multiprocessors, we conclude that the competitive
ratio of makespan of the Greedy manager degraded for distributed systems. As we stated
in Section 3.2, the penalty of overtaking failures is the main reason for the performance
degradation.

4.4 Conclusions

We show that the performance of a distributed transactional memory system with a metric-
space network is far from optimal, under the Greedy contention manager and an arbitrary
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cache-coherence protocol in Chapter 3. Hence, we propose a location-aware property for
cache-coherence protocols to take into account the relative positions of nodes in the net-
work. We show that the combination of the Greedy contention manager and an efficient
LAC protocol yields a better worst-case competitive ratio for a set of transactions. This
results thus facilitate the following strategy for designing distributed transactional memory
systems: select a contention manager and determine its performance without considering
cache-coherence protocols; then find an appropriate cache-coherence protocol to improve
performance.

In this chapter we propose a class of cache-coherence protocols with location-aware property.
This is the first attempt to investigate the combinative behavior of contention managers and
cache-coherence protocols. For all LAC protocols, the competitive ratio upper bound is
O(N log N · s) when combined with the Greedy manager. Is this the best we can do? In
the next chapter, we propose a DHT-based cache-coherence protocol which exhibits a better
performance.



Chapter 5

A DHT-Based Cache-Coherence
Protocol for Distributed
Transactional Memory

In this chapter, we present a novel DHT (distributed hash table)-based cache-coherence
protocol, called the DHTC protocol. DHTs provide good load balancing and scalability
properties. A common DHT also has a fully decentralized structure, which is essential
for loosely-organized applications. Traditional DHT applications often focus on immobile
objects. In contrast, the DHTC protocol is able to efficiently track moving objects. We show
that the DHTC protocol guarantees an O(N · s) competitive ratio, which is a significant
improvement over an arbitrary cache-coherence protocol/Greedy manager combination.

5.1 Protocol Description.

We build a DHT in the network which is used by the proposed cache-coherence protocol.
The DHT performs the following operation [69]: given a key, it maps the key on to a node.
The key is the filename of the data object, which is used as a keyword to identify the object.
The DHT-based lookup protocol can efficiently locate the node which holds the key. It uses
consistent hashing, which assigns an identifier (ID) to each node and key using a base hash
function such as SHA-1. A node’s ID is chosen by hashing its IP address, while a key’s ID is
produced by hashing the key itself. Consistent hashing assigns keys to nodes in an efficient
way such that the load is balanced with high probability, i.e., all nodes receive approximately
the same number of keys.

In a DHT, each node maintains a set of links (i.e., a routing table). To lookup a key, a node
selects a neighbor in the routing table. The most essential property of the DHT is that, for
any key ID k, the node either owns k or has a link to a node that is closer to k in terms of

30
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the keyspace distance defined by the specific DHT to represent an abstract distance between
two key IDs. The routing algorithm to the owner of k can then be implemented in a greedy
way: at each step, forward the routing message to the neighbor in the routing table whose
ID is closest to k. The message arrives at the owner of k when there is no such neighbor.
Two important metrics are used to evaluate a DHT: (1) the maximum number of forwarding
hops in any route (or route length) and (2) the maximum number of neighbors in the routing
table (or maximum node degree). We assume that our applied DHT has an O(log n) bound
for both route length and maximum node degree, for an n-node network, which is common
for most DHTs [61, 69, 72].

While DHTs provide an effective way to locate objects, those objects are typically considered
to be immobile [61, 69, 72]. In such contexts, an object just has to be published once.
However, in our data-flow model, objects are moving in the network. How do we track the
moving object in the network efficiently? Intuitively, when the object is moved to a new
node, it has to be republished so that the node owning the key has the latest information
of the location of the object. However, this strategy is not efficient since it induces large
cost for republishing. In our proposed cache-coherence protocol, called DHTC, an object is
published when it is created, and no republishing is needed.

The following operation is performed to publish an object:

Publish(Ri): When an object Ri is created at node v0
Ri

, it produces the key ID of Ri,
denoted by key(Ri). The DHT lookup protocol is invoked to locate the node that is mapped
to key(Ri), denoted by home(Ri). Node home(Ri) keeps a link home(Ri).link(Ri) to node
v0

Ri
when it receives the publish message.

Now transactions can be invoked to request accesses to Ri. All requests are forwarded to
home(Ri). The link state of home(Ri) is updated whenever a transaction request arrives
at home(Ri). A two-phase operation is performed for a transaction Tj to lookup the latest
location of Ri:

Lookup(Ri) (Up Phase): When a transaction Tj invoked at vTj
requests a read or write

access to Ri, it calls the DHT lookup protocol to locate home(Ri). Node home(Ri) forwards
the message to home(Ri).link after receiving the request message. Link home(Ri).link is
updated by vTj

, i.e., home(Ri).link keeps track of the latest transaction request of Ri.

In the DHTC protocol, a transaction request for an object Ri is only forwarded to home(Ri)
when the request is made for the first time. When the transaction is aborted, it is restarted
immediately. When restarted, the transaction does not need to send the previous requests
again. Instead, the cache-coherence protocol “saves” those requests by updating link states
of each node involved in the transaction requests for the same object. By doing so, the DHTC
protocol just needs to locate the object once for each transaction even if the transaction is
aborted many times.

Each node sets a datum flag(Tk) after it invokes a transaction Tk. If Tk has successfully
committed, flag(Tk) = 1; otherwise flag(Tk) = 0. For any transaction Tk ∈ V Ri

T , it may
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encounter multiple access conflicts on the same object from other transactions. We arrange
those transactions in the chronological order, denoted as {T 1

k (Ri), T
2
k (Ri), ..., T

l
k(Ri)}. The

following links are maintained by node vTk
:

• Next transaction link next(Ri): Assume that transaction Tk does not encounter any
access conflict on Ri until it commits. Object Ri is kept by vTk

until a new transaction
request Tk′ of Ri is received after Tk’s commit. Link vTk

.next(Ri) is updated by vTk′ .

• Successor transaction link suc(Ri): Assume that transaction Tk encounters access con-
flicts on Ri during its execution. At any time, vTk

.suc(Ri) = vT j
k (Ri)

, where T j
k (Ri) is

the highest priority transaction among all transactions in {T 1
k (Ri), T

2
k (Ri), ..., T

l
k(Ri)}

whose priorities are lower than Tk.

• Predecessor transaction link pre(Ri): Assume that transaction Tk is aborted by trans-
action T l′

k (Ri). In this case, T l′

k (Ri) ≺ Tk. Link vTk
.pre(Ri) is updated by vT l′

k (Ri)
.

Lookup(Ri) (Down Phase): When a transaction Tj’s request for accessing object Ri arrives
at node vTk

, flag(Tk) is checked:

• If vTk
.f lag(Tk) = 1, then Tk has successfully committed. Two possible cases exist:

– Object Ri is held by vTk
. Ri has been located and the lookup process is completed.

– Object Ri is not held by vTk
. The transaction request is now forwarded to

vTk
.next(Ri) or vTk

.suc(Ri) by examining those two links. Depending on our
updating policy, only one of them is a non-null link.

• If vTk
.f lag(Tk) = 0, then Tk has not successfully committed. Two possible cases exist:

– Object Ri is held by vTk
. Ri has been located and the lookup process is completed.

– Object Ri is not held by vTk
. The transaction request is forwarded to vTk

.pre(Ri).

Lookup(Ri) performs one operation: forwarding a transaction’s request to the latest location
of the object Ri. The following operation is performed after the object is located:

Execute(Ri): When a transaction Tj that requests access of Ri locates Ri at node vTk
,

flag(Tk) is checked:

• If vTk
.f lag(Tk) = 1, then Tk has successfully committed. The object Ri is idle, and is

moved to vTj
. vTk

’s next transaction link is updated as vTk
.next(Ri) = vTj

.

• If vTk
.f lag(Tk) = 0, then Ri is currently in use by transaction Tk. The local contention

manager of vTk
compares priorities of Tk and Tj. Two possible cases exist:
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– If Tj ≺ Tk, then Tk is aborted. vTk
.pre(Ri) is set to vTj

(i.e., vTk
.pre(Ri) = vTj

).
Object Ri is moved to vTk

and vTj
.suc(Ri) is set to vTk

(i.e., vTj
.suc(Ri) = vTk

).

– If Tk ≺ Tj, then Tj is postponed to let Tk commit. Link vTk
.suc(Ri) is then

examined. If it is null, then it is set to vTj
. A link update message lnkmsg(vTk

, Ri)
is sent to vTj

. Otherwise, the contention manager compares the priorities of Tj

and Tk′ , where Tk′ is the transaction request on Ri from vTk
.suc(Ri). There are

two possible cases:

∗ If Tj ≺ Tk′ , vTk
.suc(Ri) is set to vTj

(i.e., vTk
.suc(Ri) = vTj

). Link update
messages lnkmsg(vTk′ , Ri) and lnkmsg(vTj

, Ri) are sent to vTj
and vTk′ , re-

spectively.

∗ If Tk′ ≺ Tj, a link update message lnkmsg(vTj
, Ri) is sent to vTk′

and a link
update message lnkmsg(vTk′ , Ri) is sent to vTj

.

For any transaction Tj, vTj
.suc(Ri) is checked for each requested object Ri after it commits.

Object Ri is moved to vTj
.suc(Ri) if it is a non-null link.

A link update message may be sent after Execute(Ri). The following operation is performed
for nodes receiving a link update message:

Update(lnkmsg(vTj
, Ri)): When a link update message lnkmsg(vTj

, Ri) arrives at node vTk
,

the local contention manager compares the priorities of Tj and Tk:

• If Tj ≺ Tk, then vTk
.pre(Ri) is set to vTj

(i.e., vTk
.pre(Ri) = vTj

).

• If Tk ≺ Tj, then link vTk
.suc(Ri) is checked:

– If vTk
.suc(Ri) = null, then vTk

.suc(Ri) is set to vTj
(i.e., vTk

.suc(Ri) = vTj
).

– If vTk
.suc(Ri) ̸= null, the local contention manager compares the priorities of Tj

and Tk′ , where Tk′ is the transaction request on Ri from vTk
.suc(Ri). Two cases

exist:

∗ If Tj ≺ Tk′ , vTk
.suc(Ri) is set to vTj

(i.e., vTk
.suc(Ri) = vTj

). Link update
messages lnkmsg(vTk′ , Ri) and lnkmsg(vTj

, Ri) are sent to vTj
and vTk′ , re-

spectively.

∗ If Tk′ ≺ Tj, a link update message lnkmsg(vTj
, Ri) is sent to vTk′ and a link

update message lnkmsg(vTk′ , Ri) is sent to vTj
.

5.2 Protocol Analysis

Protocol Correctness. We prove the correctness of the protocol in two steps. First, we
show that Lookup(Ri) can efficiently locate Ri. In the up phase, transactions invoked by
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nodes in V Ri
T locate home(Ri) by using the DHT lookup protocol. Let the transactions

invoked by nodes in V Ri
T be arranged in the chronological order by which they arrive at

home(Ri), denoted as {T 1(Ri), T
2(Ri), ..., T

Ni(Ri)}. Now, we have:

Theorem 9. In the down phase of the Lookup(Ri), transaction T j(Ri) can locate Ri in at
most j − 1 hops.

Proof. Assume that the object is located at vT k(Ri), where 1 ≤ k ≤ j − 1. If T k(Ri) has
committed, i.e., object Ri is idle, then there are two possible cases:

• Case 1 : k = j − 1. Now, Ri is located in hop 1.

• Case 2 : k < j − 1. Now, T j−1(Ri) ≺ T k(Ri). In this case, T j−1(Ri) must have
committed and Ri is moved through vT k(Ri).suc(Ri). In the worst case, T j−1(Ri) is
the highest priority transaction in {T 1(Ri), T

2(Ri), ..., T
j−1(Ri)} and is overtook by

{T 1(Ri), T
2(Ri), ..., T

j−2(Ri)}. Thus, the object is moved to the lowest transaction
in {T 1(Ri), T

2(Ri), ..., T
j−2(Ri)}. Therefore, the transaction request will be forwarded

through successor transaction links, starting from vT k(Ri).suc(Ri) to the lowest transac-
tion in {T 1(Ri), T

2(Ri), ..., T
j−2(Ri)}. Hence, it takes at most j−1 hops for transaction

T j(Ri) to locate Ri.

In the same way, we can prove that it takes at most j − 1 hops if Ri is not idle. Note that
in this case, the transaction request will be forwarded through the predecessor transaction
links, starting from T j−1(Ri), in the worst case. The theorem follows.

In the second step, we prove that all transactions will successfully commit under the DHTC
protocol.

Theorem 10. Object Rj moves at most Ni hops after transaction TNi(Ri) locates Ri to let
all transactions in V Ri

T commit successfully.

Proof. Assume that TNi(Ri) locates Ri at vT k(Ri). If Ri is idle, then all transactions in
{T 1(Ri), T

2(Ri), ..., T
Ni−1(Ri)} have committed and Ri just needs to move one hop to let

TNi(Ri) commit. If Ri is not idle, we divide {T 1(Ri), T
2(Ri), ..., T

Ni−1(Ri)} into two subsets
such that {T l1(Ri), T

l2(Ri), ..., T
lr(Ri)} is the set of transactions that have committed, and

{T lr+1(Ri) ≺ T lr+2(Ri) ≺ ... ≺ T lNi−1(Ri)} is the set of transactions that have not committed.
We observe that T k(Ri) = T lr+1(Ri). There are two possible cases:

• Case 1 : TNi(Ri) ≺ T k(Ri). Now, T k(Ri) is aborted and vT Ni (Ri) is set as its predeces-

sor. Object Ri is moved to vT Ni (Ri) to let TNi(Ri) commit. After TNi(Ri)’s commit, Ri

is moved through successor transaction links starting from TNi(Ri).suc(Ri) to let all
transactions in {T lr+1(Ri), T

lr+2(Ri), ..., T
lNi−1(Ri)} commit. Since there is no transac-

tion request after TNi(Ri), Ri only needs to traverse each node that invokes transaction
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in {T lr+1(Ri), T
lr+2(Ri), ..., T

lNi−1(Ri)} to let all transactions commit. Since there is at
most Ni− 1 elements in {T lr+1(Ri), T

lr+2(Ri), ..., T
lNi−1(Ri)}, the maximum number of

hops moved by Ri is Ni.

• Case 2 : T k(Ri) ≺ TNi(Ri). According to our cache-coherence protocol, the links of
nodes invoking transactions in {T lr+1(Ri), T

lr+2(Ri), ..., T
lNi−1(Ri)} are rearranged, and

there exists a transaction T lr′ (Ri) such that vT lr′ (Ri)
.suc(Ri) = vT Ni (Ri) and vT Ni (Ri).suc(Ri) =

v
T

lr′+1 (Ri)
. After T k(Ri)’s commit, Ri is moved through successor transaction links

starting from T k(Ri).suc(Ri) to let all transactions in {T lr+1(Ri),
T lr+2(Ri), ..., T

lr+1(Ri), T
Ni(Ri), T

lr+2(Ri), ..., T
lNi−1(Ri)} commit. Using the same ar-

gument as before, the theorem follows.

Performance Analysis. Having established the correctness of the protocol, we now eval-
uate its performance.

Theorem 11.
Stretch(DHTC) = O(N ·Diam)

Proof. The locating cost of DHTC for transaction vTj
(Ri) is composed of two parts. The

first part is the cost to locate home(Ri), which is O(log Ni · Diam) for the DHT lookup
protocol. The second part is the cost to forward the transaction request from home(Ri) to
the location of Ri, which is O(Ni · Diam) from Theorem 9. Summing the two parts, the
theorem follows.

Our stretch is higher than that of the Ballistic protocol in [30] because we track the latest
location of the object. For the Ballistic protocol, each transaction request tracks its prede-
cessor, which changes the link state of the directory. When a transaction is aborted, the
Ballistic protocol is called again to locate the object.

In the DHTC protocol, the idle time to process all transactions is reduced since each trans-
action only needs to locate the object once, no matter how many times it is aborted. In the
worst case, all transactions are executed in the priority order after the last transaction has
located the object.

Theorem 12.
Ii(Greedy,DHTC) ≤ Ni ·Diam · Ii(Opt) (5.1)

makespand
i (Greedy,DHTC) ≤ 2Ni · min

vTj
∈V

Ri
T

H(Gi, v
0
Ri

, vTj
) (5.2)
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Proof. Equation (5.1) can be directly proved by Theorem 11. To prove Equation (5.2),
we only have to show that Ri moves at most 2Ni hops to let all transactions invoked by
V Ri

T commit. We know that there are only two possible outcomes when Ri moves to a new
location: transaction commit or abort. Since there are only Ni transaction requests to locate
Ri, transactions invoked by V Ri

T are aborted at most Ni times. Hence, the total number of
hops that Ri travels is at most 2Ni. The theorem follows.

Finally, we establish the competitive ratio of (Greedy,DHTC):

Theorem 13. CR(Greedy,DHTC) = O(N · s)

Proof. The theorem can be proved by using the same argument of Theorem 3 combined with
Theorem 12.

Compared to Theorem 3’s upper bound, the performance is significantly improved.

5.3 Concluding Remarks

Two main factors determine the performance of cache-coherence protocols for distributed
transactional memory: the total locating cost and the extra traveling makespan of overtaking
failures. The locating cost is measured by the stretch of the cache-coherence protocol. Since
locating moving objects in the network induces large cost, we reduce the total locating cost
by ensuring that each transaction request locates the object just at the first time when the
request is invoked. Once the object is located, the transaction request will be saved in the
network until it commits. By doing this, the total locating cost increases only as a polynomial
of N , where N is the maximum number of nodes that request the same object. On the
other hand, the total number of overtakings does not exceed N because an overtaking only
occurs when a new transaction request locates the object. Consequently, the combination of
(Greedy,DHTC) guarantees an improved worst-case performance.

We have assumed a static network. DHTs also exhibit good performance when nodes can
enter or leave the physical network. However, when a node home(Ri) crashes, the link to the
node which invokes the last transaction requesting Ri is lost. Hence, some failure detection
mechanism [35] should be designed for each home(Ri) and will cause large message overhead
in the network. In the next chapter, we apply quorum systems to support distributed
transactional memory for dynamic systems.



Chapter 6

A Quorum-Based Cache-Coherence
Protocol for Distributed
Transactional Memory

In this chapter, we propose DHBC, a quorum-based cache-coherence protocol for distributed
transactional memory for dynamic systems. We prove that DHBC guarantees asymptotically
optimal load, availability and prove complexity in the presence of node failures and system
changes.

6.1 Definitions and Preliminaries

6.1.1 Quorum Systems

Definition 7. Given a finite universe U = {1, ..., n}, a set system S = {S1, ..., Sm} is a
collection of subsets Si ⊆ U . A quorum system is a set system S that satisfies the intersection
property: Si ∩ Sj ̸= ∅ for every Si, Sj ∈ S. The sets of the system are called quorums.

6.1.2 Metrics of Quality

The quality of quorum systems is evaluated by a following metrics.

• Load : A strategy is a probabilistic rule that governs which quorum is chosen each
time. In other words, a strategy is a probabilistic distribution over quorum sets, giving
each quorum a probability by which it is accessed by the user. Formally, we have the
following definition:

37
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Definition 8. Given a quorum system S = {S1, ..., Sm} over a universe U , then w ∈
[0, 1]m is a strategy for S if it is a probability distribution over the quorums Sj ∈ S,
i.e.,

∑m
j=1 wj = 1.

A strategy induces a load on each element, which is the sum of the probabilities of
quorums it belongs to. For a given quorum system S, the load induced by a strategy w
on a quorum system S is the load on the busiest element i, i.e., Lw(S) = maxi∈U lw(i),
where lw(i) =

∑
Sj∋i wj. The system load is the minimum load over all strategies w:

L(S) = minw{Lw(S)}. Note that L(S) is achieved only if the quorums are chosen
according to the optimal strategy. Due to various strategies used to access the quorum
system, the actual load might be higher than L(S). On the other hand, L(S) is
property to the combinatorial structure of the quorum system, and not to the protocol
using the system. If the load is low, then the frequency of accessing each element is
low, indicating that the system has capacity to perform paralleled tasks. Naor and
Wool prove that L(S) ≥ max{ 1

c(S)
, c(S)

n
}, which implies that L(S) ≥ 1√

n
.

• Availability : The failure probability Fp(S) of a quorum system is the probability that
there exists at least one quorum containing no faulty servers, assuming that each
element fails with probability p. This failure probability measures how resilient the
system is, and we would like Fp(S) to be as small as possible.

• Probe Complexity : The probe complexity is the number of probed elements before a
witness of the state of the system is found, i.e. a live quorum or a quorum with all
its elements failed. The complexity of the algorithm for finding a quorum should be
low. On the other hand, the load of the quorum system induced by the algorithm
must be taken into consideration. For the non adaptive algorithm, i.e., an algorithm
which decides the set of elements to probe before it gains any knowledge as to which
elements failed and which did not. To improve the probe complexity, the algorithms
are allowed to be adaptive, i.e., the next element to be probed can selected according
to the outcome of the previous probes. Such algorithms require collecting information
of the system, which is determined by the specific network and quorum system. The
corresponding communication overhead must be taken into account during the design
of such algorithms.

• Scalability : The good scalability of a dynamic quorum system is two fold. At first,
the system should maintain the good qualities in the static environment, i.e. load,
availability and probe complexity. Secondly, the join and leave operation should be
applied with low time and message complexity.
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6.2 System Model

We apply the same system model proposed in Section 3.1. In addition, we use following
models for dynamic systems.

6.2.1 Dynamic Network Model

We propose a dynamic network model, where nodes join and leave the network arbitrarily.
We assume a decentralized network, where the failure of a node does not interfere other nodes’
existence in the network. Each node has a set of neighbors and can directly communicate
with them by simple heartbeat messages. A node can also communicate with other distant
nodes when knows their addresses by applying some routing algorithms.

6.2.2 Probabilistic Failure Model

A quorum system is constructed upon a dynamic network. We use a probabilistic model
of failures in the system. We assume that each element fails independently with a fixed
probability less than or equal to p. Hence, this probability describes the dynamic nature of
the system. We assume the failures are crash failures, i.e. ”lying” failures such as Byzantine
failures are not considered. We also assume all failures are detectable, i.e. an element’s state
(live or dead) can be known after probing.

In the probabilistic model, the probe complexity of a quorum system is the expected number
of probes by given the fixed probability p. For some quorum systems, the probe complexity
in the probabilistic model is significantly better than their probe complexity in the worst
case model. Naor and Wieder [56] prove the tradeoff between the load of a quorum system
and its probe complexity for non adaptive algorithms in the probabilistic failure model with
p < 1

2
.

Lemma 1. Let S be a quorum system over universe U with a load of L(S). Assume that
each element in U fails with some fixed probability p < 1

2
. Let X ⊆ U be a predefined set of

elements such that

Pr[X contains a live quorum] ≥ 1

2
,

then

|X| ≥ 1

2 log(1/p) + 1
· log[1/4L(S)]

L(S)

This implies that for a non adaptive algorithm which achieves the optimal load O( 1√
n
), at

least Ω(
√

n log n) elements must be probed. This fact motivates us to design algorithms that
achieve good balance between somewhat contradictory measures of quality.
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Figure 6.1: A B-Grid System: n = 240, d = 16, h = 5, r = 3. One quorum is shaded.

6.3 HB-Grid: High Available B-Grid Quorum Systems

We use a class of quorum systems: the B-Grid systems [55]. We start with the a precise
definition of the B-Grid system:

Definition 9. B-Grid System: Arrange the elements in rectangular grid of width d. Split
the grid logically into h bands of r rows each. The total number of elements is n = dhr.
Call r elements in a column that are al contained in a single band a mini-column. Then
a quorum consists of one mini-column in every band, and a representative element in each
mini-column of one band.

The following lemmas are proved in [55]:

Lemma 2. L(B-Grid) = d+hr−1
dhr

.

Lemma 3. Fp(B-Grid) ≤ (dpr)h + h(1− qr)d, where q = 1− p.

Following these lemmas, we show some relationships of d, h, r and p for an efficient quorum
construction.

Theorem 14. If h ≥ 4 and d ≥ 2, then Fp = 1 when p ≥ 1/2.

Proof. We prove the above lemma by contradiction. Assume Fp ≤ 1. From Lemma 3 we
immediately have dpr ≤ 1 and pr ≤ 1

d
. Since p ≥ 1/2, we know that qr ≤ pr ≤ 1

d
. Applying

this to Lemma 3, we have

h(1− qr)d ≥ h(1− 1

d
)d ≥ 4 · (1− 1

2
)2 = 1,
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which forms a contradiction.

From above theorem we find that the availability of B-Grid is not acceptable when p ≥ 1/2.
This fact motivates us to find an efficient quorum construction when 0 < p < 1/2. In the
next lemma we give a quorum construction under which Fp decays exponentially fast when
0 < p < 1/2.

Theorem 15. If 0 < p < 1/2 , let c = ln q
ln p
∈ (0, 1). Then for any k ∈ (1, 1

c
), there exists a

B-Grid quorum construction with r = ⌊k log1/p d⌋, under which Fp(B-Grid) ≤ e−[(k−1) ln d]·h +

e−
1
2
d(1−ck)

for large values of d such that ln h < 1
2
d(1−ck).

Proof. With r = ⌊k log1/p d⌋, we have

Fp ≤ (dpr)h + h(1− qr)d ≤ d(1−k)·h + h(1− d−ck)d.

Note that (1− d−ck)dck ≃ e−1 for large values of d, then

Fp ≤ e−[(k−1) ln d]·h + h · ed(1−ck) ≤ e−[(k−1) ln d]·h + e−
1
2
d(1−ck)

(6.1)

The theorem above gives us a set of choices to construct a B-Grid quorum system. Note
that in Equation 6.1 Fp consists of 2 parts. By different values of d and k, one term may
dominate another term and makes up the major part of Fp. The following theorem gives the
quorum construction under which Fp is minimized:

Theorem 16. For all B-Grid quorum systems constructed in Theorem 15, a HB-Grid

quorum system with the minimal failure probability is constructed by letting d = n
1

2−c ,
r = ⌊log1/p d⌋ + 1 and h = n

rd
. The quorum system exhibits an asymptotical optimal failure

probability: for any positive constant ϵ < 1−c
c

, we can find the asymptotical upper bound for
Fp:

Fp = O(max[exp(− ln 1/p

1 + log1/p d
· n

1−c(1+ϵ)
2−c(1+ϵ) ), exp(−1

2
· n

1−c(1+ϵ)
2−c(1+ϵ) )])

for large values of d such that d ≥ (p−1)ϵ−1
.

Proof. We first prove that for a set of quorum systems constructed in Theorem 15 with

k = k0, the quorum system with d = n
1

2−ck0 has the minimal failure probability.

Assume d = ni, from Equation 6.1 we have

Fp ≤ e
− (ln 1/p)(k0−1)

1+log
n1−i

+ e−
1
2
ni(1−ck0)
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Hence, Fp = O(max[exp(− (ln 1/p)(k0−1)
k0

n1−i), exp(−1
2
ni(1−ck0))]). When the two terms are the

same order of n, the order of Fp is minimized. In this case, we have

Fp = O(max[exp(−(ln 1/p)(k0 − 1)

k0

· n
1−ck0
2−ck0 ), exp(−1

2
· n

1−ck0
2−ck0 )]) (6.2)

Now we prove the second part of the theorem. Since 1 < k < 1
c
, we have Fp = Ω(exp(n

1−c
2−c )).

We want to select k0 such that Fp is asymptotical to its lower bound when d increases.
Hence, k0 decreases and gets close to 1 when d increases.

Let r = ⌊k log1/p d⌋ = ⌊log1/p d⌋ + 1, then we have k ≤ 1 + 1
log1/p d

. For any small positive

constant ϵ < 1−c
c

, we can find a sufficient large d such that 1
log1/p d

≤ ϵ and d ≥ (p−1)ϵ−1
.

Given this relationship, we have n
1−ck
2−ck ≥ n

1−c(1+ϵ)
2−c(1+ϵ) . The theorem follows.

For HB-Grid quorum systems, we immediately have the following corollary:

Corollary 1. L(B-Grid) = O(n− 1−c
2−c ).

The following propositions give examples for HB-Grid quorum systems construction under
different ranges of p. They can be proved by plugging the parameters into Theorem 16 and
Corollary 1.

Proposition 17. If d = n0.78, r = ⌊log9/4 d⌋ + 1 and h = n
rd

, then L(B-Grid) = O(n−0.22)

and Fp = O(max[exp(− ln 9/4
1+log9/4 d

· n−0.22), exp(−1
2
· n−0.22)]) in the range 0 ≤ p ≤ 4/9.

Proposition 18. If d = n0.61, r = ⌊log3 d⌋+1 and h = n
rd

, then L(B-Grid) = O(n−0.39) and
Fp = O(max[exp(− ln 3

1+log3 d
· n−0.39), exp(−1

2
· n−0.39)]) in the range 0 ≤ p ≤ 1/3.

Proposition 19. If d = n0.52, r = ⌊log8 d⌋+1 and h = n
rd

, then L(B-Grid) = O(n−0.48) and
Fp = O(max[exp(− ln 8

1+log8 d
· n−0.48), exp(−1

2
· n−0.48)]) in the range 0 ≤ p ≤ 1/8.

Remarks: Theorem 16 shows a HB-Grid quorum construction with the minimal failure
probability for all quorum systems constructed in Theorem 15 when 0 < p < 1/2. From
above propositions we find that the performance degrades elegantly when p increases. The
performance is asymptotical optimal (L(B-Grid) = O(

√
n), Fp = O(

√
n))when p gets close

to 0.

6.4 DHB-Grid: Dynamic HB-Grid Quorum Systems

In this section we suggest a DHB-Grid quorum system that operates in a dynamic network
environment, where nodes may join and leave. We focus on implementing quorum system
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in a dynamic environment and designing efficient algorithms that allow nodes join and leave
with low overhead and achieve high integrity. The probe complexity must be taken into
consideration such that the probe algorithms designed for static systems can also enjoy low
complexity in its counterpart in dynamic systems.

6.4.1 The Quorum Implementation: 3-Phase Linking

We consider a HB-Grid quorum system constructed in a dynamic environment. We can use
a 3-field coordinate to represent a node’s position: (α, β, γ), where α, β and γ represent the
band, row in the band and mini-column in the band respectively. Specifically, α ∈ [1, .., h]
and β ∈ [1, ..., r] from the top down; γ ∈ [1, ..., d] from left to right. A dynamic quorum
system DHB-Grid is implemented in the following way:

1. Mini-column Linking : Nodes at (α, β′, γ) have links to nodes at (α, β′ − 1, γ). (2 ≤
β′ ≤ r).

2. Hierarchical Row Linking : Nodes at (α, β′′, γ′′) have links to nodes at (α, β′′, 2γ′′) and
(α, β′′, 2γ′′ + 1). (β′′ ∈ {1, r}, 1 ≤ γ′′ ≤ 2⌊log2 d⌋ − 1). Hierarchies formed by nodes in
the top row and the bottom row are called the top row hierarchy and the bottom row
hierarchy of band α, respectively.

3. Hierarchical Band Linking : Nodes at (α′, 1, 1) have links to nodes at (2α′, 1, 1) and
(2α′ + 1, 1, 1). (1 ≤ α′ ≤ 2⌊log2 h⌋ − 1). The hierarchy is called the band hierarchy.

The implementation is 3-phase.

• In the mini-column phase, a vertical linking chain is formed from the lowest to the
highest element in each mini-column.

• In the row phase, for each band α, two hierarchical linking structures are implemented
in the top and bottom row with root nodes at (α, β′′, 1) and there are ⌈log d⌉ levels
in each hierarchy. For any node x at level l, we call the node that links to it at level
l − 1 as x’s top row predecessor or bottom row predecessor at level l − 1, denoted by
trpl−1(x) or brpl−1(x). We recursively define x’s predecessor at each level 1 ≤ l′ ≤ l in
the same way and use trp(x) or brp(x) to denote x’s top row predecessor set or bottom
row predecessor set.

• A similar hierarchical structure is implemented in the band phase. Root nodes of each
top row hierarchy form a band hierarchy with the root at (1, 1, 1) and there are ⌈log h⌉
levels. For any node y, we define its band predecessor at level l′ and band predecessor
set in the same way, denoted by bpl′(y) and bp(y) respectively.
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6.4.2 Basic Join/Leave Operation

Now we assume a node n0 at (α0, β0, γ0) that wishes to leave the system. The following
operation is performed: in its mini-column, nodes above it are moved downwards by one
unit, which guarantees that the ”empty” position is appeared at the top part of each mini-
column. Meanwhile, links of each phase are adjusted to make this empty position can be
probed with low complexity.

We first describe the operation in the mini-column phase:

• If there’s no mini-column link from n0, i.e., n0 is the top element in the γth mini-column
of the αth band, the mini-column link from (α0, β0 + 1, γ0) to n0 is removed.

• Otherwise,

1. The mini-column link from n0 to (α0, β0 − 1, γ0) is removed.

2. The mini-column link from (α0, β0 + 1, γ0) to n0 (for β0 ≤ r − 1) is redirected by
a link from (α0, β0 + 1, γ0) to (α0, β0 − 1, γ0).

3. Nodes at (α0, β
′
0, γ0) where 1 ≤ β′

0 ≤ β0 − 1 are moved downwards by one unit,
with new coordinate (α0, β

′
0 + 1, γ0).

In the row and band phases, the following operation is performed:

1. Top Row Linking Redirection: If n0 is the top element in the γth mini-column of the αth
band, the row links to and from n0 are redirected to links to and from (α0, β0 + 1, γ0).
Otherwise, no redirection is needed.

2. Hierarchical Linking Adjustment (Up Phase): If the coordinate of any top node n1 of
band α1 changes from (α1, β1, γ1) to (α1, β1 + 1, γ1), and n1 is in the level l1 in the top
row hierarchy, the following top row linking hierarchy adjustment is performed:

• If l1 = 1, STOP. n1 is the root.

• Otherwise,

(a) Compare coordinates between n1 and trpl1−1(n1) with coordinate (αl1−1
1 ,

βl1−1
1 , γl1−1

1 ). If β1 + 1 ≤ βl1−1
1 , STOP. Otherwise, swap n1 and trpl1−1(n1) in

the row hierarchy by exchanging their top row links and band links (if any).
Note nodes are not moved in the system, but their positions in the top row
hierarchy are swapped.

(b) Repeat the first step until it stops or n1 reaches the top of the hierarchy, i.e.
n1 becomes the root.

• If the coordinate of any node n2 changes from (α2, β2, γ2) to (α2, β2 +1, γ2) in the
band hierarchy, the same adjustment as the row hierarchy is performed.
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The leave operation has two key properties:

1. Nodes are restricted to only move vertically in a band. This property is designed to
reserve the integrity of quorums. Since a quorum is composed of a mini-column of each
band and a element of each mini-column of one band, moving elements vertically in a
band doesn’t change a quorum.

2. Top row links are redirected to maintain linkings between top elements of mini-columns
in a band. These elements may reside in different rows in the system. The hierarchical
linking adjustment guarantees that elements in the higher levels in the hierarchy are
always located in the lower rows in the quorum system. This property is designed to
help a new node that wishes to join the system find an empty position to ”insert”
efficiently.

Now there is a node n3 that wishes to join the system. The join operation is following: if
there is any empty position in the system, n3 is inserted to this position. Otherwise, n3 is
”appended” to the lowest row of a band.

The operation is started by randomly selecting a node n4 in the existing quorum system
with with coordinate (α4, β4, γ4).

Insert Operation: Follow vertical links starting from n4 to the top node of its mini-column.
Denote this top node as n5 with coordinate (α5, β5, γ5).

• If β5 ≥ 2, then some elements have left the γ5th mini-column. In this case, n3 is
inserted to (α5, β5 − 1, γ5). A vertical link is created from n3 to n2.

• Otherwise, follow top row links starting from n5 to probe its top row predecessors
trp(n5).

– If a node n6 ∈ trp(n5) is probed with coordinate (α6, β6, γ6) such that β6 ≥ 2,
stop probing. Some elements have left the γ6th mini-column of this band. Insert
n3 to (α6, β6 − 1, γ6).

– Otherwise, no such node is probed until the probing reaches the root of this top
row hierarchy, which implies that no element has left this band. Denote the root
n7 with coordinate (α7, β7, γ7). Follow band links starting from n7 to probe its
band predecessors bp(n7).

∗ If a node n8 ∈ bp(n7) is probed with coordinate (α8, β8, γ8) such that β8 ≥ 2,
stop probing. Some elements have left the γ8th mini-column of this band.
Insert n3 to (α8, β8 − 1, γ8).

∗ Otherwise, no such node is probed until the probing reaches the root of the
band hierarchy, which implies that no element has left the quorum system.



Bo Zhang Chapter 7. A Quorum-Based Cache-Coherence Protocol 46

Denote the root n9 and follow the vertical links from n9 to the bottom el-
ement of its mini-column. Denote the bottom element n10 with coordinate
(α10, β10, γ10). Follow the bottom row links starting from n10 to find the right-
most element of row β10 in band α10. Denote the rightmost element n11 with
coordinate (α11, β11, γ11). Insert n3 to (α11, β11, γ11 + 1).

Similarly, the linking of each phase has to be adjusted when a new node joins the system.
Denote the new coordinate of n3 (α3, β3, γ3).

1. Vertical Linking Redirection: when n3 is inserted to the quorum system, it must be
the top element of the mini-column γ3. A new vertical link is created from node at
(α3, β3 + 1, γ3) (if any) to n3.

2. Row Linking Redirection: as n3 is the top element of the mini-column γ3, the original
top row links to and from node at (α3, β3 + 1, γ3) are redirected to links to and from
n3.

3. Hierarchical Linking Adjustment : n3 joins the top row hierarchy by replacing the node
at (α3, β3 + 1, γ3). Assume n3 is in the level l3 in the top row hierarchy, the following
adjustment is performed:

• If l3 is the lowest level of the top row hierarchy, STOP. No adjustment is needed.

• Otherwise,

(a) Compare the β-coordinates between n3 and its children at level l3 + 1. If β-
coordinates of both children are less or equal to β3, STOP. Otherwise, there
must exists a child with β-coordinate greater than β3. Swap n3 with this child
by exchanging their top row links and band links (if any). If both children
are available for swapping, select the one with the greater β-coordinate. If
they have the same β-coordinates, randomly select one and swap.

(b) Repeat the first step until it stops or n3 reaches the bottom of the hierarchy,
i.e., n3 becomes a leaf node.

• If the β-coordinate of any node in the band hierarchy decreases, the same adjust-
ment as the top row hierarchy is performed.

6.4.3 Join/Leave Complexity

Before analyzing the time and message complexity of the join/leave operations we show the
property of the hierarchical linking adjustment.

Theorem 20. The time and message complexity for the hierarchical linking adjustment of
DHB-Grid is O(log n)
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For the leave operation, the worst case is that n0 is a bottom element of a band. In this
case, there are at most r − 1 elements that move downwards. Hence the time and message
complexity of this part is O(r) = O(log n). Note that the total time and message overhead is
the sum of this part and the hierarchical linking adjustment. For the join operation, the worst
case is that n3 random selected a bottom element of a full band where no elements has left,
and the root node of the top row hierarchy of this band is a leaf node of the band hierarchy.
In this case, the total number of nodes that n3 visits is r + log⌈d⌉ + log⌈h⌉ = O(log n).
The total time and message overhead is the sum of this part and the hierarchical linking
adjustment. Hence the time and message complexity for the join/leave operations are both
O(log n).

6.5 DHBC: The DHB-Grid-Based Cache Coherence

Protocol

6.5.1 Protocol Description

We propose a distributed cache-coherence protocol based on DHB-Grid quorum systems in
the dynamic environment. We describe the cache-coherence protocol imposed on the DHB-
Grid quorum system. Nodes use a probe algorithm Probe(S) to probe a live quorum in the
system. The protocol perform three operations: publish, lookup and move.

• Publish: When a new object is created in the local cache of node i, its transactional
memory proxy invokes cache-coherence protocol to publish the metadata of the object
in the distributed system. The format of the metadata should include 3 fields: <
ObjectID, Address, WriteCount >. The WriteCount field records the number of
times that the object is accessed by a write request. Initially this field is set to 0.
The node publishes the object by sending its metadata to all elements accessed by
Probe(S).

• Lookup: A lookup operation is performed when a transaction invokes a read request
for a object. The node j looks up the object by sending the request to all elements
accessed by Probe(S). The metadata with the highest WriteCount field is selected
and the request is forwarded to its address. The requested node sends a read-only copy
to j when the object becomes available.

• Move: A move operation is performed when a transaction invokes a write request for
a object. The node k sends the request to all elements accessed by Probe(S). The
metadata with the highest WriteCount field is selected and the request is forwarded
to its address. The node which stores the metadata adds the WriteCount field by 1
and sends the metadata to all elements accessed by Probe(S). The requested node
directly sends the object to k when it becomes available.



Bo Zhang Chapter 7. A Quorum-Based Cache-Coherence Protocol 48

Remarks : From the description of the protocol we find that the performance of the cache-
coherence protocol is determined by the performance of its underlying quorum system and
probe algorithm (access strategy). Thus, we evaluate the performance by measuring the
complexity of Probe(S).

6.5.2 Probe Complexity

We are interested in the probe complexity of DHB-Grid systems. Our probe algorithm is
motivated by the coloring method in [25]. Each element is colored with either red (indicating
that the element has failed) or green (indicating a live element). A set of elements is red (or
green) if all its elements are.

Algorithm 1: R Probe (Phase I): A Band with a live element in each mini-column

Random select a band i;1

Mode← green;2

for column k ← 1 to d do3

Probe U i
k;4

if an element uj is found s.t. c(uj) == Mode then5

W1 = W1 ∪ {uj}6

else7

Mode← c(U i
k), W1 ← ∅;8

break;9

The input to our algorithms is some coloring of the elements. Probing an element i reveals
its color, denoted c(i). The probe algorithm consists of two independent phases: probing a
band with a live element in each mini-column of the band and probing a live mini-column
in every band.

Algorithm 1 examines the columns of a randomly selected band i one by one. In stage k, the
algorithm probes the r elements of column k. While doing so, the algorithm either maintains
a set W1 consisting of one live element from column 1 to k, or ends the algorithm by finding
a red column and erases the current set W1. If the algorithm does not succeed to find a live
set W1 for all columns, it has to be called again to probe another band until it succeeds or
all bands have been probed.

Algorithm 2 examines each band to find a live mini-column. For each band i, a column
k is random selected to probe all its elements. If a live column is probes, all its elements
are added into set W2 and the algorithm continues to probe the next band. The algorithm
ends when a live mini-column is probed for all bands, or a band with no live mini-column is
probed.

We proceed with an analysis of the algorithm R Probe. Let X denote the number of probed
elements, and let X = X(1) + X(2), where X(1), X(2) represent the numbers of probed
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Algorithm 2: R Probe (Phase II): A live column in each band

for band i← 1 to h do1

while Mode ! = green do2

Random select a column k;3

Mode← green;4

Probe U i
k;5

if c(U i
k) == Mode then6

W2 = W2 ∪ {uj};7

else8

Mode← red;9

if all columns of band i have been probed then10

W2 ← ∅;11

break;12

if Mode == red then13

break;14

elements in Phase I and Phase II of the algorithm, respectively. Observe that in a HB-Grid

system, d = n
1

2−c , r = ⌊log1/p d⌋+ 1 and h = n
rd

. The expected numbers of probed elements
of both phases, E[X(1)] and E[X(2)], can be bounded as follows:

E[X(1)] =
1

1− dpr
· d · 1

q
=

d

q(1− dp⌊log1/p d⌋+1)
≃ d

q(1− dp(log1/p d)+1)
=

d

q2
= O(n

1
2−c )

E[X(2)] =
1

qr
· r · h =

1

q⌊log1/p d⌋+1
· n
d
≃ n

q · d1−c
= O(n

1
2−c )

Combined above results, we have E(X) = E[X(1)] + E[(X2)] = O(n
1

2−c ).

Note that in a DHB-Grid, the quorum size is d + hr − 1 = O(n
1

2−c ). Hence, the probe
complexity of R Probe is the best we can expect. We have the following theorem:

Theorem 21. For any DHB-Grid where elements fails with a fixed probability 0 ≤ p < 1/2,

the probabilistic probe complexity of algorithm R Probe is Θ(n
1

2−c ).

6.6 Conclusion

We propose a novel DHB-Grid system, which exhibits asymptotical optimal load and avail-
ability for the probabilistic failure model. Based on it, we propose DHBC, a DHB-Grid-based
cache-coherence protocol. We show that the performance of DHBC depends on the probe
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algorithm Probe(S). For DHB-Grid system, we propose a 2-phase probe algorithm which
achieves optimal probe complexity for the probabilistic failure model.

In this chapter we focus on metrics of load, availability and probe complexity, which are
unique properties for dynamic environments. We show that the such performance is highly
depend on the performance of underlying quorum systems. DHBC is only the first attempt
to design cache-coherence protocols upon DHB-Grid systems. In other words, DHB-Grid
systems provides us a high performance structure upon which we can approach the design
of contention managers and cache-coherence protocols. We can propose cache-coherence
protocols which provide similar properties as LAC protocols or DHTC protocols in the
semantics of DHB-Grid systems.



Chapter 7

Conclusions, Contributions, and
Proposed Post Preliminary-Exam
Work

In this dissertation proposal, we study the design of contention managers and cache-coherence
protocols for distributed transactional memory systems. We focus on the design goal of
minimizing the competitive ratio of the contention manager and cache-coherence protocol
combination.

Our first approach on solving this design problem is to select a fixed contention manager
which guarantees a provable worst-case performance even when it is combined with the worst-
possible cache-coherence protocols. Motivated by the excellent properties of the Greedy
contention manager for multiprocessors, we determine its worst-case makespan and com-
pare that against the makespan of the optimal off-line clairvoyant scheduler for distributed
transactional memory systems. We show that, for each single object, the optimal scheduler
visits all nodes requesting the object via the shortest Hamiltonian path. We then establish
the worst-case competitive ratio of the Greedy manager with an arbitrary cache-coherence
protocol. We show that, without considering the design of cache-coherence protocols, the
upper bound of the competitive ratio is O(N2 · s), where N is the maximum number of
transactions requesting the same object and s is the number of objects. Moreover, we derive
an Ω(s) lower bound for the competitive ratio of the Greedy manager, which depicts its
best-case performance. By doing so, we establish the range of the competitive ratio that the
Greedy manager can achieve. Since its worst-case is far from optimal — ideally, we desire a
matching upper bound with the lower bound — we need to design cache-coherence protocols
to improve the performance.

Thus, we design cache-coherence protocols that improve the worst-case competitive ratio
of the Greedy manager. We propose a class of distributed cache-coherence protocols with
location-aware property, called LAC protocols. In LAC protocols, the duration of a transac-

51
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tion requesting node to locate an object is determined by the communication cost between
the requesting node and the node that holds the object. We prove an O(N log N · s) com-
petitive ratio for the Greedy manager/LAC protocol combination, and show that LAC is an
efficient choice for the Greedy manager to improve performance.

Our results imply that there are two main factors which determine the performance of
cache-coherence protocols for distributed transactional memory: the total locating cost and
the extra traveling makespan of overtaking failures (proposed in Chapter 3). We therefore
design a DHT-based cache-coherence protocol, called the DHTC protocol, to improve the
performance when combined with the Greedy manager. The locating cost is measured by the
stretch of the cache-coherence protocol. Since locating moving objects in the network induces
large cost, we reduce the total locating cost by ensuring that each transaction request locates
the object just for the first time when the request is invoked. Once the object is located,
the transaction request will be saved in the network until it commits. By doing this, the
total locating cost increases only as a polynomial of N , where N is the maximum number of
nodes that request the same object. On the other hand, the total number of overtakings does
not exceed N because an overtaking only occurs when a new transaction request locates the
object. We show that the DHTC protocol guarantees an O(N · s) competitive ratio, which
is a significant improvement over an arbitrary cache-coherence protocol/Greedy manager
combination.

Dynamic environments (e.g., node failures, joins, departures) introduce additional challenges
on the design and performance of distributed transactional memory systems. For example,
the system must be decentralized and load balanced. A decentralized system guarantees
that every node in the network has the same importance, and hence if a node crashes, it
does not affect the system performance dramatically. By distributing balanced load over all
nodes in the network, it is unlikely that a particular nodes is a ”hot spot” and become a
bottleneck. The system should also exhibit good scalability and availability properties, and
provide reasonable communication overhead in the presence of network changes. To model
the failure of nodes in the network, we use a probabilistic model of failures in the system,
where we assume that each node fails independently and the failure probability of each
node does not exceed p. We apply quorum systems in distributed cache-coherence protocol
design. We construct a novel quorum system called the dynamic high available B-Grid
quorum system or DHB-Grid. We show that for the DHB-Grid system, the performance
is asymptotically optimal when p approaches 0, and degrades gracefully when p increases.
We present efficient adjustment algorithms for DHB-Grid to accommodate network changes,
and show an O(log n) message complexity for each adjustment, where n is the number of
nodes. Based on the DHB-Grid system, we propose DHBC, a quorum-based cache-coherence
protocol which exhibits good scalability, availability, load balancing, and low communication
complexity properties.
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7.1 Contributions

Our research contributions are summarized as follows:

1. We identify that the performance of distributed transactional memory systems is de-
termined by the contention manager and the cache-coherence protocol used;

2. We establish the upper and lower bounds of the competitive ratio of the Greedy man-
ager with an arbitrary cache-coherence protocol;

3. We show that the worst-case performance of the Greedy manager with an efficient LAC
protocol is improved and predictable;

4. We show that the DHTC protocol significantly improves the performance of the Greedy
manager over an arbitrary cache-coherence protocol/Greedy manager combination;

5. We show how a quorum-based cache-coherence protocol can efficiently adapt to sys-
tem failures and network changes, with high availability and low message complexity
properties.

7.2 Post Preliminary-Exam Work

We propose the following post preliminary-exam work:

• Contention Manager Design for Distributed Transactional Memory. As men-
tioned before, an obstruction-free algorithm only guarantees progress in the absence
of contention. Hence, a contention manager is essential to mediate contentions on the
same object. For the design of distributed transactional memory systems, the selec-
tion of the contention manager is obviously important since it determines the range
of the performance that a cache-coherence protocol (when combined with that con-
tention manager) can achieve. Our current results depend on the Greedy contention
manager, the selection of which is motivated by its provable properties in the semantics
of multiprocessors. However, this raises the question of whether the selection of other
contention managers can improve performance. Generally, there are two approaches
for such a selection:

1. Select an existing contention manager which is proposed for multiprocessors, and
prove its worst-case and best-case performance for distributed systems. Design a
compatible cache-coherence protocol to improve the worst-case performance when
combined with that contention manager. There have been a number of different
contention management policies proposed for multiprocessors. The following is a
brief list of some of the most common ones in the literature:



Bo Zhang Chapter 7. Conclusions, Contributions and Future Work 54

– Aggressive. This contention manager always chooses to abort a conflicting
transaction at conict time. This is the most basic contention manager.

– Polite. This contention manager uses exponential back-off techniques, similar
to that used in network protocols, to determine which transaction to abort.

– Randomized. This contention manager chooses which transaction to abort by
making a random choice.

– Karma. The Karma contention manager aborts the transaction, which has
performed the least amount of work when a conflict occurs.

– Eruption. This contention manager increases the priority of a transaction
that others are waiting on in order to make it complete faster (priority is
used in arbitrating which transaction is aborted). The idea of this contention
manager is similar to the popular priority inheritance technique used in lock-
based real-time concurrency control.

– Kindergarten. This policy encourages transactions to take turns accessing
shared memory (like children accessing toys or other shared objects).

– Timestamp. This policy attempts to be as fair as possible, and uses times-
tamps to arbitrate among the transactions trying to access a shared object.

– Queue-on-Block. This policy causes conflicting transactions to wait in a queue
for the transaction currently accessing the shared object, and spin on a “fin-
ished” flag that is set by the object-accessing transaction at its commit time.
If a transaction has waited too long, which is determined in an application-
specific manner, it aborts the object-accessing transaction and accesses the
shared object. Thus, this policy has similar behavior as that of spinlocks.

The properties of these contention managers are worth further studying. We do
not know whether these contention managers can provide similar or improved,
provable properties as that of the Greedy manager. For example, it is not known
whether it is possible to establish a better performance range for the randomized
contention manager with high probability? Note that for the Greedy manager, the
worst-case competitive ratio is at least Ω(s). Our current results only guarantee
an O(N · s) worst-case competitive ratio, where s is the number of objects and
N is the maximum number of transactions requiring accesses to the same object.
Hence, it would be a significant improvement if better worst-case performance of
other contention managers can be established.

2. Construct a contention manager which is explicitly designed for distributed trans-
actional memory, with improved worst-case performance. Another direction is to
design a contention manager targeting the behavior of distributed transactional
memory. Since the design of contention managers directly affect the performance
of the system, it is appealing to focus on the design of contention managers which
are dedicated to distributed systems. Such design should take into account fac-
tors which are unique to distributed systems, such as the communication cost
between nodes, higher network latencies, network topologies, and the dynamic
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nature of the underlying network. We have shown that for existing contention
managers, the performance degrade dramatically because of the lack of consid-
eration of such factors. The burden of alleviating such performance degradation
is currently exclusively that of the cache-coherence protocols. Hence, the de-
sign of such contention managers give us greater flexibility in optimizing system
performance.

• Contention Manager and Cache-Coherence Protocol Design in the Prob-
abilistic Model We propose a probabilistic model to model network failures. For
example, each node may fail independently and the failure probability may not exceed
p. (Of course, other models are possibe.) Under such a model, our proposed DHB-Grid
cache-coherence protocol focuses on achieving good load balancing, decentralization,
scalability, and availability properties. This design approach is orthogonal to that of
the LAC and DHTC cache coherence protocol design approach, which focus on the
optimization of the competitive ratio for a set of transactions. For the probabilistic
model, it is appealing to investigate its expected competitive ratio depending on a
failure probability p. Such an approach typically involves using randomized methods
in the design of cache-coherence protocols. It is possible that some combinations of
contention managers and cache-coherence protocols which cannot guarantee a desir-
able worst-case performance may behave well in the probabilistic model. Research in
this direction will allow us to establish the worst-case and average-case behaviors of
different combinations of contention managers and cache-coherence protocols, under-
stand the concomitant trade-offs, and design more optimized contention managers and
cache-coherence protocols for distributed transactional memory.
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