
Real-Time Software Transactional Memory: Contention Managers,
Time Bounds, and Implementations

Mohammed El-Shambakey

Preliminary Examination Proposal submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Binoy Ravindran, Chair
Robert P. Broadwater
Cameron D. Patterson

Mohamed Rizk Mohamed. Rizk
Anil Kumar S. Vullikanti

May 30, 2012
Blacksburg, Virginia

Keywords: Software Transactional Memory, Embedded Systems, Contention Managers
Copyright 2012, Mohammed El-Shambakey

Real-Time Software Transactional Memory: Contention Managers, Time
Bounds, and Implementations

Mohammed El-Shambakey

(ABSTRACT)

Lock-based concurrency control suffers from programmability, scalability, and composability
challenges. These challenges are exacerbated in emerging multicore architectures, on which
improved software performance must be achieved by exposing greater concurrency. Trans-
actional memory (TM) is an alternative synchronization model for shared memory objects
that promises to alleviate these difficulties.

In this dissertation proposal, we consider software transactional memory (STM) for concur-
rency control in multicore real-time software, and present a suite of real-time STM contention
managers for resolving transactional conflicts. The contention managers are called RCM,
ECM, LCM, and PNF. RCM and ECM resolve conflicts using fixed and dynamic priorities
of real-time tasks, respectively, and are naturally intended to be used with the fixed priority
(e.g., G-RMA) and dynamic priority (e.g., G-EDF) multicore real-time schedulers, respec-
tively. LCM resolves conflicts based on task priorities as well as atomic section lengths, and
can be used with G-EDF or G-RMA. Transactions under ECM, RCM and LCM can retry
due to non-shared objects with higher priority tasks. PNF avoids this problem.

We establish upper bounds on transactional retry costs and task response times under all
the contention managers through schedulability analysis. Since ECM and RCM conserve
the semantics of the underlying real-time scheduler, their maximum transactional retry cost
is double the maximum atomic section length. This is improved in the the design of LCM,
which achieves shorter retry costs. However, ECM, RCM, and LCM are affected by transitive
retries when transactions access multiple objects. Transitive retry causes a transaction to
abort and retry due to another non-conflicting transaction. PNF avoids transitive retry, and
also optimizes processor usage by lowering the priority of retrying transactions, enabling
other non-conflicting transactions to proceed.

We also formally compare the proposed contention managers with lock-free synchronization.
Our comparison reveals that, for most cases, ECM, RCM, G-EDF(G-RMA)/LCM achieve
higher schedulability than lock-free synchronization only when the atomic section length
does not exceed half of the lock-free retry loop length. Under PNF, atomic section length
can equal length of retry loop. With low contention, atomic section length under ECM can
equal retry loop length while still achieving better schedulabiltiy. While in RCM, atomic
section length can exceed retry loop length. By adjustment of LCM design parameters,
atomic section length can be of twice length of retry loop under G-EDF/LCM. While under
G-RMA/LCM, atomic section length can exceed length of retry loop.

We implement the contention managers in the Rochester STM framework and conduct ex-
perimental studies using a multicore real-time Linux kernel. Our studies confirm that, the
contention managers achieve orders of magnitude shorter retry costs than lock-free synchro-
nization. Among the contention managers, PNF performs the best.

Building upon these results, we propose real-time contention managers that allow nested
atomic sections – an open problem – for which STM is the only viable non-blocking syn-
chronization solution. Optimizations of LCM and PNF to obtain improved retry costs and
greater schedulability advantages are also proposed.

iii

Contents

1 Introduction 1

1.1 Transactional Memory . 2

1.2 STM for Real-Time Software . 3

1.3 Research Contributions . 4

1.4 Summary of Proposed Post Preliminary Research 5

1.5 Proposal Organization . 6

2 Past and Related Work 7

2.1 Real-Time Locking Protocols . 8

2.2 Real-Time Lock-Free and Wait-Free Synchronization 10

2.3 Real-Time Database Concurrency Control 13

2.4 Real-Time TM Concurrency Control . 16

3 Models and Assumptions 21

4 The ECM and RCM Contention Managers 23

4.1 ECM . 23

4.1.1 Illustrative Example . 24

4.1.2 G-EDF Interference and workload . 24

4.1.3 Retry Cost of Atomic Sections . 25

4.1.4 Upper Bound on Response Time . 28

4.2 RCM . 31

iv

4.2.1 Maximum Task Interference . 32

4.2.2 Retry Cost of Atomic Sections . 32

4.2.3 Upper Bound on Response Time . 33

4.3 STM versus Lock-Free . 33

4.3.1 ECM versus Lock-Free . 33

4.3.2 RCM versus Lock-Free . 35

4.4 Conclusions . 38

5 The LCM Contention Manager 39

5.1 Length-based CM . 39

5.1.1 Design and Rationale . 40

5.1.2 LCM Illustrative Example . 41

5.2 Properties . 42

5.3 Response Time of G-EDF/LCM . 44

5.4 Schedulability of G-EDF/LCM . 45

5.4.1 Schedulability of G-EDF/LCM and ECM 45

5.4.2 G-EDF/LCM versus Lock-free . 47

5.5 Response Time of G-RMA/LCM . 49

5.6 Schedulability of G-RMA/LCM . 50

5.6.1 Schedulability of G-RMA/LCM and RCM 50

5.6.2 G-RMA/LCM versus Lock-free . 50

5.7 Conclusions . 52

6 The PNF Contention Manager 53

6.1 Limitations of ECM, RCM, and LCM . 53

6.2 The PNF Contention Manager . 54

6.2.1 Illustrative Example . 57

6.3 Properties . 58

6.4 Retry Cost under PNF . 60

v

6.5 PNF vs. Competitors . 63

6.5.1 PNF versus ECM . 65

6.5.2 PNF versus RCM . 66

6.5.3 PNF versus G-EDF/LCM . 67

6.5.4 PNF versus G-RMA/LCM . 68

6.5.5 PNF versus Lock-free Synchronization 68

6.6 Conclusion . 69

7 Implementation and Experimental Evaluations 71

7.1 Experimental Setup . 71

7.2 Results . 73

8 Conclusions and Proposed Post Preliminary Exam Work 82

8.1 Conclusions . 82

8.2 Proposed Post Preliminary Exam Research 83

8.2.1 Supporting Nested Transactions . 84

8.2.2 Combining and Optimizing LCM and PNF 85

8.2.3 Formal and Experimental Comparison with Real-Time Locking . . . 86

vi

List of Figures

4.1 Maximum interference between two tasks, running on different processors,
under G-EDF . 25

4.2 Maximum interference during an interval L of Ti 25

4.3 Retry of ski (θ) due to slj(θ) . 26

4.4 Retry of spi (θ) due to other atomic sections 27

4.5 Values associated with s∗max(θ) . 28

4.6 Atomic sections of job τ 1j contributing to period Ti 30

4.7 Max interference of τj to τi in G-RMA . 32

4.8 Effect of
⌈

Ti
Tj

⌉

on smax

rmax
. 35

4.9 Task association for lower priority tasks than Ti and higher priority tasks than
Tk . 37

4.10 Change of smax/rmax: a)
smax

rmax
versus βi,j and b) smax

rmax
versus βk,l 38

5.1 Interference of ski (θ) by various lengths of slj(θ) 41

5.2 τ ph has a higher priority than τxi . 45

7.1 Average retry cost for 1 object per transaction for different values of total,
maximum and minimum atomic section length under all synchronization tech-
niques . 74

7.2 Average retry cost for 1 object per transaction for different values of total,
maximum and minimum atomic section length under contention managers only 75

7.3 Average retry cost for 20 objects per transaction, 40% write operations for
different values of total, maximum and minimum atomic section length under
different CMs . 76

vii

7.4 Average retry cost for 20 objects per transaction, 80% write operations for
different values of total, maximum and minimum atomic section length under
different CMs . 77

7.5 Average retry cost for 20 objects per transaction, 100% write operations for
different values of total, maximum and minimum atomic section length under
different CMs . 78

7.6 Average retry cost for 40 objects per transaction, 40% write operations for
different values of total, maximum and minimum atomic section length under
different CMs . 79

7.7 Average retry cost for 40 objects per transaction, 80% write operations for
different values of total, maximum and minimum atomic section length under
different CMs . 80

7.8 Average retry cost for 40 objects per transaction, 100% write operations for
different values of total, maximum and minimum atomic section length under
different CMs . 81

viii

List of Tables

7.1 Task sets a) 4 tasks. b) 8 tasks. c) 20 tasks. 72

ix

List of Algorithms

1 ECM . 24

2 RCM . 31

3 LCM . 40

4 PNF . 55

x

Chapter 1

Introduction

Embedded systems sense physical processes and control their behavior, typically through
feedback loops. Since physical processes are concurrent, computations that control them
must also be concurrent, enabling them to process multiple streams of sensor input and
control multiple actuators, all concurrently. Often, such computations need to concurrently
read/write shared data objects. Typically, they must also process sensor input and react,
satisfying application-level time constraints.

The de facto standard for programming concurrency is the threads abstraction, and the de
facto synchronization abstraction is locks. Lock-based concurrency control has significant
programmability, scalability, and composability challenges [58]. Coarse-grained locking (e.g.,
a single lock guarding a critical section) is simple to use, but permits no concurrency: the
single lock forces concurrent threads to execute the critical section sequentially, in a one-
at-a-time order. This is a significant limitation, especially with the emergence of multicore
architectures, on which improved software performance must be achieved by exposing greater
concurrency.

With fine-grained locking, a single critical section is broken down into several critical sections
– e.g., each bucket of a hash table is guarded by a unique lock. Thus, threads that need to
access different buckets can do so concurrently, permitting greater parallelism. However, this
approach has low programmability: programmers must acquire only necessary and sufficient
locks to obtain maximum concurrency without compromising safety, and must avoid dead-
locks when acquiring multiple locks. Moreover, locks can lead to livelocks, lock-convoying,
and priority inversion.

Perhaps, the most significant limitation of lock-based code is its non-composability. For
example, atomically moving an element from one hash table to another using those tables’
(lock-based) atomic methods is not possible in a straightforward manner: if the methods
internally use locks, a thread cannot simultaneously acquire and hold the locks of the methods
(of the two tables); if the methods were to export their locks, that will compromise safety.

1

Mohammed El-Shambakey Chapter 1. Introduction 2

Lock-free synchronization [57], which uses atomic hardware synchronization primitives (e.g.,
Compare And Swap [67,68], Load-Linked/Store-Conditional [106]), also permits greater con-
currency, but has even lower programmability: lock-free algorithms must be custom-designed
for each situation (e.g., a data structure [21,48,56,60,87]). Additionally, it is not clear how to
program nested critical sections using lock-free synchronization. Most importantly, reasoning
about the correctness of lock-free algorithms is significantly difficult [57].

1.1 Transactional Memory

Transactional memory (TM) is an alternative synchronization model for shared memory
data objects that promises to alleviate these difficulties. With TM, programmers write
concurrent code using threads, but organize code that read/write shared memory objects as
memory transactions, which speculatively execute, while logging changes made to objects–
e.g., using an undo-log or a write-buffer. Objects read and written by transactions are also
monitored, in read sets and write sets, respectively. Two transactions conflict if they access
the same object and one access is a write. (Conflicts are usually detected by detecting non-
empty read and write set intersections.) When that happens, a contention manager (CM)
resolves the conflict by aborting one and committing the other, yielding (the illusion of)
atomicity. Aborted transactions are re-started, after rolling-back the changes–e.g., undoing
object changes using the undo-log (eager), or discarding the write buffers (lazy).

In addition to a simple programming model (locks are excluded from the programming inter-
face), TM provides performance comparable to lock-based synchronization [96], especially
for high contention and read-dominated workloads, and is composable. TM’s first imple-
mentation was proposed in hardware, called hardware transactional memory (or HTM) [59].
HTM has the lowest overhead, but HTM transactions are usually limited in space and time.
Examples of HTMs include TCC [55], UTM [1], Oklahoma [108], ASF [32], and Bulk [24].
TM implementation in software, called software transactional memory (or STM) was pro-
posed later [104]. STM transactions do not need any special hardware, are not limited in
size or time, and are more flexible. However, STM has a higher overhead, and thus lower
performance, than HTM. Examples of STMs include RSTM [112], TinySTM [95], Deuce [70],
and AtomJava [61].

Listing 1.1: STM example

BEGIN TRANSACTION ;
stm : : wr ptr<Counter> wr (m counter) ;
wr−>s e t v a l u e (wr−>g e t va l u e (wr) + 1 , wr) ;

END TRANSACTION;

Listing 1.1 shows an example STM code written by RSTM [105]’s interface. RSTM’s
BEGIN TRANSACTION and END TRANSACTION keywords are used to enclose a critical section,

Mohammed El-Shambakey Chapter 1. Introduction 3

which creates a transaction for the enclosed code block and guarantees its atomic execu-
tion. First line inside the transaction makes a write pointer to a variable “m counter” of
type “Counter”. The second line reads the current value of the counter variable through
”wr−>get value”. The counter value is incremented through “wr−>set value” operation.

Hybrid TM (or HyTM) was subsequently proposed in [79], which combines HTM with STM,
and avoids their limitations. Examples of HyTMs include SpHT [77], VTM [93], HyTM [33],
LogTM [88], and LogTM-SE [114].

1.2 STM for Real-Time Software

Given the hardware-independence of STM, which is a significant advantage, we focus on
STM. STM’s programmability, scalability, and composability advantages are also compelling
for concurrency control in multicore embedded real-time software. However, this will require
bounding transactional retries, as real-time threads, which subsume transactions, must sat-
isfy application-level time constraints. Transactional retry bounds in STM are dependent
on the CM policy at hand (analogous to the way thread response time bounds are OS
scheduler-dependent).

Despite the large body of work on STM contention managers, relatively few results are known
on real-time contention management. STM concurrency control for real-time systems has
been previously studied, but in a limited way. For example, [83] proposes a restricted version
of STM for uniprocessors. Uniprocessors do not need contention management. [46] bounds
response times in distributed multicore systems with STM synchronization. They consider
Pfair scheduling [66], which is largely only of theoretical interest1, limit to small atomic
regions with fixed size, and limit transaction execution to span at most two quanta. [97]
presents real-time scheduling of transactions and serializes transactions based on transac-
tional deadlines. However, the work does not bound transactional retries and response times.

[100] proposes real-time HTM, which of course, requires hardware with TM support. The
retry bound developed in [100] assumes that the worst case conflict between atomic sections
of different tasks occurs when the sections are released at the same time. We show that, this
assumption does not cover the worst case scenario (see Chapter 4). [45] presents a contention
manager that resolves conflicts using task deadlines. The work also establishes upper bounds
on transactional retries and task response times. However, similar to [100], [45] also assumes
that the worst case conflict between atomic sections occurs when the sections are released
simultaneously. Besides, [45] assumes that all transactions have equal lengths. The ideas
in [45] are extended in [9], which presents three real-time CM designs. But no retry bounds
or schedulability analysis techniques are presented for those CMs.

1This is due to Pfair class of algorithm’s time quantum-driven nature of scheduling and consequent high
run-time overheads.

Mohammed El-Shambakey Chapter 1. Introduction 4

Thus, past efforts on real-time STM are limited, and do not answer important fundamental
questions:

(1) How to design “general purpose” real-time STM contention managers for multicore ar-
chitectures? By general purpose, we mean those that do not impose any restrictions
on transactional properties (e.g., transaction lengths, number of transactional objects,
levels of transactional nestings), which are key limitations of past work.

(2) What tight upper bounds exist for transactional retries and task response times under
such real-time CMs?

(3) How does the schedulability of real-time CMs compare with that of lock-free synchro-
nization? i.e., are there upper bounds or lower bounds for transaction lengths below or
above which is STM superior to lock-free synchronization?

(4) How does transactional retry costs and task response times of real-time CMs compare
with that of lock-free synchronization in practice (i.e., on average)?

1.3 Research Contributions

In this dissertation proposal, we answer these questions. We present a suite of real-time STM
contention managers, called RCM, ECM, LCM, and PNF. The contention managers progres-
sively improve transactional retry and task response time upper bounds (and consequently
improve STM’s schedulability advantages) and also relax the underlying task models. RCM
and ECM resolve conflicts using fixed and dynamic priorities of real-time tasks, respectively,
and are naturally intended to be used with the fixed priority (e.g., G-RMA [22]) and dy-
namic priority (e.g., G-EDF [22]) multicore real-time schedulers, respectively. LCM resolves
conflicts based on task priorities as well as atomic section lengths, and can be used with
G-EDF or G-RMA. Transactions under ECM, RCM and LCM can restart because of other
transactions that share no objects with them. This is called transitive retry. PNF solves
this problem. PNF also optimizes processor usage through reducing priority of aborted
transactions. So, other tasks can proceed.

We establish upper bounds on transactional retry costs and task response times under all
the contention managers through schedulability analysis. Since ECM and RCM conserve the
semantics of the underlying real-time scheduler, their maximum transactional retry cost is
double the maximum atomic section length. This is improved in the design of LCM, which
achieves shorter retry costs. However, ECM, RCM, and LCM are affected by transitive
retries when transactions access multiple objects. Transitive retry causes a transaction to
abort and retry due to another non-conflicting transaction. PNG avoids transitive retry, and
also optimizes processor usage by lowering the priority of retrying transactions, enabling
other non-conflicting transactions to proceed.

Mohammed El-Shambakey Chapter 1. Introduction 5

We formally compare the schedulability of the proposed contention managers with lock-free
synchronization. Our comparison reveals that, for most cases, ECM and RCM achieve higher
schedulability than lock-free synchronization only when the atomic section length does not
exceed half of lock-free synchronization’s retry loop length. However, in some cases, the
atomic section length can reach the lock-free retry loop length for ECM and it can even be
larger than the lock-free retry loop-length for RCM, and yet higher schedulability can be
achieved with STM. This means that, STM is more advantageous with G-RMA than with
G-EDF.

LCM achieves shorter retry costs and response times than ECM and RCM. Importantly, the
atomic section length range for which STM’s schedulability advantage holds is significantly
expanded with LCM (over that under ECM and RCM): Under ECM, RCM and LCM,
transactional length should not exceed half of lock-free retry loop length to achieve better
schedulability. However, with low contention, transactional length can increase to retry loop
length under ECM. Under RCM, transactional length can be of many orders of magnitude
of retry loop length with low contention. With suitable LCM parameters, transactional
length under G-EDF/LCM can be twice as retry loop length. While in G-RMA/LCM,
transactional length can be of many orders of magnitude as retry loop length. PNF achieves
better schedulability than lock-free as long as transactional length does not exceed length of
retry loop.

Why are we concerned about expanding STM’s schedulability advantage? When STM’s
schedulability advantage holds, programmers can reap STM’s significant programmability
and composability benefits in multicore real-time software. Thus, by expanding STM’s
schedulability advantage, we increase the range of real-time software for which those benefits
can be tapped. Our results, for the first time, thus provides a fundamental understanding
of when to use, and not use, STM concurrency control in multicore real-time software.

We also implement the contention managers in the RSTM framework [105] and conduct
experimental studies using the ChronOS multicore real-time Linux kernel [35]. Our studies
confirm that, the contention managers achieve shorter retry costs than lock-free synchro-
nization by as much as 95% improvement (on average). Among the contention managers,
PNF performs the best in case of high transitive retry. PNF achieves shorter retry costs
than ECM, RCM and LCM by as much as 53% improvement (on average).

1.4 Summary of Proposed Post Preliminary Research

Based on our current research results, we propose the following work:

Supporting nested transactions. Transactions can be nested linearly, where each transaction
has at most one pending transaction [89]. Nesting can also be done in parallel where trans-
actions execute concurrently within the same parent [113]. Linear nesting can be 1) flat: If
a child transaction aborts, then the parent transaction also aborts. If a child commits, no

Mohammed El-Shambakey Chapter 1. Introduction 6

effect is taken until the parent commits. Modifications made by the child transaction are
only visible to the parent until the parent commits, after which they are externally visible. 2)
Closed: Similar to flat nesting, except that if a child transaction conflicts, it is aborted and
retried, without aborting the parent, potentially improving concurrency over flat nesting.
3) Open: If a child transaction commits, its modifications are immediately externally visi-
ble, releasing memory isolation of objects used by the child, thereby potentially improving
concurrency over closed nesting. However, if the parent conflicts after the child commits,
then compensating actions are executed to undo the actions of the child, before retrying the
parent and the child. We propose to develop real-time contention managers that allow these
different nesting models and establish their retry and response time upper bounds. Addition-
ally, we propose to formally compare their schedulability with nested critical sections under
lock-based synchronization. Note that, nesting is not viable under lock-free synchronization.

Combinations and optimizations of LCM and PNF contention managers. LCM is designed to
reduce the retry cost of a transaction when it is interfered close to the end of its execution. In
contrast, PNF is designed to avoid transitive retry when transactions access multiple objects.
An interesting direction is to combine the two contention managers to obtain the benefits
of both algorithms. Further design optimizations may also be possible to reduce retry costs
and response times, by considering additional criteria for resolving transactional conflicts.
Importantly, we must also understand what are the schedulability advantages of such a
combined/optimized CM over that of LCM and PNF, and how such a combined/optimized
CM behaves in practice. This will be our second research direction.

Formal and experimental comparison with real-time locking protocols. Lock-free synchroniza-
tion offers numerous advantages over locking protocols, but (coarse-grain) locking protocols
have had significant traction in real-time systems due to their good programmability (even
though their concurrency is low). Example such real-time locking protocols include PCP
and its variants [26, 69, 92, 102], multicore PCP (MPCP) [73, 91], SRP [8, 23], multicore
SRP (MSRP) [49], PIP [38], FMLP [16, 17, 64], and OMLP [11]. OMLP and FMLP are
similar, and FMLP has been established to be superior to other protocols [20]. How does
their schedulability compare with that of the proposed contention managers? How do they
compare in practice? These questions constitute our third research direction.

1.5 Proposal Organization

The rest of this dissertation proposal is organized as follows. Chapter 2 overviews past and
related work on real-time concurrency control. Chapter 3 describes our task/system model
and assumptions. Chapter 4 describes the ECM and RCM contention managers, derives
upper bounds for their retry costs and response times, and compares their schedulability be-
tween themselves and with lock-free synchronization. Chapters 5 and 6 similarly describe the
LCM and PNF contention managers, respectively. Chapter 7 describes our implementation
and reports our experimental studies. We conclude in Chapter 8.

Chapter 2

Past and Related Work

Many mechanisms appeared for concurrency control for real-time systems. These methods
include locking [23, 78], lock-free [3–5, 27, 30, 36, 43, 44, 65, 72] and wait-free [2, 12, 25, 27, 28,
31, 44, 62, 94, 109–111]. In general, real-time locking protocols have disadvantages like: 1)
serialized access to shared object, resulting in reduced concurrency and reduced utilization.
2) increased overhead due to context switches. 3) possibility of deadlock when lock holder
crashes. 3) some protocols requires apriori knowledge of ceiling priorities of locks. This
is not always available. 4) Operating system data structures must be updates with this
knowledge which reduces flexibility. For real-time lock-free, the most important problem is
to bound number of failed retries and reduce cost of a single loop. The general technique to
access lock-free objects is “retry-loop”. Retry-loop uses atomic primitives (e.g., CAS) which
is repeated until success. To access a specific data structure efficiently, lock-free technique
is customized to that data structure. This increases difficulty of response time analysis.
Primitive operations do not access multiple objects concurrently. Although some attempts
made to enable multi-word CAS [3], but it is not available in commodity hardware [86]. For
real-time wait-free protocols. It has a space problem due to use of multiple buffers. This
is inefficient in some applications like small-memory real-time embedded systems. Wait-free
has the same problem of lock-free in handling multiple objects.

The rest of this Chapter is organized as follows, Section 2.1 summarizes previous work on
real-time locking protocols. In Section 2.2, we preview related work on lock-free and wait-
free methods for real-time systems. Section 2.3 provides concurrency control under real-time
database systems as a predecessor and inspiration for real-time STM. Section 2.4 previews
related work on contention management. Contention management policy affects response
time analysis of real-time STM.

7

Mohammed El-Shambakey Chapter 2. Past and Related Work 8

2.1 Real-Time Locking Protocols

A lot of work has been done on real-time locking protocols. Locks in real-time systems
can lead to priority inversion [23, 78]. Under priority inversion, a higher priority job is
not allowed to run because it needs a resource locked by a lower priority job. Meanwhile,
an intermediate priority job preempts the lower priority one and runs. Thus, the higher
priority job is blocked because of a lower priority one. Different locking protocols appeared
to solve this problem, but exposing other problems. Most of real-time blocking protocols are
based on Priority Inheritance Protocol (PIP) [23, 38, 102], Priority Ceiling Protocol (PCP)
[23, 26, 38, 69, 73, 91, 92, 102] and Stack Resource Protocol (SRP) [8, 23, 50].

In PIP [23, 102], resource access is done in FIFO order. A resource holder inherits highest
priority of jobs blocked on that resource. When resource holder releases the resource and
it holds no other resources, its priority is returned to its normal priority. If it holds other
resources, its priority is returned to highest priority job blocked on other resources. Under
PIP, a high priority job can be blocked by lower priority jobs for at most the minimum of
number of lower priority jobs and number of shared resources. PIP suffers from chained
blocking, in which a higher priority task is blocked for each accessed resource. Besides, PIP
suffers from deadlock where each of two jobs needs resources held by the other. So, each job
is blocked because of the other. [38] provides response time analysis for PIP when used with
fixed-priority preemptive scheduling on multiprocessor system.

PCP [23, 92, 102] provides concept of priority ceiling. Priority ceiling of a resource is the
highest priority of any job that can access that resource. For any job to enter a critical
section, its priority should be higher the priority ceiling of any currently accessed resource.
Otherwise, the resource holder inherits the highest priority of any blocked job. Under PCP,
a job can be blocked for at most one critical section. PCP prevents deadlocks. [26] extends
PCP to dynamically scheduled systems.

Two protocols extend PCP to multiprocessor systems: 1) Multiprcoessor PCP (M-PCP)
[73, 91, 92] discriminates between global resources and local resources. Local resources are
accessed by PCP. A global resource has a base priority greater than any task normal priority.
Priority ceiling of a global resource equals sum of its base priority and highest priority of any
job that can access it. A job uses a global resource at the priority ceiling of that resource.
Requests for global resources are enqueued in a priority queue according to normal priority
of requesting job. 2) Parallel-PCP (P-PCP) [38] extends PCP to deal with fixed priority
preemptive multiprocessor scheduling. P-PCP, in contrast to PCP, allows lower priority jobs
to allocate resources when higher priority jobs already access resources. Thus, increasing
parallelism. Under P-PCP, a higher priority job can be blocked multiple times by a lower
priority job. With reasonable priority assignment, blocking time by lower priority jobs is
small. P-PCP uses αi parameter to specify permitted number of jobs with basic priority
lower than i and effective priority higher than i. When αi is small, parallelism is reduced,
so as well blocking from lower priority tasks. Reverse is true. [38] provides response time

Mohammed El-Shambakey Chapter 2. Past and Related Work 9

analysis for P-PCP.

[80] extends P-PCP to provide Limited-Blocking PCP (LB-PCP). LB-PCP provides more
control on indirect blocking from lower priority tasks. LB-PCP specify additional counters
that control number of times higher priority jobs can be indirectly blocked without the need
of reasonable priority assignment as in P-PCP. [80] analyzes response time of LB-PCP and
experimentally compares it to P-PCP. Results show that LB-PCP is appropriate for task
sets with medium utilization.

PCP can be unfair from blocking point of view. PCP can cause unnecessary and long blocking
for tasks that do not need any resources. Thus, [69] provides Intelligent PCP (IPCP) to
increase fairness and to work in dynamically configured system (i.e., no a priori information
about number of tasks, priorities and accessed resources). IPCP initially optimizes priorities
of tasks and resources through learning. Then, IPCP tunes priorities according to system
wide parameters to achieve fairness. During the tuning phase, penalties are assigned to tasks
according to number of higher priority tasks that can be blocked.

SRP [8, 23, 50] extends PCP to allow multiunit resources and dynamic priority scheduling
and sharing runtime stack-based resources. SRP uses preemption level as a static parameter
assigned to each task despite its dynamic priority. Resource ceiling is modified to include
number of available resources and preemption levels. System ceiling is the highest resource
ceiling. A task is not allowed to preempt unless it is the highest priority ready one, and its
preemption level is higher than the system ceiling. Under SRP, a job can be blocked at most
for one critical section. SRP prevents deadlocks. Multiprocessor SRT (M-SRP) [49] extends
SRP to multiprocessor systems. M-SRP, as M-PCP, discriminates between local and global
resources. Local resources are accessed by SRP. Request for global resource are enqueued in
a FIFO queue for that resource. Tasks with pending requests busy-wait until their requests
are granted.

Another set of protocols appeared for PFair scheduling [16]. [63] provide initial attempts
to synchronize tasks with short and long resources under PFair. In Pfair scheduling, each
task receives a weight that corresponds to its share in system resources. Tasks are scheduled
in quanta, where each quantum has a specific job on a specific processor. Each lock has a
FIFO queue. Requesting tasks are ordered in this FIFO queue. If a task is preempted during
critical section, then other tasks can be blocked for additional time known as frozen time.
Critical sections requesting short resources execute at most in two quanta. By early lock-
request, critical section can finish in one quanta, avoiding the additional blocking time. [63]
proposes two protocols to deal with short resources: 1) Skip Protocol (SP) leaves any lock
request in the FIFO queue during frozen interval until requesting task is scheduled again. 2)
Rollback Protocol (RP) discards any request in the FIFO queue for the lock during frozen
time. For long resources, [63] uses Static Weight Server Protocol (SWSP) where requests for
each resource l is issued to a corresponding server S. S orders requests in a FIFO queue and
has a static specific weight.

Flexible Multiprocessor Locking Protocol (FMLP) [16] is the most famous synchronization

Mohammed El-Shambakey Chapter 2. Past and Related Work 10

protocol for PFair scheduling. The FMLP allows non-nested and nested resources access
without constraints. FMLP is used under global and partitioned deadline scheduling. Short
or long resource is user defined. Resources can be grouped if they are nested by some task
and have the same type. Request to a specific resource is issued to its containing group.
Short groups are protected by non-preemptive FIFO queue locks, while long groups are
protected by FIFO semaphore queues. Tasks busy-wait for short resources and suspend on
long resources. Short request execute non-preemptively. Requests for long resources cannot
be contained within requests for short resources. A job executing a long request inherits
highest priority of blocked jobs on that resource’s group. FMLP is deadlock free.

[18] is concerned with suspension protocols. Schedulability analysis for suspension protocols
can be suspension-oblivious or suspension-aware. In suspension-oblivious, suspension time is
added to task execution. While in suspension-aware, it is not. [18] provides Optimal Multi-
processor Locking Protocol (OMLP). Under OMLP, each resource has a FIFO queue of length
at most m, and a priority queue. Requests for each resource are enqueued in the correspond-
ing FIFO queue. If FIFO queue is full, requests are added to the priority queue according
to the requesting job’s priority. The head of the FIFO queue is the resource holding task.
Other queued requests are suspended until their turn come. OMLP achieves O(m) priority
inversion (pi) blocking per job under suspension oblivious analysis. This is why OMLP is
asymptotically optimal under suspension oblivious analysis. Under suspension aware analy-
sis, FMLP is asymptotically optimal. [19] extends work in [18] to clustered-based scheduled
multiprocessor system. [19] provides concept of priority donation to ensure that each job is
preempted at most once. In priority donation, a resource holder priority can be uncondition-
ally increased. Thus, a resource holder can preempt another task. The preempted task is
predetermined such that each job is preempted at most once. OMLP with priority donation
can be integrated with k-exclusion locks (K-OMLP). Under K-exclusion locks, there are k
instances of the same resource than can be allocated concurrently. K-OMLP has the same
structure of OMLP except that there are K FIFO queues for each resource. Each FIFO
queue corresponds to one of the k instances. K-OMLP has O(m/k) bound for pi-blocking
under s-oblivious analysis. [41] extends the K-OMLP in [19] to global scheduled multiproces-
sor systems. The new protocol is Optimal K-Exclusion Global Locking Protocol (O-KGLP).
Despite global scheduling is a special case of clustering, K-OMLP provides additional cost
to tasks requesting no resources if K-OMLP is used with global scheduling. O-KGLP avoids
this problem.

2.2 Real-Time Lock-Free and Wait-Free Synchroniza-

tion

Due to locking problems (e,g,. priority inversion, high overhead and deadlock), research has
been done on non-blocking synchronization using lock-free [3–5,27,30,43,44,65,72] and wait-
free algorithms [2,12,25,27,28,31,44,62,94,109–111]. Lock-free iterates an atomic primitive

Mohammed El-Shambakey Chapter 2. Past and Related Work 11

(e.g., CAS) inside a retry loop until successfully accessing object. When used with real-
time systems, number of failed retries must be bounded [3, 4]. Otherwise, tasks are highly
likely to miss their deadlines. Wait-free algorithms, on the other hand, bound number of
object access by any operation due to use of sized buffers. Synchronization under wait-free
is concerned with: 1) single-writer/multi-readers where a number of reading operations may
conflict with one writer. 2) multi-writer/multi-reader where a number of reading operations
may conflict with number of writers. The problem with wait-free algorithms is its space cost.
As embedded real-time systems are concerned with both time and space complexity, some
work appeared trying to combine benefits of locking and wait-free.

[4] considers lock-free synchronization for hard-real time, periodic, uniprocessor systems. [4]
upper bounds retry loop failures and derives schedulability conditions with Rate Monotonic
(RM), and Earliest Deadline First (EDF). [4] compares, formally and experimentally, lock-
free objects against locking protocols. [4] concludes that lock-free objects often require less
overhead than locking-protocols. They require no information about tasks and allow addi-
tion of new tasks simply. Besides, lock-free object do not induce excessive context switches
nor priority inversion. On the other hand, locking protocols allow nesting. Besides, per-
formance of lock-free depends on the cost of “retry-loops”. [3] extends [4] to generate a
general framework for implementing lock-free objects in uniprcocessr real-time systems. The
framework tackles the problem of multi-objects lock-free operations and transactions through
multi-word compare and swap (MWCAS) implementation. [3] provides a general approach
to calculate cost of operation interference based on linear programming. [3] compares the
proposed framework with real-time locking protocols. Lock-free objects are prefered if cost
of retry-loop is less than cost of lock-access-unlock sequence. [5] extends [3,4] to use lock-free
objects in building memory-resident transactions for uniprocessor real-time systems. Lock-
free transactions, in contrast to lock-based transactions, do not suffer from priority inversion,
deadlocks, complicated data-logging and rolling back. Lock-free transaction do not require
kernel support.

[36] presents two synchronization methods under G-EDF scheduled real-time multiprocessor
systems for simple objects. The first synchronization technique uses queue-based spin locks,
while the other uses lock-free. The queue lock is FIFO ordered. Each task appends an
entry at the end of the queue, and spins on it. While the task is spinning, it is non-
preemptive. The queue could have been priority-based but this complicates design and
does not enhance worst case response time analysis. Spinning is suitable for short critical
sections. Disabling preemption requires kernel support. So, second synchronization method
uses lock-free objects. [36] bounds number of retries. [36] , analytically and experimentally,
evaluates both synchronization techniques for soft and hard real-time analysis. [36] concludes
that queue locks have a little overhead. They are suitable for small number of shared object
operations per task. Queue locks are not generally suitable for nesting. Lock-free have high
overhead compared with queue locks. Lock-free is suitable for small number of processors
and object calls in the absence of kernel support.

[65] uses lock-free objects under PFair scheduling for multiprocessor system. [65] provides

Mohammed El-Shambakey Chapter 2. Past and Related Work 12

concept of supertasking to reduce contention and number of failed retries. This is done by
collecting jobs that need a common resource into the same supertask. Members of the same
supertask run on the same processor. Thus, they cannot content together. [65] upper bounds
worst case duration for lock-free object access with and without supertasking. [65] optimizes,
not replaces, locks by lock-free objects. Locks are still used in situations like sharing external
devices and accessing complex objects.

Lock-free objects are used with time utility models where importance and criticality of tasks
are separated [30,72]. [72] presentsMK-Lock-Free Utility Accrual (MK-LFUA) algorithm that
minimizes system level energy consumption with lock-free synchronization. [30] uses lock-
free synchronization for dynamic embedded real-time systems with resource overloads and
arbitrary activity arrivals. Arbitrary activity arrivals are modelled with Universal Arrival
Model (UAM). Lock-free retries are upper bounded. [30] identifies the conditions under
which lock-free is better than lock-based sharing. [43] builds a lock-free linked-list queue on
a multi-core ARM processor.

Wait-free protocols use multiple buffers for readers and writers. For single-writer/multiple-
readers, each object has a number of buffers proportional to maximum number of reader’s
preemptions by the writer. This bounds number of reader’s preemptions. Readers and
writers can use different buffers without interfering each other.

[31] presents wait-free protocol for single-writer/multiple-readers in small memory embedded
real-time systems. [31] proves space optimality of the proposed protocol, as it required the
minimum number of buffers. The protocol is safe and orderly. [31] also proves, analytically
and experimentally, that the protocol requires less space than other wait-free protocols. [28]
extends [31] to present wait-free utility accrual real-time scheduling algorithms (RUA and
DASA) for real-time embedded systems. [28] derives lower bounds on accrued utility com-
pared with lock-based counterparts while minimizing additional space cost. Wait-free algo-
rithms experimentally exhibit optimal utility for step time utility functions during underload,
and higher utility than locks for non-step utility functions. [94] uses wait-free to build three
types of concurrent objects for real-time systems. Built objects has persistent states even if
they crash. [111] provides wait-free queue implementation for real-time Java specifications.

A number of wait-free protocols were developed to solve multi-writer/multi-reader problem
in real-time systems. [110] provides m-writer/n-reader non-blocking synchronization proto-
col for real-time multiprocessor system. The protocol needs n +m + 1 slots. [110] provides
schedulability analysis of the protocol. [2] presents wait-free methods for multi-writer/multi-
reader in real-time multiprocessor system. The proposed algorithms are used for both
priority and quantum based scheduling. For a B word buffer, the proposed algorithms
exhibit O(B) time complexity for reading and writing, and Θ(B) space complexity. [109]
provides a space-efficient wait-free implementation for n-writer/n-reader synchronization in
real-time multiprocessor system. The proposed algorithm uses timestamps to implement
the shared buffer. [109] uses real-time properties to bound timestamps. [25] presents wait-
free implementation of the multi-writer/multi-reader problem for real-time multiprocessor

Mohammed El-Shambakey Chapter 2. Past and Related Work 13

synchronization. The proposed mechanism replicates single-writer/multi-reader to solve the
multi-writer/multi-reader problem. [25], as [109], uses real-time properties to ensure data
coherence through timestamps.

Each synchronization technique has its benefits. So, a lot of work compares between lock-
ing, lock-free and wait-free algorithms. [44] compares building snapshot tool for real-time
system using locking, lock-free and wait-free. [44] analytically and experimentally compares
the three methods. [44] concludes that wait-free is better than its competitors. [27] presents
synchronization techniques under LNREF [29] (an optimal real-time multiprocessor sched-
uler) for simple data structures. Synchronization mechanisms include lock-based, lock-free
and wait-free. [27] derives minimum space cost for wait-free synchronization. [27] compares,
analytically and experimentally, between lock-free and lock-based synchronization under
LNREF.

Some work tried to combine different synchronization techniques to combine their benefits.
[62] uses combination of lock-free and wait-free to build real-time systems. Lock-free is used
only when CAS suffices. The proposed design aims at allowing good real-time properties
of the system, thus better schedulability. The design also aims at reducing synchronization
overhead on uni and multiprocessor systems. The proposed mechanism is used to implement
a micro-kernel interface for a uni-processor system. [12] combines locking and wait-free for
real-time multiprocessor synchronization. This combination aims to reduce required space
cost compared to pure wait-free algorithms, and blocking time compared to pure locking
algorithms. The proposed scheme is jsut an idea. No formal analysis nor implementation is
provided.

2.3 Real-Time Database Concurrency Control

Real-time database systems (RTDBS) is not a synchronization technique. It is a predeces-
sor and inspiration for real-time transactional memory. RTDBS itself uses synchronization
techniques when transactions conflict together. RTDBS is concerned not only with logical
data consistency, but also with temporal time constraints imposed on transactions. Tempo-
ral time constraints require transactions finish before their deadlines. External constraints
require updating temporal data periodically to keep freshness of database. RTDBS allow
mixed types of transactions. But a whole transaction is of one type. In real-time TM, a
single task may contain atomic and non-atomic sections.

High-Priority two Phase Locking (HP-2PL) protocol [74, 75, 90, 116] and Real-Time Opti-
mistic Concurrency (RT-OCC) protocol [34, 47, 74–76, 116] are the most two common pro-
tocols for RTDBS concurrency . HP-2PL works like 2PL except that when a higher priority
transaction request a lock held by a lower priority transaction, lower priority transaction re-
leases the lock in favor of the higher priority one. Then, lower priority transaction restarts.
RT-OCC delays conflict resolution till transaction validation. If validating transaction cannot

Mohammed El-Shambakey Chapter 2. Past and Related Work 14

be serialized with conflicting transactions, a priority scheme is used to determine which trans-
action to restart. In Optimistic Concurrency Control with Broadcast Commit (OCC-BC),
all conflicting transactions with the validating one are restarted. HP-2PL may encounter
deadlock and long blocking times, while transactions under RT-OCC suffer from restart time
at validation point.

Other protocols were developed based on HP-2PL [74, 75, 90] and RT-OCC [7, 47, 74, 76].
HP-2PL, and its derivatives, are similar to locking protocols in real-time systems. They
have the same problems in real-time locking protocols like priority inversion. So, the same
solutions exist for the RTDBS locking protocols. Despite RT-OCC, and its derivatives, use
locks in their implementation, their behaviour is closer to abort and retry semantics in TM.
Some work integrates different protocols to handle different situations [90, 115].

[74] presents Reduced Ceiling Protocol (RCP) which is a combination of Priority Ceiling
Protocol (PCP) and Optimistic Concurrency Protocol (OCC). RCP targets database sys-
tems with mixed hard and soft real-time transactions (RTDBS). RCP aims at guarantee of
schedulabiltiy of hard real-time transactions, and minimizing deadline miss of soft real-time
transactions. Soft real-time transactions are blocked in favor of conflicting hard real-time
transactions. While hard real-time transactions use PCP to synchrnonize among themselves,
soft real-time transactions use OCC. Hard real-time transactions access locks in a tow phase
locking (2PL) fashion. Seized locks are released as soon as hard real-time transaction no
longer need them. This reduces blocking time of soft real-time transactions. [74] derives
analytical and experimental evaluation of RCP against other synchronization protocols.

[115], like [74], deals with mixed transaction. [115] classifies mixed transactions into hard
(HRT), soft (SRT) and non (NRT) real-time transactions. HRT has higher priority than SRT.
SRT has higher priority than NRT. [115] aims at guranting deadlines of HRTs, minimizing
miss rate of SRTs and reducing response time of NRTs. So, [115] deals with inter and intra-
transaction concurrency. HRTs use PCP for concurrency control among themselves. SRTs
use WAIT-50, and NRTs use 2PL. SRT and NRT are blocked or aborted in favor of HRT.
If NRT requests a lock held by SRT, then NRT is blocked. If SRT requests a lock held by
NRT, WAIT-50 is applied. Experimental evaluation showed effective improvement in overall
system performance. Performance objectives of each transaction type was met.

[47] is concerned with semantic lock concurrency control. The semantic lock technique
allows negotiation between logical and temporal constraints of data and transactions. It also
controls imprecision resulting from negotiation. Thus, the semantic lock considers scheduling
and concurrency of transactions. Semantic lock uses a compatibility function to determine
if the release transaction is allowed to proceed or not.

Time Interval OCC protocols try to reduce number of transaction restarts by dynamic adjust-
ment of serialization timestamps. Time interval OCC may encounter unnecessary restarts. [7]
presents Timestamp Vector based OCC to resolve these unnecessary restarts. Timestamp
Vector base OCC uses a timestamp vector instead of a single timestamp as in Time Interval
OCC protocols. Experimental comparison between Timestamp Vector OCC and previous

Mohammed El-Shambakey Chapter 2. Past and Related Work 15

Time Interval OCC shows higher performance of Timestamp Vector OCC.

[34] aims to investigate performance improvement of priority congnizant OCC over incog-
nizant counterparts. In OCC-BC, all conflicting transactions with the validating transaction
are restarted. [34] wonders if it is really worthy to sacrifice all other transactions in favor of
one transaction. [34] proposes Optimistic Concurrency Control- Adaptive PRiority (OCC-
APR) to answer this question. A validating transaction is restarted if it has sufficient time
to its deadline if restarted, and higher priority transactions cannot be serialized with the
conflicting transaction. Sufficient time estimate is adapted according to system feedback.
System feedback is affected by contention level. [34] experimentally concludes that integrat-
ing priority into concurrency control management is not very useful. Time Interval OCC
showed better performance.

WAIT-X [34, 76] is one of the optimistic concurrency control (OCC) protocols. WAIT-X
is a prospective (forward validation) OCC. Prospective means it detects conflicts between
a validating transaction and conflicting transaction that may commit in the future. In
retrospective (backward validation) protocols, conflicts are detected between a validating
transaction and already committed transactions. Retrospective validation aborts validating
transaction if it cannot be serialized with already committed conflicting transactions. When
WAIT-X detects a conflict, it can either abort validating transaction, or commit validating
transaction and abort other conflicting transactions, or it can dealy validating a transction
slightly hoping that conflicts resolve themsleves someway. Which action to take is a function
of priorities of vlaidating and conflicting transactions. WAIT-X can delay validating trans-
action until percetage of higher priority transactions in the conflict set is lower than X%.
WAIT-50 is a common implementation of WAIT-X.

[71] is concerned with concurrency control for multiprocessor RTDBS. [71] uses priority cap
to modify Reader/Write Prirority Ceiling Protocol (RWPCP) [103] to work on multiprocessor
systems. The proposed protocol, named One Priority Inversion RWPCP (1PI-RWPCP), is
deadlock-free and bounds number of priority inversions for any transaction to one. [71] derives
feasiblity condition for any transaction under 1PI-RWPCP. [71] experimentally compares
performance of 1PI-RWPCP against RWPCP.

[90] combines locking, multi-version and valid confirmation concurrency control mecha-
nisms. The proposed method adopts different concurrency control mechanism according to
idiographic situation. Experiments show lower rate of transactional restart of the proposed
mechanis compared to 2PL-HP.

[75] is concerned with RTDBS containing periodically updated data and one time transac-
tactions. [75] provides two new concurrency control protocols to balance freshness of data
and transaction performance. [75] proposes HP-2PL with Delayed Restart (HP-2PL-DR) and
HP-2PL with Delayed Restart and Pre-declaration (HP-2PL-DRP) based on HP-2PL. Before
a transaction T restarts in HP-2PL-DR, next update time of each temporal data accessed
by T is checked. If next update time starts before currently re-executing T , then T ’s restart
time is delayed until the next udpate. Otherwise, T is restarted immediately. If Tr and

Mohammed El-Shambakey Chapter 2. Past and Related Work 16

Tn are two transactions under HP-2PL-DRT. Tr is requesting a lock held by Tn. If priority
of Tr is greater than priority of Tn, then Tn releases the lock in favor of Tr. Othewise, Tr
fails. If Tn releases the lock and Tn is a one time transaction, then Tn restarts immediately.
Otherwise, Tn lock waiting time is updated. Experiments show improved performance of
HP-2PL-DR and HP-2PL-DRP over HP-2PL.

2.4 Real-Time TM Concurrency Control

Concurrency control in TM is done through contention managers. Contention managers are
used to ensure progress of transactions. If one or more transactions conflict on an object,
contention manager decides which transaction to commit. Other transactions abort or wait.
Mostly, contention managers are distributed or decentralized [53, 54, 98, 99], in the sense
that each transaction maintains its own contention manager. Contention managers may
not know which objects will be needed by transactions and their duration. Past work on
contention managers can be classified into two classes: 1) Contention management policy
that decides which transaction commits and which do other actions [52–54, 98, 99, 107]. 2)
Implementation of contention management policy in practice [15,37,51,82,98,107]. The two
classes are orthogonal. The second class tries to increase the benefit of the the contention
management policy in reality by considering different aspects in TM design (e.g., lazy versus
eager, visible versus invisible readers). Second class suggests contention managers should
be proactive instead of reactive. This can prevent conflicts before they happen. Contention
managers can be supported a lot if they are integrated into system schedulers. This provides
a global view of the system (due to applications feedback) and reduces overhead of the
implementation of contention manager.

Contention management policy ranges from never aborting enemies to always aborting
them [98, 99]. These two extremes can lead to deadlock, starvation, livelock and major
loss of performance. Contention manager policy lies in between. Depending on heuristics,
contention manager balances between decisions complexity against quality and overhead.

Different types of contention management policies can be found in [52–54, 98, 99, 107] like:

1. Passive and Aggressive: Passive contention manager aborts current transaction, while
aggressive aborts enemy.

2. Polite: When conflicting on an object, a transaction spins exponensially for average of
2(n+k) ns, where n is number of times to access the object, and k is a tuning parameter.
Spinning times is bounded by m. Afterwards, any enemy is aborted.

3. Karma: It assigns priorities to transaction based on the amount of work done so far.
Amount of work is measured by number of opened objects by current transaction.
Higher priority transaction aborts lower priority one. If lower priority transaction tries

Mohammed El-Shambakey Chapter 2. Past and Related Work 17

to access an object for a number of times greater than priority difference between itself
and higher priority transaction, enemy is aborted.

4. Eruption: It works like Karma except it adds priority of blocked transaction to the
transaction blocking it. This way, enemy is sped-up, allowing blocked transactions to
complete faster.

5. Kindergarten: A transaction maintains a hit list (initially empty) of enemies who
previously caused current thread to abort. When a new enemy is encountered, current
transaction backs off for a limited amount of time. The new enemy is recorded in the
hit list. If the enemy is already in the hit list, it is aborted. If current transaction is
still blocked afterwards, then it is aborted.

6. Timestamp: It is a fair contention manager. Each transaction gets a timestamp when it
begins. Transaction with newer timestamp is aborted in favour of the older. Otherwise,
transaction waits for a fixed intervals, marking the enemy flag as defunct. If the enemy
is not done afterwards, it is killed. Active transaction clear their flag when they notice
it is set.

7. Greedy: Each transaction is given a timestamp when it starts. The earlier the times-
tamp of a transaction, the higher its priority. If transaction A conflicts with transaction
B, and B is of lower priority or is waiting for another transaction, then A aborts B.
Otherwise, A waits for B to commit, abort or starts waiting.

8. Randomized: It aborts current transaction with some probability p, and waits with
probability 1− p.

9. PublishedTimestamp: It works like Timestamp contention manager except it has a new
definition for an “inactive” transaction. Each transaction maintains a “recency” flag.
Recency flag is updated every time the transaction makes a request. Each transaction
maintains its own “inactivity” threshold parameter that is doubled every time it is
aborted up to a specific limit. If the enemy “recency” flag is behind the system global
time by amount exceeding its “inactivity” threshold, then enemy is aborted.

10. Polka: It is a combination of Polite and Karma contention managers. Like Karma, it
assigns priorities based on amount of job done so far. A transaction backs off for a
number of intervals equals difference in priority between itself and its enemy. Unlike
Karma, back-off length increases exponentially.

11. Prioritized version of some of the previous contention managers appeared. Prioritized
contention managers include base priority of the thread holding the transaction into
contention manager policy. This way, higher priority threads are more favoured.

[6] compares performance of different contention managers against an optimal, clairvoyant
contention manager. The optimal contention manager knows all resources needed by each

Mohammed El-Shambakey Chapter 2. Past and Related Work 18

transaction, as well as its release time and duration. Comparison is based on the “makespan”
concept which is amount of time needed to finish a specific set of transactions. The ratio
between makespan of analyzed contention manager and the makespan of the optimal con-
tention manager is known as competitive ratio. [6] proves that any contention manager can
be of O(s) competitive ratio if the contention manager is work conserving (i.e., always lets
the maximal set of non-conflicting transactions run), and satisfies pending property [53]. The
paper proves that this result is asymptotically tight as no on-line work conserving contention
manager can achieve better result. [6] also proves that the makespan of greedy contention
manager is O(s) instead of O(s2) [53]. This allows transactions of arbitrary release time and
durations in contrast to what is assumed in [53]. For randomized contention managers, a
lower bound of Ω(s) if transaction can modify their resource needs when they are reinvoked.

[52] analyzes different contention managers under different situations. [52] concludes that
no single contention manager is suitable for all cases. Thus, [52] proposes a polymorphic
contention manager that changes contention managers on the fly throughout different loads,
concurrent threads of single load and even different phases of a single thread. To implement
polymorphic contention manager, it is important to resolve conflicts resulting from different
contention managers in the same application by different methods. The easiest way is to
abort the enemy contention manager if it is of different type. [52] uses generic priorities for
each transaction regardless of the transaction’s contention manager. Upon conflict between
different classes of contention manager, highest priority transaction is committed.

[107] provides a comprehensive contention manager attempting to achieve low overhead for
low contention, and good throughput and fairness in case of high contention. The main com-
ponents of comprehensive contention manager are lazy acquisition, extendable timestamp-
based conflict detection, and efficient method for capturing conflicts and priorities.

[82] is concerned with implementation issues. [82] considers problems resulting from previous
contention management policies like backing off and waiting for time intervals. These strate-
gies make transactions suffer from many aborts that may lead to livelocks, and increased
vulnerability to abort because of transactional preemption due to higher priority tasks. Im-
precise information and unpredictable benefits resulting from handling long transactions
make it difficult to make correct conflict resolution decisions. [82] discriminates between de-
cisions for long and short transactions, as well as, number of threads larger or lower than
number of cores. [82] suggests a number of user and kernel level support mechanisms for
contention managers, attempting to reduce overhead in current contention managers’ imple-
mentations. Instead of spin-locks and system calls, the paper uses shared memory segments
for communication between kernel and STM library. It also proposes reducing priority of
loser threads instead of aborting them. [82] increases time slices for transactions before they
are preempted by higher priority threads. This way, long transactions can commit quickly
before they are suspended, reducing abort numbers.

For high number of cores, back-off strategies perform poorly. This is due to hot spots cre-
ated by small set of conflicts. These hotspots repeat in predictable manner. [15] introduces

Mohammed El-Shambakey Chapter 2. Past and Related Work 19

proactive contention manger that uses history to predict these hotspots and scheduler trans-
actions around them without programmer’s input. Proactive contention manager is useful
in high contention, but has high cost for low contention. So, [15] uses a hybrid contention
managers that begins with back-off strategy for low contention. After a specific threshold
for contention level, hybrid contention manager switches to proactive manager.

Contention managers concentrate on preventing starvation through fair policies. They are
not suitable for specific systems like real-time systems where stronger behavioural guarantees
are required. [51] proposes user-defined priority transactions to make contention manage-
ment suitable for these specific systems. It investigates the correlation between consistency
checking (i.e., finding memory conflicts) and user-defined priority transactions. Transaction
priority can be static or dynamic. Dynamic priority increases as abort numbers of transaction
increases.

Contention managers are limited in: 1) they are reactive, and suitable only for imminent
conflicts. They do not specify when aborted transaction should restart, making them conflict
again easily. 2) Contention managers are decentralized because they consume a large part
of traffic during high contention. Decentralization prevents global view of the system and
limit contention management policy to heuristics. 3) As contention managers are user-level
modules, it is difficult to integrate them in HTM. [98] tackles the previous problems by
adaptive transaction scheduling (ATS). ATS uses contention intensity feedback from the
application to adaptively decide number of concurrent transactions running within critical
sections. ATS is called only when transaction starts in high contention. Thus, resulting
traffic is low and scheduler can be centralized. ATS is integrated into HTM and STM.

[37] presents CAR-STM, a scheduling-based mechanism for STM collision avoidance and
resolution. CAR-STM maintains a transaction queue per each core. Each transaction is
assigned to a queue by a dispatcher. At the beginning of the transaction, dispatcher uses a
conflict probability method to determine the suitable queue for the transaction. The queue
with high contention for the current transaction is the most suitable one. All transactions in
the same queue are executed by the same thread, thus they are serialized and cannot collide
together. CAR-STM uses a serializing contention manager. If one transaction conflicts
with another transaction, the former transaction is moved to the queue of the latter. This
prevents further collision between them unless the second transaction is moved to a third
queue. Thus, CAR-STM uses another serialization strategy in which the two transactions
are moved to the third queue. This guarantees conflict between transactions for at most
once.

[86] uses HTM to build single and double linked queue, and limited capacity queue. HTM
is used as an alternative synchronization operation to CAS and locks. [86] provides worst
case time analysis for the implemented data structures. It experimentally compares the
implemented data structures with CAS and lock. [86] reverses the role of TM. Transactions
are used to build the data structure, instead of accessing data structures inside transactions.
[101] presents an implementation for HTM in a Java chip multiprocessor system (CMP).

Mohammed El-Shambakey Chapter 2. Past and Related Work 20

The used processor is JOP, where worst case execution time analysis is supported.

[10] presents two steps to minimize and limit number of transactional aborts in real-time
multiprocessor embedded systems. [10] assumes tasks are scheduled under partitioned EDF.
Each task contains at most one transaction. [10] uses multi-versioned STM. In this method,
read-only transactions use recent and consistent snapshot of their read sets. Thus, they
do not conflict with other transactions and commit on first try. This reduction in abort
number comes at the cost of increased memory storage for different versions. [10] uses real-
time characteristics to bound maximum number of required versions for each object. Thus,
required space is bounded. [10] serializes conflicting transaction in a chronological order. Ties
are broken using least laxity and processor identification. [10] does not provide experimental
evaluation of its work.

[13] studies the effect of eager versus lazy conflict detection on real-time schedulability. In
eager validation, conflicts are detected as soon as they occur. One of the conflicting trans-
actions should be aborted immediately. In lazy validation, conflict detection is delayed to
commit time. [13] assumes each task is a complete transaction. [13] proves that synchronous
release of tasks does not necessarily lead to worst case response time of tasks. [13] also proves
that lazy validation will always result in a longer or equal response time than eager vali-
dation. Experiments show that this gap is quite high if higher priority tasks interfere with
lower priority ones.

[81]proposes an adaptive scheme to meet deadlines of transactions. This adaptive scheme
collects statistical information about execution length of transactions. A transaction can
execute in any of three modes depending on its closeness to deadline. These modes are
optimistic, visible read and irrevocable. The optimistic mode defers conflict detection to
commit time. In visible read, other transactions are informed that a particular location has
been read and subject to conflict. Irrevocable mode prevents transaction from aborting. As
a transaction gets closer to its deadline, it moves from optimistic to visible read to irrevo-
cable mode. Deadline transactions are supported by the underlying scheduler by disabling
preemption for them. Experimental evaluation shows improvement in number of committed
transactions without noticeable degradation in transactional throughput.

Chapter 3

Models and Assumptions

We consider a multicore system withm identical processors and n sporadic tasks τ1, τ2, . . . , τn.
The kth instance (or job) of a task τi is denoted τ

k
i . Each task τi is specified by its worst case

execution time (WCET) ci, its minimum period Ti between any two consecutive instances,
and its relative deadline Di, where Di = Ti. Job τ ji is released at time rji and must finish
no later than its absolute deadline dji = rji + Di. Under a fixed priority scheduler such as
G-RMA, pi determines τi’s (fixed) priority and it is constant for all instances of τi. Under
a dynamic priority scheduler such as G-EDF, τ ji ’s priority, p

j
i , is determined by its absolute

deadline. A task τj may interfere with task τi for a number of times during a duration L, and
this number is denoted as Gij(L). τj ’s workload that interferes with τi during L is denoted
Wij(L).

Shared objects. A task may need to access (i.e., read, write) shared, in-memory objects while
it is executing any of its atomic sections, which are synchronized using STM. The set of
atomic sections of task τi is denoted si. s

k
i is the kth atomic section of τi. Each object, θ,

can be accessed by multiple tasks. The set of distinct objects accessed by τi is θi. The set
of atomic sections used by τi to access θ is si(θ), and the sum of the lengths of those atomic
sections is len(si(θ)). s

k
i (θ) is the k

th atomic section of τi that accesses θ. s
k
i (θ1, θ2, .., θn) is

the kth atomic section of τi that accesses objects θ1, θ2, .., θn. s
k
i (θ) executes for a duration

len(ski (θ)).

If θ is shared by multiple tasks, then s(θ) is the set of atomic sections of all tasks accessing θ,
and the set of tasks sharing θ with τi is denoted γi(θ). Atomic sections are non-nested. Each
atomic section is assumed to access only one object; this allows a head-to-head comparison
with lock-free synchronization [36]. (Allowing multiple object access per transaction is future
work.) The maximum-length atomic section in τi that accesses θ is denoted simax

(θ), while
the maximum one among all tasks is smax(θ), and the maximum one among tasks with
priorities lower than that of τi is s

i
max(θ).

STM retry cost. If two or more atomic sections conflict, the CM will commit one section

21

Mohammed El-Shambakey Chapter 3. Models/Assumptions 22

and abort and retry the others, increasing the time to execute the aborted sections. The
increased time that an atomic section spi (θ) will take to execute due to interference with
another section skj (θ), is denoted W

p
i (s

k
j (θ)). The total time that a task τi’s atomic sections

have to retry is denoted RC(τi). When this retry cost is calculated over the task period Ti
or an interval L, it is denoted, respectively, as RC(Ti) and RC(L).

Chapter 4

The ECM and RCM Contention
Managers

We consider software transactional memory (STM) for concurrency control in multicore em-
bedded real-time software. We investigate real-time contention managers (CMs) for resolving
transactional conflicts, including those based on dynamic and fixed priorities, and establish
upper bounds on transactional retries and task response times. We identify the conditions
under which STM (with the proposed CMs) is superior to lock-free synchronization [40].

The rest of this Chapter is organized as follows, Section 4.1 investigates Earliest Deadline
Contention Manager under G-EDF scheduling (ECM) and illustrates its behaviour. We pro-
vide computations of workload interference and retry cost analysis under ECM. Section 4.2
presents Rate Monotonic Contention Manager under G-RMA scheduling (RCM). It also in-
cludes retry cost and response time analysis under ECM. Schedulability of ECM and RCM
is compared against schedulability of lock-free in Section 4.3. We conclude the Chapter in
Section 4.4.

4.1 ECM

Since only one atomic section among many that share the same object can commit at any
time under STM, those atomic sections execute in sequential order. A task τi’s atomic
sections are interfered by other tasks that share the same objects with τi. Hereafter, we will
use ECM to refer to a multicore system scheduled by G-EDF and resolves STM conflicts
using the EDF CM. ECM was originally introduced in [45]. ECM will abort and retry an
atomic section of τi, s

k
i (θ) due to a conflicting atomic section of τj , s

l
j(θ), if the absolute

deadline of τj is less than or equal to the absolute deadline of τi. ECM behaviour is shown
in Algorithm 1. [45] assumes the worst case scenario for transactional retry occurs when
conflicting transactions are released simultaneously. [45] also assumes all transactions have

23

Mohammed El-Shambakey Chapter 4. ECM and RCM 24

the same length. Here, we extend the analysis in [45] to a more worse conflicting scenario and
consider distinct-length transactions. We also consider lower number of conflicting instances
of any job τj to another job τi.

Algorithm 1: ECM

Data: ski (θ) → interfered atomic section. slj(θ) → interfering atomic section
Result: which atomic section aborts

1 if dki < dlj then

2 slj(θ) aborts;

3 else

4 ski (θ) aborts;
5 end

4.1.1 Illustrative Example

Behaviour of ECM can be illustrated by the following example:

• Transaction ski (θ) ∈ τxi begins execution. Currently, ski (θ) does not conflict with any
other transaction.

• Transaction slj(θ) ∈ τ yj is released while ski (θ) is still running. dyj < dxi . So, pyj > pxi .

Hence, ECM will abort and restart ski (θ) in favour of slj(θ).

• Transaction svh(θ) ∈ τuh is released while slj(θ) is still running. duh < dyj < dxi . So,

puh > pyj > pxi . s
l
j(θ) and s

k
i (θ) will abort and retry until svh(θ) committs.

• svh(θ) committs. slj(θ) executes while s
k
i (θ) aborts and retries.

• slj(θ) committs. ski (θ) executes.

4.1.2 G-EDF Interference and workload

The maximum number of times a task τj interferes with τi is given in [14] and is illustrated
in Figure 4.1. Here, the deadline of an instance of τj coincides with that of τi, and τ 1j is
delayed by its maximum jitter Jj , which causes all or part of τ 1j ’s execution to overlap within
Ti. From Figure 4.1, it is seen that τj ’s maximum workload that interferes with τi (when
there are no atomic sections) in Ti is:

Wij (Ti) ≤

⌊

Ti
Tj

⌋

cj +min

(

cj , Ti −

⌊

Ti
Tj

⌋

Tj

)

≤

⌈

Ti
Tj

⌉

cj (4.1)

Mohammed El-Shambakey Chapter 4. ECM and RCM 25

J j

j

i

1

j

2

j

3

j
k

j

k+1

j

Ti

τ

τ
τ τ τ τ τ

Figure 4.1: Maximum interference between two tasks, running on different processors, under
G-EDF

J j

j

i

1

j

2

j T T
k

j

k+1

j

k-1

j

L

τ

τ
τ τ τ τ τ

Figure 4.2: Maximum interference during an interval L of Ti

For an interval L < Ti, the worst case pattern of interference is shown in Figure 4.2. Here,
τ 1j contributes by all its cj, and d

k−1
j does not have to coincide with L, as τk−1

j has a higher
priority than that of τi. The workload of τj is:

Wij (L) ≤

(⌈

L− cj
Tj

⌉

+ 1

)

cj (4.2)

Thus, the overall workload, over an interval R is:

Wij (R) = min (Wij (R) ,Wij (Ti)) (4.3)

where Wij(R) is calculated by (4.2) if R < Ti, otherwise, it is calculated by (4.1).

4.1.3 Retry Cost of Atomic Sections

Claim 1 Under ECM, a task τi’s maximum retry cost during Ti is upper bounded by:

RC (Ti) ≤
∑

θ∈θi

∑

τj∈γi(θ)

⌈

Ti
Tj

⌉

∑

∀slj(θ)

len
(

slj(θ) + smax(θ)
)

− smax(θ) + simax
(θ)

(4.4)

Proof 1 Consider two instances τai and τ bj , where d
b
j ≤ dai . When a shared object conflict

occurs, the EDF CM will commit the atomic section of τ bj while aborting and retrying that

Mohammed El-Shambakey Chapter 4. ECM and RCM 26

i

j

j validates here

i validates

multiple times

τ

τ

τ

τ

(a) Early validation

i retries

multiple times

i

j

i validates

and retries

j validates

here successfully

τ

τ

τ

τ

τ

(b) Lazy validation with
len(ski (θ)) ≤ len(slj(θ))

i

j

i validates

and must retry

j validates

here successfully

Ti starts after

Tj finishes

τi

τj

τ

τ

τ

τ

(c) Lazy validation with
len(ski (θ)) > len(slj(θ))

Figure 4.3: Retry of ski (θ) due to slj(θ)

of τai . Thus, an atomic section of τai , s
k
i (θ), will experience its maximum delay when it is at

the end of its atomic section, and the conflicting atomic section of τ bj , s
l
j(θ), starts, because

the whole ski (θ) will be repeated after slj(θ).

Validation (i.e., conflict detection) in STM is usually done in two ways [85]: a) eager (pes-
simistic), in which conflicts are detected at access time, and b) lazy (optimistic), in which
conflicts are detected at commit time. Despite the validation time incurred (either eager or
lazy), ski (θ) will retry for the same time duration, which is len(slj(θ)+s

k
i (θ)). Then, s

k
i (θ) can

commit successfully unless it is interferred by another conflicting atomic section, as shown
in Figure 4.3.

In Figure 4.3(a), slj(θ) validates at its beginning, due to early validation, and a conflict is
detected. So τai retries multiple times (because at the start of each retry, τai validates) during
the execution of slj(θ). When τ bj finishes its atomic section, τai executes its atomic section.

In Figure 4.3(b), τai validates at its end (due to lazy validation), and detects a conflict
with τ bj . Thus, it retries, and because its atomic section length is shorter than that of τ bj , it
validates again within the execution interval of slj(θ). However, the EDF CM retries it again.
This process continues until τ bj finishes its atomic section. If τai ’s atomic section length is
longer than that of τ bj , τ

a
i would have incurred the same retry time, because τ bj will validate

when τai is retrying, and τai will retry again, as shown in Figure 4.3(c). Thus, the retry cost
of ski (θ) is len(s

k
i (θ) + slj(θ)).

If multiple tasks interfere with τai or interfere with each other and τai (see the two interference
examples in Figure 4.4), then, in each case, each atomic section of the shorter deadline tasks
contributes to the delay of spi (θ) by its total length, plus a retry of some atomic section
in the longer deadline tasks. For example, slj(θ) contributes by len(slj(θ) + spi (θ)) in both
Figures 4.4(a) and 4.4(b). In Figure 4.4(b), syk(θ) causes a retry to slj(θ), and s

w
h (θ) causes

a retry to syk(θ).

Since we do not know in advance which atomic section will be retried due to another, we can
safely assume that, each atomic section (that shares the same object with τai) in a shorter

Mohammed El-Shambakey Chapter 4. ECM and RCM 27

i

j

k

h

τ

τ

τ

τ

(a) Other atomic sections
interfere only with spi (θ)

i

j

k

h

τ

τ

τ

τ

(b) All atomic sections interfere
with each other and spi (θ)

Replaced in calculations by smax(θ)

Replaced in calculations by simax
(θ)

Figure 4.4: Retry of spi (θ) due to other atomic sections

deadline task contributes by its total length, in addition to the maximum length between all
atomic sections that share the same object, len(smax(θ)). Thus,

W p
i

(

skj (θ)
)

≤ len
(

skj (θ) + smax (θ)
)

(4.5)

Thus, the total contribution of all atomic sections of all other tasks that share objects with
a task τi to the retry cost of τi during Ti is:

RC (Ti) ≤
∑

θ∈θi

∑

τj∈γi(θ)

⌈

Ti
Tj

⌉

∑

∀slj(θ)

len
(

slj(θ) + smax(θ)
)

 (4.6)

Here,
⌈

Ti
Tj

⌉

∑

∀slj(θ)
len
(

slj (θ) + smax (θ)
)

is the contribution of all instances of τj during Ti.

This contribution is added to all tasks. The last atomic section to execute is spi (θ) (τi’s
atomic section that was delayed by conflicting atomic sections of other tasks). One of the
other atomic sections (e.g., snm(θ)) should have a contribution len(snm(θ) + simax

(θ)), instead
of len(snm(θ) + smax(θ)). That is why one smax(θ) should be subtracted, and simax

(θ) should
be added (i.e., simax

(θ)− smax(θ)). Claim follows.

Claim 2 Claim 1’s retry bound can be minimized as:

RC(Ti) ≤
∑

θ∈θi

min(Φ1,Φ2) (4.7)

where Φ1 is calculated by (4.4) for one object θ (not the sum of objects in θi), and

Φ2 =

∑

τj∈γi(θ)

⌈

Ti
Tj

⌉

∑

∀slj(θ)

len
(

slj(θ) + s∗max(θ)
)

− s̄max(θ) + simax
(θ) (4.8)

Mohammed El-Shambakey Chapter 4. ECM and RCM 28

where s∗max is the maximum atomic section between all tasks, except τj, accessing θ. s̄max(θ)
is the second maximum atomic section between all tasks accessing θ.

Proof 2 (4.4) can be modified by noting that a task τj ’s atomic section may conflict with
those of other tasks, but not with τj . This is because, tasks are assumed to arrive sporadically,
and each instance finishes before the next begins. Thus, (4.5) becomes:

W p
i

(

skj (θ)
)

≤ len
(

skj (θ) + s∗max(θ)
)

(4.9)

To see why s̄max(θ) is used instead of smax(θ), the maximum-length atomic section of each
task that accesses θ is grouped into an array, in non-increasing order of their lengths. smax(θ)
will be the first element of this array, and s̄max(θ) will be the next element, as illustrated in
Figure 4.5, where the maximum atomic section of each task that accesses θ is associated with
its corresponding task. According to (4.9), all tasks but τj will choose sjmax

(θ) as the value
of s∗max(θ). But when τj is the one whose contribution is studied, it will choose skmax

(θ), as
it is the maximum one not associated with τj . This way, it can be seen that the maximum
value always lies between the two values sjmax(θ) and skmax(θ). Of course, these two values
can be equal, or the maximum value can be associated with τi itself, and not with any one
of the interfering tasks. In the latter case, the chosen value will always be the one associated
with τi, which still lies between the two largest values.

j

k

h

i

Sjmax(θ)
Skmax(θ)
Shmax(θ)

Simax(θ)τ

τ
τ
τ

Figure 4.5: Values associated with s∗max(θ)

This means that the subtracted smax(θ) in (4.4) must be replaced with one of these two
values (smax(θ) or s̄max(θ)). However, since we do not know which task will interfere with
τi, the minimum is chosen, as we are determining the worst case retry cost (as this value is
going to be subtracted), and this minimum is the second maximum.

Since it is not known a-priori whether Φ1 will be smaller than Φ2 for a specific θ, the minimum
of Φ1 and Φ2 is taken as the worst-case contribution for θ in RC(Ti).

4.1.4 Upper Bound on Response Time

To obtain an upper bound on the response time of a task τi, the term RC(Ti) must be added
to the workload of other tasks during the non-atomic execution of τi. But this requires

Mohammed El-Shambakey Chapter 4. ECM and RCM 29

modification of the WCET of each task as follows.

cj of each interfering task τj should be inflated to accommodate the interference of each task
τk, k 6= j, i. Meanwhile, atomic regions that access shared objects between τj and τi should
not be considered in the inflation cost, because they have already been calculated in τi’s
retry cost. Thus, τj ’s inflated WCET becomes:

cji = cj −

∑

θ∈(θj∧θi)

len (sj(θ))

+RC(Tji) (4.10)

where, cji is the new WCET of τj relative to τi; the sum of lengths of all atomic sections in
τj that access object θ is

∑

θ∈(θj∧θi)
len(sj(θ)); and RC(Tji) is the RC(Tj) without including

the shared objects between τi and τj . The calculated WCET is relative to task τi, as it
changes from task to task. The upper bound on the response time of τi, denoted R

up
i , can

be calculated iteratively, using a modification of Theorem 6 in [14], as follows:

Rup
i = ci +RC(Ti) +

⌊

1

m

∑

j 6=i

Wij(R
up
i)

⌋

(4.11)

where Rup
i ’s initial value is ci +RC(Ti).

Wij(R
up
i) is calculated by (4.3), and Wij(Ti) is calculated by (4.1), with cj replaced by cji,

and changing (4.2) as:

Wij(L) = max

(⌈

L−
(

cji+
∑

θ∈(θj∧θi)
len(sj(θ))

)

Tj

⌉

+ 1

)

cji
⌈

L−cj
Tj

⌉

.cji + cj −
∑

θ∈(θj∧θi)
len(sj(θ))

(4.12)

(4.12) compares two terms, as we have two cases:

Case 1. τ 1j (shown in Figure 4.2) contributes by cji. Thus, other instances of τj will begin after
this modified WCET, but the sum of the shared objects’ atomic section lengths is removed
from cji, causing other instances to start earlier. Thus, the term

∑

θ∈(θi∧θj)
len(sj(θ)) is

added to cji to obtain the correct start time.

Case 2. τ 1j contributes by its cj, but the sum of the shared atomic section lengths between
τi and τj should be subtracted from the contribution of τ 1j , as they are already included in
the retry cost.

It should be noted that subtraction of the sum of the shared objects’ atomic section lengths
is done in the first case to obtain the correct start time of other instances, while in the second
case, this is done to get the correct contribution of τ 1j . The maximum is chosen from the
two terms in (4.12), because they differ in the contribution of their τ 1j s, and the number of
instances after that.

Mohammed El-Shambakey Chapter 4. ECM and RCM 30

J j

j

i

1

j

2

j

3

j
k

j

k+1

j

Ti

δ

μ

τ

τ
τ τ τ τ τ

Figure 4.6: Atomic sections of job τ 1j contributing to period Ti

Tighter Upper Bound

To tighten τi’s response time upper bound, RC(τi) needs to be calculated recursively over
duration Rup

i , and not directly over Ti, as done in (4.11). So, (4.7) must be changed to include
the modified number of interfering instances. And if Rup

i still extends to Ti, a situation like
that shown in Figure 4.6 can happen.

To counter the situation in Figure 4.6, atomic sections of τ 1j that are contained in the interval
δ are the only ones that can contribute to RC(Ti). Of course, they can be lower, but cannot
be greater, because τ 1j has been delayed by its maximum jitter. Hence, no more atomic
sections can interfere during the duration [d1j − δ, d1j].

For simplicity, we use the following notations:

• λ1 (j, θ) =
∑

∀slj(θ)∈[d1j−δ,d1j]
len
(

sl
∗

j (θ) + smax (θ)
)

• χ1 (i, j, θ) =
⌊

Ti
Tj

⌋

∑

∀slj(θ)
len
(

slj (θ) + smax (θ)
)

• λ2 (j, θ) =
∑

∀slj(θ)∈[d1j−δ,d1j]
len
(

sl
∗

j (θ) + s∗max (θ)
)

• χ2 (i, j, θ) =
⌊

Ti
Tj

⌋

∑

∀slj(θ)
len
(

slj (θ) + s∗max (θ)
)

Here, sl
∗

j (θ) is the part of slj (θ) that is included in the interval δ. Thus, if slj(θ) is partially
included in δ, it contributes by its included length µ.

Now, (4.7) can be modified as:

RC (Ti) ≤
∑

θ∈θi

min

((

∑

τj∈γi(θ)
λ1 (j, θ) + χ1 (i, j, θ)

)

−smax (θ) + simax
(θ)
)

((

∑

τj∈γi(θ)
λ2 (j, θ) + χ2 (i, j, θ)

)

−s̄max (θ) + simax
(θ)
)

(4.13)

Now, we compute RC(L), where L does not extend to the last instance of τj. Let:

• υ (L, j) =
⌈

L−cj
Tj

⌉

+ 1

• λ3 (j, θ) =
∑

∀slj(θ)
len
(

slj (θ) + smax (θ)
)

Mohammed El-Shambakey Chapter 4. ECM and RCM 31

• λ4 (j, θ) =
∑

∀slj(θ)
len
(

slj (θ) + s∗max (θ)
)

Now, (4.7) becomes:

RC (L) ≤
∑

θ∈θi

min

{

(

∑

τj∈γi(θ)
(υ (L, j)λ3 (j, θ))

)

−smax (θ) + simax
(θ)

{

(

∑

τj∈γi(θ)
(υ (L, j)λ4 (j, θ))

)

−s̄max (θ) + simax
(θ)

(4.14)

Thus, an upper bound on RC(τi) is given by:

RC(Rup
i) ≤ min

{

RC(Rup
i)

RC(Ti)
(4.15)

where RC(Rup
i) is calculated by (4.14) if Rup

i does not extend to the last interfering instance
of τj ; otherwise, it is calculated by (4.13). The final upper bound on τi’s response time can
be calculated as in (4.11) by replacing RC(Ti) with RC(R

up
i).

4.2 RCM

As G-RMA is a fixed priority scheduler, a task τi will be interfered by those tasks with
priorities higher than τi (i.e., pj > pi). Upon a conflict, the RMA CM will commit the
transaction that belongs to the higher priority task. Hereafter, we use RCM to refer to a
multicore system scheduled by G-RMA and resolves STM conflicts by the RMA CM. RCM
is shown in Alogrithm 2.

Algorithm 2: RCM

Data: ski (θ) → interfered atomic section. slj(θ) → interfering atomic section
Result: which atomic section aborts

1 if Ti < Tj then

2 slj(θ) aborts;

3 else

4 ski (θ) aborts;
5 end

The same illustrative example in Section 4.1.1 is applied for RCM except that tasks’ priorities
are fixed.

Mohammed El-Shambakey Chapter 4. ECM and RCM 32

4.2.1 Maximum Task Interference

Figure 4.7 illustrates the maximum interference caused by a task τj to a task τi under G-
RMA. As τj is of higher priority than τi, τ

k
j will interfere with τi even if it is not totally

included in Ti. Unlike the G-EDF case shown in Figure 4.6, where only the δ part of τ 1j is
considered, in G-RMA, τkj can contribute by the whole cj, and all atomic sections contained
in τkj must be considered. This is because, in G-EDF, the worst-case pattern releases τai
before d1j by δ time units, and τai cannot be interfered before it is released. But in G-RMA,
τai is already released, and can be interfered by the whole τkj , even if this makes it infeasible.

J j

j

i

1

j

2

j T T
k

j

k+1

j

k-1

j

L

Ti

Figure 4.7: Max interference of τj to τi in G-RMA

Thus, the maximum contribution of τ bj to τai for any duration L can be deduced from Fig-

ure 4.7 as Wij(L) =
(⌈

L−cj
Tj

⌉

+ 1
)

cj , where L can extend to Ti. Note the contrast with

ECM, where L cannot be extended directly to Ti, as this will have a different pattern of
worst case interference from other tasks.

4.2.2 Retry Cost of Atomic Sections

Claim 3 Under RCM, a task τi’s retry cost over duration L, which can extend to Ti, is
upper bounded by:

RC (L) ≤ sumθ∈θi

∑

τ∗j

((⌈

L− cj
Tj

⌉

+ 1

)

π (j, θ)

)

− sminmax (θ) + simax
(θ)

 (4.16)

where:

• τ ∗j = {τj |(τj ∈ γi(θ)) ∧ (pj > pi)}

• π(j, θ) =
∑

∀slj(θ)
len
(

slj (θ) + sjmax (θ)
)

• sminmax(θ) = min∀τ∗j
{sjmax(θ) ∈ τk}, where pj > pk > pi

Proof 3 The worst case interference pattern for RCM is the same as that for ECM for an
interval L, except that, in RCM, L can extend to the entire Ti, but in ECM, it cannot, as

Mohammed El-Shambakey Chapter 4. ECM and RCM 33

the interference pattern of τj to τi changes. Thus, (4.14) can be used to calculate τi’s retry
cost, with some modifications, as we do not have to obtain the minimum of the two terms in
(4.14), because τj ’s atomic sections will abort and retry only atomic sections of tasks with
lower priority than τj . Thus, smax(θ), s

∗
max(θ), and s̄max(θ) are replaced by sminmax(θ), which

is the minimum of the set of maximum-length atomic sections of tasks with priority lower
than τj and share object θ with τi. This is because, the maximum length atomic section of
tasks other than τj differs according to j. Besides, as τi’s atomic sections can be aborted
only by atomic sections of higher priority tasks, not all τj ∈ γ(θ) are considered, but only
the subset of tasks in γ(θ) with priority higher than τi (i.e., τ

∗
j). Claim follows.

4.2.3 Upper Bound on Response Time

The response time upper bound can be computed using Theorem 7 in [14] with a modification
to include the effect of retry cost. The upper bound is given by:

Rup
i = ci +RC(Rup

i) +

⌊

1

m

∑

j 6=i

Wij(R
up
i)

⌋

(4.17)

where Wij(R
up
i) is calculated as in (4.12), cji is calculated by (4.10), and RC is calculated

by (4.16).

4.3 STM versus Lock-Free

We now would like to understand when STM will be beneficial compared to lock-free syn-
chronization. The retry-loop lock-free approach in [36] is the most relevant to our work.

4.3.1 ECM versus Lock-Free

Claim 4 For ECM’s schedulability to be better or equal to that of [36]’s retry-loop lock-
free approach, the size of smax must not exceed one half of that of rmax, where rmax is the
maximum execution cost of a single iteration of any lock-free retry loop of any task. With
low number of conflicting tasks, the size of smax can be at most the size of rmax.

Proof 4 Equation (4.15) can be upper bounded as:

RC (Ti) ≤
∑

τj∈γi

∑

θ∈θi

⌈

Ti
Tj

⌉

∑

∀slj(θ)

(2.smax)

 (4.18)

Mohammed El-Shambakey Chapter 4. ECM and RCM 34

where slj (θ), simax
(θ), s∗max (θ), and s̄max (θ) are replaced by smax, and the order of the first

two summations are reversed by each other, with γi being the set of tasks that share objects
with τi. These changes are done to simplify the comparison.

Let
∑

θ∈θi

∑

∀slj(θ)
= β∗

i,j, and αedf =
∑

τj∈γi

⌈

Ti
Tj

⌉

.2β∗
i,j. Now, (4.18) can be modified as:

RC (Ti) = αedf .smax (4.19)

The loop retry cost is given by:

LRC (Ti) =
∑

τj∈γi

(⌈

Ti
Tj

⌉

+ 1

)

.βi,j.rmax

= αfree.rmax (4.20)

where βi,j is the number of retry loops of τj that accesses the same object as that accessed

by some retry loop of τi, and αfree =
∑

τj∈γi

(⌈

Ti
Tj

⌉

+ 1
)

.βi,j. Since the shared objects

are the same in both STM and lock free, βi,j = β∗
i,j. Thus, STM achieves equal or better

schedulability than lock-free if the total utilization of the STM system is less than or equal
to that of the lock-free system:

∑

τi

ci + αedf .smax
Ti

≤
∑

τi

ci + αfree.rmax
Ti

∴

smax
rmax

≤

∑

τi
αfree/Ti

∑

τi
αedf/Ti

(4.21)

Let ᾱfree =
∑

τj∈γi

⌈

Ti
Tj

⌉

.βi,j , α̂free =
∑

Tj∈γi
βi,j, and αfree = ᾱfree + α̂free. Therefore:

smax
rmax

≤

∑

τi
(ᾱfree + α̂free)/Ti
∑

τi
αedf/Ti

=
1

2
+

∑

τi
α̂free/Ti

∑

τi
αedf/Ti

(4.22)

Let ζ1 =
∑

τi
α̂free/Ti and ζ2 =

∑

τi

(αedf

2

)

/Ti. The maximum value of ζ1
2.ζ2

= 1
2
, which can

happen if Tj ≥ Ti ∴
⌈

Ti
Tj

⌉

= 1. Then (4.22)=1, which is its maximum value. Tj ≥ Ti means

that there is a small number of interferences from other tasks to τi, and thus low number of
conflicts. Therefore, smax is allowed to be as large as rmax.

The theoretical minimum value for ζ1
2.ζ2

is 0, which can be asymptotically reached if Tj ≪ Ti,

∴

⌈

Ti
Tj

⌉

→ ∞ and ζ2 → ∞. Thus, (4.22)→ 1/2.

Mohammed El-Shambakey Chapter 4. ECM and RCM 35

Ti/ Tj

smax/rmax

1

0.5

Figure 4.8: Effect of
⌈

Ti
Tj

⌉

on smax

rmax

βi,j has little effect on smax/rmax, as it is contained in both the numerator and denominator.
Irrespective of whether βi,j is going to reach its maximum or minimum value, both can be
considered constants, and thus removed from (4.22)’s numerator and denominator. However,

the number of interferences of other tasks to τi,
⌈

Ti
Tj

⌉

, has the main effect on smax/rmax. This

is illustrated in Figure 4.8. Claim follows.

4.3.2 RCM versus Lock-Free

Claim 5 For RCM’s schedulability to be better or equal to that of [36]’s retry-loop lock-free
approach, the size of smax must not exceed one half of that of rmax for all cases. However,
the size of smax can be larger than that of rmax, depending on the number of accesses to a
task Ti’s shared objects from other tasks.

Proof 5 Equation (4.16) is upper bounded by:

∑

(τj∈γi)∧(pj>pi)

(⌈

Ti − cj
Tj

⌉

+ 1

)

.2.βi,j.smax (4.23)

Consider the same assumptions as in Section 4.3.1. Let αrma =
∑

(τj∈γi)∧(pj>pi)

(⌈

Ti−cj
Tj

⌉

+ 1
)

.2.βi,j.

Now, the ratio smax/rmax is upper bounded by:

smax
rmax

≤

∑

Ti
αfree/t (Ti)

∑

Ti
αrma/t (Ti)

(4.24)

The main difference between RCM and lock-free is that RCM is affected only by the higher
priority tasks, while lock-free is affected by all tasks (just as in ECM). Besides, RCM is
still affected by 2.βi,j (just as in ECM). The subtraction of cj in the numerator of (4.23)
may not have a significant effect on the ratio of (4.24), as the loop retry cost can also be

Mohammed El-Shambakey Chapter 4. ECM and RCM 36

modified to account for the effect of the first interfering instance of task Tj . Therefore,

αfree =
∑

τj∈γi

(⌈

Ti−cj
Tj

⌉

+ 1
)

βi,j .

Let tasks in the denominator of (4.24) be given indexes k instead of i, and l instead of j. Let
tasks in both the numerator and denominator of (4.24) be arranged in the non-increasing
priority order, so that i = k and j = l. Let αfree in (4.24) be divided into two parts: ᾱfree
that contains only tasks with priority higher than τi, and α̂free that contains only tasks with
priority lower than τi. Now, (4.24) becomes:

smax
rmax

≤

∑

τi
(ᾱfree + α̂free)/Ti
∑

τk
αrma/Tk

=
1

2
+

∑

τi
α̂free/Ti

∑

τk
αrma/Tk

(4.25)

For convenience, we introduce the following notations:

ζ1 =
∑

τi

∑

(τj∈γi)∧(pj<pi)

(⌈

Ti−cj
Tj

⌉

+ 1
)

βi,j

Ti

=
∑

Ti

α̂free/Ti

ζ2 =
∑

τk

∑

(τl∈γk)∧(pl>pk)

(⌈

Tk−cl
Tl

⌉

+ 1
)

βk,l

Tk

=
1

2

∑

τk

αrma/Tk

τj is of lower priority than τi, which means Dj > Di. Under G-RMA, this means, Tj > Ti.

Thus,
⌈

Ti−cj
Tj

⌉

= 1 for all τj and ζ1 =
∑

τi
(
∑

(τj∈γi)∧(pj<pi)
(2.βi,j))/Ti. Since ζ1 contains all

τj of lower priority than τi and ζ2 contains all τl of higher priority than τk, and tasks are
arranged in the non-increasing priority order, then for each τi,j , there exists τk,l such that
i = l and j = k. Figure 4.9 illustrates this, where 0 means that the pair i, j does not exist
in ζ1, and the pair k, l does not exist in ζ2’ (i.e., there is no task τl that will interfere with
τk in ζ2), and 1 means the opposite.

Thus, it can be seen that both the matrices are transposes of each other. Consequently, for
each βi,j, there exists βk,l such that i = l and j = k. But the number of times τj accesses
a shared object with τi may not be the same as the number of times τi accesses that same
object. Thus, βi,j does not have to be the same as βk,l, even if i, j and k, l are transposes
of each other. Therefore, we can analyze the behavior of smax/rmax based on the three

parameters βi,j, βk,l, and
⌈

Tk−cl
Tl

⌉

. If βi,j is increased so that βi,j → ∞, ∴ (4.25)→ ∞. This is

Mohammed El-Shambakey Chapter 4. ECM and RCM 37

j 1 2 · · · n
i
1 0 1 · · · 1

2 0 0
. . .

...
...

...
...

. . . 1
n 0 0 · · · 0

l 1 2 · · · n
k
1 0 0 · · · 0

2 1 0
...

...
...

. . .
. . . 0

n 1 · · · 1 0

Figure 4.9: Task association for lower priority tasks than Ti and higher priority tasks than
Tk

because, βi,j represents the number of times a lower priority task τj accesses shared objects
with a higher priority task τi. While this number has a greater effect in lock-free, it does not
have any effect under RCM, because lower priority tasks do not affect higher priority ones.
Hence, smax is allowed to be much greater than rmax.

Although the minimum value for βi,j is 1, mathematically, if βi,j → 0, then (4.25) → 1/2.
Here, changing βi,j does not affect the retry cost of RCM, but it does affect the retry cost
of lock-free, because the contention between tasks is reduced. Thus, smax is reduced in this
case to a little more than half of rmax (“a little more” because the minimum value of βi,j is
actually 1, not 0).

The change of smax/rmax with respect to βi,j is illustrated in Figure 4.10(a). If βk,l → ∞,
then (4.25) → 1/2. This is because, βk,l represents the number of times a higher priority
task τl accesses shared objects with a lower priority task τk. Under RCM, this will increase
the retry cost, thus reducing smax/rmax. But if βk,l → 0, then (4.25)→ ∞. This is due to
the lower contention from a higher priority task τl to a lower priority task τk, which reduces
the retry cost under RCM and allows smax to be very large compared with rmax. Of course,
the actual minimum value for βk,l is 1, and is illustrated in Figure 4.10(b).

The third parameter that affects smax/rmax is Tk/Tl. If Tl ≪ Tk, then
⌈

Tk−cl
Tl

⌉

→ ∞, and

(4.25) → 1/2. This is due to a high number of interferences from a higher priority task τl to
a lower priority task τk, which increases the retry cost under RCM, and consequently reduces
smax/rmax.

If Tl = Tk (which is the maximum value for Tl as Dl ≤ Dk, because τl has a higher priority

than τk), then
⌈

Tk−cl
Tl

⌉

→ 1 and ζ2 =
∑

τk

∑

(τl∈γk)∧(pl>pk)
2βk,l

tk
. This means that the system will

be controlled by only two parameters, βi,j and βk,l, as in the previous two cases, illustrated
in Figures 4.10(a) and 4.10(b). Claim follows.

Mohammed El-Shambakey Chapter 4. ECM and RCM 38

βi,j

smax/rmax

0.5

(a)

βk,l

smax/rmax

0.5

(b)

Figure 4.10: Change of smax/rmax: a)
smax

rmax
versus βi,j and b) smax

rmax
versus βk,l

4.4 Conclusions

Under both ECM and RCM, a task incurs 2.smax retry cost for each of its atomic sections
due to a conflict with another task’s atomic section. Retries under RCM and lock-free are
affected by a larger number of conflicting task instances than under ECM. While task retries
under ECM and lock-free are affected by all other tasks, retries under RCM are affected only
by higher priority tasks.

STM and lock-free have similar parameters that affect their retry costs—i.e., the number
of conflicting jobs and how many times they access shared objects. The smax/rmax ratio
determines whether STM is better or as good as lock-free. For ECM, this ratio cannot exceed
1, and it can be 1/2 for higher number of conflicting tasks. For RCM, for the common case,
smax must be 1/2 of rmax, and in some cases, smax can be larger than rmax by many orders
of magnitude.

Chapter 5

The LCM Contention Manager

Under ECM and RCM, each atomic section can be aborted for at most 2.smax by a single
interfering atomic section. We present a novel contention manager (CM) for resolving trans-
actional conflicts, called length-based CM (or LCM) [39]. LCM can reduce the abortion time
of a single atomic section due to an interfering atomic section below 2.smax. We upper bound
transactional retries and response times under LCM, when used with G-EDF and G-RMA
schedulers. We identify the conditions under which LCM outperforms previous real-time
STM CMs and lock-free synchronization.

The rest of this Chapter is organized as follows: Section 5.1 presents Length-based Con-
tention Manager (LCM) and illustrates its behaviour. Section 5.2 derives LCM properties.
Response time analysis of tasks under G-EDF/LCM is given in Section 5.3. Schedulability of
G-EDF/LCM is compared to schedulability of ECM and lock-free in Section 5.4. Section 5.5
gives response time analysis for G-RMA/LCM. Schedulability of G-RMA/LCM is compared
against RCM and lock-free in Section 5.6. We conclude Chapter in Section 5.7.

5.1 Length-based CM

LCM resolves conflicts based on the priority of conflicting jobs, besides the length of the
interfering atomic section, and the length of the interfered atomic section. This is in con-
trast to ECM and RCM (Chapter 4), where conflicts are resolved using the priority of the
conflicting jobs. This strategy allows lower priority jobs, under LCM, to retry for lesser time
than that under ECM and RCM, but higher priority jobs, sometimes, wait for lower priority
ones with bounded priority-inversion.

39

Mohammed El-Shambakey Chapter 5. LCM 40

Algorithm 3: LCM

Data: ski (θ) → interfered atomic section.
slj(θ) → interfering atomic section.
ψ → predefined threshold ∈ [0, 1].
δki (θ) → remaining execution length of ski (θ)
Result: which atomic section of ski (θ) or s

l
j(θ) aborts

1 if pki > plj then

2 slj(θ) aborts;

3 else

4 cklij = len(slj(θ))/len(s
k
i (θ));

5 αkl
ij = ln(ψ)/(ln(ψ)− cklij);

6 α =
(

len(ski (θ)) − δki (θ)
)

/len(ski (θ));

7 if α ≤ αkl
ij then

8 ski (θ) aborts;
9 else

10 slj(θ) aborts;

11 end

12 end

5.1.1 Design and Rationale

For both ECM and RCM, ski (θ) can be totally repeated if slj(θ) — which belongs to a higher
priority job τ bj than τai — conflicts with ski (θ) at the end of its execution, while ski (θ) is just
about to commit. Thus, LCM, shown in Algorithm 3, uses the remaining length of ski (θ)
when it is interfered, as well as len(slj(θ)), to decide which transaction must be aborted.
If pki was greater than plj , then ski (θ) would be the one that commits, because it belongs
to a higher priority job, and it started before slj(θ) (step 2). Otherwise, cklij is calculated
(step 4) to determine whether it is worth aborting ski (θ) in favor of slj(θ), because len(s

l
j(θ))

is relatively small compared to the remaining execution length of ski (θ) (explained further).

We assume that:
cklij = len(slj(θ))/len(s

k
i (θ)) (5.1)

where cklij ∈]0,∞[, to cover all possible lengths of slj(θ). Our idea is to reduce the opportunity
for the abort of ski (θ) if it is close to committing when interfered and len(slj(θ)) is large. This
abort opportunity is increasingly reduced as ski (θ) gets closer to the end of its execution, or
len(slj(θ)) gets larger.

On the other hand, as ski (θ) is interfered early, or len(slj(θ)) is small compared to ski (θ)’s
remaining length, the abort opportunity is increased even if ski (θ) is close to the end of
its execution. To decide whether ski (θ) must be aborted or not, we use a threshold value
ψ ∈ [0, 1] that determines αklij (step 5), where αklij is the maximum percentage of len(ski (θ))
below which slj(θ) is allowed to abort ski (θ). Thus, if the already executed part of ski (θ)
— when slj(θ) interferes with ski (θ) — does not exceed αklij len(s

k
i (θ)), then s

k
i (θ) is aborted

(step 8). Otherwise, slj(θ) is aborted (step 10).

Mohammed El-Shambakey Chapter 5. LCM 41

0

0. 2

0. 4

0. 6

0. 8

1

0 0. 2 0. 4 0. 6 0. 8 1 1. 2 1. 4

A
b
o
r
t

p
e
r
c
e
n
t

s i per cent (α)

sj=0.01si
sj=0.1si

sj=si
sj=10si

sj=100si

α1 α2 α3

�

Figure 5.1: Interference of ski (θ) by various lengths of slj(θ)

The behavior of LCM is illustrated in Figure 5.1. In this figure, the horizontal axis cor-
responds to different values of α ranging from 0 to 1, and the vertical axis corresponds to
different values of abort opportunities, f(cklij , α), ranging from 0 to 1 and calculated by (5.2):

f(cklij , α) = e
−cklij α

1−α (5.2)

where cklij is calculated by (5.1).

Figure 5.1 shows one atomic section ski (θ) (whose α changes along the horizontal axis) in-
terfered by five different lengths of slj(θ). For a predefined value of f(cklij , α) (denoted as ψ
in Algorithm 3), there corresponds a specific value of α (which is αklij in Algorithm 3) for
each curve. For example, when len(slj(θ)) = 0.1× len(ski (θ)), s

l
j(θ) aborts s

k
i (θ) if the latter

has not executed more than α3 percentage (shown in Figure 5.1) of its execution length. As
len(slj(θ)) decreases, the corresponding α

kl
ij increases (as shown in Figure 5.1, α3 > α2 > α1).

Equation (5.2) achieves the desired requirement that the abort opportunity is reduced as
ski (θ) gets closer to the end of its execution (as α → 1, f(cklij , 1) → 0), or as the length of
the conflicting transaction increases (as cklij → ∞, f(∞, α) → 0). Meanwhile, this abort
opportunity is increased as ski (θ) is interfered closer to its release (as α → 0, f(cklij , 0) → 1),
or as the length of the conflicting transaction decreases (as cklij → 0, f(0, α) → 1).

LCM is not a centralized CM, which means that, upon a conflict, each transactions has to
decide whether it must commit or abort.

5.1.2 LCM Illustrative Example

Behaviour of LCM can be illustrated by the following example:

Mohammed El-Shambakey Chapter 5. LCM 42

• Transaction ski (θ) ∈ τxi begins execution. Currently, ski (θ) does not conflict with any
other transaction.

• Transaction slj(θ) ∈ τ yj is released while ski (θ) is still running. p
y
j > pxi (where priority

is dynamic in G-EDF, and fixed in G-RMA). ck,li,j , α
k,l
i,j and α are calculated by steps 4

to 6 in Algorithm 3. ski (θ) has not reached α percentage of its execution length yet.

• α < αk,li,j . Then, s
l
j(θ) is allowed to abort and restart ski (θ).

• slj(θ) commits. ski (θ) executes again.

• Transaction svh(θ) ∈ τuh is released while ski (θ) is running. p
u
h > pxi . c

k,v
i,h , α

k,v
i,h and α are

calculated by steps 4 to 6 in Algorithm 3. ski (θ) has already passed α percentage of its
execution length. So, svh(θ) aborts and restarts in favour of ski (θ).

• Transaction sba(θ) ∈ τ fa is released. pfa > pxi but pfa < puh. c
k,b
i,a , α

k,b
i,a and α are calculated

by steps 4 to 6 in Algorithm 3. ski (θ) has not reached α percentage of its execution
length yet. So, sba(θ) is allowed to abort ski (θ). Because sba(θ) is just starting, LCM
allows svh(θ) to abort sba(θ). So, the highest priority transaction is not blocked by an
intermediate priority transaction sba(θ).

• When svh(θ) commits. sba(θ) is allowed to execute while ski (θ) is retrying.

• When sba(θ) commits, ski (θ) executes.

• Transaction snc (θ) ∈ τ zo is released while ski (θ) is running. p
z
o < pxi . So, ski (θ) commits

first, then snc (θ) is allowed to proceed.

5.2 Properties

LCM properties are given by the following Lemmas. These properties are used to derive
retry cost and response time of transactions and tasks under LCM.

Claim 6 Let slj(θ) interfere once with ski (θ) at αklij . Then, the maximum contribution of
slj(θ) to s

k
i (θ)’s retry cost is:

W k
i (s

l
j(θ)) ≤ αklij len

(

ski (θ)
)

+ len
(

slj(θ)
)

(5.3)

Proof 6 If slj(θ) interferes with s
k
i (θ) at a Υ percentage, where Υ < αklij , then the retry cost

of ski (θ) is Υlen(s
k
i (θ)) + len(slj(θ)), which is lower than that calculated in (5.3). Besides, if

slj(θ) interferes with s
k
i (θ) after α

kl
ij percentage, then ski (θ) will not abort.

Mohammed El-Shambakey Chapter 5. LCM 43

Claim 7 An atomic section of a higher priority job, τ bj , may have to abort and retry due
to a lower priority job, τai , if s

l
j(θ) interferes with ski (θ) after the αklij percentage. τj’s retry

time, due to ski (θ) and s
l
j(θ), is upper bounded by:

W l
j (s

k
i (θ)) ≤

(

1− αklij

)

len
(

ski (θ)
)

(5.4)

Proof 7 It is derived directly from Claim 6, as slj(θ) will have to retry for the remaining
length of ski (θ).

Claim 8 A higher priority job, τ zi , suffers from priority inversion for at most number of
atomic sections in τ zi .

Proof 8 Assuming three atomic sections, ski (θ), s
l
j(θ) and sba(θ), where pj > pi and slj(θ)

interferes with ski (θ) after αklij . Then slj(θ) will have to abort and retry. At this time, if
sba(θ) interferes with the other two atomic sections, and the LCM decides which transaction
to commit based on comparison between each two transactions. So, we have the following
cases:-

• pa < pi < pj , then s
b
a(θ) will not abort any one because it is still in its beginning and

it is of the lowest priority. So. τj is not indirectly blocked by τa.

• pi < pa < pj and even if sba(θ) interferes with ski (θ) before αkbia , so, s
b
a(θ) is allowed

abort ski (θ). Comparison between slj(θ) and s
b
a(θ) will result in LCM choosing slj(θ) to

commit and abort sba(θ) because the latter is still beginning, and τj is of higher priority.
If sba(θ) is not allowed to abort ski (θ), the situation is still the same, because slj(θ) was
already retrying until ski (θ) finishes.

• pa > pj > pi, then if sba(θ) is chosen to commit, this is not priority inversion for τj
because τa is of higher priority.

• if τa preempts τi, then LCM will compare only between slj(θ) and s
b
a(θ). If pa < pj , then

slj(θ) will commit because of its task’s higher priority and sba(θ) is still at its beginning,
otherwise, slj(θ) will retry, but this will not be priority inversion because τa is already
of higher priority than τj . If τa does not access any object but it preempts τi, then
CM will choose slj(θ) to commit as only already running transactions are competing
together.

So, by generalizing these cases to any number of conflicting jobs, it is seen that when an
atomic section, slj(θ), of a higher priority job is in conflict with a number of atomic sections
belonging to lower priority jobs, slj(θ) can suffer from priority inversion by only one of them.
So, each higher priority job can suffer priority inversion at most its number of atomic section.
Claim follows.

Mohammed El-Shambakey Chapter 5. LCM 44

Claim 9 The maximum delay suffered by slj(θ) due to lower priority jobs is caused by the
maximum length atomic section accessing object θ, which belongs to a lower priority job than
τ bj that owns slj(θ).

Proof 9 Assume three atomic sections, ski (θ), s
l
j(θ), and s

z
h(θ), where pj > pi, pj > ph, and

len(ski (θ)) > len(szh(θ)). Now, αklij > αzlhj and cklij < czlhj. By applying (5.4) to obtain the

contribution of ski (θ) and s
z
h(θ) to the priority inversion of slj(θ) and dividing them, we get:

W l
j (s

k
i (θ))

W l
j (s

z
h(θ))

=

(

1− αklij
)

len(ski (θ))
(

1− αzlhj
)

len(szh(θ))

By substitution for αs from (5.2):

=
(1− lnψ

lnψ−cklij
)len(ski (θ))

(1− lnψ

lnψ−czl
hj

)len(szh(θ))
=

(
−cklij

lnψ−cklij
)len(ski (θ))

(
−czl

hj

lnψ−czl
hj

)len(szh(θ))

∵ lnψ ≤ 0 and cklij , c
kl
hj > 0,∴ by substitution from (5.1)

=
len(slj(θ))/(lnψ − cklij)

len(slj(θ))/(lnψ − czlhj)
=
lnψ − czlhj
lnψ − cklij

> 1

Thus, as the length of the interfered atomic section increases, the delay suffered by the
interfering atomic section increases. Claim follows.

5.3 Response Time of G-EDF/LCM

Claim 10 RC(Ti) for a task τi under G-EDF/LCM is upper bounded by:

RC(Ti) =

(

∑

∀τh∈γi

∑

∀θ∈θi∧θh

(

⌈

Ti
Th

⌉

∑

∀sl
h
(θ)

len
(

slh(θ)
)

+ αhlmaxlen
(

shmax(θ)
)

))

+
∑

∀s
y
i (θ)

(

1− αiymax
)

len
(

simax(θ)
)

(5.5)

where αhlmax is the α value that corresponds to ψ due to the interference of shmax(θ) by s
l
h(θ).

αiymax is the α value that corresponds to ψ due to the interference of simax(θ) by s
y
i (θ).

Mohammed El-Shambakey Chapter 5. LCM 45

Jh

h

i

2

h

3

h T T

t(Ti)

1

h

p

h
p+1

h

τ

τ
τ τ τ τ τ

Ti

Figure 5.2: τ ph has a higher priority than τxi

Proof 10 The maximum number of higher priority instances of τh that can interfere with τxi
is
⌈

Ti
Th

⌉

, as shown in Figure 5.2, where one instance of τh and τ ph coincides with the absolute

deadline of τxi .

By using Claims 1, 6, 7, 8 and 9 to determine the effect of atomic sections belonging to
higher and lower priority instances of interfering tasks to τxi , Claim follows.

Response time of τi is calculated by (4.11).

5.4 Schedulability of G-EDF/LCM

We now compare the schedulability of G-EDF/LCM with ECM (Chapter 4) to understand
when G-EDF/LCM will perform better. Toward this, we compare the total utilization of
ECM with that of G-EDF/LCM. For each method, we inflate the ci of each task τi by adding
the retry cost suffered by τi. Thus, if method A adds retry cost RCA(Ti) to ci, and method
B adds retry cost RCB(Ti) to ci, then the schedulability of A and B are compared as:

∑

∀τi

ci +RCA(Ti)

Ti
≤

∑

∀τi

ci +RCB(Ti)

Ti

∑

∀τi

RCA(Ti)

Ti
≤

∑

∀τi

RCB(Ti)

Ti
(5.6)

Thus, schedulability is compared by substituting the retry cost added by the synchronization
methods in (5.6).

5.4.1 Schedulability of G-EDF/LCM and ECM

Claim 11 Let smax be the maximum length atomic section accessing any object θ. Let αmax
and αmin be the maximum and minimum values of α for any two atomic sections ski (θ) and

Mohammed El-Shambakey Chapter 5. LCM 46

slj(θ). Given a threshold ψ, schedulability of G-EDF/LCM is equal or better than ECM if
for any task τi:

1− αmin
1− αmax

≤
∑

∀τh∈γi

⌈

Ti
Th

⌉

(5.7)

Proof 11 Under ECM, RC(Ti) is upper bounded by:

RC(Ti) ≤
∑

∀τh∈γi

∑

∀θ∈ (θi∧θh)

⌈

Ti
Th

⌉

∑

∀sz
h
(θ)

2len(smax)

 (5.8)

with the assumption that all lengths of atomic sections of (4.4), (4.8) and (5.5) are replaced
by smax. Let α

hl
max in (5.5) be replaced with αmax, and α

iy
max in (5.5) be replaced with αmin.

As αmax, αmin, and len(smax) are all constants, (5.5) is upper bounded by:

RC(Ti) ≤

(

∑

∀τh∈γi

∑

∀θ∈θi∧θh

(

⌈

Ti
Th

⌉

∑

∀sl
h
(θ)

(1 + αmax)

len
(

smax

)

))

+
∑

∀s
y
i (θ)

(

1− αmin

)

len
(

smax

)

(5.9)

If βih1 is the total number of times any instance of τh accesses shared objects with τi, then
βih1 =

∑

∀θ∈(θi∧θh)

∑

∀sz
h
(θ). Furthermore, if βi2 is the total number of times any instance of τi

accesses shared objects with any other instance, βi2 =
∑

∀s
y
i (θ)

, where θ is shared with another

task. Then, βi = max{max∀τh∈γi{β
ih
1 }, βi2} is the maximum number of accesses to all shared

objects by any instance of τi or τh. Thus, (5.8) becomes:

RC(Ti) ≤
∑

τh∈γi

2

⌈

Ti
Th

⌉

βilen(smax) (5.10)

and (5.9) becomes:

RC(Ti) ≤ βilen(smax)

(

(1− αmin) +
∑

∀τh∈γi

⌈

Ti
Th

⌉

(1 + αmax)

)

(5.11)

We can now compare the total utilization of G-EDF/LCM with that of ECM by compar-

Mohammed El-Shambakey Chapter 5. LCM 47

ing (5.9) and (5.11) for all τi:

∑

∀τi

(1− αmin) +
∑

∀τh∈γi

(⌈

Ti
Th

⌉

(1 + αmax)
)

Ti

≤
∑

∀τi

∑

∀τh∈γi
2
⌈

Ti
Th

⌉

Ti
(5.12)

(5.12) is satisfied if for each τi, the following condition is satisfied:

(1− αmin) +
∑

∀τh∈γi

(⌈

Ti
Th

⌉

(1 + αmax)

)

≤ 2
∑

∀τh∈γi

⌈

Ti
Th

⌉

∴

1− αmin
1− αmax

≤
∑

∀τh∈γi

⌈

Ti
Th

⌉

Claim follows.

5.4.2 G-EDF/LCM versus Lock-free

We consider the retry-loop lock-free synchronization for G-EDF given in [36]. This lock-free
approach is the most relevant to our work.

Claim 12 Let smax denote len(smax) and rmax denote the maximum execution cost of a single
iteration of any retry loop of any task in the retry-loop lock-free algorithm in [36]. Now, G-
EDF/LCM achieves higher schedulability than the retry-loop lock-free approach if the upper
bound on smax/rmax under G-EDF/LCM ranges between 0.5 and 2 (which is higher than that
under ECM).

Proof 12 From [36], the retry-loop lock-free algorithm is upper bounded by:

RL(Ti) =
∑

τh∈γi

(⌈

Ti
Th

⌉

+ 1

)

βirmax (5.13)

where βi is as defined in Claim 11. The retry cost of τi in G-EDF/LCM is upper bounded by
(5.11). By comparing G-EDF/LCM’s total utilization with that of the retry-loop lock-free
algorithm, we get:

∑

∀τi

(

(1−αmin)+
∑

∀τh∈γi

(⌈

Ti
Th

⌉

(1+αmax)
))

βismax

Ti

≤
∑

∀τi

∑

∀τh∈γi

(⌈

Ti
Th

⌉

+1
)

βirmax

Ti

Mohammed El-Shambakey Chapter 5. LCM 48

∴

smax
rmax

≤

∑

∀τi

∑

∀τh∈γi

(⌈

Ti
Th

⌉

+1
)

βi

Ti

∑

∀τi

(

(1−αmin)+
∑

∀τh∈γi

(⌈

Ti
Th

⌉

(1+αmax)
))

βi

Ti

(5.14)

Let the number of tasks that have shared objects with τi be ω (i.e.,
∑

τh∈γi
= ω ≥ 1 since at

least one task has a shared object with τi; otherwise, there is no conflict between tasks). Let

the total number of tasks be n, so 1 ≤ ω ≤ n− 1, and
⌈

Ti
Th

⌉

∈ [1,∞[. To find the minimum

and maximum values for the upper bound on smax/rmax, we consider the following cases:

• αmin → 0, αmax → 0

∴ (5.14) will be:

smax
rmax

≤ 1 +

∑

∀τi

ω−1
Ti

∑

∀τi

1+
∑

∀τh∈γi

⌈

Ti
Th

⌉

Ti

(5.15)

By substituting the edge values for ω and
⌈

Ti
Th

⌉

in (5.15), we derive that the upper bound

on smax/rmax lies between 1 and 2.

• αmin → 0, αmax → 1

(5.14) becomes

smax
rmax

≤ 0.5 +

∑

∀τi

ω−0.5
Ti

∑

∀τi

1+2
∑

∀τh∈γi

⌈

Ti
Th

⌉

Ti

(5.16)

By applying the edge values for ω and
⌈

Ti
Th

⌉

in (5.16), we derive that the upper bound on

smax/rmax lies between 0.5 and 1.

• αmin → 1, αmax → 0

This case is rejected since αmin ≤ αmax.

• αmin → 1, αmax → 1

Mohammed El-Shambakey Chapter 5. LCM 49

∴ (5.14) becomes:

smax
rmax

≤ 0.5 +

∑

τi

ω
Ti

2
∑

τi

∑

∀τh∈γi

⌈

Ti
Th

⌉

Ti

(5.17)

By applying the edge values for ω and
⌈

Ti
Th

⌉

in (5.17), we derive that the upper bound on

smax/rmax lies between 0.5 and 1, which is similar to that achieved by ECM.

Summarizing from the previous cases, the upper bound on smax/rmax lies between 0.5 and
2, whereas for ECM, it lies between 0.5 and 1. Claim follows.

5.5 Response Time of G-RMA/LCM

Claim 13 Let λ2(j, θ) =
∑

∀slj(θ)
len(slj(θ)) + αjlmaxlen(s

j
max(θ)), where α

jl
max is the α value

corresponding to ψ due to the interference of sjmax(θ) by s
l
j(θ). The retry cost of any task τi

under G-RMA/LCM during Ti is given by:

RC (Ti) =
∑

∀τ∗j

∑

θ∈(θi∧θj)

((⌈

Ti
Tj

⌉

+ 1

)

λ2(j, θ)

)

+
∑

∀s
y
i (θ)

(

1− αiymax
)

len
(

simax(θ)
)

(5.18)

where τ ∗j = {τj |(τj ∈ γi) ∧ (pj > pi)}.

Proof 13 Under G-RMA, all instances of a higher priority task, τj , can conflict with a lower
priority task, τi, during Ti. (5.3) can be used to determine the contribution of each conflicting
atomic section in τj to τi. Meanwhile, all instances of any task with lower priority than τi
can conflict with τi during Ti. Claims 7 and 8 can be used to determine the contribution
of conflicting atomic sections in lower priority tasks to τi. Using the previous notations and
Claim 3, the Claim follows.

The response time is calculated by (4.17) with replacing RC(Rup
i) with RC(Ti).

Mohammed El-Shambakey Chapter 5. LCM 50

5.6 Schedulability of G-RMA/LCM

5.6.1 Schedulability of G-RMA/LCM and RCM

Claim 14 Under the same assumptions of Claims 11 and 13, G-RMA/LCM’s schedulability
is equal or better than RCM if:

1− αmin
1− αmax

≤
∑

∀τ∗j

(⌈

Ti
Tj

⌉

+ 1

)

(5.19)

Proof 14 Under the same assumptions as that of Claims 11 and 13, (5.18) can be upper
bounded as:

RC(Ti) ≤
∑

∀τ∗j

((⌈

Ti
Tj

⌉

+ 1

)

(1 + αmax)len(smax)βi

)

+ (1− αmin)len(smax)βi (5.20)

For RCM, (4.16) for RC(Ti) is upper bounded by:

RC(Ti) ≤
∑

∀τ∗j

(⌈

Ti
Tj

⌉

+ 1

)

2βilen(smax)

By comparing the total utilization of G-RMA/LCM with that of RCM, we get:

∑

∀τi

len(smax)βi

(

(1−αmin)+
∑

∀τ∗
j

((⌈

Ti
Tj

⌉

+1

)

(1+αmax)

))

Ti

≤
∑

∀τi

2len(smax)βi
∑

∀τ∗
j

(⌈

Ti
Tj

⌉

+1

)

Ti
(5.21)

(5.21) is satisfied if ∀τi (5.19) is satisfied. Claim follows.

5.6.2 G-RMA/LCM versus Lock-free

Although [36] considers retry-loop lock-free synchronization for G-EDF systems, [36] also
applies for G-RMA systems.

Claim 15 Let smax denote len(smax) and rmax denote the maximum execution cost of a
single iteration of any retry loop of any task in the retry-loop lock-free algorithm in [36]. G-
RMA/LCM achieves higher schedulability than the retry-loop lock-free approach if the upper
bound on smax/rmax under G-RMA/LCM is no less than 0.5. Upper bound on smax/rmax
can extend to large values when αmin and αmax are very large.

Mohammed El-Shambakey Chapter 5. LCM 51

Proof 15 The retry cost for G-RMA/LCM is upper bounded by (5.18). Let γi = τ ∗j ∪ τ̄j ,
where τ ∗j is the set of higher priority tasks than τi sharing objects with τi. τ̄j is the set of lower
priority tasks than τi sharing objects with it. We follow the same definitions of βi, rmax, and
RL(Ti) given in the proof of Claim (12). Schedulability of G-RMA/LCM equals or exceeds
the schedulability of retry-loop lock-free algorithm if:

smax
rmax

≤

∑

∀τi

∑

τ∗
j

(⌈

Ti
Tj

⌉

+1

)

Ti

∑

∀τi

(

1−αmin

)

+
∑

τ∗
j

(⌈

Ti
Tj

⌉

+1

)

(1+αmax)

Ti

+
2
∑

∀τi

∑

∀τ̄j

Ti

∑

∀τi

(

1−αmin

)

+
∑

τ∗
j

(⌈

Ti
Tj

⌉

+1

)

(1+αmax)

Ti

(5.22)

If pj < pi, ∴
⌈

Ti
Tj

⌉

= 1, because the system assumes implicit deadline tasks and uses the

G-RMA scheduler. Let ω1 be the size of τ ∗i and ω2 be the size of τ̄i. ∴ ωi1 ≥ 1 and ωi2 ≥ 1.
Otherwise, there is no conflict with τi. To find the maximum and minimum upper bounds
for smax/rmax, the following cases are considered:

• αmin → 0, αmax → 0

∴

smax
rmax

≤ 1 +

∑

∀τi

2ωi
2−1

Ti

∑

∀τi

1+
∑

τ∗
j

(⌈

Ti
Tj

⌉

+1

)

Ti

(5.23)

As the second term in (5.23) is always positive (because ωi2 ≥ 1), the minimum upper

bound on smax/rmax is 1. To get the maximum upper bound on smax/rmax, let
⌈

Ti
Tj

⌉

approach its minimum value of 1, ωi1 → 0, and ωi2 → n−1 (the maximum and minimum
values for ωi1 and ωi2, respectively. n is number of tasks). Now:

∴
smax
rmax

≤ (2n− 2)

Of course, n cannot be lower than 2. Otherwise, there will be no conflicting tasks.

• αmin → 0, αmax → 1

smax
rmax

≤
1

2
+

∑

∀τi

4ωi
2−1

Ti

2
∑

∀τi

1+2
∑

τ∗
j

(⌈

Ti
Tj

⌉

+1

)

Ti

(5.24)

The minimum upper bound for smax/rmax is 0.5. This can happen when Ti ≫ Tj . To

get the maximum upper bound on smax/rmax, let
⌈

Ti
Tj

⌉

approach its minimum value 1,

Mohammed El-Shambakey Chapter 5. LCM 52

ωi2 → n− 1, and ωi1 → 0. Now:

smax
rmax

≤ 2n− 2

• αmin → 1, αmax → 0 This case is rejected because αmax must be greater or equal to
αmin.

• αmin → 1, αmax → 1

smax
rmax

≤
1

2
+

∑

∀τi

ωi
2

Ti

∑

∀τi

∑

τ∗
j

(⌈

Ti
Tj

⌉

+1

)

Ti

(5.25)

The minimum upper bound for smax/rmax is 0.5. This can happen when Ti ≫ Tj . To

get the maximum upper bound on smax/rmax, let
⌈

Ti
Tj

⌉

approach its minimum value 1,

ωi2 → n− 1, ωi1 → 0. Now:
smax
rmax

→ ∞

From the previous cases, we can derive that the upper bound on smax/rmax extends from 0.5
to large values. Claim follows.

5.7 Conclusions

In ECM and RCM, a task incurs at most 2smax retry cost for each of its atomic section
due to conflict with another task’s atomic section. With LCM, this retry cost is reduced
to (1 + αmax)smax for each aborted atomic section. In ECM and RCM, tasks do not retry
due to lower priority tasks, whereas in LCM, they do so. In G-EDF/LCM, retry due to a
lower priority job is encountered only from a task τj ’s last job instance during τi’s period.
This is not the case with G-RMA/LCM, because, each higher priority task can be aborted
and retried by any job instance of lower priority tasks. Schedulability of G-EDF/LCM and
G-RMA/LCM is better or equal to ECM and RCM, respectively, by proper choices for αmin
and αmax. Schedulability of G-EDF/LCM is better than retry-loop lock-free synchronization
for G-EDF if the upper bound on smax/rmax is between 0.5 and 2, which is higher than that
achieved by ECM. G-RMA/LCM achieves higher schedulability than retry-loop lock-free
synchronization if smax/rmax is not greater than 0.5. For high values of α in G-RMA/LCM,
smax/rmax can extend to large values.

Chapter 6

The PNF Contention Manager

In this chapter, we present a novel contention manager for resolving transactional conflicts,
called PNF [42]. We upper bound transactional retries and task response times under PNF,
when used with the G-EDF and G-RMA schedulers. We formally identify the conditions
under which PNF outperforms previous real-time STM contention managers and lock-free
synchronization.

The rest of this Chapter is organized as follows: Section 6.1 discusses limitations of previous
contention managers and the motivation to PNF. Section 6.2 give a formal description of
PNF. Section 6.3 derives PNF’s properties. We upper bound retry cost and response time
under PNF in Section 6.4. Schedulability comparison between PNF and previous synchro-
nization techniques is given in Section 6.5. We conclude Chapter in Section 6.6.

6.1 Limitations of ECM, RCM, and LCM

ECM, RCM and LCM [39,40] assumes that each transaction accesses only one object. This
assumption simplifies the retry cost (Claims 2, 3, 10 and 13) and response time analysis
(Sections 4.1, 4.2, 5.3 and 5.5). Besides, it enables a one-to-one comparison with lock-free
synchronization in [36]. With multiple objects per transaction, ECM, RCM and LCM will
face transitive retry, which we illustrate with an example.

Example 1. Consider three atomic sections sx1 , s
y
2, and sz3 belonging to jobs τx1 ,τ

y
2 , and

τ z3 , with priorities pz3 > py2 > px1 , respectively. Assume that sx1 and sy2 share objects, sy2 and
sz3 share objects. sx1 and sz3 do not share objects. sz3 can cause sy2 to retry, which in turn
will cause sx1 to retry. This means that sx1 may retry transitively because of sz3, which will
increase the retry cost of sx1 .

Assume another atomic section sf4 is introduced. Priority of sf4 is higher than priority of sz3.
sf4 shares objects only with sz3. Thus, s

f
4 can make sz3 to retry, which in turn will make sy2 to

53

Mohammed El-Shambakey Chapter 6. PNF 54

retry, and finally, sx1 to retry. Thus, transitive retry will move from sf4 to sx1, increasing the
retry cost of sx1 . The situation gets worse as more tasks of higher priorities are added, where
each task shares objects with its immediate lower priority task. τ z3 may have atomic sections
that share objects with τx1 , but this will not prevent the effect of transitive retry due to sx1 .

Definition 1 Transitive Retry: A transaction ski suffers from transitive retry when it
conflicts with a higher priority transaction slj, which in turn conflicts with a higher priority
transaction shz , but ski does not conflict with shz . Still, when slj retries due to shz , s

k
i also

retries due to slj. Thus, the effect of the higher priority transaction shz is transitively moved
to the lower priority transaction ski , even when they do not conflict on common objects.

Claim 16 ECM, RCM and LCM suffer from transitive retry for multi-object transactions.

Proof 16 ECM, RCM and LCM depend on priorities to resolve conflicts between trans-
actions. Thus, lower priority transaction must always be aborted for a conflicting higher
priority transaction in ECM and RCM. In LCM, lower priority transactions are condition-
ally aborted for higher priority ones. Claim follows.

Therefore, the analysis in Chapters 4 and 5 must extend the set of objects that can cause
an atomic section of a lower priority job to retry. This can be done by initializing the set
of conflicting objects, γi, to all objects accessed by all transactions of τi. We then cycle
through all transactions belonging to all other higher priority tasks. Each transaction slj
that accesses at least one of the objects in γi adds all other objects accessed by slj to γi. The
loop over all higher priority tasks is repeated, each time with the new γi, until there are no
more transactions accessing any object in γi

1.

In addition to the transitive retry problem, retrying higher priority transactions can prevent
lower priority tasks from running. This happens when all processors are busy with higher
priority jobs. When a transaction retries, the processor time is wasted. Thus, it would be
better to give the processor to some other task.

Essentially, what we present is a new contention manager that avoids the effect of transitive
retry. We call it, Priority contention manager with Negative values and First access (or
PNF). PNF also tries to enhance processor utilization. This is done by allocating processors
to jobs with non-retrying transactions. PNF is described in Section 6.2.

6.2 The PNF Contention Manager

Algorithm 4 describes PNF. It manages two sets. The first is the m-set, which contains at
mostm non-conflicting transactions, where m is the number of processors, as there cannot be

1However, note that, this solution may over-extend the set of conflicting objects, and may even contain
all objects accessed by all tasks.

Mohammed El-Shambakey Chapter 6. PNF 55

more thanm executing transactions (or generally, m executing jobs) at the same time. When
a transaction is entered in the m-set, it executes non-preemptively and no other transaction
can abort it. A transaction in the m-set is called an executing transaction. This means that,
when a transaction is executing before the arrival of higher priority conflicting transactions,
then the one that started executing first will be committed (Step 8).

Algorithm 4: PNF
Data: Executing Transaction: is one that cannot be aborted by any other transaction, nor

preempted by a higher priority task;
m-set: m-length set that contains only non-conflicting executing transactions;
n-set: n-length set that contains retrying transactions for n tasks in non-increasing order of priority;
n(z): transaction at index z of the n-set;

ski : a newly released transaction;

slj : one of the executing transactions;
Result: atomic sections that will commit

1 if ski does not conflict with any executing transaction then

2 Assign ski as an executing transaction;

3 Add ski to the m-set;

4 Select ski to commit

5 else

6 Add ski to the n-set according to its priority;

7 Assign temporary priority -1 to the job that owns ski ;

8 Select transaction(s) conflicting with ski for commit;

9 end

10 if slj commits then
11 for z=1 to size of n-set do
12 if n(z) does not conflict with any executing transaction then

13 if processor available2 then

14 Restore priority of task owning n(z);
15 Assign n(z) as executing transaction;
16 Add n(z) to m-set and remove it from n-set;
17 Select n(z) for commit;

18 else

19 Wait until processor available
20 end

21 end

22 move to the next n(z);

23 end

24 end

The second set is the n-set, which holds the transactions that are retrying because of a
conflict with one or more of the executing transactions (Step 6), where n stands for the
number of tasks in the system. Transactions in the nset are known as retrying transaction.It
also holds transactions that cannot currently execute, because processors are busy, either

2An idle processor or at least one that runs a non-atomic section task with priority lower than the task
holding n(z).

Mohammed El-Shambakey Chapter 6. PNF 56

due to processing executing transactions and/or higher priority jobs. Any transaction in
the n-set is assigned a temporal priority of -1 (Step 7) (hence the word “Negative” in the
algorithm’s name). A negative priority is considered smaller than any normal priority, and
a transaction continues to hold this negative priority until it is moved to the m-set, where
it is restored its normal priority.

A job holding a transaction in the n-set can be preempted by any other job with normal
priority, even if that job does not have transactions conflicting with the preempted job.
Hence, this set is of length n, as there can be at most n jobs. Transactions in the n-set
whose jobs have been preempted are called preempted transactions. The n-set list keeps track
of preempted transactions, because as it will be shown, all preempted and non-preempted
transactions in the n-set are examined when any of the executing transaction commits.
Then, one or more transactions are selected from the n-set to be executing transactions. If a
retrying transaction is selected as an executing transaction, the task that owns the retrying
transaction regains its priority.

When a new transaction is released, and if it does not conflict with any of the executing
transactions (Step 1), then it will allocate a slot in the m-set and becomes an executing
transaction. When this transaction is released (i.e., its containing task is already allocated
to a processor), it will be able to access a processor immediately. This transaction may have
a conflict with any of the transactions in the n-set. However, since transactions in the n-set
have priorities of -1, they cannot prevent this new transaction from executing if it does not
conflict with any of the executing transactions.

When one of the executing transactions commits (Step 10), it is time to select one of the
n-set transactions to commit. The n-set is traversed from the highest priority to the lowest
priority (priority here refers to the original priority of the transactions, and not -1) (Step 11).
If an examined transaction in the n-set, sbh, does not conflict with any executing transaction
(Step 12), and there is an available processor for it (Step 13) (“available” means either an
idle processor, or one that is executing a job of lower priority than sbh), then sbh is moved
from the n-set to the m-set as an executing transaction and its original priority is restored.
If sbh is added to the m-set, the new m-set is compared with other transactions in the n-set
with lower priority than sbh. Hence, if one of the transactions in the n-set, sgd, is of lower
priority than sbh and conflicts with sbh, it will remain in the n-set.

The choice of the new transaction from the n-set depends on the original priority of trans-
actions (hence the term “P” in the algorithm name). The algorithm avoids interrupting an
already executing transaction to reduce its retry cost. In the meanwhile, it tries to avoid
delaying the highest priority transaction in the n-set when it is time to select a new one to
commit, even if the highest priority transaction arrives after other lower priority transactions
in the n-set.

Mohammed El-Shambakey Chapter 6. PNF 57

6.2.1 Illustrative Example

We illustrate PNF with an example. We use the following notions: sba ∈ τka is transaction
sba in job τka . s

b
a(θ1, θ2, θ3) means that sba accesses objects θ1, θ2, θ3. p(s

b
a) is the priority of

transaction sba. p
j
i is the priority of job τ ji . If sba ∈ τ ja , ∴ po(s

b
a) = pja, where po(s

b
a) is the

original priority of sba. p(s
b
a) = −1, if sba is a retrying transaction; p(sba) = po(s

b
a) otherwise.

m-set= {sba, s
k
i } means that the m-set contains transactions sba and ski regardless of their

order. n-set= {sba, s
k
i } means that the n-set contains transactions sba and ski in that order,

where po(s
b
a) > po(s

k
i). m-set (n-set) = {φ} means that m-set (n-set) is empty. Assume there

are five processors.

1. Initially, m-set= n-set= {φ}. sba(θ1, θ2) ∈ τ ba is released and checks m-set for conflict-
ing transactions. As m-set is empty, sba finds no conflict and becomes an executing
transaction. sba is added to m-set. m-set= {sba} and n-set= {φ}. sba is executing on
processor 1.

2. sdc(θ3, θ4) ∈ τdc is released and checks m-set for conflicting transactions. sdc does not
conflict with sba as they access different objects. sdc becomes an executing transaction
and is added to m-set. m-set= {sba, s

d
c} and n-set= {φ}. sdc is executing on processor

2.
3. sfe (θ1, θ5) ∈ τ fe is released and po(s

f
e) < po(s

b
a). sfe conflicts with sba when it checks

m-set. sfe is added to n-set and becomes a retrying transaction. p(sfe) becomes −1.
m-set= {sba, s

d
c} and n-set= {sfe}. s

f
e is retrying on processor 3.

4. shg (θ1, θ6) ∈ τhg is released and po(s
h
g) > po(s

b
a). s

h
g conflicts with sba. Though shg is of

higher priority than sba, s
b
a is an executing transaction. So sba runs non-preemptively. shg

is added to n-set before sfe , because po(s
h
g) > po(s

f
e). p(s

h
g) becomes −1. m-set= {sba, s

d
c}

and n-set= {shg , s
f
e}. s

h
g is retrying on processor 4.

5. sji (θ5, θ7) ∈ τ ji is released. po(s
j
i) < po(s

f
e). s

j
i does not conflict with any transaction

in m-set. Though sji conflicts with sfe and po(s
j
i) < po(s

f
e) < po(s

h
g), s

f
e and shg are

retrying transactions. sji becomes an executing transaction and is added to m-set.
m-set= {sba, s

d
c , s

j
i} and n-set= {shg , s

f
e}. s

j
i is executing on processor 5.

6. τ lk is released. τ
l
k does not access any object. plk < po(s

f
e) < po(s

h
g), but p(s

f
e) = p(shg) =

−1. Since there are no more processors, τ lk preempts τ fe , because the currently assigned
priority to τ fe = p(sfe) = −1 and po(s

h
g) > po(s

f
e). τ

l
k is running on processor 3. This

way, PNF optimizes processor usage. The m-set and n-set are not changed. Although
sfe is preempted, n-set still records it, as sfe might be needed (as will be shown in the
following steps).

7. sji commits. sji is removed from m-set. Transactions in n-set are checked from the first
(highest po) to the last (lowest po) for conflicts against any executing transaction. shg is
checked first because po(s

h
g) > po(s

f
e). s

h
g conflicts with s

b
a, so s

h
g cannot be an executing

transaction. Now it is time to check sfe , even though sfe is preempted in step 6. sfe
also conflicts with sba, so s

f
e cannot be an executing transaction. m-set= {sba, s

d
c} and

n-set= {shg , s
f
e}. Now, sfe can be retrying on processor 5 if τ ji has finished execution.

Mohammed El-Shambakey Chapter 6. PNF 58

Otherwise, τ ji continues running on processor 5 and sfe is still preempted. This is
because, p(sfe) = −1 and pji > p(sfe). Let us assume that τ ji is still running on processor
5.

8. sba commits. sba is removed from m-set. Transactions in n-set are checked as done in
step 7. shg does not conflict with any executing transaction any more. shg becomes an
executing transaction. shg is removed from n-set and added tom-set, som-set= {sdc , s

h
g}.

Now, sfe is checked against the new m-set. sfe conflicts with shg , so s
f
e cannot be an

executing transaction. sfe can be retrying on processor 1 if τ ba has finished execution.
Otherwise, sfe remains preempted, because p(sfe) = −1 and pba > p(sfe). n-set= {sfe}.
Let us assume that τ ba is still running on processor 1.

9. shg commits. shg is removed from m-set. τhg continues execution on processor 4. Trans-
actions in n-set are checked again. sfe is the only retrying transaction in the n-set, and
it does not conflict with any executing transactions. Now, the system has τ ba running
on processor 1, sdc executing on processor 2, τ lk running on processor 3, τhg running on

processor 4, and τ ji running on processor 5. sfe can become an executing transaction
if it can find a processor. Since pji , p

l
k < po(s

f
e), s

f
e can preempt the lowest in priority

between τ ji and τ lk. s
f
e now becomes an executing transaction. sfe is removed from the

n-set and added to the m-set. So, m-set= {sdc , s
f
e} and n-set= {φ}. If pji , p

l
k were of

higher priority than po(s
f
e), then sfe would have remained in n-set until a processor

becomes available.

The example shows that PNF avoids transitive retry. This is illustrated in step 5, where
sji (θ5, θ7) is not affected by the retry of sfe (θ1, θ5). The example also explains how PNF
optimizes processor usage. This is illustrated in step 6, where the retrying transaction sfe is
preempted in favor of τ lk.

6.3 Properties

Claim 17 Transactions scheduled under PNF do not suffer from transitive retry.

Proof 17 Proof is by contradiction. Assume that a transaction ski is retrying because of a
higher priority transaction slj , which in turn is retrying because of another higher priority
transaction shz . Assume that ski and shz do not conflict, yet, ski is transitively retrying due to
shz . Note that shz and slj cannot exit together in the m-set as they have shared objects. But
they both can be in the n-set, as they can conflict with other executing transactions. We
have three cases:

Case 1: Assume that shz is an executing transaction. This means that slj is in the n-set.
When ski arrives, by the definition of PNF, it will be compared with them-set, which contains
shz . Now, it will be found that ski does not conflict with shz . Also, by the definition of PNF,
ski is not compared with transactions in the n-set. When it newly arrives, priorities of n-set

Mohammed El-Shambakey Chapter 6. PNF 59

transactions are lower than any normal priority. Therefore, as ski does not conflict with any
other executing transaction, it joins the m-set and becomes an executing transaction. This
contradicts the assumption that ski is transitively retrying because of shz .

Case 2: Assume that shz is in the n-set, while slj is an executing transaction. When ski arrives,
it will conflict with slj and joins the n-set. Now, ski retries due to slj, and not shz . When slj
commits, the n-set is traversed from the highest priority transaction to the lowest one: if shz
does not conflict with any other executing transaction and there are available processors, shz
becomes an executing transaction. When ski is compared with the m-set, it is found that it
does not conflict with shz . Additionally, if it also does not conflict with any other executing
transaction and there are available processors, then ski becomes an executing transaction.
This means that ski and shz are executing concurrently, which violates the assumption of
transitive retry.

Case 3: Assume that shz and s
l
j both exist in the n-set. When ski arrives, it is compared with

the m-set. If ski does not conflict with any executing transactions and there are available
processors, then ski becomes an executing transaction. Even though ski has common objects
with slj, s

k
i is not compared with slj , which is in the n-set. If ski joins the n-set, it is because,

it conflicts with one or more executing transactions, not because of shz , which violates the
transitive retry assumption. If the three transactions ski , s

l
j and s

h
z exist in the n-set, and shz

is chosen as a new executing transaction, then slj remains in the n-set. This leads to Case
1. If slj is chosen, because s

h
z conflicts with another executing transaction and slj does not,

then this leads to Case 2.

Claim 18 The first access property of PNF prevents transitive retry.

Proof 18 The proof is by contradiction. Assume that the retry cost of transactions in the
absence of the first access property is the same as when first access exists. Now, assume that
PNF is devoid of the first access property. This means that executing transactions can be
aborted.

Assume three transactions ski , s
l
j , and s

h
z , where s

h
z ’s priority is higher than slj’s priority, and

slj’s priority is higher than ski ’s priority. Assume that slj conflicts with both ski and shz . s
k
i

and shz do not conflict together. If ski arrives while shz is an executing transaction and slj
exists in the n-set, then ski becomes an executing transaction itself while slj is retrying. If s

k
i

did not commit at least when shz commits, then slj becomes an executing transaction. Due
to the lack of the first access property, slj will cause s

k
i to retry. So, the retry cost for ski will

be len(shz + s
l
j). This retry cost for ski is the same if it had been transitively retrying because

of shz . This contradicts the first assumption. Claim follows.

From Claims 17 and 18, PNF does not increase the retry cost of multi-object transactions.
However, this is not the case for ECM and RCM as shown by Claim 16.

Claim 19 Under PNF, any job τxi is not affected by the retry cost in any other job τ lj.

Mohammed El-Shambakey Chapter 6. PNF 60

Proof 19 As explained in Section 4, PNF assigns a temporary priority of -1 to any job that
includes a retrying transaction. So, retrying transactions have lower priority than any other
normal priority. When τxi is released and τ lj has a retrying transaction, τxi will have a higher
priority than τ lj . Thus, τxi can run on any available processor while τ lj is retrying one of its
transactions. Claim follows.

6.4 Retry Cost under PNF

We now derive an upper bound on the retry cost of any job τxi under PNF during an interval
L ≤ Ti. Since all tasks are sporadic (i.e., each task τi has a minimum period Ti), Ti is the
maximum study interval for each task τi.

Claim 20 Under PNF, the maximum retry cost suffered by a transaction ski due to a trans-
action slj is len(s

l
j).

Proof 20 By PNF’s definition, ski cannot have started before slj. Otherwise, ski would have
been an executing transaction and slj cannot abort it. So, the earliest release time for ski
would have been just after slj starts execution. Then, s

k
i would have to wait until slj commits.

Claim follows.

Claim 21 The retry cost for any job τxi due to conflicts between its transactions and trans-
actions of other jobs under PNF during an interval L ≤ Ti is upper bounded by:

RC(L) ≤
∑

τj∈γi

∑

θ∈θi

(⌈

L

Tj

⌉

+ 1

)

∑

¯∀slj(θ)

len
(

¯slj(θ)
)

(6.1)

where ¯slj(θ) is the same as slj(θ) except for the following difference: if s̄lj accesses multiple

objects in θi, then s̄lj is included only once in the last summation (i.e., s̄lj is not repeated for

each shared object with ski).

Proof 21 Consider a transaction ski belonging to job τxi . Under PNF, higher priority trans-
actions than ski can become executing transaction before ski . A lower priority transaction sfv
can also become an executing transaction before ski . This happens when ski conflicts with
any executing transaction while sfv does not. The worst case scenario for ski occurs when
ski has to wait in the n-set, while all other conflicting transactions with ski are chosen to be
executing transactions. Let s̄lj accesses multiple objects in θi. If s̄lj is an executing transac-

tion, then s̄lj will not repeat itself for each object it accesses. Besides, s̄lj will finish before ski
starts execution. Consequently, s̄lj will not conflict with s

k+1
i . This means that an executing

Mohammed El-Shambakey Chapter 6. PNF 61

transaction can force no more than one transaction in a given job to retry. This is why s̄lj is

included only once in (6.1) for all shared objects with ski .

The maximum number of jobs of any task τj that can interfere with τxi during interval L is
⌈

L
Tj

⌉

+ 1. From the previous observations and Claim 20, Claim follows.

Claim 22 The blocking time for a job τxi due to lower priority jobs during an interval L ≤ Ti
is upper bounded by:

D(τxi) ≤

1

m

∑

∀τ̄ lj

(⌈

L

Tj

⌉

+ 1

)

∑

∀s̈hj

len
(

s̈hj

)

(6.2)

where D(τxi) is the blocking time suffered by τxi due to lower priority jobs. τ̄ lj = {τ lj : p
l
j < pxi }

and s̈hj = {shj : shj does not conflict with any ski }. During this blocking time, all processors
are unavailable for τxi .

Proof 22 Under PNF, executing transactions are non preemptive. So, a lower priority ex-
ecuting transaction can delay a higher priority job τxi if no other processors are available.
Lower priority executing transactions can be conflicting or non-conflicting with any trans-
action in τxi . They also can exist when τxi is newly released, or after that. So, we have the
following cases:

Lower priority conflicting transactions after τxi is released: This case is already covered by
the retry cost in (6.1).

Lower priority conflicting transactions when τxi is newly released: Each lower priority con-
flicting transaction shj will delay τxi for len(shj). The effect of shj is already covered by (6.1).
Besides, (6.1) does not divide the retry cost by m as done in (6.2). Thus, the worst case
scenario requires inclusion of shj in (6.1), and not in (6.2).

Lower priority non-conflicting transactions when τxi is newly released: τxi is delayed if there
are no available processors for it. Otherwise, τxi can run in parallel with these non-conflicting

lower priority transactions. Each lower priority non-conflicting transaction s̈hj will delay τxi

for len(s̈hj).

Lower priority non-conflicting transactions after τxi is released: This situation can happen
if τxi is retrying one of its transactions ski . So, τxi is assigned a priority of -1. τxi can be
preempted by any other job. When ski is checked again to be an executing transaction, all
processors may be busy with lower priority non-conflicting transaction and/or higher priority
jobs. Otherwise, τxi can run in parallel with these lower priority non-conflicting transactions.

Each lower priority non-conflicting transaction s̈hj will delay τxi for len(s̈hj).

Mohammed El-Shambakey Chapter 6. PNF 62

From the previous cases, lower priority non-conflicting transactions act as if they were higher
priority jobs interfering with τxi . So, the blocking time can be calculated by the interference
workload given by Theorem 7 in [14].

Claim 23 The response time of a job τxi , during an interval L ≤ Ti, under PNF/G-EDF is
upper bounded by:

Rup
i = ci +RC(L) +Dedf (τ

x
i) +

⌊

1

m

∑

∀j 6=i

Wij(R
up
i)

⌋

(6.3)

where RC(L) is calculated by (6.1). Dedf(τ
x
i) is the same as D(τxi) defined in (6.2). However,

for G-EDF systems. Dedf(τ
x
i) is calculated as:

Dedf (τ
x
i) ≤

1

m

∑

∀τ̄ lj

{

0 , L ≤ Ti − Tj
∑

∀s̈hj
len
(

s̈hj

)

, L > Ti − Tj

(6.4)

and Wij(R
up
i) is calculated by (4.3).

Proof 23 Response time for τxi is calculated by (4.3) with the addition of blocking time
defined by Claim 22. G-EDF uses absolute deadlines for scheduling. This defines which jobs
of the same task can be of lower priority than τxi , and which will not. Any instance τhj ,
released between rxi − Tj and d

x
i − Tj, will be of higher priority than τxi . Before r

x
i − Tj, τ

h
j

would have finished before τxi is released. After dxi − Tj , d
h
j would be greater than dxi . Thus,

τhj will be of lower priority than τxi . So, during Ti, there can be only one instance τhj of τj
with lower priority than τxi . τ

h
j is released between dxi − Tj and dxi . Consequently, during

L < Ti − Tj , no existing instance of τj is of lower priority than τxi . Hence, 0 is used in the
first case of (6.4). But if L > Ti − Tj, there can be only one instance τhj of τj with lower

priority than τxi . Hence,
⌈

L
Ti

⌉

+ 1 in (6.2) is replaced with 1 in the second case in (6.4).

Claim follows.

Claim 24 The response time of a job τxi , during an interval L ≤ Ti, under PNF/G-RMA
is upper bounded by:

Rup
i = ci +RC(L) +D(τxi) +

1

m

∑

∀j 6=i,pj>pi

Wij(R
up
i)

 (6.5)

where RC(L) is calculated by (6.1), D(τxi) is calculated by (6.2), and Wij(R
up
i) is calculated

by (4.2).

Proof 24 Proof is same as of Claim 23, except that G-RMA assigns fixed priorities. Hence,
(6.2) can be used directly for calculating D(τxi) without modifications. Claim follows.

Mohammed El-Shambakey Chapter 6. PNF 63

6.5 PNF vs. Competitors

We now (formally) compare the schedulability of G-EDF (G-RMA) with PNF against ECM,
RCM, LCM and lock-free synchronization [36, 39, 40]. Such a comparison will reveal when
PNF outperforms others. Toward this, we compare the total utilization under G-EDF (G-
RMA)/PNF, with that under the other synchronization methods. Inflated execution time
of each method, which is the sum of the worst-case execution time of the task and its retry
cost, is used in the utilization calculation of each task.

By Claim 22, no processor is available for τxi during the blocking time. As each processor is
busy with some other job than τxi , D(τxi) is not added to the inflated execution time of τxi .
Hence, D(τxi) is not added to the utilization calculation of τxi .

Let RCA(Ti) denote the retry cost of any τxi using the synchronization method A during
Ti. Let RCB(Ti) denote the retry cost of any τxi using synchronization method B during Ti.
Then, schedulability of A is comparable to B if:

∑

∀τi

ci +RCA(Ti)

Ti
≤

∑

∀τi

ci +RCB(Ti)

Ti

∴

∑

∀τi

RCA(Ti)

Ti
≤

∑

∀τi

RCB(Ti)

Ti
(6.6)

As described in Section 6.1, the set of common objects needs to be extended under PNF’s
competitors. Toward this, we introduce a few additional notions. Let θexi be an extended
set of distinct objects that contains all objects in θi. Thus, θ

ex
i contains all objects accessed

by τi. θ
ex
i can also contain other objects that can cause any transaction in τi to retry, as

discussed in Section 6.1. Thus, θexi may contain objects not accessed by τi. γ
ex
i is an extended

set of tasks that access any object in θexi . i.e., γexi contains at least all tasks in γi.

There are two sources of retry cost for any τxi under ECM, RCM, LCM and lock-free. First
is due to conflict between τxi ’s transactions and transactions of other jobs. This is denoted
as RC. Second is due to the preemption of any transaction in τxi due to the release of a
higher priority job τhj . This is denoted as RCre. Retry due to the release of higher priority
jobs do not occur under PNF, because executing transactions are non-preemptive. It is up
to the implementation of the contention manager to safely avoid RCre. Here, we assume
that ECM, RCM and LCM do not avoid RCre. Thus, we introduce RCre for ECM, RCM
and LCM first before comparing PNF with other techniques.

Claim 25 Under ECM and G-EDF/LCM the total retry cost suffered by all transactions in
any τxi during an interval L ≤ Ti is upper bounded by:

RCto(L) = RC(L) +RCre(L) (6.7)

Mohammed El-Shambakey Chapter 6. PNF 64

where RC(L) is the retry cost resulting from conflict between transactions in τxi and trans-
actions of other jobs. RC(L) is calculated by (4.15) for ECM and (5.5) for G-EDF/LCM.
γi and θi are replaced with γexi and θexi , respectively. RCre(L) is the retry cost resulting from
the release of higher priority jobs, which preempt τxi . RCre(L) is:

RCre(L) =
∑

∀τj∈ζi

⌈

L
Tj

⌉

simax
, L ≤ Ti − Tj

⌊

Ti
Tj

⌋

simax
, L > Ti − Tj

(6.8)

where ζi = {τj : (τj 6= τi) ∧ (Dj < Di)}.

Proof 25 Two conditions must be satisfied for any τ lj to be able to preempt τxi under G-
EDF: rxi < rlj < dxi , and d

l
j ≤ dxi . Without the first condition, τ lj would have been already

released before τxi . Thus, τ lj will not preempt τxi . Without the second condition, τ lj will be
of lower priority than τxi and will not preempt it. If Dj ≥ Di, then there will be at most one
instance τ lj with higher priority than τxi . τ

l
j must have been released at most at rxi , which

violates the first condition. The other instance τ l+1
j would have an absolute deadline greater

than dxi . This violates the second condition. Hence, only tasks with shorter relative deadline
than Di are considered. These jobs are grouped in ζi.

The total number of released instances of τj during any interval L ≤ Ti is
⌈

L
Ti

⌉

+ 1. The

“carried-in” jobs (i.e., each job released before rxi and has an absolute deadline before dxi [14])
are discarded as they violate the first condition. The “carried-out” jobs (i.e., each job released
after rxi and has an absolute deadline after dxi [14]) are also discarded because they violate
the second condition. Thus, the number of considered higher priority instances of τj during

the interval L ≤ Ti − Tj is
⌈

L
Tj

⌉

. The number of considered higher priority instances of τj

during interval L > Ti − Tj is
⌊

Ti
Tj

⌋

.

The worst RCre for τxi occurs when τxi is always interfered at the end of execution of its
longest atomic section, simax

. τxi will have to retry for len(simax
). The total retry cost

suffered by τxi is the combination of RC and RCre.

Claim 26 Under RCM and G-RMA/LCM, the total retry cost suffered by all transactions
in any τxi during an interval L ≤ Ti is upper bounded by:

RCto(L) = RC(L) +RCre(L) (6.9)

where RC(L) and RCre(L) are defined in Claim 25. RC(L) is calculated by (4.16) for RCM,
and (5.18) for G-RMA/LCM. RCre(L) is calculated by:

RCre(L) =
∑

∀τj∈ζ
∗
i

(⌈

L

Tj

⌉

simax

)

(6.10)

where ζ∗i = {τj : pj > pi}.

Mohammed El-Shambakey Chapter 6. PNF 65

Proof 26 The proof is the same as that for Claim 25, except that G-RMA uses static
priority. Thus, the carried-out jobs will be considered in the interference with τxi . The
carried-in jobs are still not considered because they are released before rxi . Claim follows.

Claim 27 Consider lock-free synchronization. Let rimax
be the maximum execution cost of

a single iteration of any retry loop of τi. RCre under G-EDF with lock-free synchronization
is calculated by (6.8), where simax

is replaced by rimax
. RCre under G-RMA with lock-free

synchronization is calculated by (6.10), where simax
is replaced by rimax

.

Proof 27 The interference pattern of higher priority jobs to lower priority jobs is the same
in ECM, G-EDF/LCM, and G-EDF with lock-free. The pattern is also the same in RCM,
G-RMA/LCM, and G-RMA with lock-free.

6.5.1 PNF versus ECM

Claim 28 In the absence of transitive retry, PNF/G-EDF’s schedulability is better or equal
to ECM’s when conflicting atomic sections have equal lengths.

Proof 28 Substitue RCA(Ti) and RCB(Ti) in (6.6) with (6.1) and (6.7), respectively. Let
θexi = θi + θ∗i , where θ∗i is the set of objects not accessed directly by τi but can cause
transactions in τi to retry due to transitive retry. Let γexi = γi + γ∗i , where γ

∗
i is the set of

tasks that access objects in θ∗i . Let:

g(τi) =

∑

∀τj∈γ
∗
i

∑

θ∈θ∗i

⌈

Ti
Tj

⌉

∑

∀ ¯skj (θ)

len
(

¯skj (θ) + smax(θ)
)

+RCre(Ti)

where RCre is given by (6.8). g(τi) includes effect of transitive retry. Let:

η1(τi) =
∑

∀τj∈γi

∑

∀θ∈θi

∑

¯∀skj (θ)

len
(

¯skj (θ)
)

η2(τi) =
∑

∀τj∈γi

∑

∀θ∈θi

⌈

Ti
Tj

⌉

∑

∀ ¯skj (θ)

len
(

sjmax(θ)
)

η3(τi) =
∑

∀τj∈γi

∑

∀θ∈θi

⌈

Ti
Tj

⌉

∑

¯∀skj (θ)

len
(

¯skj (θ)
)

Mohammed El-Shambakey Chapter 6. PNF 66

By substitution of g(τi), η1(τi), and η2(τi), and subtraction of
∑

∀τi

η3(τi)
Ti

from both sides of
(6.6), we get:

∑

∀τi

η1(τi)

Ti
≤
∑

∀τi

η2(τi) + g(τi)

Ti
(6.11)

Assume that g(τi)∀τi → 0. From (6.11), we note that by keeping every len(¯skj (θ)) ≤
len(sjmax(θ)) for each τi, τj ∈ γi, and θ ∈ θi, (6.11) holds. Due to G-EDF’s dynamic pri-

ority, sjmax(θ) can belong to any task other than τj . By keeping len(¯skj (θ)) ≤ len(sjmax(θ)),

then 6.11 holds. By generalizing this condition to any skj (θ) and s
j
max(θ), then 6.11 holds if

all atomic sections in all tasks have equal lengths. Claim follows.

6.5.2 PNF versus RCM

Claim 29 In the absence of transitive retry, PNF/G-RMA’s schedulability is better or equal
to RCM’s schedulability when a large number of tasks heavily conflict. PNF’s schedulability is
improved compared with RCM’s, when atomic section length increases as priority increases.

Proof 29 Let θexi = θi+θ
∗
i and γ

ex
i = γi+γ

∗
i , as defined in the proof of Claim 28. Substitute

RCA(Ti) and RCB(Ti) in (6.6) with (6.1) and (6.9), respectively. Let:

g(τi) = RCre(Ti) +

∑

∀τj∈(γ∗i ∩ζ
∗
i)

∑

∀θ∈θ∗i

(⌈

Ti
Tj

⌉

+ 1

)

×
∑

∀ ¯skj (θ)

len
(

¯skj (θ) + sjmax(θ)
)

where RCre and ζ∗i are defined by (6.10). g(τi) includes effect of transitive retry. Let
γi = ζ∗i ∪ ζ̄i, where ζ̄i = {τj : (τj 6= τi) ∧ (pj < pi)}, thus ζ

∗
i ∩ ζ̄i = φ.

Let:

η1(τi) =
∑

∀τj∈(γi∩ζ∗i)

∑

∀θ∈θi

(⌈

Ti
Tj

⌉

+ 1

)

∑

¯∀skj (θ)

len
(

¯skj (θ)
)

η2(τi) =
∑

∀τj∈(γi∩ζ̄i)

∑

∀θ∈θi

(⌈

Ti
Tj

⌉

+ 1

)

∑

¯∀sk
j
(θ)

len
(

¯skj (θ)
)

η3(τi) =
∑

∀τj∈(γi∩ζ∗i)

∑

∀θ∈θi

(⌈

Ti
Tj

⌉

+ 1

)

×
∑

∀ ¯skj (θ)

len
(

¯skj (θ) + sjmax(θ)
)

By substitution of g(τi), η1(τi), η2(τi), and η3(τi) in (6.6):

∑

∀τi

η1(τi) + η2(τi)

Ti
≤
∑

∀τi

η3(τi) + g(τi)

Ti
(6.12)

Mohammed El-Shambakey Chapter 6. PNF 67

When tasks with deadlines equal to periods are scheduled with G-RMA, Tj > Ti if pj < pi.

So, for each τj ∈ ζ̄i,
⌈

Ti
Tj

⌉

= 1. Then:

η2(τi) = 2
∑

∀τj∈(γi∩ζ̄i)

∑

∀θ∈θi

∑

¯∀skj (θ)

len
(

¯skj (θ)
)

(6.13)

Let:

η4(τi) =
∑

∀τj∈(γi∩ζ∗i)

∑

∀θ∈θi

(⌈

Ti
Tj

⌉

+ 1

)

∑

∀ ¯skj (θ)

len
(

sjmax(θ)
)

By substitution of (6.13) and subtraction of
∑

∀τi

η1(τi)
Ti

from both sides of (6.12), we get:

2
∑

∀τi

η2(τi)

Ti
≤
∑

∀τi

η4(τi) + g(τi)

Ti
(6.14)

Assume that g(τi)∀τi → 0. From (6.14), we note that when higher priority jobs increasingly

conflict with lower priority jobs, (6.14) tends to hold. (6.14) also tends to hold if len(¯sjmax(θ))
in the right hand side of (6.14) is larger than len(¯skj (θ)) in the left hand side of (6.14), which
means atomic section length increases as priority increases. Claim follows.

6.5.3 PNF versus G-EDF/LCM

Claim 30 In the absence of transitive retry, PNF/EDF’s schedulability is equal or better
than G-EDF/LCM’s if the conflicting atomic section lengths are approximately equal and all
α terms approach 1.

Proof 30 Assume that η1(τi) and η3(τi) are the same as that defined in the proof of Claim 28.
Let:

g(τi) =

∑

∀τj∈γ
∗
i

∑

θ∈θ∗i

⌈

Ti
Tj

⌉

∑

∀ ¯skj (θ)

len
(

¯skj (θ) + αjimaxsmax(θ)
)

+RCre(Ti)

η2(τi) =
∑

∀τj∈γi

∑

∀θ∈θi

⌈

Ti
Tj

⌉

∑

∀ ¯skj (θ)

len
(

αjlmaxs
j
max(θ)

)

where αjlmax is defined in (5.5). Following the same steps in the proof of Claim 28, we get:

∑

∀τi

η1(τi)

Ti
≤
∑

∀τi

η2(τi) + g(τi)

Ti
(6.15)

Mohammed El-Shambakey Chapter 6. PNF 68

Assume that g(τi)∀τi → 0. Thus, we ignore the effect of transitive retry and retry cost
due to the release of higher priority jobs. Let len(¯skj (θ)) = sjmax(θ) = s, and αjlmax =
αiymax = 1 in (6.15). Then, PNF/EDF’s schedulability equals LCM/EDF’s schedulability if
⌈

Ti
Tj

⌉

= 1, ∀τi, τj (which means equal periods for all tasks). If
⌈

Ti
Tj

⌉

> 1, ∀τi, τj, PNF/EDF’s

schedulability is better than LCM/EDF’s. PNF/EDF’s schedulability becomes more better
than LCM/EDF’s schedulability if g(τi) is not zero. Claim follows.

6.5.4 PNF versus G-RMA/LCM

Claim 31 In the absence of transitive retry, PNF’s schedulability is equal or better than
G-RMA/LCM’s if: 1) lower priority tasks suffer increasing number of conflicts from higher
priority tasks, 2) the lengths of the atomic sections increase as task priorities increase, and
3) α terms increase.

Proof 31 Assume that g(τi), η1(τi), and η2(τi) are the same as in the proof of Claim 29.
Let:

η3(τi) =
∑

∀τj∈(γi∩ζ∗i)

∑

∀θ∈θi

(⌈

Ti
Tj

⌉

+ 1

)

×
∑

∀ ¯skj (θ)

len
(

¯skj (θ) + αjlmaxs
j
max(θ)

)

η4(τi) =
∑

∀τj∈(γi∩ζ∗i)

∑

∀θ∈θi

(⌈

Ti
Tj

⌉

+ 1

)

×
∑

∀ ¯sk
j
(θ)

len
(

αjlmaxs
j
max(θ)

)

Following the steps of Claim 29’s proof, ∴(6.6) becomes:

2
∑

∀τi

η2(τi)

Ti
≤
∑

∀τi

η4(τi) + g(τi)

Ti
(6.16)

Assume that the effect of transitive retry and retry cost due to the release of higher priority
jobs is negligible (g(τi) → 0). (6.16) holds if: 1) the contention from higher priority jobs to

lower priority jobs increases because of the
⌈

Ti
Tj

⌉

+1 term in the right hand side of (6.16); 2)

α terms approach 1; and 3) the lengths of the atomic sections increase as priority increases.
This makes len(sjmax(θ)) in (6.16)’s right side to be greater than len(¯skj (θ)) in (6.16)’s left
side. Claim follows.

6.5.5 PNF versus Lock-free Synchronization

Lock-free synchronization [36, 40] accesses only one object. Thus, the number of accessed
objects per transaction in PNF is limited to one. This allows us to compare the schedulability
of PNF with the lock-free algorithm.

Mohammed El-Shambakey Chapter 6. PNF 69

RCB(Ti) in (6.6) is replaced with:

∑

∀τj∈γi

(

(⌈

Ti
Tj

⌉

+ 1

)

βi,jrmax

)

+RCre(Ti) (6.17)

where βi,j is the number of retry loops of τj that access the same object as accessed by some
retry loop of τi [36]. rmax is the maximum execution cost of a single iteration of any retry
loop of any task [36]. RCre(Ti) is defined in Claim 27. Lock-free synchronization does not
depend on priorities of tasks. Thus, (6.17) applies for both G-EDF and G-RMA systems.

Claim 32 Let rmax be the maximum execution cost of a single iteration of any retry loop
of any task [36]. Let smax be the maximum transaction length in all tasks. Assume that
each transaction under PNF accesses only one object for once. The schedulability of PNF
with either G-EDF or G-RMA scheduler is better or equal to the schedulability of lock-free
synchronization if smax/rmax ≤ 1.

Proof 32 The assumption in Claim 32 is made to enable a comparison between PNF and
lock-free. Let RCA(Ti) in (6.6) be replaced with (6.1) and RCB(Ti) be replaced with (6.17).
To simplify comparison, (6.1) is upper bounded by:

RC(Ti) =
∑

τj∈γi

((⌈

Ti
Tj

⌉

+ 1

)

β∗
i,jsmax

)

where β∗
i,j is the number of times transactions in τj accesses shared objects with τi. Thus,

β∗
i,j = βi,j , and (6.6) will be:

∑

∀τi

∑

τj∈γi

((⌈

Ti
Tj

⌉

+ 1
)

βi,jsmax

)

Ti
≤
∑

∀τi

∑

∀τj∈γi

(⌈

Ti
Tj

⌉

+ 1
)

βi,jrmax +RCre(τi)

Ti
(6.18)

From (6.18), we note that if smax ≤ rmax, then (6.18) holds.

6.6 Conclusion

Transitive retry increases transactional retry cost under ECM, RCM, and LCM. PNF avoids
transitive retry by avoiding transactional preemptions. PNF reduces the priority of aborted
transactions to enable other tasks to execute, increasing processor usage. Executing trans-
actions are not preempted due to the release of higher priority jobs. On the negative side of
PNF, higher priority jobs can be blocked by executing transactions of lower priority jobs.

Mohammed El-Shambakey Chapter 6. PNF 70

EDF/PNF’s schedulability is equal or better than ECM’s when atomic section lengths are
almost equal. RMA/PNF’s schedulability is equal or better than RCM’s when lower pri-
ority jobs suffer greater conflicts from higher priority ones. Similar conditions hold for the
schedulability comparison between PNF and LCM, in addition to the increase of α terms
to 1. This is logical as LCM with G-EDF (G-RMA) defaults to ECM (RCM) with α → 1.
For PNF’s schedulability to be equal or better than lock-free, the upper bound on smax/rmax
must be 1, instead of 0.5 under ECM and RCM.

Chapter 7

Implementation and Experimental
Evaluations

Having established upper bounds for retry cost of different contention managers, and the
conditions under which each one is prefered. We now would like to understand how each
CM retries in practice (i.e., on average) compared with that of competitor methods. Since
this can only be understood experimentally, we implement ECM, RCM, LCM, PNF and
lock-free and conduct experimental studies.

The rest of this Chapter is organized as follow: Section 7.1 outlines the experimental settings
and used task sets for comparing different contention managers and lock-free. Section 7.2
discusses experimental results.

7.1 Experimental Setup

We used the ChronOS real-time Linux kernel [35] and the RSTM library [84]. We modified
RSTM to include implementations of ECM, RCM, LCM, and PNF contention managers,
and modified ChronOS to include implementations of G-EDF and G-RMA schedulers.

For the retry-loop lock-free implementation, we used a loop that reads an object and attempts
to write to the object using a compare-and-swap (CAS) instruction. The task retries until
the CAS succeeds.

We use an 8 core, 2GHz AMD Opteron platform. The average time taken for one write
operation by RSTM on any core is 0.0129653375µs, and the average time taken by one
CAS-loop operation on any core is 0.0292546250 µs.

We used 3 sets of 4, 8 and 20 tasks. The structure of these tasks are shown in Table 7.1.
Each task runs in its own thread and has a set of atomic sections. Atomic section properties

71

Mohammed El-Shambakey Chapter 7. Experiments 72

are probabilistically controlled (for experimental evaluation) using three parameters: the
maximum and minimum lengths of any atomic section within the task, and the total length
of atomic sections within any task. As lock-free cannot access more than one object in
one atomic operation, tasks share one object per transaction when lock-free is included in
comparison. Then, CMs are compared against each other discarding lock-free.

Table 7.1: Task sets a) 4 tasks. b) 8 tasks. c) 20 tasks.

(a)
Pi(µs) ci(µs)
1000000 227000
1500000 410000
3000000 299000
5000000 500000

(b)
Pi(µs) ci(µs)
1500000 961000
1875000 175000
2500000 205000
3000000 129000
3750000 117000
5000000 269000
7500000 118000
15000000 609000

(c)
Pi(µs) ci(µs)
375000 9000
400000 8000
500000 8000
600000 14000
625000 375000
750000 19000
1000000 26000
1200000 17000
1250000 21000
1500000 33000
1875000 39000
2000000 43000
2500000 18000
3000000 90000
3750000 28000
5000000 126000
7500000 231000
10000000 407000
15000000 261000
30000000 369000
375000 8000
30000000 407000

The difficulty in testing with PNF is to incur transitive retry cases. Tasks are arranged in
non-decreasing order of periods, and each task shares objects only with the previous and
next tasks. Each task begins with an atomic section. Thus, increasing the opportunity of
transitive retry.

Mohammed El-Shambakey Chapter 7. Experiments 73

7.2 Results

Figure 7.1 shows average retry cost under ECM, RCM, LCM, PNF and lock-free for each
task set. Figure 7.2 shows average retry cost for only contention managers for each task
set. The x-axis has three parameters a, b, c. a specifies the relative total length of all atomic
sections to the length of the task. b specifies the maximum relative length of any atomic
section to the length of the task. c specifies the minimum relative length of any atomic
section to the length of the task. Each data point in the figure has a confidence level of 0.95.
Only one object per transaction is shared in Figures 7.1 and 7.2.

Lock-free is the longest technique as it provides no conflict resolution. PNF better or com-
parable retry cost than ECM, RCM and LCM. As we move from 4 to 8 to 20 task set, retry
costs of different contention managers get closer to each other. This is explained by noting
that each task set in Table 7.1 is organized in non-decreasing order of periods, and ci/Ti
for almost each τi is low. Besides, each task shares objects only with the previous and next
tasks, and tasks are released at the same time to enforce transitive retry. While the first
instances of all tasks have a high potential of conflict, the contention level decreases with
time for higher number of tasks. Thus, for the 20 task set, contention level is the lowest.
Hence, retry costs of all contention managers get closer as number of tasks increases.

We compared retry cost for different contention managers with multiple objects per trans-
action and different levels of read/writer operations. Figure 7.3 shows retry cost of the three
task sets sharing 20 objects per transaction, with 40% write operations and 60% read oper-
ations. The same experiment is repeated in Figure 7.4 with 80% write operations, and 20%
read operations. Figure 7.5 repeats the same experiment with 100% write operations. The
same previous three experiments were repeated in Figures 7.6, 7.7 and 7.8 with 40 objects
per transaction. Figures 7.3 to 7.8 show consistent trends with Figure 7.2 except that retry
cost of PNF is shorter than the others even with increasing number of tasks. For the 20 task
set, PNF retry cost is a little shorter than LCM, but much better than ECM and RCM.
This happens because of sharing multiple objects per transaction. Thus, contention level
is increased than in sharing 1 object per transaction. Besides, transitive retry exists which
makes PNF better than the others.

Mohammed El-Shambakey Chapter 7. Experiments 74

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

LF/EDF

LF/RMA

(a) 4 tasks

-500

 0

 500

 1000

 1500

 2000

 2500

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

LF/EDF

LF/RMA

(b) 8 tasks

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

LF/EDF

LF/RMA

(c) 20 tasks

Figure 7.1: Average retry cost for 1 object per transaction for different values of total,
maximum and minimum atomic section length under all synchronization techniques

Mohammed El-Shambakey Chapter 7. Experiments 75

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(a) 4 tasks

-20

 0

 20

 40

 60

 80

 100

 120

 140

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(b) 8 tasks

-2

 0

 2

 4

 6

 8

 10

 12

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(c) 20 tasks

Figure 7.2: Average retry cost for 1 object per transaction for different values of total,
maximum and minimum atomic section length under contention managers only

Mohammed El-Shambakey Chapter 7. Experiments 76

-20

 0

 20

 40

 60

 80

 100

 120

 140

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(a) 4 tasks

-20

 0

 20

 40

 60

 80

 100

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(b) 8 tasks

-50

 0

 50

 100

 150

 200

 250

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(c) 20 tasks

Figure 7.3: Average retry cost for 20 objects per transaction, 40% write operations for
different values of total, maximum and minimum atomic section length under different CMs

Mohammed El-Shambakey Chapter 7. Experiments 77

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(a) 4 tasks

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(b) 8 tasks

-50

 0

 50

 100

 150

 200

 250

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(c) 20 tasks

Figure 7.4: Average retry cost for 20 objects per transaction, 80% write operations for
different values of total, maximum and minimum atomic section length under different CMs

Mohammed El-Shambakey Chapter 7. Experiments 78

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(a) 4 tasks

-20

 0

 20

 40

 60

 80

 100

 120

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(b) 8 tasks

-50

 0

 50

 100

 150

 200

 250

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(c) 20 tasks

Figure 7.5: Average retry cost for 20 objects per transaction, 100% write operations for
different values of total, maximum and minimum atomic section length under different CMs

Mohammed El-Shambakey Chapter 7. Experiments 79

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(a) 4 tasks

-20

 0

 20

 40

 60

 80

 100

 120

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(b) 8 tasks

-50

 0

 50

 100

 150

 200

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(c) 20 tasks

Figure 7.6: Average retry cost for 40 objects per transaction, 40% write operations for
different values of total, maximum and minimum atomic section length under different CMs

Mohammed El-Shambakey Chapter 7. Experiments 80

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(a) 4 tasks

-20

 0

 20

 40

 60

 80

 100

 120

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(b) 8 tasks

-50

 0

 50

 100

 150

 200

 250

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(c) 20 tasks

Figure 7.7: Average retry cost for 40 objects per transaction, 80% write operations for
different values of total, maximum and minimum atomic section length under different CMs

Mohammed El-Shambakey Chapter 7. Experiments 81

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(a) 4 tasks

-20

 0

 20

 40

 60

 80

 100

 120

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(b) 8 tasks

-50

 0

 50

 100

 150

 200

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

(c) 20 tasks

Figure 7.8: Average retry cost for 40 objects per transaction, 100% write operations for
different values of total, maximum and minimum atomic section length under different CMs

Chapter 8

Conclusions and Proposed Post
Preliminary Exam Work

8.1 Conclusions

In this dissertation, we designed, analyzed, and experimentally evaluated four real-time CMs.
Designing real-time CMs is straightforward. The simplest logic is to use the same rationale
as that of the underlying real-time scheduler. This was shown in the design of ECM and
RCM. ECM allows the transaction with the earliest absolute deadline (i.e., dynamic priority)
to commit first. RCM allows the transaction with the smallest period (i.e., fixed priority) to
commit first. We established upper bounds for retry costs and response times under ECM
and RCM, and identified the conditions under which they have better schedulability than
lock-free synchronization.

Under both ECM and RCM, a task incurs 2.smax retry cost for each of its atomic sections
due to a conflict with another task’s atomic section. Retries under RCM and lock-free
synchronization are affected by a larger number of conflicting task instances than under
ECM. While task retries under ECM and lock-free are affected by all other tasks, retries
under RCM are affected only by higher priority tasks.

STM and lock-free synchronization have similar parameters that affect their retry costs –
i.e., the number of conflicting jobs and how many times they access shared objects. The
smax/rmax ratio determines whether STM is better or as good as lock-free. For ECM, this
ratio cannot exceed 1, and it can be 1/2 for higher number of conflicting tasks. For RCM,
for the common case, smax must be 1/2 of rmax, and in some cases, smax can be larger than
rmax by many orders of magnitude.

LCM, which can be used with both G-EDF and G-RMA, tries to compromise between
priority of transactions (which is the priority of the underlying tasks), and the remaining ex-

82

Mohammed El-Shambakey Chapter 8. Conclusions and Proposed Post Preliminary ExamWork 83

ecution time of the interfered transaction. As the remaining execution time of the interfered
transaction decreases, it is not effective to abort the transaction when it can shortly com-
mit. The parameters α and ψ are used to determine whether or not to abort the interfered
transaction. α ranges between 0 and 1. When α→ 0, LCM defaults to FCFS. When α → 1,
G-EDF/LCM defaults to ECM, and G-RMA/LCM defaults to RCM. We also derived upper
bounds on retry costs and response times under LCM, and compared the schedulability of
LCM with ECM, RCM, and lock-free synchronization. Also, we identified the conditions
under which LCM performs better than the other synchronization techniques. LCM reduces
the retry cost of each atomic section to (1 + αmax)smax, instead of 2.smax as in ECM and
RCM. In ECM and RCM, tasks do not retry due to lower priority tasks, whereas in LCM,
they do so. In G-EDF/LCM, retry due to a lower priority job is encountered only from
a task τj ’s last job instance during τi’s period. This is not the case with G-RMA/LCM,
because, each higher priority task can be aborted and retried by any job instance of lower
priority tasks.

Schedulability of G-EDF/LCM and G-RMA/LCM is better or equal to ECM and RCM,
respectively, by proper choices for αmin and αmax. Schedulability of G-EDF/LCM and G-
RMA/LCM is better or equal to lock-free synchronization as long as smax/rmax does not
exceed 0.5. By proper choice of αs, smax/rmax can be increased to 2 under G-EDF/LCM,
and to larger values under G-RMA/LCM.

ECM, RCM, and LCM are affected by transitive retry. Transitive retry occurs when a
transaction accesses multiple objects. It causes a transaction to abort and retry due to
another non-conflicting transaction. PNF avoids transitive retry, and and also optimizes the
processor usage by reducing the priority of the aborted transaction. This way, other tasks
can proceed if they do not conflict with other executing transactions.

We upper bounded PNF’s retry cost and response time. We also compared PNF’s schedu-
lability to other synchronization techniques. PNF has better schedulability than lock-free
synchronization as long as smax does not exceed rmax.

We also implemented the CMs and conducted experimental studies. Our experimental stud-
ies revealed that the CMs’ have shorter retry costs than lock-free synchronization. In par-
ticular, PNF has shorter retry costs than others as long as transitive retry and contention
exist. However, PNF’s implementation is relatively complex.

8.2 Proposed Post Preliminary Exam Research

We propose the following research directions:

Mohammed El-Shambakey Chapter 8. Conclusions and Proposed Post Preliminary ExamWork 84

8.2.1 Supporting Nested Transactions

Transactions can be nested linearly, where each transaction has at most one pending trans-
action [89]. Nesting can also be done in parallel, where transactions execute concurrently
within the same parent [113]. Linear nesting can be 1) flat: If a child transaction aborts,
then the parent transaction also aborts. If a child commits, no effect is taken until the
parent commits. Modifications made by the child transaction are only visible to the parent
until the parent commits, after which they are externally visible. 2) Closed: Similar to
flat nesting, except that if a child transaction conflicts, it is aborted and retried, without
aborting the parent, potentially improving concurrency over flat nesting. 3) Open: If a child
transaction commits, its modifications are immediately externally visible, releasing memory
isolation of objects used by the child, thereby potentially improving concurrency over closed
nesting. However, if the parent conflicts after the child commits, then compensating actions
are executed to undo the actions of the child, before retrying the parent and the child.

We propose to develop real-time contention managers that allow these different nesting mod-
els and establish their retry and response time upper bounds. Additionally, we propose to
formally compare their schedulability with nested critical sections under lock-based synchro-
nization. Note that, nesting is not viable under lock-free synchronization.

The real-time CMs proposed so far can be directly extended for different types of nesting.
On conflict, the CM should decide on which transaction must be aborted. In case of flat
nesting, the outer transaction should be aborted and restarted. In case of closed and open
nesting, only the interfered transaction should be restarted. In flat nesting, it will be useful
to delay a lower priority transaction when it interferes with a higher priority one. Thus, the
lower priority transaction need not be restarted from the beginning. This can reduce retry
costs, especially when the inner most transaction is the conflicting one.

ECM and RCM can use the same criteria to determine which transaction to abort or wait.
LCM may need a redefinition of the α parameter. Each child transaction can have its own
α. So, for each depth of nesting, there is a corresponding α. Alternatively, there can be only
one α for the outer transaction. Inner transactions do not have their αs. The first choice
may be suitable for closed and open nesting, while the second choice seems more suitable
for flat nesting.

PNF can be used directly with all types of nesting. The only requirement is that each
transaction checks for conflicts with itself, as well as its inner transactions. Executing trans-
actions under PNF are non-preemptive. Thus, any nested transaction will not be aborted.
This requirement for PNF simplifies implementation, but makes no use of the nesting struc-
ture (i.e., PNF deals with transactions as if they are not nested). The previous requirement
for PNF can be alleviated by checking for conflicts of any inner transaction only when the
inner transaction begins. So, when a transaction starts, it checks its own objects – not inner
transactions – against objects of executing transactions. If no conflict is found, the trans-
action executes. Consequently, when an inner transaction starts, it can detect a conflict

Mohammed El-Shambakey Chapter 8. Conclusions and Proposed Post Preliminary ExamWork 85

with already executing transactions. Thus, the inner transaction should wait until other
conflicting executing transactions commit. This choice for the PNF implementation may
add additional waiting time to inner transactions. Different choices thus impose different
tradeoffs.

Worst case response time analysis, similar to the design of CMs, needs modifications to
cope with nested transactions. The simplest method is to combine all accessed objects in
all nested transactions into one group, and consider that this group is accessed by only one
non-nested transaction. This simplifies calculations but loosens the upper bounds, especially
with closed and open nesting. Since closed and open nesting only restarts the inner aborted
transaction, it is of no use to include the length of the outermost parent in the response time
calculations.

8.2.2 Combining and Optimizing LCM and PNF

LCM is designed to reduce the retry cost of a transaction when it is interfered close to the
end of its execution. In contrast, PNF is designed to avoid transitive retry when transactions
access multiple objects. An interesting direction is to combine the two contention managers
to obtain the benefits of both algorithms.

An important problem in developing such a LCM/PNF combination is that LCM allows
aborts of running transactions depending on the α value, whereas PNF does not permit
aborts of any executing transaction. Thus, the first approach to combine LCM and PNF
is by considering the transitive retry level. If the transitive retry level is high, then PNF
could be used. Otherwise, LCM could be used. Another way to combine LCM and PNF
is to change the α value with time. Thus, at some time point, α can equal 0. This means
that the current transaction cannot be aborted by any other transaction. This is similar to
executing transactions in PNF. However, α should not be 0 all the time. Thus, α should
change with time.

For such a combined LCM/PNF contention manager, importantly, we must understand what
are its schedulability advantages over that of LCM and PNF individually, and how such a
combined CM behaves in practice.

The current implementation of PNF is centralized. In this implementation, PNF acts as
a centralized contention manager that controls all transactions. Contention managers are
usually decentralized, as described in Section 2.4. Each transaction usually maintains its own
contention manager; this reduces overhead and transaction blocking. Thus, one optimization
direction is to develop a decentralized implementation of PNF, to reduce overhead and
blocking. Moreover, the current implementation of PNF uses locks, which increases overhead.
Another optimization direction is therefore to develop a lock-free PNF implementation.

Design optimizations of LCM and PNF may also be possible to reduce their retry costs and
response times, by considering additional criteria for resolving transactional conflicts.

Mohammed El-Shambakey Chapter 8. Conclusions and Proposed Post Preliminary ExamWork 86

Developing a LCM/PNF combination and optimizing PNF and LCM implementations and
designs constitute our second research direction.

8.2.3 Formal and Experimental Comparison with Real-Time Lock-
ing

Lock-free synchronization offers numerous advantages over locking protocols, but (coarse-
grain) locking protocols have had significant traction in real-time systems due to their good
programmability (even though their concurrency is low). Example such real-time locking
protocols include PCP and its variants [26, 69, 92, 102], multicore PCP (MPCP) [73, 91],
SRP [8,23], multicore SRP (MSRP) [49], PIP [38], FMLP [16,17,64], and OMLP [11]. FMLP
has been established to be superior to other protocols [20]. How does their schedulability
compare with that of the proposed contention managers? How do they compare in practice?
These questions constitute our third research direction.

OMLP [18] is similar to FMLP, and is simpler in implementation. OMLP does not require
changes in the underlying scheduler (i.e., G-EDF) as FMLP does. Under OMLP, each
resource has a FIFO queue of length at most equals number of processors, m, and a priority
queue. Requests for each resource are enqueued in the corresponding FIFO queue. If the
FIFO queue is full, requests are added to the priority queue according to the requesting job’s
priority. The head of the FIFO queue is the resource holding task. Other queued requests are
suspended until their turn arrives. Under suspension oblivious analysis for OMLP, each job
has a maximum blocking time that is proportional to number of processors. In suspension
oblivious, the suspension time is added to task execution, in contrast to suspension aware
analysis. This is why OMLP is asymptotically optimal under suspension oblivious analysis.
We intend to implement OMLP in the ChronOS real-time OS. We also propose to analytically
and experimentally compare OMLP against different CMs, including that for nested and
non-nested transactions.

Bibliography

[1] C.S. Ananian, K. Asanovic, B.C. Kuszmaul, C.E. Leiserson, and S. Lie. Unbounded
transactional memory. In 11th International Symposium on High-Performance Com-
puter Architecture (HPCA-11), pages 316 – 327, feb. 2005.

[2] J.H. Anderson and P. Holman. Efficient pure-buffer algorithms for real-time systems.
In Proceedings of Seventh International Conference on Real-Time Computing Systems
and Applications, pages 57 –64, 2000.

[3] J.H. Anderson and S. Ramamurthy. A framework for implementing objects and
scheduling tasks in lock-free real-time systems. In 17th IEEE Real-Time Systems
Symposium, pages 94 –105, dec 1996.

[4] J.H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-free
shared objects. In Proceedings of 16th IEEE Real-Time Systems Symposium, pages 28
–37, dec 1995.

[5] J.H. Anderson, S. Ramamurthy, M. Moir, and K. Jeffay. Lock-free transactions for
real-time systems. In Real-Time Databases: Issues and Applications, pages 215–234.
Kluwer, 1997.

[6] Hagit Attiya, Leah Epstein, Hadas Shachnai, and Tami Tamir. Transactional con-
tention management asanon-clairvoyant scheduling problem. Algorithmica, 57:44–61,
2010. 10.1007/s00453-008-9195-x.

[7] Tian Bai, YunSheng Liu, and Yong Hu. Timestamp vector based optimistic concur-
rency control protocol for real-time databases. In 4th International Conference on
Wireless Communications, Networking and Mobile Computing (WiCOM), pages 1 –4,
oct. 2008.

[8] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time Systems, 3:67–99,
1991.

[9] A. Barros and L.M. Pinho. Managing contention of software transactional memory in
real-time systems. In IEEE RTSS, Work-In-Progress, 2011.

87

Mohammed El-Shambakey Bibliography 88

[10] A. Barros and L.M. Pinho. Software transactional memory as a building block for
parallel embedded real-time systems. In 37th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pages 251 –255, 30 2011-sept. 2 2011.

[11] Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In RTSS,
pages 119–128, 2007.

[12] M. Behnam, F. Nemati, T. Nolte, and H. Grahn. Towards an efficient approach for
resource sharing in real-time multiprocessor systems. In 6th IEEE International Sym-
posium on Industrial Embedded Systems (SIES), pages 99 –102, june 2011.

[13] C. Belwal and A.M.K. Cheng. Lazy versus eager conflict detection in software trans-
actional memory: A real-time schedulability perspective. IEEE Embedded Systems
Letters, 3(1):37 –41, march 2011.

[14] Marko Bertogna and Michele Cirinei. Response-time analysis for globally scheduled
symmetric multiprocessor platforms. In RTSS, pages 149–160, 2007.

[15] Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge. Proactive transaction
scheduling for contention management. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 42, pages 156–167, New York,
NY, USA, 2009. ACM.

[16] A. Block, H. Leontyev, B.B. Brandenburg, and J.H. Anderson. A flexible real-time
locking protocol for multiprocessors. In 13th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA), pages 47 –56,
aug. 2007.

[17] B.B. Brandenburg and J.H. Anderson. An implementation of the PCP, SRP, D-PCP,
M-PCP, and FMLP real-time synchronization protocols in LITMUS-RT. In RTCSA,
pages 185–194, 2008.

[18] B.B. Brandenburg and J.H. Anderson. Optimality results for multiprocessor real-time
locking. In IEEE 31st Real-Time Systems Symposium (RTSS), pages 49 –60, 30 2010-
dec. 3 2010.

[19] B.B. Brandenburg and J.H. Anderson. Real-time resource-sharing under clustered
scheduling: mutex, reader-writer, and k-exclusion locks. In Proceedings of the Inter-
national Conference on Embedded Software (EMSOFT), pages 69 –78, oct. 2011.

[20] Bjrn Brandenburg and James Anderson. A comparison of the m-pcp, d-pcp, and fmlp
on litmus rt. In Theodore Baker, Alain Bui, and Sbastien Tixeuil, editors, Principles
of Distributed Systems, volume 5401 of Lecture Notes in Computer Science, pages
105–124, 2008.

Mohammed El-Shambakey Bibliography 89

[21] Trevor Brown and Joanna Helga. Non-blocking k-ary search trees. In Antonio Fern-
ndez Anta, Giuseppe Lipari, and Matthieu Roy, editors, Principles of Distributed Sys-
tems, volume 7109 of Lecture Notes in Computer Science, pages 207–221. Springer
Berlin-Heidelberg, 2011.

[22] G.C. Buttazzo. Hard real-time computing systems: predictable scheduling algorithms
and applications. Springer-Verlag New York Inc, 2005.

[23] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algo-
rithms And Applications (Real-Time Systems Series). Springer-Verlag TELOS, Santa
Clara, CA, USA, 2004.

[24] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk Disambiguation of
Speculative Threads in Multiprocessors. In Proceedings of the 33rd annual international
symposium on Computer Architecture, ISCA ’06, pages 227–238, Washington, DC,
USA, 2006. IEEE Computer Society.

[25] Jing Chen. A loop-free asynchronous data sharing mechanism in multiprocessor real-
time systems based on timing properties. In Proceedings of 23rd International Confer-
ence on Distributed Computing Systems Workshops, pages 184 – 190, May 2003.

[26] Min-Ih Chen and Kwei-Jay Lin. Dynamic priority ceilings: A concurrency control
protocol for real-time systems. Real-Time Systems, 2:325–346, 1990.

[27] Hyeonjoong Cho, B. Ravindran, and E.D. Jensen. Synchronization for an optimal
real-time scheduling algorithm on multiprocessors. In International Symposium on
Industrial Embedded Systems (SIES), pages 9 –16, july 2007.

[28] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. On utility accrual pro-
cessor scheduling with wait-free synchronization for embedded real-time software. In
Proceedings of the ACM symposium on Applied computing, SAC ’06, pages 918–922,
New York, NY, USA, 2006. ACM.

[29] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An optimal real-time
scheduling algorithm for multiprocessors. In 27th IEEE International Real-Time Sys-
tems Symposium (RTSS), pages 101 –110, dec. 2006.

[30] Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. Lock-free synchroniza-
tion for dynamic embedded real-time systems. ACM Trans. Embed. Comput. Syst.,
9(3):23:1–23:28, March 2010.

[31] Hyeonjoong Cho, Binoy Ravindran, and E.D. Jensen. A space-optimal wait-free real-
time synchronization protocol. In Proceedings of 17th Euromicro Conference on Real-
Time Systems, ECRTS’ 05, pages 79 – 88, July 2005.

Mohammed El-Shambakey Bibliography 90

[32] D. Christie, J.W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack, C. Fetzer,
M. Nowack, T. Riegel, P. Felber, P. Marlier, et al. Evaluation of AMD’s advanced
synchronization facility within a complete transactional memory stack. In Proceedings
of the 5th European conference on Computer systems, pages 27–40. ACM, 2010.

[33] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and
Daniel Nussbaum. Hybrid transactional memory. In Proceedings of the 12th interna-
tional conference on Architectural support for programming languages and operating
systems, ASPLOS-XII, pages 336–346, New York, NY, USA, 2006. ACM.

[34] A. Datta, S.H. Son, and V. Kumar. Is a bird in the hand worth more than two in
the bush? limitations of priority cognizance in conflict resolution for firm real-time
database systems. IEEE Transactions on Computers, 49(5):482 –502, may 2000.

[35] Matthew Dellinger, Piyush Garyali, and Binoy Ravindran. Chronos linux: a best-effort
real-time multiprocessor linux kernel. In Proceedings of the 48th Design Automation
Conference, DAC ’11, pages 474–479, New York, NY, USA, 2011. ACM.

[36] U.M.C. Devi, H. Leontyev, and J.H. Anderson. Efficient synchronization under global
edf scheduling on multiprocessors. In 18th Euromicro Conference on Real-Time Sys-
tems, pages 10 pp. –84, 0-0 2006.

[37] Shlomi Dolev, Danny Hendler, and Adi Suissa. Car-stm: scheduling-based collision
avoidance and resolution for software transactional memory. In Proceedings of the
twenty-seventh ACM symposium on Principles of distributed computing, PODC ’08,
pages 125–134, New York, NY, USA, 2008. ACM.

[38] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority preemptive
multiprocessor scheduling. In 30th IEEE Real-Time Systems Symposium (RTSS), pages
377 –386, dec. 2009.

[39] Mohammed El-Shambakey and Binoy Ravindran. Stm concurrency control for embed-
ded real-time software with tighter time bounds. In Proceedings of the 49th Annual
Design Automation Conference, DAC ’12, pages 437–446, New York, NY, USA, 2012.
ACM.

[40] Mohammed El-Shambakey and Binoy Ravindran. Stm concurrency control for multi-
core embedded real-time software: time bounds and tradeoffs. In Proceedings of the
27th Annual ACM Symposium on Applied Computing, SAC ’12, pages 1602–1609, New
York, NY, USA, 2012. ACM.

[41] G. Elliott and J. Anderson. An optimal k-exclusion real-time locking protocol moti-
vated by multi-gpu systems. 19th RTNS, 2011.

[42] M. Elshambakey and B. Ravindran. On real-time stm concurrency control with im-
proved schedulability. Submitted to EMSOFT’12.

Mohammed El-Shambakey Bibliography 91

[43] J.R. Engdahl and Dukki Chung. Lock-free data structure for multi-core processors.
In International Conference on Control Automation and Systems (ICCAS), pages 984
–989, oct. 2010.

[44] A. Ermedahl, H. Hansson, M. Papatriantafilou, and P. Tsigas. Wait-free snapshots in
real-time systems: algorithms and performance. In Real-Time Computing Systems and
Applications, 1998. Proceedings. Fifth International Conference on, pages 257 –266, oct
1998.

[45] S. Fahmy and B. Ravindran. On stm concurrency control for multicore embedded real-
time software. In International Conference on Embedded Computer Systems, SAMOS,
pages 1 –8, July 2011.

[46] S.F. Fahmy, B. Ravindran, and E. D. Jensen. On bounding response times under
software transactional memory in distributed multiprocessor real-time systems. In
DATE, pages 688–693, 2009.

[47] Y.M.P. Fernandes, A. Perkusich, P.F.R. Neto, and M.L.B. Perkusich. Implementation
of transactions scheduling for real-time database management. In IEEE International
Conference on Systems, Man and Cybernetics, volume 6, pages 5136 – 5141 vol.6, oct.
2004.

[48] K. Fraser. Practical lock-freedom. PhD thesis, Cambridge University Computer Labo-
ratory, 2003. Also available as Technical Report UCAM-CL-TR-579, 2004.

[49] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca. A comparison
of mpcp and msrp when sharing resources in the janus multiple-processor on a chip
platform. In Proceedings of the 9th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 189 – 198, may 2003.

[50] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of real-time task
sets in single and multi-processor systems-on-a-chip. In Proceedings of 22nd IEEE
Real-Time Systems Symposium (RTSS), pages 73 – 83, dec. 2001.

[51] J. Gottschlich and D.A. Connors. Extending contention managers for user-defined
priority-based transactions. In Workshop on Exploiting Parallelism with Transactional
Memory and other Hardware Assisted Methods (EPHAM), Boston, MA. Citeseer, 2008.

[52] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Polymorphic contention
management. In Pierre Fraigniaud, editor, Distributed Computing, volume 3724 of
Lecture Notes in Computer Science, pages 303–323. 2005.

[53] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Toward a theory of transac-
tional contention managers. In PODC, pages 258–264, 2005.

Mohammed El-Shambakey Bibliography 92

[54] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. Towards a theory of transac-
tional contention managers. In Proceedings of the twenty-fifth annual ACM symposium
on Principles of distributed computing, PODC ’06, pages 316–317, New York, NY,
USA, 2006. ACM.

[55] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,
Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle
Olukotun. Transactional memory coherence and consistency. In Proceedings of the
31st annual international symposium on Computer architecture, ISCA ’04, pages 102–,
Washington, DC, USA, 2004. IEEE Computer Society.

[56] M. Herlihy, Y. Lev, and N. Shavit. A lock-free concurrent skiplist with wait-free
search. In Unpublished Manuscript. Sun Microsystems Laboratories, Burlington, Mas-
sachusetts, 2007.

[57] M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

[58] Maurice Herlihy. The art of multiprocessor programming. In PODC, pages 1–2, 2006.

[59] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for
lock-free data structures. In Proceedings of the 20th annual international symposium
on computer architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[60] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch Hashing. In Gadi Tauben-
feld, editor, Distributed Computing, volume 5218 of Lecture Notes in Computer Science,
pages 350–364. Springer Berlin / Heidelberg, 2008.

[61] Benjamin Hindman and Dan Grossman. Atomicity via source-to-source translation.
In Proceedings of the 2006 workshop on Memory system performance and correctness,
MSPC ’06, pages 82–91, New York, NY, USA, 2006. ACM.

[62] M. Hohmuth and H. Härtig. Pragmatic nonblocking synchronization for real-time
systems. In USENIX Annual Technical Conference, 2001.

[63] P. Holman and J.H. Anderson. Locking in pfair-scheduled multiprocessor systems. In
23rd IEEE Real-Time Systems Symposium (RTSS), pages 149 – 158, 2002.

[64] P. Holman and J.H. Anderson. Locking under pfair scheduling. TOCS, 24(2):140–174,
2006.

[65] P. Holman and J.H. Anderson. Supporting lock-free synchronization in Pfair-scheduled
real-time systems. Journal of Parallel and Distributed Computing, 66(1):47–67, 2006.

[66] Philip L. Holman. On the implementation of pfair-scheduled multiprocessor systems.
PhD thesis, University of North Carolina, Chapel Hill, 2004.

Mohammed El-Shambakey Bibliography 93

[67] Intel Corporation. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual Volume 2A: Instruction Set Reference, A-M.
http://www.intel.com/Assets/en_US/PDF/manual/253666.pdf, 2007.

[68] Intel Corporation. Intel Itanium Architecture Software De-
velopers Manual Volume 3: Instruction Set Reference.
http://download.intel.com/design/Itanium/manuals/24531905.pdf, 2007.

[69] D.K. Kiss. Intelligent priority ceiling protocol for scheduling. In 2011 3rd IEEE
International Symposium on Logistics and Industrial Informatics, LINDI, pages 105
–110, aug. 2011.

[70] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency with Java STM. In
MULTIPROG, 2010.

[71] Tei-Wei Kuo and Hsin-Chia Hsih. Concurrency control in a multiprocessor real-time
database system. In 12th Euromicro Conference on Real-Time Systems (Euromicro
RTS), pages 55 –62, 2000.

[72] Shouwen Lai, Binoy Ravindran, and Hyeonjoong Cho. On scheduling soft real-time
tasks with lock-free synchronization for embedded devices. In Proceedings of the 2009
ACM symposium on Applied Computing, SAC ’09, pages 1685–1686, New York, NY,
USA, 2009. ACM.

[73] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation
and synchronization on multiprocessors. In 30th IEEE Real-Time Systems Symposium
(RTSS), pages 469 –478, dec. 2009.

[74] Kam-Yiu Lam, Tei-Wei Kuo, and Wai-Hung Tsang. Concurrency control for real-time
database systems with mixed transactions. In Proceedings of Fourth International
Workshop on Real-Time Computing Systems and Applications, pages 96 –103, oct
1997.

[75] C.P.M. Lau and V.C.S. Lee. Real time concurrency control for data intensive ap-
plications. In Proceedings of 11th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 337 – 342, aug. 2005.

[76] M.R. Lehr, Young-Kuk Kim, and S.H. Son. Managing contention and timing con-
straints in a real-time database system. In Proceedings of 16th IEEE Real-Time Sys-
tems Symposium, pages 332 –341, dec 1995.

[77] Yossi Lev and Jan-Willem Maessen. Split hardware transactions: true nesting of
transactions using best-effort hardware transactional memory. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,
PPoPP ’08, pages 197–206, New York, NY, USA, 2008. ACM.

http://www.intel.com/Assets/en_US/PDF/manual/253666.pdf
http://download.intel.com/design/Itanium/manuals/24531905.pdf

Mohammed El-Shambakey Bibliography 94

[78] Gertrude Levine. Priority inversion with fungible resources. Ada Lett., 31(2):9–14,
February 2012.

[79] S. Lie. Hardware support for unbounded transactional memory. Master’s thesis, MIT,
2004.

[80] G. Macariu and V. Cretu. Limited blocking resource sharing for global multiprocessor
scheduling. In 23rd Euromicro Conference on Real-Time Systems (ECRTS), pages 262
–271, july 2011.

[81] W. Maldonado, P. Marlier, P. Felber, J. Lawall, G. Muller, and E. Riviere. Deadline-
aware scheduling for software transactional memory. In 41st International Conference
on Dependable Systems Networks (DSN), pages 257 –268, june 2011.

[82] Walther Maldonado, Patrick Marlier, Pascal Felber, Adi Suissa, Danny Hendler,
Alexandra Fedorova, Julia L. Lawall, and Gilles Muller. Scheduling support for trans-
actional memory contention management. In Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’10, pages
79–90, New York, NY, USA, 2010. ACM.

[83] J. Manson, J. Baker, et al. Preemptible atomic regions for real-time Java. In RTSS,
pages 10–71, 2006.

[84] V.J. Marathe, M.F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W.N. Scherer III,
and M.L. Scott. Lowering the overhead of nonblocking software transactional mem-
ory. In Workshop on Languages, Compilers, and Hardware Support for Transactional
Computing, TRANSACT.

[85] Austen McDonald. Architectures for Transactional Memory. PhD thesis, Stanford
University, June 2009.

[86] Fadi Meawad, Martin Schoeberl, Karthik Iyer, and Jan Vitek. Real-time wait-free
queues using micro-transactions. In Proceedings of the 9th International Workshop on
Java Technologies for Real-Time and Embedded Systems, JTRES ’11, pages 1–10, New
York, NY, USA, 2011. ACM.

[87] Maged M. Michael. High performance dynamic lock-free hash tables and list-based
sets. In Proceedings of the fourteenth annual ACM symposium on Parallel algorithms
and architectures, SPAA ’02, pages 73–82, New York, NY, USA, 2002. ACM.

[88] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, and D.A. Wood. LogTM: log-based
transactional memory. In High-Performance Computer Architecture, 2006. The Twelfth
International Symposium on, pages 254 – 265, feb. 2006.

[89] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory: Model and
architecture sketches. Science of Computer Programming, 63(2):186 – 201, 2006.

Mohammed El-Shambakey Bibliography 95

[90] Wu Peng and Pang Zilong. Research on the improvement of the concurrency control
protocol for real-time transactions. In International Conference on Machine Vision
and Human-Machine Interface (MVHI), pages 146 –148, april 2010.

[91] R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors.
In ICDCS, pages 116–123, 2002.

[92] Ragunathan Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. Kluwer Academic Publishers, Norwell, MA, USA, 1991.

[93] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. In Proceedings
of 32nd International Symposium on Computer Architecture (ISCA), pages 494 – 505,
june 2005.

[94] M. Raynal. Wait-free objects for real-time systems? In Proceedings of Fifth IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing (ISORC),
pages 413 –420, 2002.

[95] T. Riegel, P. Felber, and C. Fetzer. TinySTM. http://tmware.org/tinystm, 2010.

[96] Bratin Saha, Ali-Reza Adl-Tabatabai, et al. McRT-STM: a high performance software
transactional memory system for a multi-core runtime. In PPoPP, pages 187–197,
2006.

[97] T. Sarni, A. Queudet, and P. Valduriez. Real-time support for software transactional
memory. In RTCSA, pages 477–485, 2009.

[98] William N. Scherer, III and Michael L. Scott. Advanced contention management for
dynamic software transactional memory. In Proceedings of the twenty-fourth annual
ACM symposium on Principles of distributed computing, PODC ’05, pages 240–248,
New York, NY, USA, 2005. ACM.

[99] W.N. Scherer III and M.L. Scott. Contention management in dynamic software trans-
actional memory. In PODC Workshop on Concurrency and Synchronization in Java
programs, pages 70–79, 2004.

[100] M. Schoeberl, F. Brandner, and J. Vitek. RTTM: Real-time transactional memory. In
ACM SAC, pages 326–333, 2010.

[101] M. Schoeberl and P. Hilber. Design and implementation of real-time transactional
memory. In International Conference on Field Programmable Logic and Applications
(FPL), pages 279 –284, 31 2010-sept. 2 2010.

[102] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: an approach
to real-time synchronization. IEEE Transactions on Computers, 39(9):1175 –1185, sep
1990.

http://tmware.org/tinystm

Mohammed El-Shambakey Bibliography 96

[103] L. Sha, R. Rajkumar, S.H. Son, and C.-H. Chang. A real-time locking protocol. IEEE
Transactions on Computers, 40(7):793 –800, jul 1991.

[104] Nir Shavit and Dan Touitou. Software transactional memory. In PODC, pages 204–213,
1995.

[105] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Virendra J. Marathe, Sand-
hya Dwarkadas, and Michael L. Scott. An integrated hardware-software approach to
flexible transactional memory. In Proceedings of the 34th annual international sympo-
sium on Computer architecture, ISCA ’07, pages 104–115, New York, NY, USA, 2007.
ACM.

[106] Richard L. Sites. Alpha AXP architecture. Commun. ACM, 36:33–44, February 1993.

[107] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L. Scott. A
comprehensive strategy for contention management in software transactional memory.
In Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of
parallel programming, PPoPP ’09, pages 141–150, New York, NY, USA, 2009. ACM.

[108] J.M. Stone, H.S. Stone, P. Heidelberger, and J. Turek. Multiple reservations and
the Oklahoma update. Parallel Distributed Technology: Systems Applications, IEEE,
1(4):58 –71, nov 1993.

[109] H. Sundell and P. Tsigas. Space efficient wait-free buffer sharing in multiprocessor
real-time systems based on timing information. In Proceedings of Seventh International
Conference on Real-Time Computing Systems and Applications, pages 433 –440, 2000.

[110] P. Tsigas and Yi Zhang. Non-blocking data sharing in multiprocessor real-time systems.
In Sixth International Conference on Real-Time Computing Systems and Applications,
RTCSA ’99, pages 247 –254, 1999.

[111] P. Tsigas, Yi Zhang, D. Cederman, and T. Dellsen. Wait-free queue algorithms for the
real-time java specification. In Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 373 – 383, april 2006.

[112] University of Rochester. Rochester Software Transactional Memory.
http://www.cs.rochester.edu/research/synchronization/rstm/index.shtml,
http://code.google.com/p/rstm, 2006.

[113] H. Volos, A. Welc, A.R. Adl-Tabatabai, T. Shpeisman, X. Tian, and
R. Narayanaswamy. Nepaltm: design and implementation of nested parallelism for
transactional memory systems. ECOOP 2009–Object-Oriented Programming, pages
123–147, 2009.

http://www.cs.rochester.edu/research/synchronization/rstm/index.shtml
http://code.google.com/p/rstm

Mohammed El-Shambakey Bibliography 97

[114] L. Yen, J. Bobba, M.R. Marty, K.E. Moore, H. Volos, M.D. Hill, M.M. Swift, and
D.A. Wood. LogTM-SE: Decoupling Hardware Transactional Memory from Caches. In
High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th International
Symposium on, pages 261 –272, feb. 2007.

[115] Kam yiu Lam, Tei-Wei Kuo, and T.S.H. Lee. Designing inter-class concurrency control
strategies for real-time database systems with mixed transactions. In 12th Euromicro
Conference on Real-Time Systems (Euromicro RTS), pages 47 –54, 2000.

[116] P.S. Yu, Kun-Lung Wu, Kwei-Jay Lin, and S.H. Son. On real-time databases: concur-
rency control and scheduling. Proceedings of the IEEE, 82(1):140 –157, jan 1994.

	Introduction
	Transactional Memory
	STM for Real-Time Software
	Research Contributions
	Summary of Proposed Post Preliminary Research
	Proposal Organization

	Past and Related Work
	Real-Time Locking Protocols
	Real-Time Lock-Free and Wait-Free Synchronization
	Real-Time Database Concurrency Control
	Real-Time TM Concurrency Control

	Models and Assumptions
	The ECM and RCM Contention Managers
	ECM
	Illustrative Example
	G-EDF Interference and workload
	Retry Cost of Atomic Sections
	Upper Bound on Response Time

	RCM
	Maximum Task Interference
	Retry Cost of Atomic Sections
	Upper Bound on Response Time

	STM versus Lock-Free
	ECM versus Lock-Free
	RCM versus Lock-Free

	Conclusions

	The LCM Contention Manager
	Length-based CM
	Design and Rationale
	LCM Illustrative Example

	Properties
	Response Time of G-EDF/LCM
	Schedulability of G-EDF/LCM
	Schedulability of G-EDF/LCM and ECM
	G-EDF/LCM versus Lock-free

	Response Time of G-RMA/LCM
	Schedulability of G-RMA/LCM
	Schedulability of G-RMA/LCM and RCM
	G-RMA/LCM versus Lock-free

	Conclusions

	The PNF Contention Manager
	Limitations of ECM, RCM, and LCM
	The PNF Contention Manager
	Illustrative Example

	Properties
	Retry Cost under PNF
	PNF vs. Competitors
	PNF versus ECM
	PNF versus RCM
	PNF versus G-EDF/LCM
	PNF versus G-RMA/LCM
	PNF versus Lock-free Synchronization

	Conclusion

	Implementation and Experimental Evaluations
	Experimental Setup
	Results

	Conclusions and Proposed Post Preliminary Exam Work
	Conclusions
	Proposed Post Preliminary Exam Research
	Supporting Nested Transactions
	Combining and Optimizing LCM and PNF
	Formal and Experimental Comparison with Real-Time Locking

