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(ABSTRACT)



This dissertation focuses on the problem space of heterogeneous-ISA multiprocessors – an
architectural design point that is being studied by the academic research community and
increasingly available in commodity systems. Since such architectures usually lack globally
coherent shared memory, software-based distributed shared memory (DSM) is often used to
provide the illusion of such a memory. The DSM abstraction typically provides this illusion
using a reader-replicate, writer-invalidate memory consistency protocol that operates at the
granularity of memory pages and is usually implemented as a first-class operating system
abstraction. This enables symmetric multiprocessing (SMP) programming frameworks, aug-
mented with a heterogeneous-ISA compiler, to use CPU cores of different ISAs for parallel
computations as if they are of the same ISA, improving programmability, especially for legacy
SMP applications which therefore can run as-is on such hardware.

Past DSMs have been plagued by poor performance, in part due to the high latency and
low bandwidth of interconnect network infrastructures. The dissertation revisits DSM in
light of modern interconnects that reverse this performance trend. The dissertation presents
Xfetch, a bulk page prefetching mechanism designed for the DEX DSM system. Xfetch
exploits spatial locality, and aggressively and sequentially prefetches pages before potential
read faults, improving DSM performance. Our experimental evaluations reveal that Xfetch
achieves up to ≈142% speedup over the baseline DEX DSM that does not prefetch page data.

SMP programming models often allow primitives that permit weaker memory consistency
semantics, where synchronization updates can be delayed, permitting greater parallelism and
thereby higher performance. Inspired by such primitives, the dissertation presents a DSM
protocol called MWPF that trades-off memory consistency for higher performance in select
SMP code regions, targeting heterogeneous-ISA multiprocessor systems. MWPF also over-
comes performance bottlenecks of past DSM systems for heterogeneous-ISA multiprocessors
such as due to significant number of invalidation messages, false page sharing, large number
of read page faults, and large synchronization overheads by using efficient protocol primitives
that delay and batch invalidation messages, aggressively prefetch data pages, and perform
cross-domain synchronization with low overhead. Our experimental evaluations reveal that
MWPF achieves, on average, 11% speedup over the baseline DSM implementation.

Finally, the dissertation presents PuzzleHype, a distributed hypervisor that enables a single
virtual machine to use fragmented resources in distributed virtualized settings such as CPU
cores, memory, and devices of different physical hosts, and thereby decrease resource frag-
mentation and increase resource utilization. PuzzleHype leverages DSM implemented in the
host operating systems to present an unified and consistent view of a continuous pseudo-
physical address space to the guest operating systems. To transparently utilize CPU and
I/O resources, PuzzleHype integrates multiple physical CPUs into a single VM by migrating
threads, forwarding interrupts, and by delegating I/O. Our experimental evaluations reveal
that PuzzleHype yields speedups in the range of 355%–173% over baseline over-provisioning
scenarios which are otherwise necessary due to resource fragmentation.
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Chapter 1

Introduction

In the last decade, the computer architecture landscape has changed dramatically [20, 80,
83]. Single-threaded CPUs made the way for chip multiprocessors of ever-increasing core
counts; these in turn saw the rise of heterogeneous computing using GPUs and programmable
hardware [35]. These changes arose from the limits of single-threaded CPU performance and
the difficulty of packing more cores in the same chip: after reaching a plateau in clock
speeds, architects packed more transistors into the same chip, but as the transistor count
increased, the heat dissipation became unmanageable. The “end of Moore’s Law” [63, 79]
forced chip vendors to advance performance and energy efficiency boundaries elsewhere.
This has resulted in an array of radically different hardware: multicore [67, 157, 171] and
manycore chips [35, 75, 152, 172] that exploit hardware parallelism; CPUs with heterogeneous
micro-architectural properties [95, 146], partially overlapping instruction-set-architectures
(ISAs) [92], and various forms of accelerators and programmable hardware [71] that exploit
heterogeneity.

Yet despite the trend toward increased heterogeneity, commodity heterogeneous CPUs largely
deploy CPU cores of the same ISA, or different ISA extensions, or microarchitecture (e.g.,
ARM’s big.LITTLE [74], NVidia’s Kal-El [139], Intel’s Foveros [88]). A notable excep-
tion is MPSoC [177]. The academic research community, however, has explored alternative
points in the architecture design space, including heterogeneous-ISA cores. Exploration
in this particular design space includes many forms – shared-memory chip multiproces-
sors [25, 183], multiprocessors with multiple cache-coherent domains (and no coherence be-
tween domains) [113], and composite-ISA cores [185] – across many settings – ranging from
cluster architectures [25, 140] to mobile platforms [105]. All of these works explore archi-
tectures that use cores belonging to different ISA families such as x86 [122], Alpha [50],
ARM [1], and ARM Thumb [81].

Industry trends are fast changing. With the advent of ARM-based high-end servers [1, 16,
120, 121] capable of powering high-performance computing (HPC) applications, third-party
organizations such as datacenter providers and cloud providers are increasingly integrating
machines of different ISA families in their computing installations [14]. Chip vendors are
also increasingly integrating processors of different ISA families in the same SoC – e.g., Intel
Skylake processor with in-package FPGA [64, 90] enables synthesizing RISC-V and x86
soft cores, with hardware support for virtualization, AMD’s new generation x86 processor
integrates ARM cores; or on the same platform – e.g., smart NICs integrate ARM [77, 133],
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2 Chapter 1. Introduction

MIPS64 [119], or Tile cores [129].

This radical change in hardware has profound implications for software systems: hardware-
agnostic programming – the traditional programming approach – cannot improve perfor-
mance anymore. Improving performance now requires exposing greater degrees of parallelism
in software that is suited for the hardware at hand – e.g., task parallelism for homogeneous
multicore architectures [142]; SIMD parallelism for GPU-based architectures [166]. This
challenges programmability. The reduced programmability is a serious detriment to soft-
ware development, verification, and maintenance.

Infrastructure software, in particular, compilers, language run-times, runtime libraries, oper-
ating systems, and hypervisors are foremost impacted by emerging hardware trends as they
directly run on, or close to, bare metal and export programming abstractions for building
application software. Thus, compilers, run-times, operating systems, and hypervisors are
continuously evolving to exploit various types and degrees of hardware parallelism and het-
erogeneity, and export convenient to use programming abstractions [24, 25, 27, 100, 167, 168].

Motivated by the trend of heterogeneous ISAs and the need to address the ensuing pro-
grammability challenges, the literature presents a number of efforts. Example architec-
tural design points that have been studied include shared-memory chip multiprocessors [25,
184, 186], multiprocessors with multiple cache-coherent domains [113], and composite-ISA
cores [185]. This dissertation focuses on the space of heterogeneous-ISA multiprocessors with
multiple cache-coherent domains [113], wherein each domain has hardware supported cache-
coherency, but no coherency exists between domains. This model is exemplified in architec-
tures such as Intel SCC, Intel’s Xeon/Xeon-Phi [47], and mobile SoCs such as OMAP4 [178],
OMAP5 [179], and Samsung Exynos [48, 159]. In this model, efforts such as Popcorn
Linux [25], K2 [113], Reflex [112], and ADSM [69] consider a shared-nothing operating
system (OS) model that runs multiple OS kernel instances in each coherency domain, but
gives the illusion of a monolithic, task-based, single OS image abstraction. Thus, application
software is unaware of the distributed nature of the underlying OS, and is presented with an
OS interface that is indistinguishable from the traditional symmetric multiprocessing (SMP)
operating system interface.

The single OS abstraction of Popcorn Linux [25], K2 [113], Reflex [112], and ADSM [69]
is implemented using a software-based distributed shared memory (or DSM) abstraction.
The DSM abstraction – a mechanism that has a very long history and extensive litera-
ture [17, 28, 59, 65, 69, 108, 114, 132, 194, 196] – provides a logically global shared memory
model of a physically distributed memory system. The abstraction provides programmers
with the illusion of a single address space across multiple machines (or domains), each of
which has its own memory, often cache-coherent. The consistency of the global memory
state across such multiple cache-coherency domains is often ensured using a reader-replicate,
writer-invalidate memory consistency protocol [17, 108], typically operating at the page-
level granularity. This allows SMP programming frameworks, which have become popular
as shared memory multiprocessors have become mainstream, such as Intel TBB [154], Intel
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Cilk [153], and OpenMP [54] to view the multiple domains as a shared memory SMP system
and use the CPU cores of the different domains for data- and task-parallel computations as
if the cores belong to a single coherent domain. Without DSM, developing applications for
such architectures would require using programming models that expose the separate physical
memory regions, such as the message passing interface (MPI) [76], compute unified device
architecture (CUDA) [160], or the partitioned global address space (PGAS) [39, 43, 132]
models. For legacy SMP applications, this can be significantly expensive as it will require a
full application re-write [24]. Thus, DSM is the key abstraction that enables systems such
as [25, 69, 112, 113] to run SMP applications, including legacy ones, as-is over non-coherent
domains, yielding their high programmability. (Chapter 2 overviews DSM.)

1.1 Motivations

The performance limitations of DSM systems are well known [17]: they have been historically
plagued by network infrastructures with high latencies and low bandwidth, yielding poor
performance when large amounts of application data and memory synchronization traffic
are sent over such networks. However, new networking technologies continue to improve
in both latency and throughput – e.g., commodity InfiniBand adapters provide 200 Gbps
bandwidth [87]. With increasing high-speed interconnects, we believe that it is time to revisit
DSM in order to improve its performance. This trend is already evident in the literature [9,
24, 25, 38, 69, 112, 113, 132, 140, 163]. Along the same line, this dissertation revisits DSM
and proposes mechanisms to improve performance, specifically targeting heterogeneous-ISA
multiprocessor systems with non-coherent domains. The dissertation proposes an aggressive
page prefetching mechanism to improve the performance of the DEX DSM system [161].

SMP programming models such as Intel TBB [154], Intel Cilk [153], and OpenMP [54]
provide a set of primitives to easily spawn multiple threads, distribute parallel work, and
synchronize execution. When using these primitives, developers must write their applications
in accordance with the programming model’s memory consistency semantics. Oftentimes
they use weak memory consistency, where updates are only made visible after synchronization
operations. For example, OpenMP defines a “flush” operation [118] that determines when
writes by a thread must be made visible to other threads; reads and writes to the same
memory address not ordered by a flush operation result in undefined behavior. This forces
developers to write computations that avoid such data races and thus are amenable to
parallelization. Inspired by such SMP operations that permit weaker memory consistency,
we develop a DSM protocol called MWPF that trades-off memory consistency for higher
performance in select (SMP) code regions, also targeting heterogeneous-ISA multiprocessor
systems.

DSM can be used to aggregate fragmented resources in virtualized settings, especially in
cloud computing environments. Resource fragmentation in datacenters is a well known
problem [70, 73, 136, 151, 176] that is caused by multiple factors. First, datacenter jobs have
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wide variety of resource requirements. Second, the granularity of their resource requirements
(i.e., cores, RAM, etc.) is different from the granularity at which resources are usually
allocated in datacenters (i.e., physical servers [164]). In addition to basic resource needs,
datacenter jobs have platform dependencies such as the host types they can only run on, the
OS kernel version they need, and microarchitecture constraints [155, 165]. Fragmentation
is further aggravated by the difficulty of precisely estimating a job’s resource needs [155].
This often results in over-provisioning [56], a common practice employed by many cloud
vendors to ensure sufficient quality of service (QoS) during workload spikes. State-of-the-
art solutions to this problem include optimized Virtual Machine (VM) placement methods,
resource defragmentation through VM migration, and hardware disaggregation [66, 78, 110,
111, 164, 176]. These solutions are either not entirely effective [70, 147, 164, 176] or require
newer hardware [164, 176]. The dissertation presents PuzzleHype, a distributed hypervisor
that enables a VM to leverage fragmented resources – cores, memory, devices – belonging to
different physical hosts, and thereby decrease fragmentation and increase resource utilization.
PuzzleHype leverages DSM implemented in the host OSes to present an unified and consistent
view of a continuous pseudo-physical address space to the guest OSes.

1.2 Dissertation Contributions

We summarize the dissertation contributions as follows:

1.2.1 The Xfetch Prefetch Mechanism for DEX DSM

We present a transparent bulk page prefetch mechanism called Xfetch that improves DSM
performance (Chapter 4). We consider the DEX DSM system [161] which implements DSM
as a first-class Linux OS kernel abstraction. DEX provides sequential memory consistency
using a page-level, single-writer multiple-reader invalidation-based protocol. We consider the
InfiniBand RDMA networking infrastructure. We exploit spatial locality, aggressively and
sequentially prefetching pages before they are accessed, reducing read page faults in sub-
sequent execution. Our experimental evaluations using an eight-node, 56 Gbps InfiniBand-
based rack-scale system reveal that Xfetch achieves up to 142.74% speedup over the baseline
DEX that does not prefetch page data.

1.2.2 The MWPF DSM Protocol

We present MWPF, an efficient multiple writers DSM protocol that allows many writers
to concurrently write to the same page without coherency (Chapter 5). MWPF is inspired
by OpenMP’s flush operation that allows a thread to determine when its results are visible
to other threads in an OpenMP work-sharing region, permitting delayed synchronization,
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greater parallelism, and thus higher performance. Since a multiple writer protocol may not
pay off in all scenarios, MWPF uses a heuristic called smart regions that select the best
consistency protocol for a given OpenMP work-sharing region.

MWPF also overcomes several performance bottlenecks that plague past DSMs that imple-
ment DSM as a first-class (Linux) OS kernel abstraction [25, 140, 158], targeting heterogeneous-
ISA multiprocessors with non-coherent domains: significant number of invalidation messages,
false page sharing, large number of read page faults, and large synchronization overheads.
MWPF overcomes these performance challenges by using efficient DSM protocol primitives
that delay and batch invalidation messages, aggressively prefetch data pages, and perform
cross-domain synchronization with low overhead.

Our experimental evaluations, conducted using a two-node, non-coherent heterogeneous-
ISA multiprocessor with 56 Gbps InfiniBand interconnect, reveal that MWPF achieves, on
average, 11% speedup over the baseline DSM implementation.

1.2.3 The PuzzleHype Distributed Hypervisor

We present PuzzleHype, a distributed hypervisor that enables the classical unit of job ex-
ecution in a cloud setting – the Virtual Machine (VM) – to transparently use fragmented
resources belonging to different physical hosts (Chapter 7). PuzzleHype runs as one instance
per host and allows the creation of virtual CPUs (vCPUs), pseudo-physical memory, and
I/O devices, and exports them to guest OSes as an unified host abstraction. PuzzleHype
leverages DSM, implemented as a first-class (Linux) OS kernel abstraction of the hosts, to
export an unified and consistent view of a continuous pseudo-physical address space to guest
OSes. To transparently utilize CPU and I/O resources, PuzzleHype integrates multiple phys-
ical CPUs together into a single VM by adopting thread migration and supporting interrupt
forwarding. In addition, PuzzleHype enables a vCPU to access remote host hardware I/O
resources (e.g., NIC) by supporting I/O delegations. This is accomplished by modifying the
virtio/virtio-net paravirtualized architecture [102, 143].

By abstracting the distribution of cores, memory, and devices into a system-level hardware
interface similar to that of a classical VM, PuzzleHype is transparent: it can execute fully
unmodified guest operating systems within a distributed VM, although some slight modifi-
cations to these OSes can bring significant performance improvements. More importantly,
PuzzleHype does not require any modification to legacy user-space software, which can run
as-is. By leveraging scattered resources that naturally occur in datacenters, PuzzleHype
decreases resource fragmentation and thus increases resource utilization. It can either help
to increase throughput by running more jobs on a given set of hosts, or it can reduce cost
and power consumption by running a given set of jobs on a smaller set of hosts.

Our experimental evaluations, conducted using a rack-scale system with four virtual CPUs,
reveal that PuzzleHype yields significant advantages: a speedup of up to 355%, and on



6 Chapter 1. Introduction

average 285%, for the SNU NPB benchmark suite [162]; a speedup of 225% for a customized
LEMP [3] stack; and 173% speedup for the OpenLambda [82] benchmark suite, all over a
baseline over-provisioning scenario such as [56].

1.3 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 presents background informa-
tion necessary to understand the dissertation contributions including the DSM abstraction
and virtualization technologies. Chapter 3 discusses past and related works in the disser-
tation’s problem spaces. Chapter 4 describes and evaluates the Xprefetch mechanism for
the DEX DSM. Chapter 5 describes the MWPF DSM protocol; its evaluation results are
presented in Chapter 6 . Chapter 7 and Chapter 8 describe PuzzleHype and its evalua-
tion results, respectively. Finally, Chapter 9 concludes the dissertation and proposes post-
preliminary examination work.



Chapter 2

Background

This chapter provides background information that will allow readers to better understand
the main contributions of this dissertation. Our designs and implementations of Xfetch,
MWPF, PuzzleHype are based on Distributed Shared Memory (DSM) (Section 2.1) and
messaging layer over InfiniBand/RDMA (Section 2.5). In Chapter 5 and 6, MWPF prototype
is built on Popcorn (Section 2.3). DEX (Section 2.2) is leveraged for building a prototype
of PuzzleHype (Chapter 7 and 8). General virtualization techniques widely used in many
areas are introduced in Section 2.4. Our PuzzleHype (Chapter 7 and 8) is designed and
implemented based on the virtualization context and techniques.

Section 2.1 gives an introduction of DSM architecture and its theory and implementation.
System overviews of DEX and Popcorn are presented in Section 2.2 and Section 2.3, re-
spectively. Section 2.4 introduces different types of virtualization technologies. Section 2.5
explains prior knowledge of InfiniBand and RDMA.

2.1 Distributed Shared Memory (DSM)

Distributed Shared Memory (DSM) [137, 150, 169] abstraction is logically a shared memory
model on a physical distributed memory system where memories are physically distributed
among multiple nodes. This abstraction provides programmers with a single address space
illusion for a Distributed Global Address Space (DGAS) where developers work as if they were
coding in a multiprocessor computer sharing a main memory. Implementation categories of
DSM are: hardware [57, 107], software [13, 17, 22, 28, 65, 108, 196, 196], and hybrid [33,
41, 46, 101, 192]. Hardware implementations usually rely on special network or caching
hardware [57, 107]. It extends traditional cache coherence techniques to multiple domains
which do not have a hardware supported cache-coherency between them. Development time
takes longer. It maintains coherence with more fine-grain data size. Similar to hardware
implementations, most of hybrid implementations [33, 41, 46, 192] relies on hardware-based
coherence protocol.

Unlike hardware and hybrid DSMs, software DSM does not require specific hardware to
assist DSM protocol in helping distributed memory coherency. Since hardware and hybrid
DSMs require special non-commodity components and thus cost more [110]. This makes
hardware solutions less promising and considered in recent academic researches. On the other

7
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hand, software DSM is more flexible and portable. For example, it can be implemented on
commodity hardware. The implementation can be easily updated, such as synchronization
granularity, and it is not constrained by special hardware features. Having said that, this
dissertation focuses on software DSM.

2.1.1 Software DSM

Software DSM (SDSM) implementations can be further split into compiler, library, and
operating system (OS) level implementations. Language/compiler implementations require
programmers to declare shared data by using annotations. Compilers will translate shared
data accesses into synchronization and coherence primitives [13, 22]. Besides, library-level
implementations of DSM are implemented in a run-time library linked with applications
at compile-time [17, 18, 40, 108, 109, 170, 173, 196]. It provides a set of primitives which
allow programmers to use for programming. Library routines are provided to manage shared
memory across nodes and synchronization between processes. Nevertheless, these user-level
implementations must cross the OS layer to get interrupt events (e.g., page fault handler and
interrupt handler triggered when a message received) or to perform system calls. Also, SDSM
implemented at programming and library levels are usually not transparent to programmers
and it requires programmers to be familiar with the memory consistency and primitives
provided by the programming model.

On the other hand, OS-level DSM [114, 181] is implemented atop the OS virtual memory
subsystem. It is directly adjacent to the hardware such as MMU and network devices without
having a abstraction layer in between, leading to mitigate mode switching overhead. One of
the advantages of this approach is the semantics of OS remains the same. As a result, legacy
SMP binaries can be seamlessly ported from single-node system to a distributed system
without neither modification nor recompilation. It also gives developers a full transparent
single address space across multiple distributed memory regions.

There are three main DSM design choices for the DSM layer:

• Granularity: the minimal size of a shared memory unit. With a larger data size, false
sharing would be more likely to happen. But it can reduce the network data transfer
initialization overhead and better utilize the network bandwidth. Conversely, with a
smaller data size, false sharing would occur less. Nevertheless, it has to suffer the
network startup time for transferring a package. This latency is not affected too much
by smaller or larger package sizes.

• Data location and access: In a DSM system, each node must know where to find the
right data from the right node. For example, one way is centralized manager approach.
A centralized manager is located on a machine and keeps track of all the ownership
information. Its performance is relatively predictable. The first hop is always delivered
to the centralized manager. In a If the centralized manager does not own the page but
it knows where the page is located. So, the second hop then finds the real owner and
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get the right data. Nevertheless, this approach always has to go through the centralized
manager. Plus, the centralized node serializes all the accesses and becomes the single-
node bottleneck. Another other way is dynamic distributed manager approach. Each
node stores a table of the probable owner of each page. The advantage of this is that it
does not have to ask the centralized manager. When the page is not frequent accessed.
Requester can likely get a page with 1 hop. However, in a worst case, this may cause
more request messages forwarding before reaching the owner.

• Coherence semantics/protocol: coherence semantics define when does a memory up-
date propagate between nodes. There are many memory coherence protocols such as
sequential, weak, release, and etc. For instance, one of them is Sequential Consis-
tency [65, 108, 196] (SC) which guarantees execution order of a thread should obey
its program order. Execution order between threads is undefined and thus can be
in any order, depending on runtime. Another example is weak consistency [28, 40]
which requires programmers using synchronizations operators to guarantee the data is
sequentially consistent. One more example is release consistency [17, 107] which is an
even more relaxed version of weak consistency. Unlike weak consistency, which directly
uses synchronization points, it further break down into lock and unlock operations. Co-
herence protocol is implemented in lock primitives respectively to acquire more design
flexibility. Addition, coherence protocol decides how the permissions are maintained
such as write-invalidate and write-update. Write-invalidate [57] allows a single write
exclusive data or multiple shared read data in the system. In write-update [33] proto-
col, a write updates all copies of a piece of data.

Many works have integrated with DSM to deal with problems such as programmability 1 ,
scalability, energy efficiency, etc. To scale out an application, another choice is MPI [76].
However it does not support legacy traditional SMP parallel applications. That is appli-
cation rewriting is required to take advantages of distributed systems. Previous works [24,
25, 132, 161] have argued that rewriting a SMP application with MPI requires lots of ef-
fort. Thus, the DSM layer is adopted to make SMP application scale-out without changing
a single line of code. Furthermore, recent systems such as K2 [113], Reflex [112], and
ADSM [69] adopt software DSM layer to ease programming efforts in multiple non-cache-
coherence heterogeneous-ISA domains.

There are many advantages in using the DSM abstraction. Legacy SMP applications can
be run on DSM systems as-is, without changing a single line of code. The DSM abstraction
mitigates the effort of programming by providing an abstraction for developers to access
remote memories as if they were accessing local memories. Programmers can easier develop
applications to leverage the advantages of distributed systems. For instance, remote compu-
tation and remote memory resources are easier to be utilized and thus programmers can more
focus on the algorithm instead of message passing and synchronization. This also reduces

1We define ”programmability” as the additional programming effort required to run existing shared-
memory applications in newer distributed architectures. The more programming effort is required, the lower
programmability it is.
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Figure 2.1: Overview of Distributed process EXecution environment (DEX) system.

the development time. The DSM is the cornerstone of transparent distributed execution
for shared memory applications. Without the DSM layer, the execution (processes/threads)
cannot migrate and run on remote nodes as-is [140, 158, 161]. Once the execution is mi-
grated to another node, it will need to process data on the memory. However the memory
is not migrated. DSM plays an of important role by bringing the data from the right node
on-demand. Hence, the execution can really keep proceeding the execution. Also, programs
can use larger physical memory, and are no longer constrained by local memory size and
slowdowns caused by swapping.

On the contrary, the messaging passing latency and traffic are notoriously well known and
problematic. The overhead can be larger than the benefits derived from programmability
and thus make the system useless. To avoid the performance penalty, many works use many
ways to reduce the number of messages used in the DSM layer. For example, for weaker
consistency model [28, 40], the total number of messages exchanged is reduced by postpon-
ing synchronization operations for aggregating the messages to obtain better performance
results. However, this requires programmers to follow the coherence semantics to write cor-
rect programs. Last but not least, although the DSM abstraction provides programmability
advantages, it is usually not as efficient as explicit message-passing implementation.

2.2 DEX

PuzzleHype (Chapter 7 and 8) and Xfetch (Chapter 4) respectively develop two prototypes
for evaluating this dissertation’s contributions. PuzzleHype is built atop DEX by leveraging
its thread migration features and OS-level DSM to provide a distributed guest VM. Xfetch
provides a messaging layer by leveraging RDMA over InfiniBnad to DEX in order to improve
DSM performance. Xfetch also proposes a prefetch mechanism based on the messaging layer
and integrate it with the DSM to transparently enhance performance.
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DEX (Figure 2.1) shorts for “Distributed process EXecution environment” is a rack-scale
system design transparently scaling SMP applications. The system overview is shown in 2.1.
It is a OS level extension allowing SMP applications to expand its execution boundary
beyond a single machine. It enables a thread within a process to be dynamically relocated
its execution to another remote homogeneous machine. It also adopts DSM to transfer data
between machines to have a coherent memory view among multiple machines.

Different from Popcorn [25], DEX demonstrates how a cluster (at lease more than two
machines, up to 8 nodes) can benefit from the system. Whereas, Popcorn only presents
2-node setup. Popcorn only supports process level dynamical migration. On the contrary,
DEX supports a finer-grain thread level migration, which allows legacy SMP multithreaded
processes to benefit from the system.

DEX built a prototype based on Linux kernel version 4.4.137 and evaluated on a rack cluster
with 8 servers connected by InfiniBand through Mellanox ConnectX-4 VPI HCA in 56 Gbps
through a Mellanox SX6012 switch. Each node is equipped with an Intel Xeon Silver 4110
processor which has 8 cores with two-way hyper-threading (16 hardware threads in total)
running at 2.10 GHz and 48GB of RAM.

DEX supports a thread to migrate from the originating (origin) node to a destination (re-
mote) node. The migrated thread can move back again from the remote node to the origin
node. Thread migration is initialized by a system call, which can be easily adopted by de-
velopers or user-space libraries. Upon invoking the migration function, it collects current
thread’s execution context such as registers’ state and virtual address space. Then, the exe-
cution context is transferred to the destination node. Once the thread’s execution is on the
destination node, the destination node re-instantiates a thread according to the transferred
thread context. The thread returns back to user space and resumes execution.

Upon the execution is resumed on the destination node, thread data is not migrated yet. To
make memory consistent across nodes, DEX adopts DSM to maintain the memory coherency.
Linux memory management routine can be simply split into two main parts: virtual memory
area (VMA) management and page table (PTEs) management. VMA regions maintaining
permissions, backing file, offset in the file, etc. define the address space for a process [36].
Each VMA has multiple PTEs. PTE maintains up-to-date per-page status such as permis-
sion, present, dirty. accessed, etc. DEX takes an on-demand virtual memory area and page
data migration approach. The implementation relies on memory management unit (MMU)
hardware raised page fault exceptions to the CPU. Linux page fault exception routine han-
dles virtual memory area and page table separately. DEX implements the DSM layer in the
page fault exception handling routine to makes VMA and PTEs consistent across nodes.

During the migration, no VMA information is transferred to the remote node. When the
thread access to an address that is not belonging to its address space , it triggers a page
fault exception which triggers DEX’s VMA work delegation mechanism. The VMA work
delegation serializes VMA operations on origin node and then synchronize the VMA layout
across nodes by broadcasting the updated VMA layout to the rest of nodes in the system.
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Figure 2.2: Overview of Popcorn Linux.

The same mechanism is used for all the VMA operations such as expanding and shrinking
VMA layout.

After the VMA region is synchronized, the execution still cannot proceed yet in that the
faulting page’s content and permission need to be fixed as well. This resolving process is
called PTE fault handling and it happens way more frequent than the VMA fault. The DSM
in the PTE fault handling routine provides up-to-date page contents and permissions across
notes. The DSM layer guarantees sequential memory consistency (SC) using a page-level,
single-writer multiple-reader invalidation-based protocol. Access to pages not owned by the
current node are trapped in the PTE fault handler. If the fault cannot be fixed locally, the
DSM layer will help to resolve it such as fetching the page from a remote node and updating
the permission of the page in the system if needed. PTE faults usually concurrently happen
in performance-critical path. It brings significant communication traffic to the system. To
this end, DEX also provides a leader-follower model for reducing redundant page transfer
and network traffic. The first thread triggering the first fault for a page becomes the leader.
A subsequent thread requiring the same page with the same access type becomes a follower.
Once the leader resolve the fault, it will wake up the followers if there is any. The followers
can simply resume executions without going through a redundant page fault routine again.

2.3 Popcorn Linux

Systems Software Research Group at Virginia Tech builds an advanced version of Popcorn
Linux (Popcorn) [25]. This new version of Popcorn replaces the old on-demand paging im-
plementation with DEX’s DSM and replaces the old messaging layer with Xfetch’s messaging
layer. The system is running on a new setup where more powerful machines are used. The
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setup details are listed in Table 6.1. For the rest of the dissertation, we refer to this up-
graded version of Popcorn as Popcorn. MWPF (Chapter 5 and 6) is built based on top of
this Popcorn.

Popcorn Linux is mainly composed by Replicated-kernel OS and compiler/runtime frame-
work for enabling execution migration between heterogeneous-ISA chip multiprocessors with
no inter-domain cache-coherency. The system overview is shown in Figure 2.2. There is
no commodity heterogeneous-ISA chip multiprocessor with cache-coherent shared memory
nowadays. Popcorn approximates such a machine by connecting an Intel Xeon server (x86-
64) to a Cavium ThunderX server (ARMv8) via InfiniBand. Popcorn exploits OS, compiler,
and runtime extensions such as heterogeneous binaries and dynamic stack transformation [25]
for dynamic and transparent cross-ISA execution migration. This gives great improvements
in power efficiency [25] and performance [96].

Such a system software has to provide the ability to migrate threads and its data between
servers. In order to support thread migration between heterogeneous-ISA machines, Pop-
corn includes a compiler which generates machine code for all available targets and injects
metadata describing function stack layouts into a multi-ISA binary. The binaries for each
ISA has a different virtual memory layout because of different symbol sizes and padding,
etc. To make DSM work for the multi-ISA binaries, Popcorn Linux’s alignment tool aligns
the symbols such as global data, function addresses, padding, thread-local storage (TLS),
etc. across all architectures.

Popcorn supports threads to migrate between nodes at migration points which are equiva-
lence points [188] for the heterogeneous binaries. Function boundaries are naturally equiv-
alence points. The migration points can be inserted manually by the developer or automat-
ically by the compiler. Popcorn also inserts migration points inside the OpenMP runtime.
Applications written with OpenMP API can transparently enjoy the benefits of dynamical
migrations.

A thread context consists of live register values and the virtual process address space. The
migration process is triggered by a system call. The thread invoking the system call will
migrate to a remote node – the kernels cooperate to transfer the thread context to the des-
tination node. Once the system call is invoked, the state transformation runtime converts
the thread’s execution context to the destination ISA’s format (according to metadata gen-
erated at compile time) and passes the transformed register set to the kernel for migration.
The thread invoking the system call will then migrate to a remote node by transferring the
thread context to the destination node. The destination kernel then creates a new thread
and reconstructs the thread context by using the transferred information. Then, the thread
resumes execution by returning back to user space.

As the thread begins execution on the destination node, it triggers page faults caused by the
thread accessing remote data. Inside the page fault handler, the DSM system works with
the messaging layer to acquire page access permissions and data; once acquired, the DSM
system installs the page into the thread’s page table and resumes the thread. In this way, the
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kernel transparently fetches data on-demand by simply observing normal reads and writes.
The memory consistency model of the DSM is the same as explained in Section 2.2.

2.4 Virtualization Technologies

Two virtualization architectures are widespread: Type-1 where an hypervisor software is the
only layer sitting above the hardware, for example Xen [26], and Type-2 where the hypervisor
co-exists with, or it is a service of an operating system – e.g., Kernel-based Virtual Machine
(KVM) [99]. This section provides general background on two mainstream virtualization
architectures. And finally mainly focus mechanisms such as virtual CPU, memory, and
device on KVM which is adopted by PuzzleHype (Chapter 7 and 8).

Xen has a special privileged domain named Domain0 (DOM0). The other unprivileged do-
mains in Xen are called (DOMU). DOM0 has the highest privilege and manages the other
DOMUs. Drivers for hardware are in DOM0 as well. DOM0 is the only vulnerable area or
attacker surface in Xen. Plus, each DOMU provides a VM instance. DOMU also called Xen
guest has two main types Xen Paravirtualization (PV) and Xen Full virtualization (HVM).
PV required a modified guest OS to be aware of the underlying host hypervisor. This ap-
proach is a full software virtualization technique and does not require any hardware support.
In HVM, guest VMs are virtualized by leveraging host CPU’s hardware virtualization exten-
sions such as Intel VT, AMD SVM. It uses QEMU to emulate hardware. Combining these
two approach, recently there is a guest type called Enhancements to PV (PVH) approach
which is lightweight HVM-like. It takes advantages of PV and HVM together. In PVH,
the guests are lightweight HVMs utilizing hardware virtualizaion support for memory and
privileged instructions. Unlike HVM, PVH does not use QEMU to emulate any devices. It
leverages PV drivers, and thus, it also requires guest OS to be modified and aware of the
host hypervisor. On the other hand, KVM is a virtualization module integrated into the
Linux kernel. This approach usually relies on hardware acceleration built on modern CPUs
such as Intel VT-x and AMD AMD-V hardware accelerations [12]. It is also built with
Linux OS-level component’s supports such as scheduler, memory management, I/O stack,
etc. In particular, virtual CPUs are emulated by OS threads. Since it is integrated with
Linux kernels, its flexibility makes it more prevalent. And its security level fully relies on
commodity Linux kernels. Many existing implementations can be easier adopted in Type-2
virtualization architecture compared with Type-1 virtualization architecture. PuzzleHype
(Chapter 7 and 8) takes advantage of this benefit to build a system providing a distributed
VM equipped by resources from different machines. Thread migration is used for placing a
thread on a remote node, meaning this allows vCPU in a VM to be located on a remote node
in Type-2 virtualization architecture. OS-level DSM is utilized to provide a global memory
address space to the guest VM. vCPU from different nodes can transparently work on the
same memory address space. PuzzleHype therefore spends the minimal time and focuses on
other important components to build the system.
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2.4.1 Virtualizing Memory

In KVM, each VM is implemented as a regular process. Virtualized CPUs are running as
OS threads. Code in VM will be executed by them. Their physical address space (guest
physical address, GPA) is the threads’ address space (host virtual address, HVA). In order
to achieve memory virtualization for the guest VM, and in order for the guest to address
its own virtual memory (guest virtual address, GVA), a virtual memory management unit
(vMMU) is needed.

In the early ages of virtualization, vMMU was implemented by shadow page tables in soft-
ware [12, 148]. Today, hardware mechanisms have taken over the slower software implemen-
tation [31]. These are Extended Page Tables (EPT) on Intel [131], Nested Page Tables (NPT)
on AMD [30], Stage-2 MMU on ARM [55], etc., and provide what is called two-dimensional
paging – i.e., two layers of hardware MMU translations. In simpler terms, a page fault in
the guest OS can be handled by the guest MMU, but if there is no host backing page, the
fault will be handled by the host MMU.

Finally, with the introduction of hardware mechanisms to support vMMU, CPU vendors
introduced a new execution mode for the guest VM itself. Each CPU has its own instruction
to switch the execution mode, and the environment descriptor has to be filled before switching
(e.g., VMX in Intel and VMS in AMD). The descriptor includes a series of events that
will make the CPU exit the execution in virtual machine mode. We refer to this as ”full-
virtualization”, while virtualization without any hardware support that requires modification
of the guest software is called ”paravirtualization”.

2.4.2 Virtualizing Devices

With the introduction of CPU and memory hardware assisted virtualization, manufacturers
also added hardware virtualization to devices [61]. However, devices with hardware vir-
tualization have hard constraints on the maximum number of VMs they support, or are
expensive. In these cases, paravirtualized hardware devices are preferred.

VirtIO is the de-facto standard paravirtualized device technology, and implements differ-
ent classes of devices, including the network interface card (virtio-net) and console (virtio-
console). If independently adopted with Type-1 or Type-2 virtualization, virtio-net appears
to the guest software as a PCIe device and requires the software to instantiate two in-memory
ring buffers – a transmission ring (TX) and a receiver ring (RX) for outgoing and incom-
ing network packets. With virtualization, performance is paramount. Due to virtio-net’s
mediocre performance with Type-2 virtualization, vhost-net was invented [143]. vhost-net
moves the network emulation mechanisms from user space to kernel space to avoid user-
kernel switches.
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2.5 Network Technologies - InfiniBand/RDMA

This dissertation contributes a messaging layer over InfiniBand/Remote Direct Memory
Access (RDMA) (Chapter 4), which is leveraged throughout the entire dissertation. This
section explains background knowledge for understanding our contribution of the messaging
layer.

InfiniBand is a networking communication standard which provides high throughput and low
latency. In InfiniBand, the Network Interface Card (NIC) implementing RDMA features is
called Host Channel Adapter (HCA). HCA can be connected directly or indirectly through
a Switched Fabric.

There are different types of data transfer modes, including Reliable Connection (RC), Unre-
liable Connection (UC), Unreliable Datagram (UD). In datagram mode, one-sided RDMA
operations are not supported. In unreliable connections, data transfer is not guaranteed to
be delivered. Efforts of corner cases are required to handle. Instead, in RC, data is trans-
ferred in order and guaranteed to arrive. RC also provides on-sided operations. Therefore,
RC is used in our design and implementation.

The connection is established by a bi-direction Queue Pair (QP) which contains a Send
Queue (SQ), a Receive Queue (RQ), and a Complete Queue (CQ). SQ and RQ are called
Work Queue (WQ) as well. A Work Request/Work Queue Element (WR/WQE) is passed
to the SQ for sending out a package. WR provides a abstraction called Verb explaining what
features a HCA provides. Once the connection is established, one node can send a message
to another node via the connection by using SEND, RECEIVE (two-sided) messaging Verbs.
InfiniBand RQ requires developers to register WRs before any data arrives. Once a buffer is
received, the developer can check CQ and get the WQE from RQ. The WQE indicates which
memory region is written by HCA. In addition for the RECEIVE operation, CQ is used to
notify the developer when a SEND/WRITE/READ/ATOMIC operation is completed.

To perform RDMA operations via READ/WRITE (one-sided) memory Verbs, a Memory
Region (MR) has to be registered to the HCA. Verb provides an interface for developers
to create a MR which contains a local key, a remote key, and a memory region. The keys
are used for security purposes. They are required when performing the operations on the
registered memory region. The registered memory region cannot be swapped out during the
operations as well. Protection domain (PD) is used for isolating different groups of MRs.
Once all these are initialized, one-sided operations can be performed by inserting a WQE to
WQ.
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Related Work

This chapter provides a literature review and compares them with our contributions.

Section 3.1 shows new trends in networking and many prefetching mechanism on hardware
and software levels for differnt research areas. Traditional and recent DSM works are dis-
cussed in Section 3.2. Section 3.3 explores the recent works in Single System Image (SSI),
resource disaggregated systems, and systems for solving resource fragmentation in datacen-
ters.

3.1 Prefetch in DSM

Xfetch (Chapter 4) is inspired by recent fast network technologies and prefetching mech-
anisms to improve DEX’s DSM performance. In this section, the dissertation introduces
works related to prefetching and modern interconnect technologies.

Prefetching is widely studied in many research areas such as cache prefetching, I/O device
prefetching, etc. The main idea of these studies is to utilize spatial locality and hide com-
munication latency from processors. Data/instruction prefetching [145, 182] was initially
proposed to reduce the speed gap between processors and memory by fetching data/instruc-
tion ahead of time. There are hardware and software based cache prefetchings. Hardware
based prefetching requires special hardware mechanism in processor to achieve the prefetch-
ing. Both data and instructions in the cache line can be prefetched without causing an
explicit fetch operation. Software based prefetching leverages the software such as compiler-
inserted fetch instructions to perform the prefetching. In addition, a kernel-space read-ahead
prefetching algorithm [193] is implemented to amortize block device data access latency. It
reads data from disk to page cache before they are accessed.

Other than that, many works [32, 89, 104, 115] use prefetching mechanisms to reduce the
number of remote page accesses in DSM systems. For instance, Adaptive++ [32] is a runtime
data prefetching prediction-based strategy for software DSM. But these works do not consider
high-speed and low-latency interconnects.

New trends in networking are making DSM systems and loosely coupled distributed ap-
plications feasible in datacenters. InfiniBand networking communication standard and its
RDMA features offer very high throughput and very low latency. Many recent works are
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Table 3.1: Comparison of related work on leveraging remote computational resources and
how much programming effort is required by a developer.

Traditional &
Recent DSM

systems [17, 28,
40, 65, 198]
[29, 98, 197]

[69, 112, 113]

Dynamic
Process

Migration
[24, 25]

Dynamic Thread
Migration
[140, 161]

(A) Goal Programmability Migrate execution Distribute execution

(B) Memory model Shared On-demand
offloading

Shared

(C) Execution replacement No Yes Yes

(D) Relocation unit - Process Thread

(E) Concurrent execution - Single-node Multi-node

(F) Programming effort High / Low No No

leveraging the interconnect technologies to enhance DSM system performance. For example,
Grappa and RING [124, 132] use prefetching mechanism to reduce cache miss rate and use
batching to save network bandwidth. A recent work RAMP [123] utilizes RDMA and a
prefetching mechanism to provide distributed applications running on multiple nodes better
performance. However, to enjoy such benefits from RDMA, applications have to be rewritten
or developers have to learn new primitives or memory consistency models.

To ease programming effort, researchers [91, 138] use InfiniBand and RDMA as their commu-
nication layer used by different memory consistency protocols. However, since the networking
primitives are implemented in user space, kernel subsystems and extensions cannot adopt
it. Other works [114, 181] instead provides the InfiniBand and RDMA primitives in kernel
space. But it still does not provide any optimization for DSM systems. Besides, leveraging
RDMA, MAGI [86] and VDSM [59] proposes a speculative fault approach to prefetch data
pages before the pages are accessed in a user-space DSM. Nevertheless, it is unclear how
RDMA buffers should be managed for better performance especially in kernel space. There-
fore, we implement a transparent bulk page prefetch mechanism by using RDMA features
in such a DSM system which transparently makes SMP applications scale-out.

3.2 DSM Systems

Scaling out SMP applications across nodes is not a new idea. MWPF’s (Chapter 5) unique
challenge is how to efficiently leverage existing programming frameworks while transparently
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scaling out a SMP application on multiple incoherent domains. Compared with previous
DSM works [24, 25, 140, 161], MWPF endeavors to optimize the DSM protocol and imple-
mentation to reduce DSM overheads in non-cache-coherent domains. MWPF builds upon
a variety of techniques and mechanisms [25, 161] such as DSM and thread migration. This
section studies the related works for MWPF. Table 3.1 shows a comparison of traditional
and recent DSM works, dynamic process migration works, and dynamic thread migration
works including MWPF. They are traditional DSM works [17, 28, 29, 40, 65, 98, 197, 198]
and recent DSM works [69, 112, 113]. Traditional works mainly discuss coherence protocol
and design and implementation. Recent DSM works more focus on how to leverage DSM
to ease programmability in non-cache-coherent domains. By leveraging DSM, some recent
works support dynamical process-level migration [24, 25] and dynamical thread-level migra-
tion [140, 161] to make SMP applications transparently scale-out. The features of these
systems are categorized into different aspects (rows in Table 3.1) for comparing these works.
(A) Goal is the primary objective these systems designed for. (B) Memory model indicates
the view of memory in the system. (C) Execution replacement means if execution can be
dynamically replaced. (D) Relocation unit is the minimal migration unit. (E) Concurrent
execution shows how much of the node(s) is concurrently utilized by threads in a process.
(F) Programming effort explains how hard it is to use each system to concurrently leverage
cross-node computing resources.

3.2.1 Traditional and Recent DSM Systems

DSM systems (Column 1 in Table 3.1) give the illusion of a single shared memory across
non-cache-coherent nodes. Memory is automatically kept coherent across multiple incoher-
ent domains by the DSM system software. Traditional DSM systems automatically transfer
data across nodes for applications; developers however have to manually place execution at
startup and synchronize/assign work along with execution. Additionally, cross-node execu-
tion synchronization mechanisms requires developers’ involvement. For example, one way
to make it happen is to break the application into finer-grand threads and manually place
these threads on different nodes by executing the application on multiple nodes.

Heterogeneous architectures expose multiple discrete memory regions to developers. While
DSM can be leveraged to handle remote memory accesses in such systems, traditional DSM
frameworks do not support SMP programming models across heterogeneous architectures
due to differing instruction set architectures (ISA), application binary interfaces (ABI), and
execution models. Recent DSM systems such as K2 [113], Reflex [112], and ADSM [69]
adopt DSM to ease programming efforts for these systems. For example, to leverage data
parallelism, CPU-GPU programming models such as ADSM [69] require applications ex-
plicitly request data and perform data transfers from different memory spaces. Although
ADSM significantly relaxes programming efforts for CPU-GPU systems, applications must
be rewritten to use their alloc/free/call/sync APIs. Additionally, while ADSM automatically
offers a variety of data offloading, aggressive, on-demand, and primitive-based offloading,
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it cannot execute computation concurrently on both CPU and GPU. Moreover, for lever-
aging heterogeneity in multi-node architectures, programming effort is still not trivial –
heterogeneous-ISA architectures require much larger effort than homogeneous-ISA archi-
tectures. Programming in such a system coupled by multiple incoherent domains, explicit
communication between the domains such as messaging passing is required. For different
ISA domains, programs are usually not the same and at least have to be recompiled.

For instance, to leverage low-power processors, a developer has to learn new programming
environment and synchronize data on non-cache-coherent processors. To this end, DSM is
utilized to enable execution on multiple non-cache-coherence domains by transparently ex-
changing data K2 [113] and Reflex [112]. However, peripheral processor code still executes
separately and communicates with remote procedure calls (RPC). Similarly, threads execut-
ing on an x86-64 processor cannot be migrated to an ARMv8 processor as ISA and execution
state (registers, stack) are different. Similar problem happens for MPI programming models
as well.

The aforementioned DSM systems require refactoring applications to exploit remote com-
puting resources (row F in Table 3.1). DSM systems do not provide execution replacement,
but rather require developers to take distributed execution into consideration while pro-
gramming. Static execution placement (row C in Table 3.1) also loses the opportunity to
dynamically migrate executions to utilize remote computation.

3.2.2 Dynamic Process and Thread Migration

Thanks to the DSM, memory access on a remote node can be seem as on the same address
space. To leverage remote resources or to do load balancing, execution migration is required
to resume an execution from one node to another. Execution migration replays execution
context from one node to another to transparently run code and data on another node.
Execution context describes the current state of a thread/process such as live value in CPU
registers, and process address space layout.

Execution migration has been heavily studied. There are different types of execution migra-
tions, e.g., stop/start, live-migration, and SMP-like migration with DSM. Checkpoint/restart
systems [53, 60, 127, 128, 144] can save execution on one node and restore it on another node.
Another example is virtual machine (VM) live migration [49, 85, 187, 190]. VM live migration
moves the entire VM from one node to another by logging and restoring the entire VM by
the underlying host OS or hypervisor. Additionally, while utilizing DSM, researchers [24, 25]
(Column 2 in Table 3.1) provide dynamic process-level migration. By supporting dynamic
migration capability, these works dynamically and transparently place a process on a dif-
ferent node. This gives greater improvements in power efficiency [25] and performance [96].
However, although Popcorn [24, 25] offers execution migration, it does not fully utilize the
benefit of DSM in that these works only demonstrate process migration (D in Table 3.1)
which cannot concurrently leverage multiple nodes’ resources (E in Table 3.1) such as com-
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putational power and storage, which is especially necessary for HPC applications. These
approaches share one common problem of migration granularity. The migration granularity
of VM and process deactivate the ability for an application to concurrently leverage multiple
non-cache-coherent domains at any given time.

Even though researchers [140, 161] (Column 3 in Table 3.1) proposed a framework to si-
multaneously run threads of a process on multiple nodes, these works suffer from the smae
problem of tremendous DSM overhead. While preserving programmability, they neglect
cross-node performance, which stresses the DSM (B in Table 3.1). They simply utilize SC
DSM protocol to transfer data pages, which leads to excessive communication overheads.
We instead provide better DSM primitives to relieve the cross-node overheads that DSM
creates. In addition, none of these works provide a solution to efficiently support cross-node
synchronization. We propose a design to transparently synchronize execution across nodes
with lower overhead. Compared to the previous works, MWPF instead leverages thread-
level migration to transparently run a process fully distributed across multiple nodes and
further enhances performance by presenting new DSM semantics such as a multiple writer
(MW) protocol, aggressive data page prefetch mechanism and a low-overhead cross-node
synchronization primitive. Finally we develop a runtime to transparently adopt these se-
mantics/primitive.

3.2.3 Message Passing Interface (MPI)

Message Passing Interface (MPI) [76] and DSM are two extreme ways to scale out an ap-
plication. MPI is not included in Table 3.1 because the effort of porting any single-node
application to a distributed version is higher than any other programming model. The effort
required is close to rewriting the application from scratch [24]. In MPI, tasks are spawned at
startup and will not be migrated throughout execution. Memory is private to each task/node.
Developers have to manually define message handling, transferring data and synchronizing
data/execution across nodes via messaging. This programming overhead is extremely high.
MWPF and the MPI programming model, respectively, target two opposite extremes in the
spectrum of programming effort to scale out legacy SMP applications.

3.3 Disaggregated Computing

PuzzleHype (Chapter 7) is a distributed hypervisor aggregating remote fragmented resources
for tackling resource fragmentation problems in datacenters. This section surveys similar
works dealing with resource fragmentation problems and using similar approaches.
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3.3.1 Distributed OSes

Aggregating resources from different physical machines while still providing a familiar pro-
gramming interface, i.e., a Single System Image (SSI) [37], was realized through distributed
OSes. Their primary goal is to allow workloads to scale out beyond the boundaries of a single
physical machine. Notable past works include MOSIX [23], Amoeba [130], or LOCUS [189].
More recent examples include Helios [135], fos [191], and Popcorn Linux [24, 25, 140, 161].
Contrary to PuzzleHype, all these works allow an application rather than a VM to lever-
age remote resources. Take Popcorn Linux projects as an example. They provide a system
transparently aggregating remote CPU resources. However, such works do not consider vir-
tualization and network applications and thus far from being able to be adopted in cloud
and edge datacenters.

3.3.2 Distributed Virtual Machines

Other works target virtualization and allow for the creation of distributed VMs [9, 42, 59,
156, 180, 194]. Software approaches providing custom type-1 hypervisors such as vNUMA [42]
or ScaleMP [9], or type-2 as TidaScale [180], have the downside of being unpractical to de-
ploy and maintain in production [194]. Systems such as Numascale [156] rely on special
and expensive hardware. GiantVM [42, 194] are relatively close to PuzzleHype– in partic-
ular GiantVM targets the Linux/KVM, but uses QEMU vs kvmtool, and does not require
custom hardware. In order to run scale-out compute-intensive workloads, they advocate
running DSM at the user-space hypervisor level rather than at the OS level for simplicity
not performance. However, they does not focus on fragmentation, and instead scales out
compute-intensive workloads by aggregating the entirety of the resources from the physical
machines involved. PuzzleHype targets general purpose VM workloads – e.g., contrary to
GiantVM, we evaluate PuzzleHype on I/O intensive benchmarks, including a web server and
FaaS.

3.3.3 Resource Fragmentation Works

One way to deal with such problems is to employ VM migration to rearrange the physical
machine usages [6, 7, 10, 116]. This is also known as VM consolidation. Furthermore, elastic
VM [136] resizes VMs to fix the problem by dynamically replacing big VM with small VMs
to reduce empty holes.

In the long term, a solution to fragmentation is hardware disaggregation [66, 78, 110, 111,
164, 176], allowing compute, memory, and storage resources to scale independently from one
another. Still, it is likely that software and hardware solutions in this domain will take years
to mature before a potential integration in the datacenter. For example, LegoOS [164] is not
a virtualization-based solution and relies on specific hardware supports. On the contrary,



3.3. Disaggregated Computing 23

PuzzleHype can be deployed on traditional servers with standard software stacks.

StopGap [136] tackles a similar issue as PuzzleHype and addresses fragmentation with the
concept of elastic VMs that can be dynamically resized. StopGap supports only certain types
of applications, namely elastic multi-tier master-slave applications. Nevertheless these works
still do not solve the root cause of resource fragmentation problem. On the contrary, Puzzle-
Hype does not make any assumption on the application running within its distributed VMs.
PuzzleHype endeavors to solve the problem by directly breaking the machine boundaries.
Fragmented resources from multiple machines can be re-aggregated together to provide a
single VM illusion to end users.



Chapter 4

The Xfetch Prefetch Mechanism for
DEX DSM

This chapter presents the design, implementation, and evaluation of Xfetch, which provides
transparent bulk page prefetch and a messaging layer over InfiniBand/RDMA to support
DEX DSM system. A kernel-level messaging layer leveraging InfiniBand/RDMA is built for
DEX and used for enhancing DEX DSM performance. A prefetch mechanism is proposed
by leveraging the messaging layer to transparently and efficiently improve DSM systems
performance by reducing the number of page faults.

The rest of this chapter is structured as follows: Section 4.1 gives a high level overview
of Xfetch system which proposes two main contributions. They are messaging layer over
InfiniBand/RDMA and a transparent prefetching mechanism. Section 4.2 explains Xfetch’s
key design and implementation in detail. Last, the evaluation for Xfetch is conducted in
Section 4.3.

4.1 Overview

Distributed computing systems and fast network fabric technologies have been vigorously
studied. For example, by leveraging high-bandwidth low-latency networks, researchers have
developed systems providing easier API [132] and transparently running legacy SMP appli-
cations [25, 140] to enjoy distributed computational power. A common problem with these
systems involves too many communication messages being sent because of the DSM protocol
and high inter-node communication latency. Page prefetching [32, 89, 174] has been pro-
posed to solve the problem a while ago. However, initial attempts were not very successful.
Faster network technologies enable the rethinking of page prefetch in DSM systems because
its high throughput and low latency. This is not well-discussed in the context of such a DSM
system such as DEX.

Our contribution to DEX is a messaging layer which efficiently transfers messages of dif-
ferent sizes by leveraging InfiniBnad/RDMA. Additionally, we provide a transparent bulk
page prefetch design which automatically sends prefetch requests along with the page fault
handler (only if the fault cannot be solved locally) and the prefetch request is asynchronously
processed in the background for minimizing the interference with foreground execution. To

24
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evaluate the performance of our design, we implemented a prototype in the context of Linux
operating system. Our results show the page prefetch transparently enhance by reducing the
number of page faults. The performance improvement is up to 42.74% compared to without
enabling the page prefetch feature. Our contributions can be summarized as follows:

• We designed a messaging layer for Xfetch to efficiently prefetch pages in DSM layer
by leveraging low-latency and high-throughput emerging networking technologies.

• Xfetch provides a bulk page prefetch design without interfering foreground execution
too much. We implemented and evaluated it on a DSM system transparently scaling
out SMP applications.

4.2 Design and Implementation

To transparently scale out a SMP application on multiple nodes without changing any line
of code, a system leverages the DSM layer guarantees Sequential memory Consistency (SC)
using a page-level, multiple-reader single-writer protocol, for cross-node memory consistency.
Finding page data and page ownership in such a system is a time-consuming process since
it involves (at least) one roundtrip communication over the network and an search/update
of the per-page state index. Plus, the communication layer is of importance in terms of
performance in such a distributed system. Recent networking fabric technologies can be
utilized to solve the problems. To amortize the overhead and better utilize the network
bandwidth, Xfetch therefore propose a transparent bulk page prefetch design in kernel-space
DSM with a careful InfiniBand/RDMA page transfer messaging layer design; while the origin
(Section 2.2) handles a page request sent from a remote node, it transfers additional pages
which are next to the faulty page. In this way, Xfetch leverages the spatial locality of memory
access that is a very common memory access pattern for many applications. Our prefetch
features over InfiniBand/RDMA are listed below:

• Prefetching pages as a batch: it hides network latency.
• Asynchronous background prefetch: we send the request along with the normal page

fault execution and recycle the existing worker to perform data page prefetch for re-
ducing redundant context switches.

• All control messages are sent by our InfiniBand POST primitive, which places a request
to the NIC and does not wait until the message is guaranteed to be sent. This save a
few CPU cycles to work on things more important by reducing redundant wait/wakeup.

• The prefetching mechanism achieves minimal interferes to the system by operating on
a best-effort basis; it does not spend time on waiting pages that is being processed by
someone else. It instead move on and try to prefetch the next page.
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4.2.1 Inter-Node Communication over InfiniBand/RDMA

We built a inter-node communication layer (messaging layer) over different network fabrics
in the Linux kernel, which can be leveraged by other kernel subsystems, and user-space
processes and libraries. The design can be split into two parts: first, we introduce a messaging
layer abstraction which is agnostic to underlying hardware and integrated with the Linux
kernel. Moreover, we provides implementations over Linux device driver modules to leverage
different network fabrics. To be able to adopt common commodity systems, we first provide
an Ethernet socket implementation. Ethernet device is one of the most common network
devices on servers. For better performance and easier to leverage InfiniBand/RDMA, we
also provide an InfiniBand/RDMA implementation. Particularly, native InfiniBand/RDMA
provides very low-level abstraction close to hardware primitives. This makes developers hard
to directly leverage its benefits [181]. We will focus on the design and implementation over
InfiniBnad/RDMA in the rest of this chapter.

Before jumping into the implementation of data transfer, messaging layer also takes care of
the connection between nodes. A global IP table is duplicated on every system. Our current
implementation has the table in a header file but it can be stored in any text file in the Linux
filesystem. Although InfiniBand provides many transport models, our design takes Reliable
Connection (RC) [181] because it guarantees the correctness of data transfer and provides
RDMA WRITE operation which will be leveraged for transferring data page in DEX DSM.
After all the connections are established, the messaging layer assigns each node a node ID
in accordance with the IP table. Once all connections are established, one node can send
messages to other nodes via a particular connection channel.

InfiniBand provides a two-sided message passing interface (SEND, RECV) and a one-sided
Remote Direct Memory Access (RDMA) interface (READ, WRITE) accelerating transmis-
sions. One-sided RDMA provides abilities to directly transfer data from source buffer to
remote destination buffer.

Different from traditional socket programming, I/O buffers for two-sided operations over
InfiniBand has to be explicitly mapped to a DMA-capable address space range. InfiniBand
HCA can then directly operate on the buffer via the PCI bus. However, in a DSM sys-
tem, simply leveraging native InfiniBand/RDMA primitives may not fully take advantage
of its benefits because page faults happen too frequent. Especially, these faults are in a
performance-critical path. Dynamically mapping these buffers for transferring data in the
performance-critical page fault handler may bring nonnegligible overhead. Same for the
RDMA WRITE/READ operations, the buffer has to be registered to a RDMA memory
region called remote memory region in order to generate a key for another node to access the
memory region. The key has to be deliver to a remote node so as to perform READ/WRITE
operations on the buffer transparently. The overhead of message construction overhead can-
not be neglected. Thus, upon the messaging layer initialization, we pre-allocate a pool of
DMA-mapped memory regions and associate them with one-/two-sided work requests.
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In RC, the CQ can notify a processor when a work request is completed. It guarantees
these work requests are competed and happend in order. Developers can decide to wait
for the completion or not, depending on demands such as blocking or nonblocking. Thus,
we provide two primitives to send a InfiniBand two-sided message. One is normal SEND
primitive. It returns when the data is sent out. The execution can safely modify the buffer
after invoking this function.Another is POST primitive which returns immediately after it
place a work request to the HCA. The developer has to manage the usage of their buffer
properly. For example, releasing or modifying the buffer too early may cause to a unexpected
result for the messaging layer and also the system. Moreover, A send buffer pool is presented
in the messaging layer. This pool is made up of chunks of physically contiguous pages. The
pages are pre-mapped to DMA regions. The pool is implemented as a ring buffer structure.
Each connection maintains its own pool to allow callers to save time for redundant memory
allocation, DMA-mapping in critical paths. Once a SEND request is completed, the send
buffer pool will reclaim the chunk for recycling it at a later time.

When a data arrives, HCA first stores the data into a memory region indicated by the
receive WQE. The HCA triggers an interrupt. We provide an interrupt handler which finds
the memory region and process the request. After completing the request, we provide a
primitive to recycle the WQE and its memory region. InfiniBand requires developers to pre-
register receiving buffers to HCA before any data arrives. Similar to SEND operation, the
receiving buffers are required DMA-mapped before registering it. The messaging layer pre-
register an entire receive buffer pool per connection during the messaging layer initial phase.
At runtime, when an InfiniBand Host Channel Adapter (HCA) receives a message, it directly
writes to the buffer via DMA. Once it is completed, InfiniBand HCA signals the kernel by
raising a hardware interrupt. Our messaging layer will enter a top-half interrupt handler
and a data receiving completion will be found in a completion queue. We immediately
leave the task for a bottom-half kernel worker. It then handles the request according to the
message headers. When the request is completed the messaging layer recycles the buffer by
re-registering it again. This again avoids redundant memory allocation and DMA mapping
time.

Large size data transfers, such as transferring a page, are completed via one-sided RDMA
operation. Previous works have proposed many ways to leverage RDMA technologies [62, 94,
117, 163]. However, most of them are too specific optimization to their use cases, which are
different from our DSM system and thus a new approach has to be reconsidered. For example,
in DSM systems, it is almost impossible to predetermine the virtual memory footprint and
lifetime of processes which change dynamically over time and are different from each other.
Unfortunately, it is almost impossible to keep virtual memory addresses physically contiguous
in general commodity systems. Moreover, as we mentioned earlier, dynamically allocating
a DMA-mapped region and registering it as a remote memory region in InfiniBand HCA is
time consuming. Therefore, we cannot simply use the ways these system used or traditional
dynamic approaches to design our messaging layer.

To this end, we propose a hybrid approach which statically allocates buffers and makes
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them DMA-mapped with just one extra memory copy at runtime. We argue that memory
copying is less expensive than DMA mapping and registering it to InfiniBand HCA. Each
connection maintains its own physically continuous remote memory regions, which is created
during messaging layer setup. A requester (sender) should send a remote memory region
to the destination (receiver) node via a control message. And thus, the destination node
can directly prepare the page(s) and directly write it to the memory region provided by the
requester without any CPU effort. Due to one-sided WRITE operation is performed without
any notification on a remote node. The destination node has to acknowledge the requester
with a control message. When receiving the acknowledgment, the requester copies the page
data to the real page frame and reclaims the remote memory region. Although this is not
the ideal approach of using one-sided RDMA, faster than two-sided and dynamic mapping
one-sided WRITE implementation.

We provide READ/WRITE primitives for performing RDMA WRITE/READ. A requester
can ask the messaging layer for a pre-allocated remote memory region and send it to the
destination node. The destination node takes the key and address to use our WRITE/READ
primitive to perform a RDMA WRITE directly to requester’s memory region. The WRITE/
READ maps the data into DMA region and associates it with a pre-allocated WQE. The
WQE is delivered to the SQ and a READ/WRITE operation is performed.

Leveraging messaging layer in DEX. In the DSM system, transferred data can be
classified into two classes; small messages also known as control messages (e.g., tens of
bytes) and large messages also called data page messages (lager and equal to a page size
4KB in DEX). Compared to one-sided operations, two-sided operations can provide lower
latency for small messages. To this end, control messages transferred by the system are done
by using two-sided send/receive operations. We also provide an non-blocking/asynchronous
two-sided send primitive which returns immediately back to the execution without waiting
for a completion synchronization signaled by the NIC. A data page is transferred via one-
sided RDMA WRITE operation.

4.2.2 Transparent Bulk Page Prefetch

Remote page fault latency is a notoriously well known problem in DSM systems due to its
slow message passing speed. Even for applications which are well written to partition data
evenly and locally, there still exists data that must be shared across different nodes. Accessing
this data generates unavoidable remote page faults. Thus, to fully utilize network bandwidth,
reduce network latency, and reduce the number of remote page faults, a Transparent Bulk
Page Prefetch (TBPP) mechanism is leveraged in our system. TBPP brings multiple pages
in a single round trip via regular remote page fault. This eliminates unnecessary latency of
messaging and avoids near future page faults.

There are three main design principals in our prefetch mechanism. First, TBPP issues
prefetch along with regular fault executions. Although it does prefetch more data pages
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in a single remote page fault request, the native remote page fault routine does not wait
until the prefetch process is completed. Instead, it responses immediatly to the requester.
Piggybacking prefetch requests on existing fault executions reduces redundant overheads
such as interrupt and message brought from asynchronous prefetch requests. Moreover,
TBPP brings as many pages as possible in a single regular remote page fault to utilize
network bandwidth and reduce network contention. In such a DSM environment, the network
traffic is always inevitable high. The latency of data transfer initialization is very expensive
especially for small messages. Therefore, it is worth to batch all pages and response on a
single message since the network benefit it brings will be much higher than the latency of
accumulated memory copy and page lookup.

Secondly, prefetch should be transparent to developers. One of the major challenges for
developers is to decide which page to prefetch. We provide a TBPP DSM system, which
automatically prefetches pages to alleviate the need for manual annotations or manual tuning
which originally may have to be done by the developer.

Finally, sequential page prefetch policy obtains benefits from spatial locality as well as in-
ducing minimal increase in overhead to page fault critical path. We found many applications
such as graph or machine learning algorithms which are specifically designed to benefit from
spatial locality. Such applications usually access the same shared data region over many
iterations throughout the entire execution. For instance, pages around the fault address will
be accessed in the near future. Therefore, we adopt sequential page prefetch policy, which
benefits from the spatial locality. Ideally, the prefetch mechanism should not add on too
much additional latency to the page fault handling. If a more sophisticated prefetch policy
were used, it may bring higher latency in the critical page fault handling path. Sequential
page prefetch gives us the most efficiency as it does not bring much computational overhead
to the critical path. Thanks to the sequential locality, our prefetch policy is able to be
achieved in a neat manner.

When a read page fault cannot be handled locally at on a remote node, the page fault
handling process will try to prefetch pages surrounding the page fault address along with
the regular remote page fault requesting message. The prefetch-page candidates are selected
by complying with the following rules: (1) All of the prefetch-page candidates must be within
the same VMA region as the originating fault address. Doing so, the entire prefetch process
does not require to lookup VMA for each page. This also makes sure that no illegal pages will
be prefetched. (2) The range of fetching size is from 1 (without batch) to 8 (with batch). (3)
In some cases, we can simply skip a prefetch-page candidate immediately, moving to check
the next prefetcg-page candidate. These cases are:

1. The requesting node has had the correct permission for the prefetch-page candidate.
In current implementation, we only support prefetching shared-read pages.

2. The PTE of the candidate is not created yet. This means the page is not created in
the system yet.
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3. The page is not being handled by any other local or remote page fault process routine.
Doing this the prefetch process can skip redundant wait time.

4. The native fault is asking for a write permission. We currently prefetch only for read
permission because bulk invalidation (caused by write faults) will incur a deadlock
problem if there is no sophisticated algorithm. However, such a complex algorithm
may bring more overhead to the performance-critical page fault path.

When a remote node has a fault which cannot be solved by itself, it sends a control message
to the origin node. The control message is composed by a list of expected pages to be
prefetched. Once the origin node receives a remote page fault request, it first handles the
native fault and then checks for the prefetch-page candidates sent along with a remote
page fault request. It prepares the page data and maintain the permission of the page by
following DEX DSM protocol. Once the regular remote page fault on the origin node is
completed, if there is any prefetch-page candidate, the origin node starts to prepare the
prefetch-page candidates. Prefetching process does not interfere with other local/remote
page fault executions. If another fault handling process is dealing with the prefetch-page
candidate (enumerated above), the prefetch-page preparation process will immediately skip
prefetching the candidate rather than wait until it gets the lock and proceeds. Failure to do
so will incur additional latency. Xfetch strives to incur as minimal overhead as possible to
regular executions. When all the prefetch-page candidates are all checked, the origin node
directly sends the results and pages back to the remote node. Once the remote node receives
the message, it copies the successfully prefetched page data to the corresponding page frame.

In our design, the memory consistency protocol treats the origin as a page cache server.
When the origin prepares a page for a remote node, if the origin does not own the page, it
brings the page back from the current owner. The origin then sends the page back to the
requesting node. As a result, the origin can immediately serve any future page fault on a
remote node. This effectively prefetches the page for the origin as well. Although the origin
does not issue prefetch requests, it still can enjoy the benefits derived from prefetching done
by remote nodes. On the origin, prefetching requests from remote nodes may require it to
fetch a page from another remote node because both the requester and the origin are not
the owner of the page.

4.3 Evaluation

Xfetch is built on top of DEX, using the very same hardware configuration. Xfetch is a
prototype based on Linux kernel version 4.4.137. We evaluate on a rack-mounted cluster
built with 8 servers connected by InfiniBand through Mellanox ConnectX-4 VPI HCA in 56
Gbps through a Mellanox SX6012 switch Each node has an Intel Xeon Silver 4110 processor
which has 8 cores with two-way hyper-threading to provide 16 hardware threads in total,
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Table 4.1: Speedup in execution time by using TBPP- higher is better.

Applications \ Nodes 2 3 4 5 6 7 8
KM 0.66% 8.53% 11.26% 12.97% 13.05% 15.79% 17.95%
GRP 4.26% 4.40% 3.14% 3.84% 1.79% 0.03% 1.22%
PR 1.05% 27.41% 31.65% 35.73% 36.59% 42.74% 36.47%
BP 1.65% 3.82% 1.15% 3.06% 3.36% 4.26% 3.21%
BFS 15.95% 24.79% 14.84% 23.32% 15.86% 17.06% 17.63%
BT 3.08% 5.24% 6.10% 10.69% 12.92% 14.70% 14.74%
EP -0.22% -0.76% 0.73% 1.44% 1.46% 1.75% -1.20%
FT 7.43% 11.54% 15.23% 17.61% 21.21% 21.87% 22.04%
BLK 1.29% 0.85% -0.06% -0.89% -0.63% 2.91% 1.30%

lavaMD 3.33% 1.35% 3.45% 1.16% 1.41% 0.96% 2.02%

running at 2.10 GHz and 48GB of RAM. To execute on a remote node, a binary has to be
distributed on all nodes. We share the binary through Network File System (NFS).

We carefully selected ten applications to represent different memory access patterns.

Two of them are in-house data processing applications implemented by us. They are string
match (GRP) and k-means clustering algorithm (KMN). String finds and outputs a user-
specified pattern of characters also called key strings, filtering out the other texts, from a
given text file. GRP partitions the file into chunks so that each thread can process its own
chunk parallelly without interference. In our experiment, we used a 8 GB Wikipedia text.
Four key strings, each is 7 to 10 bytes, are used. KMN is a popular clustering algorithm
used in many fields. It divides data into groups by repeatedly computing until all the data
finds its closest group or a certain threshold of iteration. We configured it to calculate 100
groups among 5 million points in a 3 dimensional space.

For high performance computing (HPC) applications, we chose BT, EP, and FT from the
SNU NPB Benchmark Suite v3.3 [162], a C version of the NAS Parallel Benchmarks [21]
written with OpenMP programming model from Seoul National University [162]. Its class
C workload version is selected for our experiment. We also selected Blackscholes (BLK)
from PARSEC Benchmark Suite v3.0 [149], which is a GCC pthread implementation. We
evaluate it with ‘native input’ workload, which is the largest workload the benchmark suite
provides for large-scale experiments on real machines.

For recent NUMA-aware applications, we chose Breadth-First Search (BFS), Belief Prop-
agation (BP), and PageRank (PR) from Polymer [195]. Polymer is NUMA-aware graph-
structured analytics framework written in C++ co-locating graph data closer to the NUMA-
node as much as possible. These applications are written by using the framework.
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Table 4.2: Number of remote page faults for each application on four-node setup.

KM GRP PR BP BFS BT EP FT BLK lavaMD
Without TBPP 1315582 278 28389105 1469413 35419526 35514843 6263 26798105 52259 60127
With TBPP 545199 247 13618356 1471548 18966877 21576816 6381 16438699 52137 60100

Remote page faults reduction (%) 58.56% 11.15% 52.03% -0.15% 46.45% 39.25% -1.88% 38.66% 0.23% 0.04%

4.3.1 Experimental Results

We evaluate the speedup applications gain when using TBPP subsection 4.2.2 compared to
without using TBPP as presented in Table 4.1. The maximum payload size per message
in this experiment was set to 32KB since the nature of InfiniBand Receive Queue and our
current implementation allocates a physically continuous memory region for receive buffer
pool. Since the largest size of physically continuous memory is limited by the Linux kernel
memory allocator, if we increase the size per message, the number of messages per connection
will decrease. If the RQ does not have any WQE when a data arrives, the system will not
function correctly. The speedup in execution time is up to 142.74%. To further explore TBPP
trends, we also collect the number of remote pages faults on four-node setup (Table 4.2).
The reduction in remote page faults is up to 58.56%.

Looking at these results, we observe a major divide among our benchmarks and classify them
into the following two trends with our reasoning explained to follow. The applications in the
first trend observe extremely minimal gains because they are highly parallel. For example,
GRP, BP, EP, BLK, and lavaMD partition their workloads evenly to each node and do not
share data with other nodes. Thus, there are very few remote page faults generated while
running. As a result, it is hard to see obvious speedups from Table 4.1. The reason why the
number of page faults in BP is not small is because graph processing applications in general
(e.g. BP, PR, & BFS) load global graph data to each nodes’ local region. Our prefetch
mechanism currently does not proactively prefetch for pages which have never been touched.
Thus, the number of remote page fault for BP is large and not reduced.

The rest of applications, KM, PR, FT, BFS, and BT, attain very good performance im-
provements from using TBPP. These applications share data over iterations throughout
entire execution time. Thus, they often benefit from our TBPP. These applications usu-
ally require shared data which is written by other nodes from previous iterations. In such
scenarios, our prefetch mechanism efficiently brings multiple pages automatically to reduce
the number of future remote faults. For the applications in this trend, we also found that
TBPP scales well, increasing in performance with larger maximum payload message sizes. It
is worth mentioning that the benchmark KM, which already scales out with base optimiza-
tions applied, further benefits from the prefetch mechanism. This experimental evaluation
shows that TBPP incurs minimal overhead while providing the benefit of reducing the overall
remote page faults. This insight shows us that TBPP is highly beneficial to use with ap-
plications that spread and syncronize their data across many nodes. On top of this, TBPP
provides these benefits without any additional needed code modifications.



Chapter 5

The MWPF DSM Protocol

Recently there has been increasing interest in coupling systems with non-cache-coherent do-
mains, or simply domains or nodes, together in data centers and the cloud [25]. Systems with
non-cache-coherent domains are usually heterogeneous. Our envisioned architecture design
point is one with multiple cache-coherency domains, with each domain hosting cores of a dif-
ferent ISA and no inter-domain cache-coherency. For such an envisioned heterogeneous-ISA
architecture platform, Multiple Writer protocol with Prefetch (MWPF) provides a relaxed
DSM consistency model, smart regions, a page prefetch mechanism, and a low-overhead bar-
rier for inter-node synchronization. MWPF reduces the number of page faults by delaying
page data consistency. Smart regions is a mechanism to dynamically select which DSM
protocol (MWPF/SC) should be used in a work-sharing region. Page prefetch mechanism
reduces the number of page faults during work-sharing parallel regions. Our cross-domain
barrier synchronization is used for reducing redundant data page exchanging compared with
using traditional SMP barrier synchronization. All these benefits do not require any change
to existing legacy code. Existing runtime libraries can easily adopt the primitives provided
from the kernel space. Taking the OpenMP parallel programming model and its runtime
library for example, we demonstrate not only our design but also our implementation. With
very few Lines of Code (LOC) OpenMP runtime library modification, applications written
with the OpenMP programming model can transparently enjoy all the benefits we propose.

Section 5.1 motivates the development of MWPF. Section 5.2 describes on our DSM protocol,
smart regions, prefetch mechanism, and cross-node barrier synchronization designs in detail.
In Section 5.3, the protocols and mechanisms are implemented in a first-class Linux OS
kernel and the OpenMP runtime is instrumented to utilize the proposed primitives.

5.1 Overview

Because DSM transparently extends the shared-memory abstraction across discrete com-
puting elements, with thread migration features, users can run existing applications across
multiple domains as-is. Previous DSM systems, however, were plagued by networking limita-
tions [17]. Additionally, many optimizations proposed to improve DSM scalability relied on
weakening the memory consistency models of the DSM [17], making correctly programming
such systems challenging. Besides, fast network technologies continue to evolve in both
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latency and throughput. Current commodity network interface cards such as InfiniBand
connectivity provide 200 Gbps bandwidth [87]. This has motivated re-investigating DSM as
many assumptions about the performance characteristics of such systems are changing.

As shared memory multiprocessors have become mainstream, developers have turned to par-
allel/fork–join programming models such as Intel Threading Building Blocks (TBB) [154],
Intel Cilk [153], and OpenMP [54] to easily leverage multiple CPU cores for data- and
task-parallel computation. These programming models provide a set of primitives to easily
spawn multiple threads, distribute parallel work, and synchronize execution. For example,
in OpenMP, a work-sharing region can be split into two main components, parallel execution
and synchronization barrier. A synchronization barrier is applied across the entire system
to synchronize execution before any thread can proceed. When using these primitives, de-
velopers must write their applications in accordance with the programming model’s memory
consistency semantics. Oftentimes they use weak memory consistency, where updates are
only made visible after synchronization operations. This forces developers to write compu-
tations that avoid such data races and thus are amenable to parallelization. Because these
shared memory parallel programming models are mature and widespread, there is a large
body of applications built assuming a relaxed consistency model [21, 44, 45, 51, 149].

Together with the aforementioned trends in networking, we argue it is time to re-investigate
using DSM to target systems with multiple non-cache-coherent domains. In particular, we ar-
gue that DSM systems can be optimized using weaker consistency semantics and run existing
shared-memory symmetric multiprocessing (SMP) parallel programs with high performance
on these emerging systems. Using DSM allows developers to run existing applications on
non-cache-coherent systems as-is, rather than requiring a full re-write to a new programming
model like MPI or PGAS languages [39, 43, 132].

In this work, we explore changing the DSM consistency model and implementation to better
optimize cross-domain execution. We found several bottlenecks in previous works [25, 140,
158]: significant numbers of invalidation messages, false page sharing, large numbers of read
page faults, and large synchronization overheads. To solve these problems, we propose effi-
cient DSM protocol primitives that postpone memory synchronization points, batch invalida-
tion messages, aggressively prefetch data pages, and perform cross-domain synchronization
with low overhead. We follow the existing shared memory multiprocessing programming
model to design our operating system level (OS-level) DSM primitives, which can be eas-
ily adopted in parallel programming runtimes. For developers familiar with programming in
such relaxed consistency models or for existing legacy applications, our system transparently
brings further performance improvement. To prove the applicability of the new primitives,
we develop a runtime based on OpenMP [54]. We instrument the runtime to utilize the new
primitives, allowing OpenMP work-sharing regions to efficiently distribute parallel compu-
tation across nodes and transparently leverage the new primitives. Thus, we seamlessly
support cross-domain execution of existing OpenMP applications without changing any line
of code. We evaluate a prototype on two heterogeneous-ISA nodes.
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To conclude, MWPF introduces a design transparently improving the performance of shared
memory multiprocessing applications running on no cache coherent domains without any
code modification by leveraging Multiple Writer (MW) protocol, release consistency (RC),
memory access pattern profiling and page prefetching, and multi-domain synchronization
design. No line of code requires to be changed in order to run a legacy SMP application
written in a parallel programming model.

5.2 Design

Our goal is to reduce DSM overhead so as to leverage remote computing power with minimal
communication. Two large sources of overhead caused by using SC are invalidation messages
and false page sharing. Because these are intrinsic to Sequential Consistency (SC), one way
to reduce consistency traffic is to switch to a relaxed protocol that can delay invalidations
and front-load page fetches (Sections 5.2.1 and 5.2.2). Also, to reduce redundant communi-
cation caused by traditional cross-node synchronization, the DSM includes a new cross-node
synchronization primitive (Section 5.2.4).

The DSM system is redesigned to take into consideration these forms of overhead. In order to
reduce the impact of invalidation messages, the DSM employs an Release Consistency (RC)
protocol that delays invalidation messages until a synchronization point (Section 5.2.1). This
not only allows the DSM to immediately upgrade permissions from shared to exclusive for
resident pages, but also allows the DSM’s underlying messaging layer to batch multiple
invalidation messages together to better utilize the interconnect. To further improve the
impact of the MW protocol, the DSM system also includes an aggressive page prefetching
mechanism which creates a form of Snapshot Isolation at the start of work-sharing regions
(Section 5.2.2). By prefetching all pages read during the work-sharing region, there is a
much higher likelihood that the DSM layer does not need to fetch remote data and can
simply provide the correct access permissions during a write fault. While these mechanisms
reduce intra-region DSM overhead, they come with their own overheads during start or
end-of-region processing. The DSM system includes a smart region heuristic that detects
when using MW may in fact cause more overhead than performance benefit and falls back
to SC in such cases (Section 5.2.3). Finally, the DSM system is extended to provide a new
synchronization primitive that avoids redundant page transfers caused by traditional atomics
and futex operations (Section 5.2.4).

5.2.1 Multiple Writer (MW) Protocol

The multiple writer protocol allows multiple nodes to concurrently write to the same page
without cross-node consistency. This allows delaying invalidation messages till the end of
a work-sharing region, or simply a region, where all invalidations are exchanged to fix up
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Figure 5.1: Example of DSM traffic before work-sharing regions (SC) and during work-
sharing regions (MW).

pages and permissions. For pages written by two or more nodes, the DSM layer detects
and propagates updates between nodes. It accomplishes this through copy-on-write (COW)
– when a node encounters a write page fault, the DSM layer saves a copy of the original
version of the page. When propagating writes, the DSM compares the updated page to the
original and sends updates to other nodes. Allowing updates to be delayed till the end of
the work-sharing region fits directly with parallel programming models.

Upon entering a work-sharing region, the DSM switches consistency protocols from SC to
MW and execution enters the MW parallel phase. At this point the DSM layer designates
one node as the default-owner and all other nodes as non-default-owners. This facilitates
an optimization in propagating updates – rather than an all-to-all exchange for page up-
dates, the default-owner pulls in updates from all other nodes (all-to-one) and performs the
merge; subsequent accesses to the page by non-default-owners must reacquire the page and
permissions. Because the default-owner merges updates from all other nodes, only non-
default-owners perform COW to generate diffs. At the end of the work-sharing region, the
DSM layer enters the MW merging phase. It begins by exchanging invalidations encoun-
tered during the region and determines which pages need merging. Then, the DSM layer
generates “differences” (diffs) of the COW pages and sends them to the default-owner. The
default-owner merges the diffs, and the DSM system transitions back to SC.

Take Figure 5.1 for example. It focuses on a single page case. Node0 represents a non-default-
owner node and Node1 is a default-owner node. Both nodes are initially outside the work-
sharing region and have the page mapped read-only, as per the SC protocol. When Node1
first attempts write operation W1, it causes a page fault due to the lack of write permissions.
During fault handling, Node1 sends an invalidation message to Node0 to revoke Node0’s page
permissions. Node0 drops the page and permissions and sends an acknowledgement (ACK)
message back to Node1. After receiving the ACK, Node1 gains exclusive write access and
writes to the page. Next, Node0 performs a read operation R1. Since Node0 does not have
any permissions for the page, it sends a message to Node1 asking for the page and shared
permissions. Node1 downgrades its exclusive permissions to shared permissions and sends
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the page data back to Node0. At this point both nodes have the same shared read-only page.
Both nodes have the latest version of the page.

When the nodes enter the work-sharing region, the DSM transitions from SC to the MW
protocol. Node0 issues W2 generating a write fault. The DSM system first checks whether
Node0 is the default-owner node. In this example, since Node0 is not, it makes a copy of
the page (COW) and changes the permissions to be exclusive without cross-node coherency.
After this initial duplication, the following writes before MW parallel phase end will not
incur page faults. This saves the latency of sending invalidation messages and permission
changes caused by different interleavings of writes W2, W4, W5, or W6.

When the application encounters either an explicit or implicit barrier (end of work-sharing
region ), the DSM system enters the MW merging phase. First, the DSM batches all delayed
invalidation requests into a single message and distributes invalidations across all nodes.
Pages written by only one node are simply invalidated on other nodes by the DSM. However,
for pages written by multiple nodes (i.e., the page written by W2 and W5 on Node0 and W4
and W6 on Node1), the DSM layer must generate a diff from the copy created during the
first write fault. Non-default-owner Node0 creates a diff by applying an exclusive or (XOR)
operation between the original and updated version of the page. The DSM transfers the diff
to Node1, which merges the diff with its copy of the page. After all invalidations and merges
have been performed, the work-sharing region ends and the DSM transitions back to SC.
Note that COW pages are only used during the MW merge phase if nodes write to the same
page and therefore necessitate a merge; however, the DSM layer cannot predict whether this
will happen and must copy the page, even for pages only updated by a single node.

5.2.2 Profiling Page Prefetching (PF)

Similar to the MW protocol, the primary goal of aggressive page prefetching is to reduce
the number of read page faults. Resolving read page faults incurs long latency – the CPU
must undergo a mode switch and the DSM system must transfer each page between nodes
using the communication layer. Rather than fetching pages on-demand during the middle of
computation, the DSM layer prefetches pages in batches at the beginning of a work-sharing
region to both reduce interruptions during computation and better utilize the available
network bandwidth. Currently, the prefetcher profiles read operation patterns during the
initial execution of a work-sharing region and prefetches the same pages before the next
invocation of the same region.

5.2.3 Smart Regions

The MW protocol’s benefit does not come without its drawbacks. For a non-default-owner
node, an extra memory copy is required upon the first write to a page. Also, the DSM must
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record all written pages and copied pages in a list. During the MW merging phase, the
DSM iterates over the lists to find conflicts that need merging. If the number of invalidation
messages is not significant, the MW overheads may cause a performance hit versus SC. Many
compute-intensive applications have repetitive regions exhibiting similar DSM consistency
traffic. The DSM system records each region’s behaviour, and if the number of invalidation
messages is not above a certain threshold, the DSM system smartly skips switching to MW
protocol for subsequent executions of the region.

5.2.4 Cross-Node Barrier Synchronization

User-space synchronization primitives are based on futex to synchronize by relying on a
shared memory model. One way to provide synchronization across nodes is to delegate futex
operations based on DSM. It allows transparently handling existing Shared Memory (SHM)
synchronization primitives. When running across incoherent domains, SMP programming
model is just an illusion provided by the DSM system; traditional futex operations transfer
many redundant pages due to SC (i.e., single-writer). When multiple threads on different
nodes try to write to a same page, the data page and its ownership will bounce back and
forth. In this subsection, we will explain the entire process of a such traditional cross-node
synchronization and its problem. Finally, how these overheads can be avoid by using our
design.

When a thread enters a synchronization barrier, it atomically fetches and increases a shared
counter to determine if it is the last arriving thread. During this process, the DSM layer grabs
the page containing the counter and invalidates its permissions on other nodes. Subsequent
threads entering the synchronization repeat this process until the last thread arrives. Threads
waiting on a condition variable call a wait futex operation to wait in an in-kernel queue. Once
awoken, they load a user-space futex variable to synchronize on the counter. The last arriving
thread invokes a wake futex operation and increments the user-space futex counter (a write
operation). The futex variable is automatically synchronized by the DSM layer, causing
redundant page faults on multiple nodes.

To synchronize the in-kernel futex wait queue, futex operations must be delegated to the
same node. Before waiting in the queue, futex waits verify that the user-space futex address
still matches the wait condition and then sleep until a futex wake on this futex address.
While verifying these conditions, the DSM layer locks the pages containing the user-space
counters to prevent any access. This entire process may cause up to 2 more pages faults due
to the lack of read permissions. All in all, when multiple threads on different nodes try to
synchronize with each other, the data and ownership of the page will bounce back and forth.

The DSM layer provides a new primitive to synchronize cross-node threads in a single system
call. This function does two things; first, it broadcasts a notification message to other nodes;
second, it spins until receiving a response from all other nodes for the same synchronization
point. Upon returning from this function, the cross-node synchronization is finished. This
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causes zero page faults.

5.3 Implementation

MWPF is built on top of the latest version of Popcorn [25], which implements inter-node
thread migration and DSM in kernel space.

We implemented the MW DSM protocol (Section 5.3.1), page prefetch (Section 5.3.3), smart
region (Section 5.3.2), and cross-node synchronization (Section 5.3.4) mechanisms at the op-
erating system level. We also adopted an OpenMP runtime (Section 5.3.5) that transparently
integrates the aforementioned mechanisms for work-sharing regions. Thus, OpenMP appli-
cations targeting simultaneous cross-domain execution in heterogeneous-ISA systems can
benefit from these new mechanisms without changing any lines of application code.

5.3.1 MW Protocol

The MW protocol enables multiple writers to concurrently operate on the same page without
coherency to amortize networking latency overheads. The MW protocol has to determine
which node is the default-owner. In our setup (described in Table 6.1), because the Intel
Xeon has better single-threaded performance than the Cavium ThunderX, it executes the
serial phases of the application and therefore is chosen as the default-owner. Doing so lowers
the number of page faults incurred during the serial phase since the default-owner gains
exclusive ownership when merging pages.

The kernel maintains per work-sharing region (per-region) data structures to record relevant
information (hashkey, pages written, statistics). The MW protocol’s implementation can be
split into two phases – the MW parallel phase and the MW merging phase.

MW Parallel Phase. When there is a write to a read-only shared page inside a work-
sharing region (a write fault), the fault will be trapped by the OS-level page fault handler.
During the write fault handling process, the DSM system records the virtual address of the
faulting page in a hashmap contained in the per-region data structure; this hashmap is used
to construct the delayed invalidation message and detect conflicts during the MW merging
phase. Additionally, if it is the default-owner node, it simply adds write permissions to
the corresponding page table entry (PTE) and returns to user space. If it is not, before
correcting the PTE, the DSM layer duplicates the page and records the address of the copy
in a per-node hashmap indexed by virtual address. After returning to user space, subsequent
read or write operations to the page will not incur any further page fault.

MW Merging Phase. Once threads exit a work-sharing region, the DSM enters the MW
merging phase. In the merging phase, nodes exchange lists of pages written during the work-
sharing region to handle invalidations and detect which pages were written by multiple nodes
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and therefore need merging. The DSM layer batches invalidation requests up to a tunable
threshold (4087) by iterating over the hashmap containing write-faulting pages.

Plus, due to OpenMP work-sharing semantics, no two threads will ever write to the same
address without synchronization, meaning the merge process will never have to resolve con-
flicting writes to the same address. We adopt differential logging [106] to both create a
differential between the current and copied page and apply the differential to the same page
on the default-owner.

5.3.2 Smart Regions

The DSM layer can decide whether to use the MW protocol for each work-sharing region.
The kernel records execution characteristics from previous invocations of the same work-
sharing region to make protocol selection decisions for the next invocation of those regions.
If a region is marked as non-beneficial, threads entering the work-sharing region avoid MW
meta-data initialization and fall back to SC.

The DSM layer determines whether a region is beneficial at the end of the MW merging phase
by recording the number of invalidation messages. If the number of invalidation messages
is lower than an invalidation threshold, then using the MW protocol does not pay off and
it is declared a probational region. If a region is determined to be a probational region for
consecutive iterations, it is marked as a non-beneficial region and falls back to SC for the
rest of execution. Our current invalidation threshold is set to be the core count on its node.
That is, each thread should on average have more than one invalidation request in order
for the MW protocol to be beneficial; if not, it is considered a probational region. The
probation threshold is set to 10. We found that some applications have different numbers of
invalidation requests for the same work-sharing region. The probation threshold is utilized
to gather more profiling information across several invocations of the region to make more
accurate decisions regarding whether the MW protocol will be beneficial.

5.3.3 Profiling Page Prefetching

The in-kernel per-region data structure also records all read faults. The DSM layer uses
this record to prefetch those pages in the next execution of the same work-sharing region.
The prefetcher relies on the fact that many HPC applications execute the same work-sharing
region with the same input/output buffers multiple times, leading to repetitive page access
patterns for executions. To identify repeated invocations of a work-sharing region, the DSM
layer uniquely identifies regions with a key using the containing function’s name, line number,
file name, and iteration. This information is supplied to the kernel by the OpenMP runtime
(Section 5.3.5). The key and per-thread hashmap can be used to quickly determine whether
the region has been previously executed.
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During the first program execution of a work-sharing region, the kernel records read-faulting
pages in a hashmap. Upon subsequent program executions of the region, the prefetcher
iterates over the faults observed from the previous execution. The prefetcher sends requests
as batches, maximizing the number of pages fetched in a single message to better utilize
network bandwidth. Upon receiving the response message, the prefetcher maps the pages
by fixing permissions and copying the page content to the proper pages. Once pages have
been placed across nodes, the threads are released to begin computation.

5.3.4 Cross-Node Barrier Synchronization

To replace the traditional fetch-and-add and futex synchronization used in the SHM program-
ming model (5.2.4), we implemented a new system call invoked by threads to synchronize
across nodes. Each kernel maintains a local barrier counter and a remote barrier counter per
remote node. The system call does two things. First, it increases the local barrier counter
by 1 and sends a message to the other nodes for increasing remote barrier counter by 1 on
remote nodes. Second, the node spins until the remote barrier counter is equal to or larger
than the local barrier counter (i.e., until the remote nodes have sent corresponding response
messages for synchronization). Upon completion of spinning, the thread is released back to
user-space to continue execution.

5.3.5 Runtime Support

To utilize the previously described mechanisms, we modified Popcorn’s OpenMP runtime
(which is derived from GNU’s libgomp) to integrate the new MW protocol and prefetching.
Popcorn’s OpenMP runtime provides the ability to migrate threads of a team executing a
parallel region between nodes to take advantage of remote compute resources. Our modifi-
cations to the runtime added/removed 11(+), 3(-) lines of code for replacing futexes with
our primitive, 54(+) for the hash function, and 33(+) for our API library.

Hashmaps for Regions. We use hashmaps owned by every thread to identify when a
thread is entering a previously seen region. This hashmap is different from the one used for
recording written page addresses in subsection 5.3.1.

To identify repeated regions, the DSM layer constructs a key using the current function’s
name, line number and file name. The key and per-thread hashmap can be used to quickly
determine whether the region has been previously executed.

Regions. Popcorn’s OpenMP runtime marks the start of a work-sharing region with calls
to __kmpc_dispatch_init() or __kmpc_static_init(). When entering a work-sharing
region, the thread performs a system call to set the MW region flag inside the thread’s in-
kernel descriptor. At this point the DSM layer decides whether to enable prefetching (if the
region has been previously seen) or logging of read faults (if it is the first time executing the
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region).

When a thread hits the work-sharing region exit point (denoted by calls to __kmpc_dispatch
_fini() or __kmpc_static_fini()), it will unset the MW region flag. At this point the
MW merge phase will begin and propagate writes between nodes.

In between an MW parallel phase begin and end, there may be barriers besides the implicit
end-of-work-sharing barrier. In this case, the DSM does not directly exit the MW region.
Threads reaching the barrier will instead invoke the MW merging phase to force a consistent
memory view across nodes. It is required to propagate barrier state updates across nodes
so that threads on one node see when remote threads arrive at the barrier, thus preventing
deadlock.

Barriers. OpenMP uses explicit and implicit barriers to synchronize threads. We invoke our
OS-level synchronization primitives inside the OpenMP runtime in place of the traditional
SHM barrier to optimize cross-node synchronization, which are upgraded from single node
barriers, GOMP_barriers().



Chapter 6

Evaluation of the MWPF Protocol

In this chapter, we evaluate MWPF (Chapter 5) and present its performance results. A
prototype is built by adapting an OpenMP runtime library leveraging the proposed primitives
in the Linux kernel. A micro benchmark and many real-world applications are used to
evaluate the performance of the MWPF prototype.

Section 6.1 describes the hardware setup for evaluating MWPF. In Section 6.2, we present a
micro benchmark for understanding performance improvement of adopting our synchroniza-
tion design. Section 6.3 evaluates MWPF on different applications which cover a variety of
different memory access pattern. Finally performance results are summarized in Section 6.4.

6.1 Experimental Setup

We evaluate our DSM system through a series of micro and macro benchmarks in order to
understand how the MW protocol, aggressive page pre-fetching, and new synchronization
primitive improve cross-domain performance. Table 6.1 displays our setup. All applications
were executed by saturating the available cores in a given configuration. i.e., 16 threads for
homogeneous x86-64 execution, 96 threads for homogeneous ARMv8 and 16 + 96 threads
for heterogeneous setups. We envision in the near future heterogeneous domains (likely
2 domains) will appear in datacenters. So, we experiment on a X86-ARM combination
integrated via a high speed interconnect to mimic the envisioned future architectures. We
implement our prototype using Linux kernel 4.4.137 and OpenMP 4.5 [34]. In our evaluation,

Table 6.1: Experimental setup.

Machine Intel Xeon E5-2620 Cavium ThunderX
ISA X86-64 ARMv8
Cores 8 (16HT) 96 (48 * 2 socket)

Clock (Ghz) 2.1 (3.0 boost) 2.0
LLC Cache L3 - 16MB L2 - 32MB

RAM (Channels) 32GB (2) 128GB (4)
Interconnection Mellanox ConnectX-4 56Gbps

43
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we answer the following questions. With zero lines of application code changed,

• How does the new cross-node synchronization primitive improve barrier performance?
(Section 6.2)

• How much does the MW protocol improve performance vs. SC? Is the smart region
heuristic able to accurately determine when the MW protocol will and will not improve
performance? (Section 6.3.3, 6.3.2)

• How much performance improvement does aggressive data page prefetching provide?
(Section 6.3.4)

Benchmark Applications. High performance computing (HPC) applications are prevalent
in the cloud. We choose the following applications to represent HPC applications. We select
Blackscholes (BLK) from PARSEC (native input) [149]. BT Class C (BT-C), SP-C, EP-C,
CG-D from the C + OpenMP version of the NAS Parallel Benchmarks [21] (NPB) from
Seoul National University [162]. Due to compiler limitations, CG-D is slightly modified
to dynamically allocate memory instead of using statically allocated memory as originally
written. This does not change the behaviour or the execution time of the application. We
additionally select lava molecular dynamics (LavaMD/LAVA), lower–upper decomposition
(LUD) and Hotspot2D (HS) from Rodinia [44], which is a benchmark suite for heterogeneous
computing. Last, we include an in-house OpenMP version of Kmeans (KM) written by
slightly modifying the pthreads version of Kmeans from Phoenix [175]. These benchmarks
cover a variety of different computation and memory access patterns.

OpenMP loop-based work-sharing regions distribute parallel work by assigning loop itera-
tions to threads participating in the thread team. Because we use a heterogeneous setup
(Table 6.1) where each server consists of different numbers and different types of cores, we
manually skew the ratio of work distributed to each thread based on each core’s relative
performance. For example, for a particular application a Xeon core may provide 3x the per-
formance of a ThunderX core; the OpenMP runtime would give the Xeon core 3x as many
loop iterations in this scenario. This ratio is determined experimentally per application. As
the focus of this work is not to determine the optimal loop iteration scheduler policy, we
leave exploring dynamic scheduling policies as future work.

6.2 Micro Benchmarks

Cross-node Synchronization. To understand the performance improvement gained from
the new synchronization primitive, we ran a microbenchmark that executes fifty thousand
OpenMP barriers in a loop across both nodes. We created a thread team consisting of 16
threads on the Xeon and 96 threads on the Cavium for a total of 112 threads across the
system. The average barrier time for cross-node execution using the original and optimized
barrier is shown in Figure 6.1. For the single-node cases, X86 (16 cores) and ARM (96 cores),
synchronization contention overhead caused by OpenMP barriers is only inside the cache hi-
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Figure 6.1: Average execution time per barrier.

erarchy (as opposed to DSM which causes cross-node page transfers). The remaining two
bars are correspond to the original futex-based barrier as implemented inside the OpenMP
runtime over multiple nodes and barriers instrumented using in-kernel message passing for
synchronization. With the message-passing-based synchronization design, barriers demon-
strate a 3.18x speedup compared to solely relying on shared memory and traditional futexes.
This shows removing redundant page transfers by using an OS-level cross-node synchroniza-
tion primitive provides large speedups versus relying entirely on the DSM abstraction while
providing a flexible design as well.

6.3 Real Applications

To show our performance improvement, we use an kernel-space SC DSM as our baseline [161].
First, this is the closest working prototype on real non-cache-coherent domains even though
they cannot run a multithreaded process across nodes. Plus, SC is always the goal standard
among DSM protocols because when using a weaker memory model, developing and debug-
ging applications is extremely hard e.g. race condition. Indeed, there are some optimized or
relaxed DSM protocols (Section 3.2.1), but they require code modification and only support
heap-allocated objects. Without modification to application code, these DSM systems do
not support legacy applications.
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Figure 6.2: Speedup of benchmarks normalized to single node execution time on the X86
for several system configurations.
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6.3.1 Experimental Results and Explanation

Figure 6.2 demonstrates the speedup compared to single-node execution on X86 for several
system configurations on 9 benchmarks. For each application, the different colored bars on
the x-axis show speedups for single-node X86 with 16 threads (always 1), single-node ARM
with 96 threads, cross-node with execution with 112 threads (16 Xeon + 96 Cavium) with
the SC DSM protocol (SC), cross-node with the MW protocol and no smart regions (MW
no smart), cross-node with the MW protocol and smart regions (MW), and cross-node with
the MW protocol, smart regions and prefetching (MWPF). SC, MW no smart, MW and
MWPF all transparently execute SMP applications on two nodes with 16 + 96 threads for
parallel regions by leveraging Popcorn’s thread migration ability [25]. SC does not use any
of the optimizations described in Section 5.2. Conversely, except SC, all adopt the improved
cross-node synchronization primitive. We present the result of each application as a smaller
plot (Figures 6.2a∼6.2i).

Our final result shows 7 out of 9 applications perform better than single-node execution when
using our DSM design. Among these 7 applications, 6 applications are originally scale-out
across nodes when using SC [25] compared with running on a single node. These 9 applica-
tions experience improved performance when applying the DSM optimizations included in
our design. Compared to SC, MW’s average speedup over all 9 benchmarks is 8% and up
to 22% for BT-C and SP-C. MWPF is up to 33% faster for SP-C and on average 11% faster
than SC. We argue that 8%∼11% average speedup is very significant with the constraint of
not modifying any line of code of existing SMP applications.

6.3.2 MW Protocol and Smart Regions

In many cases, solely using MW without applying the smart region design, MW (no smart),
will make performance worse versus SC – for example, CG-D, BLK, HS, and KM all suffer
from using MW without smart regions. This is because the MW protocol is not overhead-free.
For those regions with only a few invalidation requests, the MW protocol’s overhead will be
larger than the benefits brought by the protocol. This is solved by our smart region design.
Applying the MW protocol and smart region mechanisms together (MW), all benchmarks
except EP, LUD, and LAVA experience performance improvements. The 6 applications
that benefit from smart regions have multiple independent work-sharing regions inside the
benchmark. Some of the regions are not be able to benefit from the MW protocol. Thus
the smart region automatically reverts to SC for these non-benefit regions to avoid excessive
MW protocol overheads. Other regions inside these benchmarks do benefit from the MW
protocol. For example, BT and SP perform matrix operations, which have a variety of
different computations spread across different work-sharing regions and thus some of the
regions have very short computation and others have long computation. Another extreme
example is BLK, which has about 500 iterations of a single work-sharing region. However,
it has very few invalidation requests in each iteration. Hence, the smart region heuristic



48 Chapter 6. Evaluation of the MWPF Protocol

reverts the DSM protocol to SC. Contrarily, for EP and LAVA, we believe smart regions
do not provide significant benefits due to the small number of work-sharing regions (less
than 10) in these applications. Because of this, the smart region heuristic does not gather
enough information before making a protocol determination. LUD has around a thousand
regions. None of invocations of any region are determined as non-beneficial regions. This
means the smart region only brings overheads such as collecting data and making decision
as none of the regions should fall back to SC. Although using smart regions slightly impairs
performance, LUD, LAVA, and EP still run faster using a cross-node configuration than any
single-node case. This shows smart regions preserve stable performance results and provide
moderately better performance in many cases.

6.3.3 MW Protocol with Smart Regions versus SC

BT, SP, LUD, LAVA, KM, and CG all benefit from the MW protocol; 98.63%∼99.9% of all
invalidation messages are batched, allowing applications to enjoy smaller overheads. Among
these applications, LUD is the most interesting case as it has parallel regions benefiting from
running on a cross-node configuration. However, simply using SC for LUD is not faster than
solely running on ARM because the computation benefit afforded by multiple machines is
eliminated due to high communication costs. With the MW protocol, invalidation messages
in LUD are reduced by 99.77% across nodes. And, without using our design, around 4% of the
writes cause page ownerships to keep bouncing between nodes. The redesigned DSM boosts
LUD’s performance by up to 14% compared to using SC. Additionally, when using the MW
protocol, BT and SP run 22% faster versus using SC. Conversely, BLK, HS, EP iteratively
compute using well-partitioned memory access patterns that mostly do not generate many
write faults. While these 3 applications do not benefit from the MW protocol, they do not
have obvious performance degradation as well. This shows even for the worst case of using
the MW protocol, it has very low overhead.

In summary, using the MW protocol with smart regions, BT, SP, LUD, LAVA, KM, and
CG benefit from disabling MW for only a selected few regions while enabling it for others.
The result shows an average speedup over all 9 benchmarks of 8% (with up to 22% for BT-C
and SP-C) versus SC. This result proves that the MW protocol indeed can bring better
performance by delaying and batching invalidation messages until the end of the region (or
barrier) and by solving page false sharing problem.

6.3.4 Profiling Prefetch

When using profile-guided prefetching, the results can be categorized into two types. BT,
SP, CG, LUD, and KM benefit from the profiling prefetch mechanism. We recorded the
number of read page faults reduced in work-sharing regions inside these applications. We
discovered 84%∼99% of total cross-node page faults were eliminated for these applications



6.4. Summary 49

after applying the profiling prefetch design. These pages are aggressively prefetched in
batches before entering the work-sharing region so as to reduce run-time page fault handling
overheads and the latency that the interconnect introduces. HS, however, suffers from 4%
slowdown because our current prefetch implementation requires nodes to synchronize for
prefetching before entering each region. The overhead of synchronizing is larger than the
benefit. The concept of smart regions can also be applied to solve this problem. For, LAVA,
BLK, and EP, prefetching does not provide benefit as the applications have only a small
number of read faults to begin with. Pre-fetching will not bring much benefit but instead
will only add overhead.

6.4 Summary

A prototype implementing operating system level primitives and a slightly modified OpenMP
runtime to adopt the primitives are built for evaluating our design. We presented a micro
benchmark indicating our synchronization mechanism reduces redundant DSM traffic. Nine
applications are selected to represent HPC workloads in the cloud to evaluate our MWPF
system.

• With MWPF, synchronization operations in particular barriers can be 3.18x faster
since MWPF eliminates redundant page transfer cased by traditional futex design.

• The average speedup over all 9 benchmarks for MW is 8% faster and up to 22% faster
versus the baseline SC DSM with the constraint of not changing a single line of code.

• Over the 9 benchmarks MWPF transparently increases on average by 11% and up
to 33% compared with the baseline SC DSM implementation without legacy SMP
program modification.



Chapter 7

The PuzzleHype Distributed
Hypervisor

In this chapter, we propose PuzzleHype which aggregates fragmented resources from mul-
tiple machines to provide a single VM to the guest operating system. We provide several
design principles for building such a system. PuzzleHype software design leverages DEX’s
DSM and thread migration abilities to achieve a single VM illusion. However, this is not
enough, PuzzleHype furthermore proposes three important design principles for aggregat-
ing distributed CPUs, RAMs, devices in a virtualization context. First, interrupts such as
I/O interrupt and Inter-Processor Interrupts (IPI) are used to communicate with CPUs.
This means that PuzzleHype needs to manage interrupts for virtualizing distributed CPUs
located on different nodes. Second, memory synchronization is also important to run ap-
plication transparently. DSM layer is therefore utilized for memory synchronization across
nodes. Plus, EPT violation handler should be aware of and intergrated with the DSM layer.
Last but not least, since devices and computing resources may be located on different nodes,
PuzzleHype uses I/O delegation mechanism to overcome such problems, making our system
more applicable.

This chapter is organized as follows: Section 7.1 describes resource fragmentation problems
in datacenters and provides an overview of how PuzzleHype solves the problems. The design
and architecture of PuzzleHype are presented in Section 7.2. Section 7.3 explains how we
implement such a system in the Linux kernel.

7.1 Overview

Computing resource fragmentation in modern datacenters is a serious problem [56, 70, 73,
136, 151, 176]. Fragmentation arises due to several factors, such as the wide variety of
resource requirements for jobs, an increase in the average amount of resources required for
jobs [52, 126], job placement constraints such as software/hardware dependencies [155, 165],
and the fact that the main unit of resource increment (a physical server) is different from
the unit used to describe job resource requirements (RAM, cores, etc.) [164].

Even with optimized placement methods or attempts to defragment resources through mi-
gration, resource fragmentation still persists [70, 147, 164, 176]. Although hardware disag-
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gregation [66, 78, 110, 111, 164, 176] may be an elegant solution in the long term, it is not
yet a viable solution, and datacenter operators are seeking solutions to reduce fragmentation
given current hardware.

We propose PuzzleHype to address this problem. It transparently distributes the classical
unit of job execution, the Virtual Machine (VM), over fragmented resources belonging to
different physical hosts. This incurs no additional machine purchase, resource usage, or
downtime due to migration. Although our system presents some unavoidable performance
overhead when accessing remote resources, we demonstrate that these slowdowns are much
lower compared to solutions based on overcommitting. Thus, PuzzleHype presents a novel
approach to improving resource fragmentation in datacenters.

PuzzleHype focuses on letting a VM leverage physical processor cores that are scattered
among different host machines interconnected via a network. Toward this aim, we develop
a distributed hypervisor which creates a VM spanning several hosts. In a way that is fully
transparent to the guest OS, the hypervisor implements the distribution of virtual CPUs
(vCPUs), pseudo-physical memory, and I/O devices. The hypervisor runs as one instance
per host, where it allows the creation of vCPUs. This hypervisor leverages a Distributed
Shared Memory (DSM) system implemented in the (Linux) kernel of the hosts, transparently
presenting to a guest a unified and consistent view of a continuous pseudo-physical address
space. Finally, we allow a vCPU to access a remote virtual network card by modifying the
virtio/virtio-net paravirtualized architecture.

By abstracting the distribution of cores, memory, and devices into a system-level hardware
interface similar to that of a classical VM, PuzzleHype is transparent: it can execute fully
unmodified guest operating systems within a distributed VM, although some slight modifi-
cations to these OSes can bring significant performance improvements. More importantly,
PuzzleHype does not require any modification to legacy user-space software, which can run
as-is.

By leveraging scattered resources that naturally occur in the datacenter, PuzzleHype de-
creases fragmentation and thus increases utilization. It can either help to increase through-
put by running more jobs on a given set of hosts, or it can reduce cost and power consumption
by running a given set of jobs on a smaller set of hosts.

PuzzleHype differs from existing solutions by aggregating physically separated resources
into a Single System Image VM. It leverages a popular KVM-based type II hypervisor and
does not require the use of custom type I virtual machine monitor that may be hard to
deploy [42, 180]. Our solution also uses standard networking equipment and does not require
the use of (potentially expensive) special hardware [9, 156]. Recent works also propose to
distribute a VM to run scale-out, compute-intensive workloads [194]. However, PuzzleHype
focuses on reducing fragmentation by distributing all types of workloads, including I/O
intensive ones, such as web servers. We solve similar issues but take a different approach
compared to existing works on disaggregated computing [66, 78, 110, 111, 164]. Indeed, our
objective is the aggregation of scattered resources in existing datacenter hardware, rather
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Figure 7.1: PuzzleHype (yellow) selectively exploits physical hardware resources of multi-
ple server machines. Each traditional VM (red) employs hardware resources from a single
machine.

than the abstraction of hypothetical future disaggregated hardware. In addition, contrary
to these works, we target commodity servers and thus our solution is directly deployable in
today’s datacenters.

7.2 Design and Architecture

With the goals of (A) fast provisioning (faster than VM migration), (B) minimal overheads
(lower than resource overcommitment), and (C) datacenter-wide heterogeneous resource ex-
ploitation, PuzzleHype aggregates slices of fragmented hardware resources from multiple
server machines into a single VM. The proposed system is based on the following design
principles: (A) compatibility with existent software bases, i.e. guest OSes and applications.
(B) minimal overhead and interference to other VMs or applications on a node; (C) high
performance;

Based on these principles, we designed PuzzleHype around traditional monolithic UNIX-like
OSes, full-virtualization, and targeting a type-2 virtualization architecture. Moreover, we
envision PuzzleHype deployed in modern datacenters where servers are connected via high-
speed network technologies (e.g., 56 or 100Gbps). PuzzleHype creates VMs using hardware
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resources belonging to different server machines. Therefore, as depicted in Figure 7.1, a
PuzzleHype VM exploits physical CPUs, RAM, and devices owned by different servers (M1,
M2, and M3 in the Figure).

Operational Principles When a PuzzleHype VM is created, a PuzzleHype instance is
started on each of a set of servers. Any instance is started by specifying the exact hardware
resources such as CPUs, I/O devices, and memory which should contribute to the VM,
including physical hardware descriptions – a VM slice.

One of the instances is responsible for establishing the connection among all and is responsible
for starting the VM execution – thus, it should provide at least one virtualized CPU. Such
an instance will be started with additional information about the other instances (hosts
IP address only in most cases), as well as the disk image(s) and eventually the kernel and
boot-loader to be executed. We call this instance a bootstrap VM slice on origin node; other
instances are called companion VM slices on remote nodes. Despite the VM bootup phase,
all VM slices are peers in PuzzleHype.

Grand Architecture PuzzleHype is a type-II multiple-hypervisor VMM [141]. Each VM
slice runs on a different PuzzleHype instance. Instances communicate between each other via
messages. The communication layer is implemented at the host OS kernel level, similarly to
multiple-kernel OSes (Popcorn [25], Barrelfish [27], etc.), in order to reduce the user-kernel
switches and improve performance. Atop the communication layer, PuzzleHype implements
a set of distributed hypervisor services to provide the illusion of a single VM among multiple
physical machines. First and foremost, the entire VM RAM (vRAM) is made available on
each physical machine by distributed shared memory (DSM). Secondly, VM CPUs (vCPUs)
may be created or migrated on different physical machines, and physical CPUs (pCPUs) do
not have to be homogeneous. Finally, VM devices on any physical machine should be used
by software running on any vCPU, such as interrupt controllers and timers not part of a
vCPU. Note that each of these objects requires a different consistency level, and we envision
their implementation in kernel-space provides higher performance.

VM Orchestration. In the datacenter, PuzzleHype does not take any decision itself about
what servers will be used by a VM. A datacenter scheduler/orchestrator decides on what
servers a PuzzleHype VM will run, and for each server the total amount of resources needed.
Such a scheduler knows about the managed cluster’s already allocated hardware resources
and upcoming resource requirements of incoming tasks. Hence, we decided not to integrate
placement-like functionalities in PuzzleHype. However, PuzzleHype does require that data-
center schedulers be rewritten, because current schedulers cannot exploit partial resources.
Nonetheless, this is not that different from supporting heterogeneity. We left this aspect as
future work.
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The rest of the section is organized as follows. subsection 7.2.1 defines how PuzzleHype
manages the system memory on host. subsection 7.2.2 describes how it aggregates CPU
among different nodes. subsection 7.2.3 explains how I/O devices are virtualized in such a
system.

7.2.1 Distributed vRAM

Modern type-2 hypervisors hold the guest pseudo-physical address space as a subset of the
virtual address space of a host user-space application. Thus, PuzzleHype applies OS-level
software DSM to keep that part of the address space consistent among different machines,
providing the illusion of shared pseudo-physical memory for the guest OS. Parts of the
address space that do not belong to the guest pseudo physical memory area usually belong
to emulated devices, and thus are handled outside of the DSM protocol.

Despite heavy criticism of software DSM in the past for its overhead, we believe that the
high-speed interconnect available in the datacenter makes DSM a viable option. Moreover,
we make the following observations. First, the hypervisor knows a lot about the content of
the guest physical address space, especially about CPU-dependent memory areas, including
the memory location of the MMU, interrupt table, etc. In SMP OSes, these are shared
among all CPUs, and are highly used. Therefore, it is of the utmost importance to avoid the
DSM protocol from slowing down their access. Thus, we propose a contextual DSM protocol
that leverages information about the memory content to reduce DSM traffic.

With the goal of reducing DSM traffic, PuzzleHype informs the guest software about the non-
uniform access latencies by exposing a NUMA topology related to the placement of hardware
resources on different server machines. In fact, each physical server machine provides to a
PuzzleHype VM a chunk of physical memory. When a server provides a physical chunk,
the server is the DSM home-node for that chunk. Other than a chunk of memory, each
PuzzleHype VM slice is characterized by a total amount of memory that can be used by
the DSM protocol to eventually cache remote memory. In this way, other processes in the
system can run without PuzzleHype disturbance.

7.2.2 Distributed vCPU

A vCPU runs in a thread context in a modern type-2 hypervisor. Hence, PuzzleHype requires
either the capability of spawning a thread on another machine or thread migration [25].
Threads can be spawn on one host and migrated to another machine later on. We believe an
implementation should pick one or the other based on the features offered by the host OS.

Each vCPU has its own set of registers, which may include a local interrupt controller
and timers (e.g., x86’s Local Advanced Programmable Interrupt Controller (LAPIC) timer).
There is usually no shared state among different vCPUs if not for processor-wide registers,
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Figure 7.2: Virtual Network Devices Delegation.

such as some MSR registers in x86. PuzzleHype keeps the state of such processor-wide
registers consistent among PuzzleHype VM instances. Finally, CPUs may communicate
between each other via IPI, including MSI. Thus, each PuzzleHype VM instance keeps track
of the node of each vCPU via a vCPU location table. IPIs to remote vCPUs are converted
into messages to PuzzleHype VM instances.

Distributed Virtual Programmable Interrupt Controller (vPIC) Despite the local
interrupt controller of CPUs, one or more non-local interrupt controllers may exist in a VM
(e.g., x86’ IO-APIC). As this non-local interrupt controller is usually an interrupt broker and
interrupts are messages on our communication layer, we keep this component non-replicated
and on the host that has the highest number of physical hardware devices. The alternative
design is to implement this component as a distributed one.

7.2.3 Distributed Virtual Devices

Distributed virtual device access is based on the concept of delegation, i.e., guest VM software
running on any PuzzleHype instance should be able to access any device exposed by the VM,
but the actual communication with the physical device happens only on the PuzzleHype
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instance running on the same physical server as the device.

Devices may communicate with the CPU either via memory-mapped IO or IO ports. We
consider only the former, although our design can be extended to support also the latter.
Specifically, we support PCIe-based devices by establishing a distributed PCIe root complex
and devices emulator. Thus, virtual devices do not work via the DSM protocol. At the
same time, as many I/O devices including PCIe devices work by instantiating ring buffers on
RAM memory, such ring buffers are managed by the DSM, but with optimizations (explained
below).

In order to bound our engineering efforts, we herein focus on paravirtualized hardware (based
on VirtIO). We believe this is not a limitation of our design as it can be trivially extended to
full-hardware virtualization. We discuss architectural details of the network interface card
and a serial console as representative examples.

Networking Figure 7.2 shows how the proposed architecture leverages the host NIC. A
paravirtualized network device exposes simple TX/RX ring buffers that the guest uses to
enqueue or dequeue packets going to or coming from the physical network card. Because
these ring buffers are on shared memory, the DSM protocol maintains them consistently
across kernel instances. However, the host kernel that enqueues packets on these rings acts
like an additional node for the DSM. Therefore, at any point the host kernel is writing,
it needs to be the only one that owns the page of data. We observe that this can be very
expensive, so we integrate the DSM and the paravitualized network device in order to release
pages as soon as they are no longer used.

Moreover, this solution allows VM slices that do not own a network device to delegate the
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transmission of network packets to other VM slices by simply writing a packet on DSM and
sending an interrupt to notify a new packet has been written.

The paravirtualized console is working similarly to the paravirtualized networking.

7.3 Implementation

We implemented a prototype of PuzzleHype (Figure 7.3) based on Linux kernel 4.4.137
using Intel processor architecture. To avoid reinventing the wheel, we based our implemen-
tation on different Linux kernel components from the Popcorn Linux project [161], including
thread/process migration, kernel-level DSM, and the messaging layer. Our target Type-2
hypervisor is Linux/KVM for x86-64 platforms, and we extend kvmtool (commit c57e001)
as the user-level tool for creating and managing guest VMs. Our implementation accounts
for a total of 9,500 LoC in the OS kernel, and 4,100 LOC in user-level tools.

7.3.1 DSM and Communication Layers

We adopt DEX’s KDSM (Section 2.2) and Xfetch’s messaging layer over IB/RDMA (Chap-
ter 4) to build PuzzleHype.

A distributed virtual machine requires the host to keep data content consistent across nodes.
Such a single VM address space illusion on multiple nodes can be implemented by DSM.
There are two main categories of DSM, hardware DSM and software DSM (Section 2.1). For
being general-purpose, flexible, and portable, our work does not consider hardware DSM.
The work instead leverages software DSM.

There are two different software DSMs implementations, user-space DSM (UDSM) and
kernel-space DSM (KDSM). UDSM is more commonly used and easier to develop. How-
ever, it requires redundant mode switches between host kernel and user modes. Recent
VMes have been putting efforts on reducing user-kernel mode switches. Examples are virtio-
net and vhost-net (Section 7.2.3). KDSM, on the other hand, does not bring redundant
user-kernel mode switches. EPT violation and page fault handler naturally sit in the host
kernel space. For performance reasons, there is no need to move the DSM implementation
inside page fault handler to the userspace. We argue that adopting KDSM can bring better
performance compared with running SDSM.

DSM is well-known for inter-node communication latency. High speed interconnections such
as InfiniBand (IB) and remote direct memory access (RDMA) [181] technologies helps the us-
ability of DSM [132, 138]. PuzzleHype’s communication layer exploits remote direct memory
access (RDMA) over high-speed InfiniBand (IB) to minimize inter-server messaging latency
and increases throughput.
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Although (k)DSM can synchronize user space data, it cannot synchronize data structures
on host kernels. This will cause information asymmetry across nodes. Synchronizing host
kernel information, including vCPU 7.3.3 and IO 7.3.4 metadata, is of important and nec-
essary. Plus, memory information asymmetry happens at secondary page table and TLB
as well 7.3.2. These are huge components must be addressed by the system and will be
explained soon in the following subsections.

7.3.2 Distributed VM Memory

Thus, our DSM provides sequential consistency and allows multiple readers and a single
writer access to memory.

DSM handles the memory consistency of the entire guest virtual RAM. Therefore, unlike
traditional DSMs that handle host page table faults only, our DSM also needs to handle
EPT faults. In fact, an EPT violation may trigger a DSM request for a remote page. After
the DSM protocol fetches the corresponding page, the EPT mapping has to be fixed, and
the VM may resume executing. Also, traditional DSM only invalidates the host page table
by making the page table entry (PTE) non-present and flushing the corresponding TLB.
However, with a second level of translation, our DSM needs to invalidate EPT’s SPTEs and
flush the secondary TLB as well.

Figure 7.4 shows our DSM in the case of two servers for simplicity, but this can be extended
to any number of servers. A guest OS page fault, translating Guest Virtual Address (GVA)
to Guest Physical Address (GPA), is handled by its MMU page structure as-is 1 . Once
fixed, the guest VM will then access the corresponding GPA. The main difference is that
accessing GPA now may cause a EPT fault on the host. The GPA is emulated by Host
Virtual Address (HVA) after all. EPT involves a second-level page table, the Extended Page
Table, used to map from GPA to HPA. The table is maintained by VMM/hypervisor. If the
EPT can find the mapping in the table 2 , it directly accesses the Host Physical Address
(HPA) without causing a VM exit. Otherwise, an EPT violation occurs and triggers a VM
exit 3 . Host kernel tries to translate the GPA to GFN and use the memory slot info to
convert it back to HVA 4 .

Once the HVA is determined, the host OS performs host page table walk to get the HPA 5 .
During the host page table walk, the DSM will be triggered if the page data is not located
on the local node 6 . The DSM will grab the remote page content or invalidate remote
permission and finally fix the permission locally. In the end of the EPT violation fault
handler, EPT saves the map from GPA to HPA to provide better performance for accesses
at a later time 7 .

Moreover, traditional DSM only invalidates host page table by making the Page Table En-
try (PTE) non-present and flush the corresponding TLB. However, this is not enough in
distributed hypervisor memory management. The system needs to invalidate EPT’s SPTEs
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Figure 7.4: PuzzleHype DSM functioning principles.

and flush the secondary TLB as well. These SPTEs can be recreated by the EPT violation
routine. Plus, it will restart any ongoing secondary page faults.

Our EPT violation routine keeps retying DSM protocol until it gets the page. While retrying,
the implementation must follow the locking semantics in the page fault handler. That
is, between each retry, there should be a time window without holding the VMA lock.
Otherwise, this breaks memory management locking semantics and thus a deadlock will
happen. After getting the host physical page, the host kernel then fixes the EPT mapping
and enters the VM, resuming the guest mode.

In addition, in the EPT violation path, the host kernel may ask for multiple pages at once.
A DSM implementation constraint is observed if node A tries to fetch a page which has been
fetched by node B, and node B is still fixing other pages after the page. In this situation, the
page permission invalidation becomes very complicated and deadlock could happen easily
if there is no sophisticated protocol. So, our current implementation simply disables the
prefetch mechanism in the EPT violation routine.
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7.3.3 Migrating vCPUs

Instead of spawning remote vCPU threads, our prototype lets the Bootstrap VM slice create
all vCPUs threads locally and then migrate vCPUs threads to Companion VM slices. We
adopt Popcorn’s task migration to distribute vCPUs among multiple server machines. How-
ever, migrating vCPU threads is not enough to provide distributed vCPUs. We augment
the existent thread migration to account for additional vCPU-related metadata as described
above. This data doesn’t need to be kept consistent among all server machines. The proto-
type maintains on each VM slice instance a replicated array that tracks the position of every
vCPU, and is updated at each migration event. Each VM slice instance is therefore aware
of where each vCPU is, and this is fundamental for the functioning of the communication
layer.

Interrupts vCPU threads are the recipients of interrupts. Interrupts are transformed into
messages transmitted over the communication layer. When the destination of a message is
a VM CPU, a message is dispatched to a vCPU thread. In the prototype, we modified the
hypervisor routines for interrupt dispatching in order to check if the target vCPU is local
or remote. If it is remote, a message with the description of the interrupt event is sent to
another VM slice instance. Otherwise, the traditional code path is followed.

In Intel processor architecture, these interrupt messages are achieved by the Advanced Pro-
grammable Interrupt Controller (APIC). In symmetric multiprocessor (SMP) systems, the
APIC consists of many local APIC (LAPIC) as an equal number of CPUs and a I/O APIC.
Inter-Processor Interrupts (IPI) are triggered by having the LAPIC write to the Interrupt
Command Register (ICR).

When a vCPU tries to send an IPI to another vCPU, it first traps to VMM. The VMM
then injects the interrupt into the corresponding vCPU’s host data structure. VMM then
pauses execution of the target vCPU in the guest VM if the vCPU is running. The target
vCPU injects the interrupt by writing its LAPIC ICR on VMM and then enters the guest
VM again. Upon entering the guest VM, the target vCPU receives an IPI notification and
then trigger the corresponding interrupt routine inside the VM. Our system forwards IPI
messages when the source vCPU and target vCPU are not on the same node. The system
hence has to maintain a mapping table to convert from vCPU identity (ID) to KVM vCPU
kernel data structure.

7.3.4 Distributed VM Devices

As disclosed above, we rewrote most virtio-based and emulated kvmtool devices such as
console, PCI, and network devices (all but not 9p, balloon, SCSI, VESA, BLK) in order to
make them work atop the communication layer. Thus, a device physically located within a
specific VM slice can be used by all VM slices. More details follow.
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Network The prototype leverages Linux’s vhost-net as its foundation for networking. As
mentioned in Section 7.2.3, the vring data synchronization is transparently covered by the
DSM. Remote nodes do not have to reallocate vrings on its node. Even if our distributed PCIe
layer takes care of the physical PCIe address ranges, and the DSM replicates the physical
memory content, we still need to properly handle the notifications between the guest and
the host in a distributed environment. Thus, each node has to install the corresponding file
descriptors (ioeventfd and MSI irqfd) to notify the guest and host to access the rings.

In the network sending routine, a VM exit trap happens on a host node when the guest
VM has a network package in the send queue from the front-end virtio network driver. The
front-end driver puts the package into the vring and passes the vring index to the hypervisor.
The hypervisor then signals the vhost network worker via ioeventfd ( 1 2 in Figure 7.2).
The awakened vhost network worker allocates a Linux network buffer (skb) and copies data
from user space to the skb. After data is delivered to the skb, the process will be taken over
by the host kernel network stack and eventually sent out the network package via the NIC.

In the network receiving routine, MSI IRQ injection support is required. Once the host NIC
receives a package, it detects if the destination is a guest VM. If so, it copies the data to
the RX vring buffer and notifies the guest VM to check the vNIC package. irqfd is used for
injecting MSI interrupts to the VM from the host ( 3 4 in Figure 7.2). The MSI interrupt
signals a vCPU to check the vring which emulates a network buffer on a NIC. Eventually
the vring has to be dequeued from the right vCPU. Once the data is touched, the DSM may
cooperate by bring the network received data from the host. Our prototype currently always
injects the interrupt to vCPU0 simply because the current implementation does not predict
the network package belongs to which vCPU. Another way could be the origin host node
can peek the package and directly notify the right vCPU. This may reduce redundant IPIs.

Serial Console Although this is not performance critical, without supporting console, it is
almost impossible to develop or debug the system. Considering Secure Shell (SSH) requires
network support to run, before things are perfectly working, it is still good to have the
console working. Virtual console is achieved by virtIO mechanism as well. The main idea is
to let VCPUs on host node handle tasks related to serial console.

Furthermore, to help the serial working correctly on the Bootstrap VM slice, the guest VM
sets serial port IRQ affinity to be on a vCPU located on the Bootstrap VM slice. In our
implementation we set it on origin node. Additionally, the system has only one terminal
worker thread emulating a serial Universal Asynchronous Receiver-Transmitter (UART) chip.
Only the host origin node can receive serial input and output. Serial echo needs to take user
input (RX) and displays it (TX) on the console. It polls to catch the input characters and
saves them into the emulated serial chip’s buffer. It then injects an interrupt into the guest
VM and notifies the VM to handle the interrupt. The guest VM gets an interrupt and
moves the buffer data from the emulated chip. Once it is done, it will reschedules the rest
of TeleTYpewriter (TTY) related works to any CPU available in the system. This causes
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a VM exit and eventually sets the interrupt pin level to HIGH. However, in distributed
hypervisor systems, there is only one emulated chip located on origin node. If the work is
completed at remote node and trapped to the VMM on a Companion VM slice, there is no
emulated chip can help the process. That means PuzzleHype needs to make sure the work
will not be handled on any remote VCPU. IRQ affinity does not help as well since the work
is redistributed in the interrupt handler. Thus, the system forces such TTY handling work
can be only dispatched to the VCPUs on origin node in that the thread emulating the chip
is located on origin node.



Chapter 8

Evaluation of PuzzleHype

This chapter evaluates PuzzleHype by using a combination of micro and macro benchmarks.
The web server stack and serverless computing frameworks are software used for the bench-
marks. Since our system is distributed which incurs a little overhead to our mechanism/de-
sign, we want to understand the overhead. Two micro benchmarks are proposed; one for
demonstrating the EPT faults overhead and another for presenting the network delegation
overhead. Furthermore, one High Performance Computing (HPC) macro benchmark NPB
suite is selected to evaluate our system performance for computation intensive workload.
Last, a web page network stack and a serverless computing framework are used to evaluate
how PuzzleHype can help and perform for cloud applications in the datacenter.

Section 8.1 shows our hardware configuration for evaluating PuzzleHype. Section 8.2 presents
some micro benchmarks to better understand the system overhead in particular EPT faults
and network delegation. Section 8.3 evaluates PuzzleHype on real network application stacks
such as network application stack and serverless computing framework. Section 8.4 summa-
rizes the performance results.

8.1 Experimental Setup

To evaluate PuzzleHype, we created distributed VMs on top of several physical hosts, whose
hardware characteristics can be found at the top of Table 8.1. Concerning the VMs, while
we vary the number of vCPUs and their distribution amongst hosts, we fixed the charac-
teristics described at the bottom of Table 8.1. For all experiments, vCPUs are pinned on
pCPUs. We use micro-benchmarks to evaluate the cost of accessing remote resources (mem-
ory and I/O). We also measured the overall performance of PuzzleHype by running real-world
compute-/memory-intensive (NAS Parallel Benchmarks) and I/O-intensive (LEMP server,
serverless framework) benchmarks representative of modern datacenter workloads. For these,
we compared the performance of PuzzleHype’s distributed VMs to overcommitting vCPUs,
a technique that allows fitting additional jobs on a saturated (and potentially fragmented)
cluster.
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Table 8.1: Host/Guest setup.

Host Machines Configuration
Machine Intel Xeon E5-2620
ISA X86-64
Cores 8 (16HT)

Clock (Ghz) 2.1 (3.0 boost)
LLC Cache L3 - 16MB

RAM (Channels) 32GB (2)
Interconnection Mellanox ConnectX-4 56Gbps
Host Kernel Linux 4.4.137
Guest Virtual Machines Configuration

Guest Kernel Linux 4.4.137
RAM 20GB
Disk Custom Ramdisk (raw format)
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Figure 8.1: EPT traffic.

8.2 Micro Benchmarks

DSM Fault Traffic. The DSM overhead in PuzzleHype takes the form of relatively costly
EPT faults due to the implemented consistency protocol. We designed a micro-benchmark
to understand that overhead. We created a program to read and write in a loop at a
configurable location in a virtual page. By tuning this location and running one instance of
this program on several vCPUs of a distributed VM, we created 3 scenarios involving: (1)
true sharing, (2) false sharing, and (3) no sharing between remote vCPUs. Note that the no
sharing case is similar to running on a non-distributed VM. We ran the experiment on VMs
having 2 to 4 vCPUs, each from a separate physical host, and measured the loop execution
time.
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Figure 8.2: Network delegation overhead.

Results are presented on Figure 8.1, with the loop execution time on the Y-axis normalized
to the “no sharing” execution time. When remote memory is accessed, the loop execution
time increases linearly with the number of nodes involved, i.e., it doubles for 2 nodes, triples
for 3 nodes, etc. False and true sharing cases result in the same behavior; the same physical
page is accessed.

Network Delegation Overhead Another overhead from the system is I/O delegation,
specifically network delegation. To evaluate that overhead, we compare the network through-
put of a NGINX web server where the worker runs (1) on a vCPU (vCPU0) that is local to
the host’s virtual switch used to communicate with the client and (2) on a vCPU (vCPU1)
that is on a remote node. The client runs ApacheBench (AB) [2] on a node on the same
1Gb Local Area Network (LAN). It sends 1000 requests with 10 concurrent connections to
the web server. We vary the served page size and measure throughput.

Results are in Figure 8.2, where throughput on the Y-axis is normalized to the throughput
when running on vCPU0. Although the slowdown is very high on small requests (40-50x
below 16KB), it decreases to 10x when serving 1 MB or more. Network delegation is thus
more efficient on throughput-oriented workloads and should probably not be used for latency-
sensitive applications.

8.3 Real-World Applications

With PuzzleHype, a datacenter operator can pack more jobs on a saturated but fragmented
cluster. A common solution to achieve this goal without PuzzleHype is to overcommit re-



66 Chapter 8. Evaluation of PuzzleHype

0%

50%

100%

150%

200%

250%

300%

350%

ep.A bt.A lu.A sp.A ua.A cg.B ft.B mg.B is.C

Sp
ee

du
p 

ov
er

co
ns

ol
id

at
io

n 
on

 1
 p

C
PU

 (%
)

2vCPU 3vCPU 4vCPU

Figure 8.3: NAS Parallel Benchmark results.

sources. We evaluated PuzzleHype on real-world applications by comparing the performance
of distributed VMs versus traditional VMs with overcommitted vCPUs. We varied the num-
ber of vCPUs to be 2, 3, and 4. In the case of the distributed VM, each vCPU runs on a
different host.

High Performance Computing (HPC) Applications. We ran the NPB suite, select-
ing for each benchmark a data set size which would result in an execution time of at least
10 seconds. For each benchmark and VM setup, we run in parallel one instance of the serial
version of the benchmark on each vCPU and measure the total execution time of this set of
instances.

The results are shown on Figure 8.3. The y-axis represents PuzzleHype’s distributed VM
speedup normalized to the overcommitting case where a traditional VM’s vCPUs are consol-
idated on a single on pCPU. Speedup ranges from 60% to 355% and the average is 285%. EP,
BT, LU, SP, UA, and CG have significant performance improvement. On the other hand,
IS sees a slowdown. We notice that IS includes a memory allocation phase that is longer
than the subsequent computation phase and we estimate that the slowdown is due to DSM
contention that results from kernel data structure synchronization during that allocation
phase. FT and MG also share the same problem but unlike IS, their computation phase is
long enough to amortize the overhead.

To conclude, for most of the applications requiring high computation power, PuzzleHype can
efficiently increase performance compared to overcommitted scenarios. OS-intensive tasks,
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such as memory allocation, bring more overhead due to kernel-level DSM contention.

Network Application:
LEMP Stack. LEMP [3] is a open-source web service stack consisting of NGINX [5],
PHP [8], and MySQL [4]. In this setup, NGINX acts as a front-end HTTP server receiving
requests from the client. PHP is invoked in response to requests, fetching back-end data and
performing various processing operations to create the web page that will be sent back to the
client. MySQL is a database management system for storing data and providing interfaces
for services such as PHP. In this experiment, we do not use the database.

We run the LEMP stack on the distributed VM as follows. First, NGINX is configured
with a single worker thread running on the vCPU that is local to the virtual switch used
by the VM to access the network (VCPU0), so as to avoid network delegation overheads
as demonstrated in Section 8.2. Upon receiving a client request, the NGINX worker thread
invokes PHP which runs a worker thread on each vCPU except the one running the NGINX
thread. In other words, the 2 vCPUs configuration has 1 NGINX worker on the first vCPU,
and 2 PHP worker on the other. Similarly, the 3 vCPUs configuration has 1 NGINX worker
on the first vCPU and 3 PHP workers on the others.

We set the served page size to 2MB, the average page size on the web according to recent
statistics [19]. We vary the amount of computation realized by PHP by adding a busy loop
of configurable length in the PHP code invoked upon reception of a client’s request that
leads to the building of the served page. We vary these PHP computations to last from
10ms to 400ms, which is relatively representative of modern servers’ response times [58],
averaging from 200 to 500ms [134]. AB is used as the client, running on the host node that
runs the pCPU where the vCPU running the NGINX worker is mapped. AB is configured
to make 100 requests with 10 concurrent connections. We collect the reported throughput
and compared PuzzleHype’ results to an overcommitment scenario where all vCPUs run on
a single pCPU.

The results are presented on Figure 8.4, where the throughput speedup on the Y-axis is
normalized to the throughput of the overcommitment case. When the PHP processing
time is short, our system does not perform well due to expensive communication between
NGINX and PHP workers. Within the guest, this communication goes through a local socket
between the NGINX worker and the PHP workers. This is obviously slower in the case of the
distributed VMs, as the two communicating processes are running on two separate physical
machines.

Starting from 100ms of PHP processing per request, the communication overheads start to
become lower compared to the pure computing time, and are amortized by the benefits of
leveraging remote computation resources in parallel. The speedup increases with both the
demand for computation time (PHP processing) and the number of vCPUs. For example
with 4 vCPUs and a 400ms PHP processing time, the speedup is 225%.
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Figure 8.4: Customized LEMP - NGINX and PHP with an adjustable busy loop.

We also relaunched these experiments with a different page size of 150 bytes and obtained
similar results.

Serverless Computing Framework. Serverless computing, also known as Function-as-a-
Service, is an emerging programming paradigm where users upload and execute small pieces
of code, or named emphfunctions, in the cloud. Due to many benefits such as scalability by
design and truly on-demand pricing, the use of serverless computing is expected to skyrocket
in the years to come [93]. All main cloud providers are already offering FaaS solutions [15,
72, 125].

For this experiment, we used the open-source OpenLambda [82] serverless computing frame-
work. In a PuzzleHype distributed VM, we run the OpenLambda server configured to spawn
functions upon reception of a HTTP request. Functions can be spawned on each vCPU of
the VM. All functions run the same python code, that (1) fetches a series of pictures as a
compressed file from a database on the same LAN via the network, then (2) runs a face
detection algorithm [68] on these images and returns the number of detected faces to the
client. This behavior is typical of serverless computing applications.

A client, running as a separate machine on the same LAN as the host, sends requests to
trigger function execution. We vary the number of parallel requests to be equal to the number



8.3. Real-World Applications 69

6% 5% 4%

72%

35%
30%

167%

206%
219%

150%
174% 173%

0%

50%

100%

150%

200%

250%

2vCPU 3vCPU 4vCPU

Sp
ee

du
p 

ov
er

 o
ve

rc
om

itt
in

g 
(%

)

Number of vCPUs (each from a separate physical host)

Download Extraction Face detection Total

Figure 8.5: OpenLambda breakdown.

of vCPUs: 2, 3 and 4. We report a breakdown of the server-side execution times average
speedups including downloading the pictures, compressed file extraction, face detection, and
total time. The results are presented in Figure 8.5.

All results are normalized to the overcommitting cases where 2, 3 and 4 vCPUs are consol-
idated on the same pCPU. The speedup increases with the number of vCPUs because the
overcommitted VM sees an increases in its execution time as it needs to run more processing
on the same number of computing resources (1 physical core). Regarding the extraction
time, even if there are write operations to different pages, the first write to a new region on
a remote node always causes write-exclusive invalidation messages by DSM, contributing to
the slowdown of the extraction as the number of vCPU increases.

The overcommitting cases do not suffer from network delegation overhead. For this reason,
our download time is prolonged and the total improvement less notable.

Although the I/O delegation mechanism can be optimized, aggregating remote CPU re-
sources brings performance improvement in general. The face detection phase is consider-
ably sped up (up to 219% for 4vCPU) with PuzzleHype. Each vCPU processes on its own
images parallelly. It also dominates the most time of the lambda function, and the overall
performance still outperforms than the overcommitting cases (∼174% for 3/4vCPU). This
indicates our system can be beneficial in datacenters or serverless computing systems.
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8.4 Summary

We evaluated PuzzleHype’s performance at the scale of a rack, over a set of micro- and
macro-benchmarks.

• Compared with running on a single machine, in PuzzleHype, accessing shared memory
regions in guest VM is no longer close to free overhead. Whereas, in PuzzleHype if more
than one pCPUs are on different machines, extra DSM overhead may be generated.
According to our micro benchmark, the overhead almost linearly increases with the
number of nodes concurrently accessing shared data increases.

• Network delegation provides a mechanism for a remote vCPU which does not have
a host physical NIC to send a network package as long as there is one physical NIC
in the system. Our micro benchmarks show there is IO delegation overhead. When
transferred data length per request is larger, the more efficient it is. We also found
when

• The results show that with 4vCPUs, PuzzleHype versus overcommitment:
– SNU NPB suite representing HPC workload demonstrates a speedup up to 355%

and on average by 285%,
– Customized LEMP, a web service stack, presents a speedup of 225% with 400ms

PHP processing time,
– OpenLambda, a serverless computing framework, experiment provides a 173%

speedup.
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Conclusions

This chapter summarizes the main contributions of the dissertation and draws conclusions.
Additionally, it proposes directions for post-preliminary research.

Section 9.1 revisits the dissertation’s contributions. Section 9.2 presents post-preliminary
examination work.

9.1 Contributions Revisited

With single-threaded CPU performance reaching a limit, chip vendors are designing a vast
array of novel computing architectures to accelerate performance. Among many design
points in the architecture space, an interesting point that is being studied by the academic
research community and one that is also gaining increasing traction in the commodity setting
is heterogeneous-ISA multiprocessors with multiple cache-coherency domains and no inter-
domain coherency. This dissertation investigates the abstraction of software distributed
shared memory for such architectures in order to improve their programmability. DSM gives
the illusion of an unified, globally consistent single address space for such architectures,
enabling them to be programmed as a symmetric multiprocessing machine.

The dissertation presents three contributions. First, the dissertation presents the Xfetch
mechanism for the DEX DSM system, leveraging high performance network interconnects
such as the InfiniBand network infrastructure. Xfetch exploits spatial locality, and aggres-
sively and sequentially prefetches pages before they are accessed, improving network through-
put and DSM performance. Our experimental evaluations using an eight-node, 56 Gbps
InfiniBand-based rack-scale system reveal that, with a maximum 32KB payload size per
message, Xfetch achieves up to 142.74% speedup and up to 58.56% lesser remote page faults
over the baseline DEX that does not prefetch page data.

Second, the dissertation presents the MWPF DSM protocol that leverages OpenMP’s fork-
join regions where weaker consistency semantics are allowed by delaying synchronization
updates, which permit greater parallelism and higher performance. Additionally, MWPF
includes a number of optimizations including delaying and batching invalidation messages
and performing cross-domain synchronization with low overhead. Experimental evaluations
using a two-node, Intel Xeon x86-64/Cavium ThunderX ARMv8 servers interconnected using
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a 56 Gbps InfiniBand network reveal MWPF’s effectiveness: average speedup of up to 11%
over the baseline DSM implementation.

The dissertation’s third contribution is a type-2 distributed hypervisor called PuzzleHype
that leverages DSM of host operating systems to provide a single address space to guest op-
erating systems in a distributed virtualized setting. This allows a single virtual machine to
use fragmented resources such as CPU cores, memory, and I/O devices of different physical
machines, improving resource utilization. To transparently utilize CPU and I/O resources,
PuzzleHype integrates multiple physical CPUs into a single VM by adopting thread migra-
tion and supporting interrupt forwarding. In addition, PuzzleHype allows a vCPU to access
remote I/O resources (e.g., NIC) by supporting I/O delegations. Our experimental eval-
uations reveal PuzzleHype’s effectiveness over a baseline over-provisioning scenario (which
is otherwise necessary due to resource fragmentation): a speedup of up to 355% (average
is 285%) for the SNU NPB suite, 225% for a customized LEMP stack, and 173% for the
OpenLambda benchmark.

At its core, the dissertation’s contributions demonstrate that DSM performance can be sig-
nificantly improved by leveraging state-of-the-art, high-speed network infrastructures and
by an array of software innovations including reducing the number of DSM messages, min-
imizing false sharing, aggressively prefetching data, and redesigning mechanisms to move
memory-intensive operations out from DSM subsystems such as synchronization operations
and shared data structures.

9.2 Proposed Post-Preliminary Examination Research

We propose three directions for post-preliminary exam research. These are discussed as
follows.

9.2.1 Mitigating PuzzleHype DSM Overhead

In Chapter 8, we found current PuzzleHype design suffers a huge slowdown caused by the
DSM layer. The DSM overhead can be very high in some cases and thus there is no benefit
of using such a DSM system.

We propose multiple directions to mitigate PuzzleHype DSM’s overhead. First, guest oper-
ating system designs that share as minimal information as possible can mitigate the overhead
due to DSM’s false sharing. Microkernel operating systems that follow a share-nothing model
are good guest OS candidates. We propose to experiment with microkernel OSes (e.g.,
L4Linux [103] and MINIX3 [84]) or multikernel OSes (e.g., Barrelfish [27]) or replicated-
kernel OSes (e.g., early version of Popcorn Linux [97]) as guest OSes for PuzzleHype.

Another direction to optimize DSM performance is to modify monolithic OSes. Popular
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monolithic OSes such as Linux, BSD, and the like, follow a share-everything model. It may
be possible to slightly modify them to optimize their DSM traffic when they are used as a
guest OS. To do this, we must first identify the root causes of significant DSM traffic. For
example, a single page in the (guest OS) kernel memory that is concurrently accessed by
multiple (guest) OS/node instances can cause large amounts of DSM traffic. To understand
such causes, a “tracing tool” at the host OS-level that tracks page accesses of guest OSes in a
distributed virtualization setting that uses DSM is necessary. This tool must be implemented
in the host OS as only the host OS has a full view of the memory layout. Furthermore,
knowing which line of code generates what traffic is not enough. To better understand
whether those traffic is due to true or false page sharing, the tool must walk the guest OS
stack to identify the call chain in the guest OS. This gives more information to characterize
the run-time behavior and thereby pinpoint the sources of DSM traffic and the nature of
page accesses. We propose to develop such a tracing tool, use it to debug the DSM traffic,
and optimize the DSM overhead.

9.2.2 Improving PuzzleHype’s Para-Virtualized I/O Device Sup-
port

PuzzleHype’s current implementation leverages KVM’s paravirtualized network drivers and
DSM to synchronize data located in vrings such as skb (Section 7.3.4). This is a very in-
tuitive design and indeed reduces significant programming effort. However, it also harms
performance to some degree. For instance, the size of skb is less than the minimal synchro-
nization unit of the DSM layer (4Kb page in PuzzleHype). To deal with this, we can create
a page-aligned vring data structure.

Another solution is to move vrings out from the DSM layer. Each host maintains its own
individual vrings. Since the vring is shared with the guest VM, this requires significant
modification of the front-end drivers in the guest OS. The guest OS will see duplicated
vrings for a TX/RX buffer instead of just one.

PuzzleHype also needs to explicitly copy data from one vring to another asynchronously
along with interrupts and signals (Section 7.2.3). This approach can eliminate DSM false
sharing and reduce EPT violation and the DSM traffic, compared with the current approach.
Additionally, similar to the current approach, it still preserves the ability to run a network
application on a vCPU which does not have a physical NIC on the host machine.

Another possible approach is to aggregate multiple physical NICs together from different
hosts and present it as a single vNIC to the guest VM. A possible solution to do this is
to utilize HAProxy [11] which can redistribute the I/O workload to balance the I/O load.
PuzzleHype can leverage it to redirect network requests and provide a single NIC illusion
to the guest VM users. We anticipate that this approach will transparently improve the
network throughput by leveraging multiple physical NICs.



74 Chapter 9. Conclusions

These ideas can also be applied to other I/O devices (e.g., storage) for improving Puzzle-
Hype’s performance. We propose to investigate these directions.

9.2.3 Extending PuzzleHype to Heterogeneous-ISA Systems

Many works indicate heterogeneous-ISA platforms are pushing into the datacenter [25, 141,
176]. However, it is still not clear how the current commodity datecenters can run a single
virtual machine transparently merging these platforms on type-II VMMs. We propose to
extend PuzzleHype to provide a single VM illusion on these heterogeneous-ISA platforms.
This approach leads to a more elastic datacenter where a user can lend a VM with different
heterogeneous-ISA cores. And also it will transparently provides users better performance,
power efficiency, and programming experience [25].

To support heterogeneous-ISA systems, PuzzleHype needs to maintain the host OS’s data
structures across diverse ISAs (e.g., x86, ARM) as their methodologies (e.g., bootup process)
and hardware are completely different (e.g., interrupt chips). For instance, PuzzleHype
has to consider architecture-independent OS code which currently is not considered at all.
Moreover, a new guest OS must be designed. None of the existing OSes can fit into such a
heterogeneous-ISA hypervisor model without modification.

A possible direction is to explore the replicated OS kernel model, as exemplified in Popcorn
Linux’s early design [97]. In this model, an OS kernel is replicated, one for each ISA. The
replicated kernel instances share a global, pseudo-physical memory region for communication
among the guest OSes. We propose to investigate this direction, leveraging Popcorn Linux’s
early design.
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