
End-to-end Delay Analysis for Event-driven Wireless Sensor
Network Applications

Bo Jiang

Preliminary examination proposal submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering

Binoy Ravindran, Chair
Mark T. Jones
Tom Martin

Y. Thomas Hou
Anil Vullikanti

May 4, 2009
Blacksburg, Virginia

Keywords: Sensor Network, End-to-end Delay, Event-driven, Target Prediction, Real-time
Capacity

Copyright 2009, Bo Jiang

End-to-end Delay Analysis for Event-driven Wireless Sensor Network
Applications

Bo Jiang

(ABSTRACT)

The end-to-end delay is one of the most critical and fundamental issues for wireless sensor
networks. Many applications of sensor networks require an end-to-end delay guarantee for
time sensitive data. However, the end-to-end delay is difficult to bound for event-driven
sensor networks, where nodes generate and propagate data only when an event of interest
occurs, thereby producing unpredictable traffic load. Meanwhile, the end-to-end delay is
tightly banded with many other factors, e.g., energy and network capacity.

In this dissertation proposal, we analyze the quantitative relation among the end-to-end
delay, the probability of guaranteeing this delay, and network parameters for event-driven
sensor networks. We consider two sub-delays of the end-to-end delay, i.e., detection delay
and queuing delay, based on a two-phase model. This two-phase model includes an event
observation phase and a data propagation phase. We use target tracking as the example of
an event-driven wireless sensor network application.

For the event observation phase, we present a target prediction and sleep scheduling scheme,
called TPSS, to reduce the energy consumption, while satisfying the given delay constraint.
Wireless sensor nodes are typically in the sleep state most of the time to prolong the network
lifetime, but this will increase the detection delay. Proactive wake-up and sleep scheduling
are commonly used approaches to solve this problem. The purpose of TPSS is to select the
nodes to be sleep-scheduled and reduce their wake-up time as much as possible, so as to
enhance the energy efficiency as well as satisfy the given detection delay constraint. First,
we design a target prediction method based on kinematics rules and theory of probability.
Then based on the prediction results, we design a novel sleep scheduling mechanism that
reduces the number of awakened nodes and schedules their sleep patterns in an integrated
manner for enhancing energy efficiency. We analyze the detection delay and the detection
probability under TPSS, and conduct simulation-based experimental studies. Our simulation
results show that TPSS achieves a better tradeoff between energy efficiency and tracking
performance than existing works.

For the data propagation phase, we leverage queuing theory, and analyze the delay from the
point of view of network capacity. In a many-to-one data gathering network, the throughput
of a node can be estimated based on its distance from the sink node. Thus, the expected
waiting time of a packet in the queue, i.e., the queuing delay, can be estimated by approx-
imating all the nodes that are h hops away from the sink node as a queue. Based on the
actual network requirement on throughputs and results from queuing theory, we then de-
velop a slack time distribution scheme for unbalanced many-to-one traffic patterns. We also
introduce the concept of per-hop success probability, which is defined as the probability for
a packet to meet its deadline at each hop. Finally, we define and analyze the network-wide
real-time capacity, i.e., given a threshold for the per-hop success probability, how much data
(in bits per second) can be delivered to the sink node, meeting their deadlines. An impor-
tant advantage of the per-hop success probability concept is that application designers can
configure a packet’s deadline based on the required successful delivery probability.

iii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Summary of Current Research and Contributions 4

1.3 Summary of Proposed Post Preliminary Exam Work 7

1.4 Proposal Outline . 7

2 Related Works 9

2.1 Real-time . 9

2.2 Sleep Scheduling and Target Prediction . 9

2.3 Network Capacity . 11

2.4 Uniqueness . 12

3 Preliminaries, Models, Performance Metrics and Notations 13

3.1 Assumptions . 13

3.2 Models . 15

3.2.1 Network Model . 15

3.2.2 Target Model . 16

3.2.3 Event Model . 17

3.2.4 Capacity Model . 17

3.2.5 Deadline and Delay Model . 17

3.3 Performance Metrics . 18

3.4 Summary of Notations . 19

iv

4 Detection Delay in Event Observation Phase 21

4.1 Introduction . 21

4.2 Target Motion Prediction . 24

4.2.1 Calculate the Current State . 25

4.2.2 Kinematics-based Prediction . 25

4.2.3 Probability-based Prediction . 26

4.3 Energy Conservation . 28

4.3.1 Reducing the Number of Awakened Nodes 28

4.3.2 Sleep Scheduling for Awakened Nodes 32

4.4 Algorithm Descriptions . 33

4.5 Analysis . 35

4.5.1 Detection Area . 36

4.5.2 Single Node Detection Probability . 37

4.5.3 Detection Probability . 40

4.5.4 Detection Delay . 41

4.6 Performance Evaluation . 42

4.6.1 Simulation Environment . 42

4.6.2 Experimental Results . 44

4.7 Conclusion . 48

5 Propagation Delay in Data Propagation Phase 49

5.1 Introduction . 49

5.2 Traffic Pattern and Node Throughput . 51

5.3 Slack Distribution . 52

5.4 Real-time Capacity . 56

5.4.1 Definition . 56

5.4.2 Examples . 57

5.5 Conclusions . 59

v

6 Conclusions, Contributions and Proposed Post Preliminary Exam Work 60

6.1 Contributions . 61

6.2 Post Preliminary Exam Work . 62

vi

List of Figures

1.1 Six Phase Model in [1] . 3

1.2 Simplified Two Phase Model . 3

3.1 Toggling Period and Duty Cycle . 14

3.2 Network Architecture . 15

4.1 Foundation, Approaches, and Objective of TPSS 23

4.2 Target Movement States . 25

4.3 Prediction based on Kinematics Rules . 25

4.4 Example of Gaussian Distribution of Sn . 26

4.5 Probability Density Distribution of ∆n . 26

4.6 Probabilistic Model of Moving Direction . 27

4.7 The Relationship between Sn and d . 32

4.8 Detection Probability and Detection Delay 36

4.9 Detection Area in the Transmission Range 38

4.10 Simplify E[Tdetection|δ = δ̂] . 41

4.11 A Typical Target Route . 44

4.12 Extra Energy vs. Node Density . 45

4.13 Extra Energy vs. Target Speed . 45

4.14 Number of Awakened Nodes vs. Node Density 45

4.15 Number of Awakened Nodes vs. Target Speed 45

4.16 Sensing Energy and Communication Energy when Node Density=1.25 node/100m2

and Target Speed=20 m/s . 46

vii

4.17 Average Detection Delay vs. Node Density 47

4.18 Average Detection Delay vs. Target Speed 47

4.19 Relative Changes vs. Node Density . 48

4.20 Relative Changes vs. Target Speed . 48

5.1 Propagation Path and Virtual Queue . 51

viii

List of Tables

3.1 Notation of Parameters . 20

4.1 Glossary of Terms . 23

4.2 Division of Areas . 37

4.3 Single Node Detection Probability and Size of Areas 39

4.4 Energy Consumption Rates . 43

ix

Chapter 1

Introduction

1.1 Overview

Wireless sensor networks (or WSNs) which are composed of a large number of multi-functional,
low cost sensor nodes are increasingly being used for collecting data from a geographical re-
gion of interest and reporting them back to sink nodes (or base stations). Nodes in sensor
networks are typically capable of sensing, processing, and communicating data. But at the
same time, their power supply, and computing and communicating capabilities are strictly
constrained. WSNs are typically applied to diverse application domains, including military
applications (e.g., battlefield surveillance), environmental applications (e.g., habitat moni-
toring), health applications (e.g., telemonitoring of human physiological data), and home
applications (e.g., home automation) [2].

In terms of the data delivery model, sensor networks and their applications can be classified
as continuous, event-driven, observer-initiated, and hybrid [3]. In the continuous model,
sensor nodes periodically deliver the observed data at a specified rate, e.g., temperature
monitoring. In an event-driven sensor network, nodes collect and deliver data only when an
event of interest, e.g. a vehicle intruding into a surveillance field, occurs. For the observer-
initiated model, nodes report their observations in response to an explicit request from sink
nodes. These three models can coexist in the same sensor network, which results in a hybrid
model. Except for the hybrid model, the event-driven model is the most challenging one
among the other three for modeling and analysis of traffic pattern and quality of service (or
QoS). The reason is that the occurrence of events is completely unpredictable, resulting in
arbitrary traffic patterns.

The event-driven model of sensor networks supports many applications, such as flood detec-
tion [4], telemonitoring of human health status [5], vehicle anti-theft [6] and target track-
ing [7]. Among these applications, those that involve mobile events are more challenging
than that for static events, since mobile events need to be tracked in a continuous manner.

1

Bo Jiang Chapter 1. Introduction 2

We use target tracking, one of the most typical applications for mobile event observation,
as the example. Target tracking is usually used for monitoring a geographic region where
mobile persons or vehicles may intrude.

Sensor network applications have many critical QoS requirements, among which meeting end-
to-end delay constraints is an important one. Many WSN applications require an end-to-end
delay guarantee for time sensitive data. For example, sensor and actor networks [8] require
sensors to collect and propagate information in a timely manner so that actors can take
timely actions. A target tracking system [7] may require sensors to collect and deliver target
information to sink nodes before the target leaves the surveillance field. However, the end-
to-end delay is difficult to bound for event-driven sensor networks due to their unpredictable
traffic pattern. At the same time, the end-to-end delay is often tightly banded with many
other factors, for example:

1) Energy. Energy efficiency is critical in WSNs, because nodes run on batteries and they
are generally difficult to be recharged once deployed. There are many approaches for en-
hancing energy efficiency such as sleep scheduling [9], optimizing the sensing coverage or
the network topology [10], and controlling the RF radio [11]. Sleep scheduling is one of the
most commonly used mechanisms, by which most sensor nodes are put into a sleep state for
most of the time, and are only awakened periodically or on demand. If energy efficiency is
enhanced for prolonging the network lifetime, the quality of service including the end-to-end
delay will definitely be impaired. For example, forcing nodes to sleep will result in missing
events so as to increase the event observation delay.

2) Capacity. The queuing delay is one of the major delay sources during data propagation.
Other sources for the propagation delay include the transmission delay and the sleep de-
lay [12, 13]. But the transmission delay is usually specific for the actual hardware and the
MAC protocol used [14], thus is relatively fixed for a specific deployment. And in a duty
cycling WSN, the sleep delay of each hop is equal to the toggling period. Thus we focus on
the queuing delay for data propagation. Queuing delay is caused by constrained network
capacity, which defines how much data a WSN can collect and report. When the traffic load
in a network exceeds the network capacity, a lot of congestion will happen thus cause a long
queuing delay, which contributes to increasing the end-to-end delay.

An analytical description of the end-to-end delay involves parameters from multiple dimen-
sions, including descriptions of energy and capacity. Leveraging the idea of divide and
conquer [15], event-driven applications can be divided into multiple phases, so that a high-
dimensional design space can be transformed to multiple low-dimensional ones. For example,
the operation of a sensor and an actor network may be divided into four phases, including
sensing, communicating, processing, and acting. More phases may be inserted if an appli-
cation requires more operations, such as data aggregation. A partition scheme is mainly
dependent on the application requirements. In [1], He et al. present a six-phase model for
target tracking applications, as shown in Figure 1.1.

Based on such a partitioned phase model, the end-to-end delay may be partitioned into

Bo Jiang Chapter 1. Introduction 3

� � � � � � �
� � � � � � � � 	 �

 � � � �
� � � � � � � 	 � � � � � � �

� � 	 � �
� � � � � � � � � 	 �

� � � � � 	 � � � �
� � � 	 � �

� � � �
� � 	 � � � � � � �

� � � � � �
� � � � � � � �

� � � � � � � � 	 � �

� � ! " # � � ! " $ � � ! " %

� � ! " & � � ! " ' � � ! " (

Figure 1.1: Six Phase Model in [1]

Target

Entrance
Final Report

Event

Observation

= (A)+(C)

Data

Propagation

= (E)

Figure 1.2: Simplified Two Phase Model

multiple sub-delays, one for each phase. Inside each phase, the factors that may impact the
delay will be constrained efficiently. For example, network capacity can be considered only
for the data propagation phase. If each of these sub-delays can be guaranteed for a given
partition scheme, the end-to-end delay will be guaranteed.

For simplicity and feasibility of partitioning the end-to-end deadline, we introduce a two-
phase partition scheme for event-driven applications, i.e., event observation and data prop-
agation, as shown in Figure 1.2. Although the six-phase model is practical for actual imple-
mentations, it is complicated for analysis, and thereby not feasible for obtaining system-wide,
globally optimal solutions. We simplify the partition problem by removing relatively inde-
pendent and application-specific phases, and establish a simpler but more generic model for
event-driven applications. Our modifications include:

1) Removing phase D (group aggregation) and phase F (base processing), because these are
relatively independent and can be considered as extended phases based on the fundamental
ones;

2) Removing phase B (sentry detection), as it is often specific to applications, hardware and
deployment environments; and

3) Combining phase A (initial activation) and phase C (wake-up) into one event observation
phase. Unlike in the six-phase model where phase C aims at increasing the confidence in
detection and is part of the detection phase, the proactive wake-up mechanism introduced in
this proposal aims at preparing neighbors for approaching targets so as to enhance the track-
ing performance [16, 17]. Tracking is a continuous process consisting of multiple detections,
since nodes are required to report the new positions of targets constantly. When nodes work
in the default duty cycling mode (usually with a very low duty cycle [18]), the first detection
delay may be very long. It is the proactive wake-up mechanism that can significantly reduce
the detection delay for the subsequent detections after the first one, by broadcasting alarms
to wake up neighbors proactively. In this case, the wake-up delay is not part of the delay in
the detection phase. Thus we combine phase C (wake-up) with phase A (initial activation),
eventually as the event observation phase.

Thesis Problem Statement. The central question that we are asking in the dissertation
proposal is: what is the quantitative relation among the end-to-end delay (denoted as D),
the probability of guaranteeing this delay (denoted as P) and network parameters in event-

Bo Jiang Chapter 1. Introduction 4

driven sensor networks?

Such a quantitative relation is helpful for system designers to configure a sensor network
in order to satisfy certain real-time constraints. Network parameters may include but not
limited to the node density, the average target speed, the toggling period, and the duty cycle.
Detailed definitions for these parameters will be given in Chapter 3.

If we could establish this quantitative relation, we would be able to answer the following
questions based on the two-phase model:

1) Given D and network parameters, what is the maximum P and how to partition D to
achieve this maximum P?

2) Given D and P , is this P achievable? If yes, how to partition D and configure the network
parameters to achieve it?

3) Given P and network parameters, what is the minimum D to achieve this P? How to
partition D to achieve it?

4) Given D and P , what is the minimum possible energy consumption? How to partition
D and configure the network parameters to achieve it?

5) Given D and P , what is the minimum required network capacity? How to partition D
and configure the network parameters to achieve it?

We analyze this quantitative relation by studying D and P in two phases, each of which
corresponds to a phase as part of the end-to-end data collection process. In other words, we
consider two sub-delays (i.e., a detection delay and a queuing delay) of the end-to-end delay
D, partition the end-to-end probability P of guaranteeing D into a detection probability and
a propagation probability, and compute them respectively in two phases.

1.2 Summary of Current Research and Contributions

As previously discussed, we analyze the relation among the end-to-end delay, the probability
of guaranteeing this delay, and network parameters with the two-phase model.

For the event observation phase, we establish a quantitative relation between the parameters
for sleep scheduling and detection delay/probability. The detection delay is counted starting
from the time when a target of interest enters the surveillance field or when it is lost by
the nodes, to the time when it is detected and reported. The detection delay is mainly
caused by the duty cycling of nodes. For prolonging the network lifetime, nodes should
be in their sleep state as long as possible, and only wake up for sensing or communicating
periodically or on demand. While sleeping, nodes may miss a moving target and delay the
detection. Thus all the parameters for sleep scheduling may influence the detection delay
and the detection probability. At the same time, we also consider energy efficiency, so that

Bo Jiang Chapter 1. Introduction 5

the energy consumption can be reduced as much as possible while the detection delay is
guaranteed probabilistically.

We first develop a Target Prediction and Sleep Scheduling scheme (or TPSS) that sleep-
schedules nodes for optimizing the tradeoff between detection delay and energy efficiency.
The basic idea is that, nodes work in the default duty cycling mode with a very low duty
cycle when no event is detected. Once an event is detected, an alarm message is broadcast
to the nodes around the target to have their sleep patterns scheduled, e.g., to wake them
up for some time. This will improve the tracking performance, including the detection delay
and the detection probability. At the same time, nodes are carefully scheduled to reduce the
wake-up time as much as possible, so that energy efficiency can be optimized.

The scheduling of nodes depends on the prediction of the target’s movement. Once a target’s
potential movement is predicted, we may take a high probability to awaken nodes on a
direction along which the target is highly probable to move, and take a low one to awaken
nodes that are not likely to detect the target. Our proposed target prediction is composed of
kinematics-based prediction and probability-based prediction. Kinematics-based prediction
calculates the expected displacement of the target in a sleep delay, which shows the position
and the moving direction that the target is most likely to be in and move along. Based on
this expected displacement, probability-based prediction establishes probabilistic models for
the scalar displacement and the deviation. These probabilistic models decide which nodes
should be awakened for some time, and how long they should wake up.

Based on these probabilistic models, we utilize two approaches to enhance energy efficiency:
1) reduce the number of awakened nodes and 2) schedule the sleep pattern of awakened
nodes. On the one hand, those nodes that the target may have already passed during the
sleep delay do not need to be awakened. On the other hand, nodes that lie on a direction
that the target has a low probability of passing by could be chosen to be awakened with
a low probability. Therefore the number of awakened nodes can be reduced significantly.
These chosen awakened nodes could be awakened only during the period when the target is
highly likely to cross their sensing area. Then their wake-up time can be curtailed as much
as possible.

Under TPSS, we then analyze the detection probability and the detection delay. We also
conduct simulation-based experimental studies to understand the tradeoff between the track-
ing performance and energy efficiency. Our simulation results show that, compared with the
MCTA algorithm [11] (a past algorithm for reducing the energy consumption for tracking
mobile targets), the TPSS scheme exceeds the “net profit” (i.e., subtracting the input, per-
formance loss, from the output, energy efficiency) by (20%− 30%).

For the data propagation phase, we leverage results from queuing theory to establish a
quantitative relation between network capacity and the queuing delay. The queuing delay
is the total time that a packet spends in the queues during propagation. As the network
capacity is constrained, packets may have to wait for a while until all the packets with a
higher priority than it are transmitted.

Bo Jiang Chapter 1. Introduction 6

The basic idea is that, when approximating all the nodes that are h hops away from the sink
node as a queue, the expected waiting time of a packet in the queue can be determined from
the queue’s outgoing and incoming throughputs. In a many-to-one data gathering network,
all the traffic produced by nodes that are h hops or further away from the sink node have to
be consumed by nodes that are h−1 hops away from the sink node. Based on this observation
and a given event distribution model, we can compute the average incoming and outgoing
throughputs of a node at hop layer h. Then we assume that all the nodes that are h hops
away from the sink node form a queue. Using results from queuing theory, we can calculate
the expected queuing delay. Summing up all these expected delays yields an end-to-end
expected delay. We introduce a new slack distribution scheme to distribute the end-to-end
slack time proportional to the expected delay in the end-to-end expected delay. We prove
that with such a distribution scheme, the end-to-end probability of delivering a packet within
the given deadline is optimal. In fact, this simultaneously answers the question of real-time
capacity, i.e., the network’s capability to transmit time sensitive data within deadlines.

The research contributions of this proposal include:

1. We established a quantitative relation among the end-to-end delay, the probability of
guaranteeing this delay and network parameters in event-driven sensor networks. Based on
such a quantitative relation, system designers can configure the sensor network in order to
satisfying certain real-time constraints.

2. We presented a two-phase model for event-driven applications, i.e., event observation and
data propagation. This partitioning scheme is simplified, based on a six-phase model, thus
feasible for determining the system-wide global optimal solution.

3. We designed a target prediction method based on both kinematics rules and theory of
probability. From the prediction result, the system can make a judgment on the probability
distribution of the target’s position and moving direction.

4. We designed a novel approach that reduces the number of awakened nodes and schedules
their sleep patterns in an integrated manner for enhancing energy efficiency.

5. We analyzed the detection delay and the detection probability under the TPSS scheme,
and evaluated it by simulation-based experimental studies. The simulation results show that
TPSS achieves a better tradeoff between energy efficiency and tracking performance than
existing works.

6. We designed a new slack time distribution scheme based on the requirements of realistic
networks and results from queuing theory.

7. We introduced the concept of per-hop success probability, in terms of which we show that
our slack time distribution scheme is optimal.

Bo Jiang Chapter 1. Introduction 7

1.3 Summary of Proposed Post Preliminary Exam Work

Based on the current research results, the proposed post preliminary exam work includes the
following questions:

• Five questions. Based on the quantitative relation presented in this proposal, we
propose to answer all the five questions listed in Section 1.1 after the preliminary
exam.

• Multiple sink nodes. In realistic sensor networks, designers usually deploy multiple sinks
to reduce the distance from source nodes to the sink, so as to improve the network
performance such as the end-to-end delay. The propagation delay and the network
capacity of sensor networks with multiple sink nodes may be very different from the
one sink case. We propose to extend the analysis result of the data propagation phase
to the multiple sink case.

• Multiple targets. The current research for the event observation phase is constrained
to the single target tracking case. When multiple targets move close to each other, the
redundant alarm messages of interfering targets may be leveraged for further enhancing
energy efficiency. We propose to answer the question that how much more energy can
be saved for multiple target tracking.

• Dynamic event distribution. Dynamic event means that the location where events
occur is dynamic. Instead of considering static event distribution, it would be more
accurate and more adaptive if dynamic event distribution is considered with random
processes for the data propagation phase. We propose to extend the analysis result of
the data propagation phase to dynamic event distribution.

• Potential applications. We discussed several potential applications of the slack time
distribution scheme and real-time capacity in this proposal. Many more potential
applications can be explored based on the research results of the relation among delay,
probability, and network parameters. We propose to provide more scenarios where the
results of this proposal can help on the design of a sensor network.

1.4 Proposal Outline

The rest of this dissertation proposal is organized as follows. Past and related works are
discussed in Chapter 2. In Chapter 3, we introduce our assumptions, models, performance
metrics, and summary of notations. Chapter 4 focuses on the event observation phase, includ-
ing the target prediction scheme, the energy conservation approaches, distributed algorithm
description, analysis and simulation results. In Chapter 5, we discuss the data propagation
phase, including the relationship between the event distribution and the expected delay, a

Bo Jiang Chapter 1. Introduction 8

new slack distribution scheme, the analysis on per-hop success probability, and the definition
of real-time capacity. In Chapter 6, we conclude the proposal, state our contributions, and
discuss the proposed post preliminary exam work.

Chapter 2

Related Works

2.1 Real-time

Existing works on the real-time feature of WSNs studied latency and timely delivery from
various perspectives, some of which are introduced as follows with the examples. Abdelza-
her et. al. discussed a WSN’s real-time capacity from a macro perspective without making
any detailed assumptions in [19]. On the contrary, He et. al. presented specific delays for
each chain during the end-to-end data propagation of the target tracking application in [1],
for which all the calculations were based on the actual implementation of their testbed
VigilNet [20]. Some research works utilized real-time performance as a constraint for study-
ing other related problems, e.g., sleep scheduling [21], data aggregation [22], MAC proto-
col [23], and routing [24]. And some works aimed at achieving an optimized energy-latency
tradeoff [25,26].

2.2 Sleep Scheduling and Target Prediction

Past efforts on sleep scheduling can be classified based on several criteria: 1) in terms of
collaboration, they may be classified into independent mode [27,28], synchronized mode [29],
central controller based mode [17,30], and collaboration mode [21,31–34]; and 2) in terms of
target motion engagement, they can be classified as having no engagement [1,21,27,30–34],
engaged without prediction [28], and engaged with prediction [11,17,35–37].

In the past, most sleep scheduling works have focused on collaboration mode, and without
target motion engagement. Even those which have target motion engaged do not fully lever-
age the target motion model to improve the tradeoff between energy efficiency and tracking
performance. For example, some may schedule the sleep pattern based only on the distance
of a node from the target’s current position: the further a node is away from the target,

9

Bo Jiang Chapter 2. Related Works 10

the deeper its sleep level would be. In other words, they only consider a target’s velocity
magnitude. Such a sleep scheduling algorithm is often called the “circle-based scheme” or
“legacy scheme” in the literatures [16, 28]. In this legacy circle-based scheme (or Circle),
all the nodes in a circle will follow the same sleep pattern. For example, they will wake up
at the same time and usually keep active all the time during an expected period, without
distinguishing among different possible future directions and speeds of the target.

However, a target in the real world has its specific purpose and will move towards a spe-
cific direction in general. Also, it may follow rules of physics instead of moving randomly.
Therefore, we can leverage the target’s motion model as much as possible: if some rules of
classical mechanics are taken into account, not all the nodes in a circle need to be awakened
for tracking and not all the awakened nodes need to wake up all the time during the sched-
uled period, thus the consumed energy could potentially be reduced. The two branches of
the classical mechanics are kinematics and dynamics. Kinematics describes the motion of
objects without consideration of the circumstances leading to the motion, while dynamics
studies the relationship between the motion of objects and its causes [38].

In [11], Jeong et. al. present the Minimal Contour Tracking Algorithm (or MCTA) that uses
the strategy of reducing the number of awakened nodes. MCTA depends on kinematics to
compute the contour of tracking areas. However, they mainly discuss the motion of vehicles
and only the vehicular kinematics is used for the computation. Actually a target may also
be a person with much more random motion characteristics than a vehicle. Furthermore,
MCTA keeps all the nodes in the contour active without any differentiated sleep scheduling.

Xu et. al. present a Prediction-based Energy Saving scheme (or PES) in [37]. Similar
to ours, PES utilizes the target’s predicted motion pattern to reduce the missing rate and
save energy. PES also depends on kinematics for the prediction. However, it only uses
simple models to predict a possible destination without considering the detailed moving
probabilities. Furthermore, PES makes an assumption of a hexagon topology in which all
the nodes are evenly dispersed, and neighboring sensor nodes do not have any overlapping
sensing area. This is a very strict assumption, as nodes are usually deployed totally randomly.
In addition, PES does not consider sleep scheduling, either.

In [39], Taqi et. al. discuss a dynamics-based prediction protocol named as A-YAP. They
leverage some results of the physics research including the yaw rate and the side force.
However, this requires the surveillance system to recognize the target mass, which relies
on target classification. In many cases, target classification is difficult especially when the
real-time tracking constraint is applied. Moreover, A-YAP also predicts an exact position
that the target is probably moving to.

Bo Jiang Chapter 2. Related Works 11

2.3 Network Capacity

The capacity of wireless ad hoc networks has been well studied in the past several years since
the work of Gupta and Kumar [40]. In [40], the authors estimate the achievable per node
throughput for a static ad hoc network as Θ(1√

n log n
), and further show that the per node

throughput cannot exceed Θ(1√
n
) even if nodes are optimally deployed and the transmission

range is optimally chosen. Their work is based on a one-to-one balanced traffic pattern,
where each node generates equal amount of traffic loads and destinations are randomly
chosen. Based on [40], many further results were developed. In [41], Grossglauser et. al.
show that the capacity can be further increased if node mobility is introduced to reduce the
path length between the source node and the destination, but with unbounded delay as a
cost. In [42], Bansal et. al. improve the work in [41] by providing low delay guarantees.
Gastpar et. al. study a one-to-one traffic pattern in [43], where there is only one source-
destination pair and all the other nodes work as relays. Li et. al. present the capacity analysis
for some typical topologies in [44]. Beyond these typical but simple network architectures,
Liu et. al. describe the throughput capacity of hybrid wireless networks with sparse base
stations connected via a high-bandwidth wired network in [45]. In [46], Jain et. al. model
the interference using a conflict graph and study the maximum throughput with any given
network and workload specified as inputs. Most of these previous works on the capacity of
wireless ad hoc networks only consider continuous balanced traffic loads.

Based on the results for wireless ad hoc networks, network capacity has also been studied for
wireless sensor networks. One of the major differences of WSNs from ad hoc networks is that
WSNs emphasize the many-to-one traffic pattern [47,48], as WSNs are often used to collect
and report data to a small number of sink nodes. In addition, due to the resource constraints
of WSNs, their network capacity is often discussed together with deployment [49], network
architecture [50–52], data aggregation or in-network computation [53,54].

One of the earliest works to study real-time capacity for sensor networks is [19]. Before
this effort, there have been some attempts on combining delay and capacity such as [42,55].
However, [42,55] consider delay only as a constraint for the capacity, i.e., these works do not
address the question of how much real-time data a network can transmit.

In [19], Abdelzaher et. al. present real time capacity analysis for sensor networks with
balanced loads and continuous convergecast traffic. They leverage their preceding works
on real-time scheduling that specified utilization bounds [56], and assume time independent
fixed priority scheduling policy for the analysis. However, [19] does not consider event-driven
sensor networks. Moreover, [19] considers a packet’s status as unchanged along the whole
propagation path. The definition of their synthetic utilization depends only on the packet
size and its end-to-end deadline, while these two factors remain unchanged for a packet
during its entire lifetime. However, packets often experience variable message velocity (i.e.,
the speed of data propagation) at multiple hops due to the congestion around sink nodes
caused by convergecast traffic. The utilization that packets impose on nodes therefore should

Bo Jiang Chapter 2. Related Works 12

be a function of their ever-changing status, e.g., the distance from the sink, the remaining
time to the deadline etc.

2.4 Uniqueness

The two-phase model that we use to partition the end-to-end delay is more simple and
feasible than existing partition schemes. It excludes the phases that are specific for applica-
tions or relatively independent, and only keeps the two core steps for typical applications of
event-driven sensor networks. This makes it possible that a high-dimensional design space
be partitioned into multiple low-dimensional ones, so that the end-to-end delay is easy to
analyze.

Unlike the existing works on sleep scheduling and target prediction, TPSS takes into account
both kinematics rules and probability theory to establish a motion model for target predic-
tion, which is suitable for targets that may move highly randomly. Also TPSS schedules
the sleep pattern of awakened nodes individually for saving more energy than an effort that
solely reduces the number of awakened nodes.

In contrast with past works on network capacity like [19], our work focuses on slack time
distribution scheme and real-time capacity of event-driven sensor networks with completely
unbalanced traffic pattern, which has not been studied in the past. And we discuss the
capacity based on the per-hop throughput and slack time. This makes it possible to distribute
the slack time hop by hop, and schedule the packets based on their ever-changing status.

Chapter 3

Preliminaries, Models, Performance
Metrics and Notations

Before the detailed discussion, we first introduce our assumptions, models, performance
metrics used for evaluation and summary of notations.

3.1 Assumptions

We make the following assumptions:

• Network. We assume a flat network architecture consisting of a large number of homo-
geneous sensor nodes and one sink node. All the sensor nodes are deployed randomly
and uniformly in a disk on the plane, and the only sink node is in the center of this
disk field. Except for the single sink, there are no other cluster headers or relay nodes
that may be used for composing a hierarchical architecture. In this proposal, we use
terms “sensor node” and “node” interchangeably for all the sensor nodes except the
sink node, and we often refer to the sink node as the “sink” in short.

• Nodes. We assume that all the nodes are equipped with omni-directional antennas, and
their locations are static and a priori known via GPS [57] or using algorithmic strategies
such as [58]. We assume that the transmission power of sensor nodes’ communication
radio is fixed, thereby the transmission range, denoted as R, is also fixed. Moreover,
we assume that the sensing range of nodes, in which events may be observed by nodes,
is fixed and denoted as r. Finally, all the sensor nodes are assumed to be well time
synchronized using a protocol such as RBS [59].

• Communication. We adopt the protocol model introduced in [40], where both transmis-
sion and interference depend only on the Euclidean distance between nodes. And we

13

Bo Jiang Chapter 3. Preliminaries, Models, Performance Metrics and Notations 14

assume that there is only one wireless channel. For wireless communication, we assume
that nodes communicate with each other through packets, and concurrent transmis-
sions around a receiver may collide. The protocol model does not consider information
theoretic techniques such as network coding, interference cancelation, superposition
coding, and coherent combining [53]. Therefore, we simplify the problem by avoiding
the complexity of information theory and physical model.

• Sleep pattern. We assume that a node has two states, active state and sleep state. When
active, a node turns on its processor, sensing devices and RF transceiver for computing,
sensing, and communicating. In a sleep state, a node puts most modules/devices into
the sleep state except a wake-up timer with extremely low energy consumption [28].
The sleep pattern of a sensor node can be described by an application specific definition

Active

period () 100%
Active period

Duty Cycle DC
TP

Active

state

Sleep

state

Toggling Period (TP)

Figure 3.1: Toggling Period and Duty Cycle

as in [36]. But a more commonly used description is duty cycling with specific toggling
period and duty cycle [18]. Figure 3.1 illustrates the concepts of toggling period (or TP)
and duty cycle (or DC). We assume that the default sleep pattern is “random”, i.e.,
before a target is detected thus TPSS is triggered, all the nodes switch between active
and sleep states with the same toggling period and the same duty cycle. However, the
starting time point of each node’s toggling period is random. Within each TP period,
a node wakes up and keeps active for TP ∗DC, and then sleeps for TP ∗ (1−DC) [28].
Also we assume that nodes are able to communicate with each other under such an
active/sleep pattern using a MAC protocol such as B-MAC [60].

• Events. In an event-driven sensor network, sensor nodes report data towards the sink
only when an event of interest occurs. As we use target tracking as our example ap-
plication, events are the appearance of targets. We assume that targets move in the
surveillance field with the ever-changing velocity and direction, and nodes can deter-
mine a target’s position at a specific time point either by sensing or by calculating—
e.g., [16,61]. Multiple targets are assumed to be distinguished from each other using a
target classification algorithm such as [62].

• MAC protocol. We assume a MAC protocol with zero overhead and perfect scheduling
policy. With a zero-overhead MAC protocol, the traffic transmitted by nodes h hops
away from the sink will be able to arrive at nodes h − 1 hops away from the sink
successfully without being dropped, as long as the total transmission throughput of
hop h is less than or equal to the acceptable receiving throughput of hop h− 1.

Bo Jiang Chapter 3. Preliminaries, Models, Performance Metrics and Notations 15

3.2 Models

In this section we introduce the models for the network, the target, events, the capacity,
deadline and delay. Although we use target tracking as an example of event-driven applica-
tions, we distinguish the event model from the target model. The target model is for target
prediction and sleep scheduling, which is concerned with a target’s velocity and moving di-
rection etc. But the event model is for data generation and propagation, which is concerned
with the distribution of events, and the throughput of nodes etc.

3.2.1 Network Model

h=1

h=2

h=3

Sink

Node

Figure 3.2: Network Architecture

Based on the assumptions that we discussed, Figure 3.2 shows the network architecture in a
disk on the plane. The square at the center stands for the sink node, small circles represent
nodes, and the large dotted circles show the distance of the nodes from the sink. We count
the hop number starting from the sink node. In other words, we say that all the nodes in the
ring between (h− 1)R and hr belong to hop layer h. We denote the maximum hop number
as Hmax and the number of nodes that are located in hop layer h as Nh. In the figure, the
curved arrows signify the transmission direction of the convergecast data flows.

With this layered architecture, nodes in hop layer h > 1 cannot transmit to the sink directly.
Instead, the packets that they generate have to be relayed by nodes in the inner layers.
Furthermore, we assume that nodes do not communicate with neighbors that are in the
same hop layer; instead they propagate information only to neighbors in the inner layers.
With a random and uniform deployment that we assume, such a multi-hop transmission
establishes a quantitative relationship among nodes in different layers. Many previous works
such as [19,63] leverage this advantage to simplify the analysis.

Bo Jiang Chapter 3. Preliminaries, Models, Performance Metrics and Notations 16

We denote the node density of the sensor network as ρ. Now, the number of nodes in hop
layer h (h ≥ 1) can be computed as Nh = ρ(π(hr)2− π[(h− 1)R]2) = ρπR2(2h− 1). In fact,
the constant ρπR2 is just the number of nodes in an area within a node’s transmission range,
i.e., N1. Thus Nh = N1(2h− 1). When h = 0, there is only one sink node, thus N0 = 1.

3.2.2 Target Model

We first define an expression for a vector
−→
X in a 2-dimensional plane as

−→
X = (X, θ), where

X = ‖−→X‖ is its magnitude and θ ∈ (−π, π] is its direction. In an actual field deployed with
a WSN, we may simply assign the four directions, south, east, north and west respectively
as −π

2
, 0, π

2
and π.

A target’s movement status is a continuous function of time. However, the estimation for
a target’s movement status is a discrete time process. The surveillance system can only
estimate the target states at some time points, and predict the future motion based on the
estimation results. Assume that TPSS estimates the target states at time points {tn|n ∈ N},
where ti < tj for ∀ i < j ∈ N . A state vector, State(n) = (tn, xn, yn,−→vn,−→an), is defined for
each time point tn to represent the target motion state. In the State(n) vector, (xn, yn) is
the target position, −→vn = (vn, θn) and −→an are respectively the average velocity vector and the
average acceleration vector of the target during (tn−1, tn), where vn is the scalar speed and
θn is the moving direction.

At time point tn, we may calculate the state vector State(n) based on the discrete time

state sequence {State(k)|k < n}, and then predict
−→
Sn (i.e., the displacement vector during

(tn, tn + TP)) according to kinematics rules. These predicted values are denoted as variable

names with a prime symbol, such as
−→
Sn

′ = for
−→
Sn.

Similarly we can also predict the target’s displacement within a sleep delay after tn, denoted

as
−→
Sn

′. In the default random sleep pattern, the communication among nodes suffer a sleep
delay with a MAC protocol like B-MAC, where a sending node broadcasts the preamble no
less than the length of a toggling period to guarantee that each duty cycling receiver can
hear it [60]. We suppose the sleep delay exactly as TP for simplification.

However, the predicted displacement
−→
Sn

′ is not enough for describing a target’s movement so
as to schedule the sleep pattern of nodes. We establish a probabilistic model including two
random variables Sn and ∆n. Sn signifies the magnitude of a target’s displacement within a
sleep delay, and ∆n signifies the angle by which the target may deviate from the direction

of the predicted displacement
−→
Sn

′. Both Sn and ∆n are discrete time random processes.

Obviously µSn = ‖−→Sn
′‖ and µ∆n = 0, where µ is a random variable’s expected value.

Bo Jiang Chapter 3. Preliminaries, Models, Performance Metrics and Notations 17

3.2.3 Event Model

For event-driven sensor networks, we establish an event distribution model, which describes
how many events may occur and how they occur. Let Gh denote the average traffic (in
bits per second) that each node in hop layer h may generate after events are observed. Gh

is a function of hop layer h, and represents a distribution of events in the network. For
example, a constant Gh (for ∀ h) signifies the continuous sensor network model, where each
node periodically produces an equal amount of traffic load. For a border surveillance model,
where events only occur on the border of the network, Gh is given by:

Gh =

{
constant , (h = Hmax)

0 , (h < Hmax)

In fact, Gh should be a random process Gh(t), as the occurrence of events changes with
time. However, we assume that the event distribution is static for simplification. We denote
Ĝ = {G1, G2, · · · , GHmax} as an arbitrary event distribution.

3.2.4 Capacity Model

Let Ch denote the allowable average transmission throughput (or outgoing throughput) of
a node in hop layer h. Then the total transmission throughput of nodes in hop layer h
will be NhCh. Here, the transmission throughput is composed of the traffic that a node
produces and that it relays (or incoming throughput, denoted as C ′

h). It is obvious that
(2i − 1)Ci ≤ (2j − 1)Cj if i > j, as the total schedulable traffic produced by nodes in the
outer layers cannot exceed the traffic that can be consumed by nodes in the inner layers.
Many factors may constrain this inequality as a strict one. A typical example is that nodes
in hop j may produce traffic themselves. Based on this inequality, we have Ci ≤ 2j−1

2i−1
Cj < Cj

for any i > j.

Let W denote the fixed transmission capacity of the wireless channel, i.e., each node can
transmit or receive data at W bit/s at the most. Now, N1C1 ≤ W , i.e., the receiving
capacity of the sink cannot exceed the receiving capacity of its wireless channel. Based on
the assumption of a zero-overhead MAC protocol, we tighten this inequality as C1 = W

N1
.

3.2.5 Deadline and Delay Model

The slack time of a time-constrained activity denotes the redundant time that is available
for the completion of that activity before the expiration of the time constraint. For real-time
data delivery in WSNs, the end-to-end slack time is the redundant time after subtracting
the time necessary, e.g., for propagation, from the deadline. For example, if a packet has a
deadline of 2000 ms, but the end-to-end necessary time (e.g., for propagation) is 1500 ms
which is impossible to avoid, then the slack time is 2000 − 1500 = 500 ms. Nodes along

Bo Jiang Chapter 3. Preliminaries, Models, Performance Metrics and Notations 18

the propagation path may safely utilize this 500 ms of slack time for queuing, routing,
transmission, and other operations on the packet without jeopardizing the packet deadline.

We focus on the packet waiting time that a packet may incur in the many packet queues
as the major consumer for the slack time. This waiting time includes queuing delays and
service delays such as time for routing and transmission. Let De2e,H denote the end-to-end
deadline of a packet generated in hop layer H, and τ denote the average per-hop time that
is necessary for propagation including the sleep delay TP . Then Le2e,H = De2e,H −Hτ is the
end-to-end slack time, and Lh,H is the slack time spared for a node in hop layer h.

3.3 Performance Metrics

In this section we define the following metrics to estimate energy efficiency, tracking perfor-
mance and the tradeoff between them in the simulation.

Energy efficiency

Since TPSS is a single target tracking scheme and each time the number of nodes involved into
tracking is less, the energy consumption on different sensor nodes at different areas within
the surveillance field may vary significantly. Given this inequity of the energy consuming
load, the network lifetime — time until the first sensor node runs out of power — is a less
useful metric for measuring energy efficiency. We define extra energy (or EE) as the total
extra energy consumed for tracking a single target. The term “extra” here means that we
count only the more energy consumed for tracking a target than the energy cost without any
target observed during the same tracking period. As we focus on keeping tracking a target
instead of data collection, EE does not include the energy consumed for propagating target
information towards sink nodes.

Tracking performance

The tracking delay is one of the most important performance metrics for tracking. Usually
the detection delay is defined as the delay between when the target enters the surveillance
field or gets lost and when it is detected. In [1], the detection delay is further classified as an
initial activation delay and a sentry detection delay. However, tracking can be considered as
a process of continuously detecting a target, thereby the tracking delay should express the
network-wide detection performance. We use average detection delay (or AD) for measuring
the tracking delay, which is defined as follows. When a target leaves the sensing region of
the currently active nodes and no other nodes detect it in time, the target will be lost. A
detection delay is defined as the time interval from when a target is lost till it is detected
again. AD is defined as the average of the detection delays along the target’s traversing

Bo Jiang Chapter 3. Preliminaries, Models, Performance Metrics and Notations 19

route. Before the target is detected for the first time, TPSS scheme is not started and all
the nodes work in the random sleep pattern as we assume. Thus the initial detection delay,
like the initial activation delay defined in [1], is out of the scope of TPSS’s performance. We
define a term, tracking period, as the time interval from when a surveillance system detects
the target for the first time to when the target leaves the surveillance field. Then, AD is
estimated only within the tracking period.

Tradeoff

Energy efficiency and tracking performance are two competing factors—e.g., solely optimiz-
ing energy efficiency will impair the tracking performance. If we pursue energy efficiency
enhancement as outcomes with tracking performance loss as cost, a good tradeoff between
them should get more outcomes with less cost. Since energy efficiency and tracking perfor-
mance have totally different measurements, directly comparing the outcome and the cost
with their absolute values is less helpful. Instead, a relative change can show a clearer
comparison.

We define the relative changes (or RC) for EE and AD as follows respectively. In the
equations, the subscript “ref” refers to related works as a reference for comparison.

{
RCEE = (EEref − EETPSS)/EEref

RCAD = (ADTPSS − ADref)/ADref

From the simulation, we will show that TPSS achieves more RCEE than RCAD.

3.4 Summary of Notations

For the convenience of discussion, we first summarize all the notations in Table 3.1.

Bo Jiang Chapter 3. Preliminaries, Models, Performance Metrics and Notations 20

Table 3.1: Notation of Parameters
Parameter Definition (Default Value) Parameter Definition (Default Value)

Generic Parameters

r Sensing range (10 m) TP Toggling period (1 s)
R Transmission range (60 m) DC Duty cycle (10%)−→
X = (X, θ) A vector with the magnitude

X and the direction θ
‖−→X‖ Magnitude of the vector

−→
X

ρ Node density

Event Observation

EE Extra energy consumption AD Average detection delay
RC Relative change {tn|n ∈ N} Sampling time points
State(n) A target’s motion state at tn (xn, yn) Target position−→vn = (vn, θn) Average velocity vector dur-

ing (tn−1, tn)

−→an Average acceleration vector
during (tn−1, tn)

vn Scalar speed θn Moving direction

X ′ Predicted value of X
−→
Sn A target’s displacement vec-

tor during (tn, tn + TP))
Sn A random variable of the

magnitude of a target’s dis-
placement in TP

∆n A random variable of the an-
gle by which a target may
deviate from the direction of−→
Sn

′

µSn Expected value of Sn µ∆n Expected value of ∆n

σSn Standard deviation of Sn σ∆n Standard deviation of ∆n

(
√

6
12

π)

Data Propagation

Hmax Maximum hop number h Index of hop layers (h ∈
[1, Hmax])

Nh Number of nodes in hop
layer h

W Fixed transmission capacity
of the wireless channel

Gh Average traffic in bit/s that
each node in hop layer h may
produce after events are ob-
served

Ĝ An arbitrary event distribu-
tion

Ch Allowable average outgoing
throughput of a node in hop
layer h

C ′
h Allowable average incoming

throughput of a node in hop
layer h

De2e,H End-to-end deadline for a
packet generated in hop
layer H

τ Average per-hop time that is
necessary for propagation

Le2e,H End-to-end slack time for
a packet generated in hop
layer H

Lh,H Slack time spared for a node
in hop layer h within Le2e,H

Chapter 4

Detection Delay in Event Observation
Phase

4.1 Introduction

As mentioned in Chapter 1, we use target tracking as the example application. In many
surveillance applications, detecting and/or tracking a target (e.g., a human, a vehicle) is one
of the main objectives. Tracking usually has more stringent performance requirements than
detection: detection succeeds as long as there exists a single sensor node that can detect
the intruding target; however, tracking succeeds only if tracking performance constraints
are satisfied. The tracking performance constraints are often application-specific. In the
existing works, many metrics are used to measure the performance of detection or tracking,
e.g., the detection delay [1], the coverage level [28], the probability of false alarm [61],
and the tracking error [64]. Among these performance metrics, the detection probability
and the average detection delay are two of the most important in many surveillance sensor
networks [1, 9]. The most stringent tracking performance criterion is to track with 100%
detection probability and zero average detection delay, i.e., at any time there is at least one
node that can sense the existence of the target.

Sleep scheduling is one of the most commonly used approaches for reducing the energy
consumption [33] for idle listening, which is a major source of energy wastage [21]. For
prolonging the network lifetime, most sensor nodes keep in the sleep state with the radio off
for most of the time, and only wake up periodically or on demand. However, forcing nodes
to sleep will definitely result in target missing thereby impairing the tracking performance
of the event observation phase. Fortunately communication between nodes is faster than the
movement of real persons or vehicles. Thus on detecting a target, the node (i.e., alarm node)
may proactively alarm its neighbors to have them prepared for the potentially passing by
target, so as to enhance the tracking performance [16, 17]. On receiving an alarm message,

21

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 22

each neighbor node (i.e., candidate node) may individually make its own decision on whether
and when to sleep or wake up, and how long to sleep or wake up. In another word, each
candidate node decides whether or not to schedule its sleep pattern and act as a awakened
node. An extreme case is that each candidate node schedules their sleep pattern to keep
active for a long term, which guarantees the tracking performance to be optimized. But
sometimes it is unnecessary to force all the candidate nodes to be awakened. As long as the
tracking performance constraints (e.g., the detection probability and the detection delay)
are satisfied, the energy consumption could be minimized. Notice that the purpose of sleep
scheduling here is different from [1] that aims at enhancing the detection and classification
confidence.

For reducing the energy consumption, we could reduce the number of awakened nodes as
well as curtail their wake-up time. One thing that we can leverage is the prediction for the
potential motion of targets [36,37]. In fact, the accuracy of the prediction directly determines
the number of awakened nodes: if a system knows the exact route of a target, only those
nodes that cover the route need to be awakened; on the contrary if there is completely no
prediction, an alarm node will have to wake up all the one-hop neighbors preparing for the
approaching target (i.e., candidate nodes are all awakened nodes).

The past efforts about target prediction utilized various predicting approaches: 1) in [37],
the authors only predict an exact position that the target is probably moving to; 2) in [11],
the algorithm predicts a tracking contour, i.e., a small area that the target may pass with
kinematics rules only; and 3) in [39], dynamics is used for prediction, and the system needs
to classify what the target is and estimate external causes for the target motion.

Except reducing the number of awakened nodes and shortening their wake-up time, another
approach can be used to enhance the energy efficiency for multiple target tracking. That is to
leverage the redundant alarm messages of interfering targets. When an alarm node detects
a target and plans to broadcast the prediction results for sleep scheduling, its neighbors
(i.e. candidate nodes) may have already been scheduled by other alarm nodes for other
approaching targets. Then the energy consumed for this alarm broadcast may be saved
partially or completely. We will consider multiple targets as independent single ones in this
proposal, and leave this problem to the post preliminary exam work.

In this proposal, we discuss the relationship among the detection probability, the detection
delay, and the energy consumption. We present a Target Prediction and Sleep Scheduling
scheme (or TPSS) to reduce the energy consumption as much as possible when simultane-
ously satisfying the tracking performance constraints. To achieve this objective, we utilize
two approaches: 1) reduce the number of awakened nodes; and 2) schedule their sleep pat-
tern to shorten the wake-up time. Both approaches are built upon a target prediction model
based on both kinematics rules and probability theory. Figure 4.1 shows the foundation,
approaches, the objective of TPSS scheme and the relationship among them.

• The prediction scheme predicts (or describes) the prospective change of a target’s

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 23

Probability-based prediction for

a target’s motion

Reduce the

number of

awakened nodes

Schedule the sleep

pattern of

awakened nodes

Better tradeoff between

tracking performance &

energy efficiency

PPSS

scheme

Figure 4.1: Foundation, Approaches, and Objective of TPSS

velocity rather than its position. Since velocity is a physical vector, the prediction
scheme establishes probabilistic models for both its scalar absolute magnitude (i.e.
speed) and its direction. The normal distribution (or Gaussian distribution) is the
major probabilistic model that we utilize for prediction.

• For reducing the number of awakened nodes, we introduce a concept of awake region
and a mechanism for computing the scope of an awake region. An awake region is
defined as the region that a target may traverse in a next short term, which should
be covered probabilistically by active nodes. As some nodes in an awake region will
be proactively awakened and keep active for some time, the number of these awakened
nodes in the region should be as less as possible to enhance energy efficiency.

• For scheduling the sleep pattern of awakened nodes, we present a sleep scheduling
mechanism to further enhance energy efficiency. This mechanism schedules the sleep
patterns of awakened nodes individually according to their distance and direction away
from the current motion state of the target. Therefore, the lasting time of awakened
nodes in their active state could be reduced to as short as possible.

Finally the glossary of terms for the event observation phase are summarized in Table 4.1.

Table 4.1: Glossary of Terms
Parameter Definition

Alarm node The node that detects a target and broadcasts an alarm
to wakes up its neighbors

Candidate node A candidate node that may reschedule its sleep pattern
Awakened node A candidate node that actually reschedules its sleep pat-

tern
Awake region An area that awakened nodes may locate in only

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 24

The rest of this chapter is organized as follows. Section 4.2 introduces the prediction scheme
and the prediction results, i.e., probabilistic models on a target’s future motion. Section 4.3
presents the two approaches for minimizing the energy consumption, including the proactive
wake-up mechanism based on awake regions, the computation for an awake region’s scope,
and the selection of awakened nodes. Then we provide distributed algorithm descriptions for
TPSS scheme that runs on each individual node in Section 4.4. In Section 4.5 we analyze
the detection probability and the detection delay under TPSS scheme. Section 4.6 reports
our evaluation results. In Section 4.7, we finally conclude our work for the event observation
phase.

4.2 Target Motion Prediction

In the real world, a target’s movement is subject to uncertainty, while at the same time it
follows certain rules of physics. This apparent contradiction is because: 1) at each instant or
during a short time period, there is no significant change on the rules of a target’s motion,
therefore the target will approximately follow kinematics rules; 2) however, a target’s long
term behavior is uncertain and hard to predict, e.g., a harsh brake or a sharp turn cannot be
predicted completely with kinematics rules. In fact, even for a short term, it is also difficult
to accurately predict a target’s motion purely with a physics-based model. However, the
prediction is absolutely helpful for optimizing the energy efficiency and tracking performance
tradeoff. Thus, we consider a probabilistic model to handle as many possibilities of change
of the actual target motion as possible.

At each time point tn, the whole prediction process could be divided into three steps:

1) calculate the current speed vn, direction θn and acceleration −→an, based on State(n − 1)
and the current position (xn, yn) that is assumed to be obtained by sensing or by calculating;

2) based on kinematics rules, predict the displacement
−→
Sn

′;

3) establish the probabilistic model including the target’s scalar displacement Sn and devi-
ation ∆n.

Here tn+1 is decided by tn + TP , i.e., we predict the potential movement of the target after
the sleep delay that an alarm message experiences. Each time when time moves one step
forward (e.g. from tn to tn+1), v′n+1 and θ′n+1 predicted in step 2 at time point tn will be
dismissed, and the actual values vn+1 and θn+1 will be calculated in step 1 at time point
tn+1.

Notice that this prediction is based on a previously available observation. If this is the first
time that the target is detected and there is no State(n− 1), the prediction can be skipped
and delayed to the next time point.

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 25

4.2.1 Calculate the Current State

State(n-2)

State(n-1)

State(n)
1n

v

n
v

Figure 4.2: Target Movement States

1n
v

n
v

1

'
n

v

1
()

n n n
a t t

1 1

'
()

n n n
a t t

Figure 4.3: Prediction based on Kinemat-
ics Rules

First we compute the state vector State(n) based on the previous state State(n−1). Assume
that the current time point is tn, and the state at the previous time point is known as
State(n − 1). Figure 4.2 shows the target motion at three continuous time points, and
Figure 4.3 illustrates the change of the target velocity and its acceleration. As assumed, the
target’s current location (xn, yn) can be determined by sensing or calculating with existing
algorithms. Then −→vn and −→an can be computed as,

vn =

√
(yn−yn−1)2+(xn−xn−1)2

tn−tn−1

θn =

{
arctan yn−yn−1

xn−xn−1
, xn 6= xn−1

0 , xn = xn−1−→an =
−→vn−−−−→vn−1

tn−tn−1

(4.1)

Notice that we didn’t substitute tn−tn−1 with TP, because the actual time point for sampling
tn depends on whether or not the target is physically detected. TP is only used for prediction.

4.2.2 Kinematics-based Prediction

Then we predict
−→
Sn

′ following kinematics rules. For simplifying the computation, we assume
that the acceleration remains unchanged as −→an during (tn, tn+1) (because otherwise we will
have to consider the target’s “jerk”, i.e. the rate of change of acceleration, which is rarely
used). Then

−→
Sn

′ = −→vn · TP +
1

2
−→an · TP 2 (4.2)

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 26

4.2.3 Probability-based Prediction

Since the alarm message broadcast experiences a sleep delay of TP , the target may have
already passed by some candidate nodes before they receive the alarm. For TPSS we setup
a probabilistic model for the length of the target’s displacement during the sleep delay,
which can also show the impact of the target’s scalar speed on proactive wake-up and sleep
scheduling.

Suppose that the random variable Sn is Gaussian, i.e., Sn ∼ N(µSn , σ2
Sn

). The mean is

calculated as µSn = ‖−→Sn
′‖ = ‖−→vn ·TP + 1

2
−→an ·TP 2‖ when the acceleration remains unchanged.

During the sleep delay TP , the scalar speed is likely to change between ‖−→vn‖ (i.e. the original
speed) and ‖−→vn + −→an · TP‖ (i.e. the final speed when the acceleration remains unchanged).
Thus Sn is likely to change between SA = ‖−→vn ·TP‖ and SB = ‖−→vn ·TP +−→an ·TP 2‖. Obviously
µSn is in the interval (SA, SB) or (SB, SA) depending on the included angle between−→vn and−→an.
Let the standard deviation of Sn be σSn = |µSn−SA|. In general |µSn−SB| 6= |µSn−SA|, but
the difference is very small when the target is not making a sharp turn. Thus the probability
of Sn ∈ (SA, SB) or Sn ∈ (SB, SA) is approximately 68% according to the “68-95-99.7 rule”
of Gaussian distribution. In summary, Sn ∼ N(µSn , σ2

Sn
) where

{
µSn = ‖−→vn · TP + 1

2
−→an · TP 2‖

σ2
Sn

= (‖−→vn · TP + 1
2
−→an · TP 2‖ − ‖−→vn · TP‖)2 (4.3)

Figure 4.4 shows an example of Sn ∼ N(20, 25).

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Length of the displacement during the sleep delay

P
ro

ba
bi

lit
y

Figure 4.4: Example of Gaussian Distri-
bution of Sn

()f

0 pp

q

q
q

p

q
q

p

Figure 4.5: Probability Density Distribu-
tion of ∆n

Next, we establish a linear model for ∆n, i.e., the angle by which the target may deviate

from the central direction of
−→
Sn

′. Assume that at time point tn+1, the probabilities that the
target turns left or right are completely equal. We configure the probability density function
(or PDF) of ∆n as Equation 4.4, where p, q are coefficients and p ≤ π.

f∆n(δ) =

{ − q
p
δ + q , (δ ≥ 0)

q
p
δ + q , (δ < 0)

(4.4)

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 27

Figure 4.5 shows the probability density distribution of ∆n. Since the total probability is
equal to 1, we have pq = 1. Meanwhile the expected value of ∆n is 0. Thus given a variance
σ2

∆n
,

σ2
∆n

= E[∆2
n]− E[∆n]2 = E[∆2

n] =

∫ p

−p

δ2f(δ)dδ

Then the coefficients p and q are determined by σ2
∆n

as,

{
p =

√
6σ∆n

q =
√

6
6σ∆n

(4.5)

The variance σ2
∆n

can be configured by the application or dynamically computed regarding to
the acceleration. Next we present an example of computing σ2

∆n
from a maximum deviation

angle δmax.

n
v

max

R

1
'

n
v

n
a

n
v

A

B

|AC|

O

C

Figure 4.6: Probabilistic Model of Moving Direction

Figure 4.6 shows the computation of the maximum deviation angle, where the small solid
circle represents the target’s current position, and the large circle is the transmission range
of the alarm node. Here we simplify the computation by approximating the target’s position
with the alarm node’s position, as the distance of the target from the alarm node is less than
a node’s sensing range r, which is neglectable compared with the transmission range R (e.g.,
the sensing range is configured as 10 m based on empirical data in [1], while the outdoor
transmission range provided in the datasheet of Mica2 platform [65] is 500 ft ≈ 152.4 m).

If the acceleration remains unchanged, the time that a target needs to escape the current
alarm node’s transmission range R can be computed approximately with the following equa-
tion.

R = vntescape +
1

2
an cos αt2escape

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 28

where α is the included angle between −→an and −→vn, i.e.,

cos α =
−→an · −→vn

an · vn

Such an approximate computation reduces the calculation complexity significantly by sub-
stituting the solving process of a quadratic equation for that of a quartic equation used for
precise solution.

Thus

tescape =

√
v2

n + 2Ran cos α− vn

an cos α

During this period of time, the target may move along the direction perpendicular to the
current velocity for

|AC| = 1

2
an sin αt2escape =

√
1− cos2 α

an cos2 α

(
v2

n + Ran cos α− vn

√
v2

n + 2Ran cos α
)

Then approximating the length of the arc ÂB with |AC|, we have,

δmax =
|AC|
R

−
∣∣θ′n+1 − θn

∣∣

where |AC|
R

is the central angle corresponding to the target’s deviation.

Let

σ∆n = δmax =

√
1− cos2 α

Ran cos2 α

(
v2

n + Ran cos α− vn

√
v2

n + 2Ran cos α
)−

∣∣θ′n+1 − θn

∣∣ (4.6)

then the probability of ∆n ∈ (−δmax, δmax) is approximately 68%.

4.3 Energy Conservation

In this section we introduce the approaches for reducing the energy consumption and describe
the distributed algorithms.

4.3.1 Reducing the Number of Awakened Nodes

Usually, a sensor node’s transmission range R is far longer than its sensing range r. Thus
when the nodes are densely deployed to guarantee the sensing coverage, a broadcast alarm
message will reach all the neighbors within the transmission range. However, some of these

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 29

neighbors can only detect the target with a relatively low probability, and some others may
even never detect the target. Then the energy consumed for being active on these nodes will
be wasted. A more effective approach is to determine a subset among all the neighbor nodes
to reduce the number of awakened nodes.

During the sleep delay, the target may move away from the alarm node for a distance. Then
it is unnecessary for nodes within this distance to wake up, since the target has already
passed by. Meanwhile, all the nodes in an awake region must in the one-hop transmission
range of the alarm node. Therefore, an awake region should be in a ring shape, i.e., the part
between two concentric circles.

Beyond the effort that limits the awakened nodes within an awake region, the number of
awakened nodes can be further reduced by choosing only some nodes in the awake region as
awakened nodes. Based on our prediction on the target’s moving directions, the probabilities
that the target moves along various directions are different. Obviously the number of awak-
ened nodes along a direction with a lower probability could be less than the number along a
direction with a higher probability. By choosing an awakened node based on a probability
related to the moving directions, awakened nodes can be reduced significantly.

The term awake region, as we use it, is similar to the concept of a cluster used in the network
architecture literatures (e.g., [16, 32]) in that it encompasses some of a cluster’s functions.
However, unlike a cluster’s head, neither an alarm node aggregates data from member nodes
of the awake region, nor it imposes any control over members. An alarm node’s responsibility
here is just to broadcast an alarm message on detecting a target. An alarm message carries
some target related information so that the neighbors (i.e. candidate nodes) could make
decisions on whether or not to get prepared for the approaching target and how to prepare.
In fact, an awake region is only a virtual concept. No functions are built upon this concept,
except for the selection of awakened nodes. Only nodes within an awake region is likely to
detect the target after the sleep delay, and only some of these nodes need to reschedule their
sleep patterns preparing for the approaching target.

We first discuss the proactive wake-up mechanism based on awake regions, then introduce
the two efforts for reducing the number of awakened nodes.

Proactive Wake-up with Awake Regions

First we present an awake region management mechanism as follows, which is different from
cluster management. This mechanism is implemented in the three distributed procedures in
the algorithm description.

• Creation. On detecting a target, a sensor node will check its own status to determine
if it is an awakened node in an existing awake region. If yes, it justifies if the target
is leaving the current awake region. If an awake region exists and the target is not

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 30

going to move out of the current awake region, the node does nothing. Otherwise if
no previous awake region exists or if the target is leaving the current awake region,
the node will run an alarm node election algorithm, e.g. [66], to decide whether or not
to assume an alarm node’s responsibility. If this node is elected as the alarm node,
it broadcasts an alarm message to all the candidate nodes. On receiving this alarm
message, each candidate node individually decides if it is in the scope of this awake
region and whether or not to schedule the sleep pattern. Finally, a new awake region
comes into being when every awakened node schedules their sleep patterns specifically
for the approaching target.

• Dismissal. As time progresses, the sleep patterns of awakened nodes will automat-
ically recover back to the default pattern, thus the awake region will be dismissed
automatically. There is no explicit dismissal mechanism needed.

The approach for electing an alarm node of [66] is as follows. Upon detection, each node
broadcasts a DETECTION message to nodes nearby containing a time stamp recording
when the detection is declared. Then it checks all the DETECTION messages received from
nodes nearby within an interval, and compares the time stamps of other nodes with its own.
Nodes that detect a neighbor node’s time stamp is earlier than its own simply keep silent.
In fact, a simpler approach also works well. Without any alarm election algorithm used,
multiple alarm messages may be broadcast from multiple nodes that detect the same target.
Then on receiving the first alarm message, a neighbor node may simply ignore the following
ones sent by nodes that are within a 2r distance from the first alarm node, as these alarms
may be considered as for the same target.

For convenience of discussion, we refer to a sensor node’s two working modes as default mode
and tracking mode. When the sleep pattern of a sensor node is not scheduled for a specific
target, it works in the default mode and follows the default sleep pattern. When it detects
a target or decides to reschedule the sleep pattern on receiving an alarm message, it enters
the tracking mode. This rescheduled sleep pattern has an end time point, after which the
node will return to the default mode automatically. In other words, the proactive wake-up
depends on the alarm broadcasting, and whether to actually wake up proactively is decided
by a candidate node itself.

An alarm message contains the following information that is used for a candidate node to
make decision and compute the scope of an awake region:

• ID and the position of the alarm node (idr, xr, yr);

• the state vector State(n); and

• some of the prediction results, including
−→
Sn

′, µSn , σSn , and σ∆n .

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 31

Constraint on the Awake Region Scope

Denote d the distance of an awakened node from the alarm node. Next we determine an
awake region’s scope by deciding the value scope of d.

As previously discussed, the target may move by Sn during the sleep delay TP . Here we
make the same approximate assumption that the target’s position is exactly the alarm node’s
position to simplify the computation. If we set d ≥ µSn−σSn , the probability that awakened
nodes cannot cover the target after a sleep delay will be less than 16%. Moreover, it is
obvious that d ≤ R because nodes outside of the alarm node’s transmission range cannot be
awakened. Therefore we determine the scope of an awake region as max{µSn−σSn , 0} ≤ d ≤
R. Thus the number of nodes in an awake region is ρπ

[
R2 −max{µSn − σSn , 0}2

]
, where ρ

is the node density. Figure 4.6 also shows the scope of an awake region, which is filled with
diagonals.

Awakened Nodes Selection in an Awake Region

So far the computation of an awake region’s scope depends on the target’s scalar speed only.

Moreover, the decrement percentage of the number of awakened nodes is only
max{µSn−σSn ,0}2

R2

(e.g., 6.25% when R = 60, µSn = 20, and σSn = 5), which is not significant enough for
enhancing energy efficiency.

As discussed previously, only some of the member nodes in an awake region need to be
awakened. By taking into account the prediction results on moving directions, we can further
reduce the number of awakened nodes in an awake region so as to save more energy than
solely constraining the scope of an awake region.

Since the probability that a target moves along the direction of
−→
Sn

′ (i.e. E[∆n]), denoted as
θ, is the highest, we force all the nodes on this direction to be awakened. As ∆n decreases on
other directions, the number of awakened nodes on those directions can also be decreased.
Define the probability that a candidate node on the direction (θ + δ) reschedules its sleep
pattern (i.e., becomes an awakened node) as

Pss(δ) =
f∆n(δ)

f∆n(0)
=

{ −1
p
δ + 1 , (δ ≥ 0)

1
p
δ + 1 , (δ < 0)

(4.7)

where “ss” means sleep scheduling.

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 32

Then the total number of awakened nodes in an awake region would be

N =

∫ π

−π

Pss(δ) · ρπ(R2 −max{µSn − σSn , 0}2)

2π
dδ

= ρ(R2 −max{µSn − σSn , 0}2) ·
∫ π

0

(− 1

p
δ + 1

)
dδ

=

√
6

2
ρσ∆n(R2 −max{µSn − σSn , 0}2)

As an example, the number of awakened nodes of TPSS is only approximately 19% of that
of the Circle scheme when R = 60, µSn = 20, σSn = 5, and σ∆n = π

6
. In another word, the

energy consumption of TPSS is only about 19% of that of the Circle scheme.

4.3.2 Sleep Scheduling for Awakened Nodes

After reducing the number of awakened nodes, energy efficiency can be enhanced further by
scheduling the sleep patterns of awakened nodes, as not all the awakened nodes need to keep
active all the time. We schedule the sleep patterns of awakened nodes by setting a start
time and an end time of the active period. Out of this active period, awakened nodes do not
have to keep active. Therefore the time that an awakened node has to keep active could be
reduced compared with the Circle scheme.

R0

dd-r d+r

S S SS S

Figure 4.7: The Relationship between Sn and d

As previously stated, the distance of an awakened node to the alarm node is max{µSn −
σSn , 0} ≤ d ≤ R. At the moment that an awakened node receives the alarm message (i.e.
after the sleep delay, we denote this time point as talarmed), the relationship between the
awakened node’s position and the distribution of the target’s displacement length during a
sleep delay is shown in Figure 4.7. In the figure, 0 means the position of the alarm node and
r is the sensing range of nodes. According to the relative positions of the awakened node and
the target’s expected position after the sleep delay, we make the sleep scheduling decisions
as follows.

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 33

When µSn ≥ d− r, the awakened node is required to wake up immediately (i.e. at talarmed)
since it is expected that the target has probably entered its sensing range. When µSn < d−r,
the awakened node is required to wake up at talarmed +

d−r−µSn

TS
, where we suppose TS =

µSn

TP

to be the average speed in the awake region. In both cases, the awakened node needs to
keep active until talarmed +

d+r−(µSn−σSn)

TS
, i.e., when the probability that the target has moved

out of the sensing range of the awakened node is greater than 84%. For the convenience of
discussion, we denote tstart = talarmed +

max{d−r−µSn ,0}
TS

and tend = talarmed +
d+r−(µSn−σSn)

TS
. In

summary, the rescheduled active period of an awakened node is

[
tstart = talarmed +

max{d− r − µSn , 0}
TS

, tend = talarmed +
d + r − (µSn − σSn)

TS

]
(4.8)

And the time of keeping active is,

Tactive =
min{2r + σSn , d + r − (µSn − σSn)}

TS

Each awakened node is required to suspend its active/sleep toggling period for keeping active
in the tracking mode, and then resume duty cycling after recovering to the default mode.
Thus other than the timer for periodic active/sleep toggling (or default timer), a new wake-
up timer (or tracking timer) is needed for the proactive wake-up. Compared with algorithms
that have no sleep scheduling, TPSS can save more energy by scheduling the sleep pattern
instead of keeping nodes active all the time.

4.4 Algorithm Descriptions

Section 4.4 presented the rules for conserving the energy consumption, including reducing
the number of awakened nodes, scheduling their sleep patterns and leveraging the redundant
alarm messages of interfering targets. However for the actual implementation, all of these
mechanisms have to be distributed on each sensor node. In this section, we present detailed
algorithm descriptions for TPSS scheme in three procedures.

Procedure 1 is a handler for the event of detecting a target, which can be triggered by an
interrupt that is raised on sensing something.

For the formation frequency of awake regions, the MCTA algorithm [11] uses a “refresh time”
concept. Instead, we use the target’s motion trend as the criterion: when the target moves
close to the edge of the current awake region, a sensor node, who detects the target is leaving
and is elected as the alarm node, broadcasts an alarm message to wake up neighbors and
form a new awake region.

Procedure 2 describes a sensor node’s actions upon receiving an alarm message. This pro-
cedure can also be implemented as an interrupt handler.

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 34

Algorithm 1: OnDetectingEvent() — Triggered when detecting an event

if (I am in tracking mode) then1

if (The target is NOT leaving the current awake region) then2

return;3

(Optional:) Run an alarm election algorithm;4

if (I am selected as the alarm node) then5

Calculate −→vn and −→an with Equation 4.1;6

Predict
−→
Sn

′ with Equation 4.2;7

Compute µSn , σSn , σ∆n with Equation 4.3 and 4.6;8

Broadcast idr, xr, yr, State(n),
−→
Sn

′, µSn , σSn , σ∆n);9

return;10

Algorithm 2: OnAlarmMsg()—Triggered when receiving an alarm message

Compute d =
√

(xr − xo)2 + (yr − yo)2; // (xr, yr) is the alarm node’s position and (xo, yo) is my position1

if (d < µSn − σSn) then2

return; // constrain the scope of an awake region3

Compute δ with (xr, yr), (xo, yo) and
−→
Sn

′;4

Generate a random number random = [0, 1];5

if (random > Pss(δ)) then6

return; // select awakened nodes7

Compute tstart and tend with Equation 4.8;8

SetTrackingTimer(tstart); // set the tracking timer for the start of the scheduled sleep pattern9

return;10

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 35

In step 2 of Procedure 2, the node determines whether or not it is in the scope of the awake
region. In step 6, the node decides whether to be an awakened node or not. Finally in step
10, the tracking timer is set so that the node can wake up at the scheduled time point.

Procedure 3 describes the tracking timer processing procedure, which controls the scheduled
wake-up/sleep and the mode switch.

Algorithm 3: OnTrackingTimer() — Triggered when the tracking timer is out

if (mode == “default”) then1

mode = “tracking”;2

SuspendDefaultTimer();3

SetTrackingTimer(tend); // set the tracking timer for the end of the scheduled sleep pattern4

else5

mode = “default”;6

ResumeDefaultTimer();7

return;8

The computation workload of TPSS scheme is mainly located in step 6 and 7 of Proce-

dure 1, i.e., the calculation for −→vn, −→an, and the prediction for
−→
Sn

′, µSn , σSn , µ∆n , σ∆n . Thus
the computation workload is aggregated on the alarm node, which is more energy effective
than distributed algorithms.

Most of the computations of the three procedures can be completed in the transport layer.
The only support that TPSS needs from the link layer (usually a MAC protocol) is an
interface for controlling the tracking timer, and suspending/resuming the default active/sleep
toggling period.

4.5 Analysis

Based on the target prediction and the two approaches for saving energy for single target
tracking, we analyze the detection delay, the tracking probability and the energy consumption
of the event observation phase. In [67] and [1], the authors discuss the tracking probability
and the detection delay by leveraging two general results from theory of probability. Here
we utilize a similar computation process, but add the impact of our target prediction and
sleep scheduling scheme. The process of the computation is as follows.

First, we calculate the probability that a single node detects the target, denoted as Psingle(Y |δ =

δ̂), where Y represents the event of successful detection, and δ̂ is a specific moving direction
of the target. This probability is dependent on the relative position of the node to the tar-
get’s potential route. Thus for all the possibilities where a node may detect the target, this
probability needs to be normalized. We integrate it over the area where the node may locate,

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 36

and compute a normalized probability for single node detection, denoted as P 1(Y |δ = δ̂).
Here the superscript 1 means single node detection.

Then we calculate P (Y |δ = δ̂) for the moving direction δ̂, i.e., the probability that at least
one node around δ̂ detects the target before it moves away for a distance L. And we normalize
it as P (Y) over all the possible directions.

Finally we compute E[Tdetection|δ = δ̂] for the moving direction δ̂, i.e., the expected detection
delay on δ̂. And we normalize it as E[Tdetection] (or Ddetection) over all the possible directions.

These calculation operations are based on two general results from theory of probability [67].
The first result is, if the probability of an event A occurring in a single experiment is p, and
if the number of experiments conforms to a Poisson Distribution with parameter λ, the
probability of event A occurring at least once in the series of experiments is P = 1 − e−pλ.
The second result is, the expected value of a nonnegative random variable is E[X] =

∫∞
0

[1−
P (X ≤ x)]dx.

In this section, we first introduce the definition of a detection area and its division, then
present the computation step by step.

4.5.1 Detection Area

1

2

3

3

4

4

5

(0,0) (,0)L

2 2
,a r a

2 2
,L a r a

(,0)a (,0)
n

S
(,0)L a

(0,)r (,)L r

(,0)
n

S
r

2 2
,

n
S

a r a

r
2a

Figure 4.8: Detection Probability and Detection Delay

Suppose that a target is at (0, 0) at time point tn, and moves for a distance L along the
direction δ̂ until it arrives at (L, 0). As shown in Figure 4.8, all the nodes that have a chance
to detect the target locate in the rectangle or two semi-circles. Since tracking is a continuous
detecting process, a new detection process may be started after a target is already inside
the surveillance field. Therefore nodes in the semi-circle on the left side may also detect the
target.

For the simplification of discussion, we let Areatotal denote this detection area where nodes
that may detect the target locate. We divide Areatotal into five regions, labeled with 1 to 5

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 37

and filled with different patterns (except area 1 that is not filled) in the figure. Let Areai

denote the ith area. At the same time, Areatotal and Areai are also used to represent the
size of these areas.

In average, the point (µSn , 0) is the position of the target after a sleep delay TP . Therefore
before the target arrives at (µSn , 0), all the nodes work in the default mode. Only after that,
awakened nodes can enter the tracking mode.

Suppose that the target’s route overlaps with a node’s sensing area by l. Then the probability
that this node detects the target is DC + l

TP ·TS
.

We define a parameter a as in

DC +
2a

TP · TS
= 1

where TS =
µSn

TP
. Thus

a =
1

2
(1−DC)µSn

Thus when l ≥ 2a, the node must be able to detect the target, i.e., the detection probability
will be 1. Bounded by a, it is obvious that all the nodes in Area1 hold a detection probability
of 1. The other four areas are divided based on two criteria: 1) if it is possible that a node
enters its tracking mode when the target passes its sensing area; and 2) whether or not the
target’s route fully overlaps with the sensing area of a node. For all the nodes that may enter
the tracking mode when the target passes by, the detection probability should be expressed
in two parts, i.e., for the default mode and for the tracking mode. For those nodes that only
partially overlap with the target’s route, the probability is relatively lower than those nodes
that fully overlap. Regarding to these two criteria, the other four areas are divided as in
Table 4.2.

Table 4.2: Division of Areas
Areas 2 3 4 5

Criterion 1 No No Yes Yes
Criterion 2 No Yes Yes No

4.5.2 Single Node Detection Probability

For Area2 and Area3, nodes always work in the default mode when they detect the target.
Thus the detection probability is DC + l

TP ·TS
. However for nodes in Area4 or Area5, they

may work in either the default mode or the tracking mode, according to the scheduling
probability Pss(δ) defined in Equation 4.7. If they work in the default mode, the detection
probability is also equal to DC + l

TP ·TS
. If they work in the tracking mode, i.e., selected

to be awakened nodes, the detection probability is equal to 1. This is decided by the sleep

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 38

scheduling scheme discussed in Section 4.3.2, i.e., nodes will wake up when the target passes
by. Actually the detection probability may not be strictly 1, as the target may change the
movement status abruptly. But this is very rare for the real moving persons or vehicles. We
suppose this probability exactly as 1 to simplify the computation. Thus for nodes in Area4

or Area5, the detection probability can be expressed as,

(1− Pss(δ))
(
DC +

l

TP · TS

)
+ Pss(δ) · 1

Here another simplification is to utilize Pss(δ) for all the nodes in Area4 and Area5. We
make this simplification approach with two reasons. First, R >> r and L is close to R, thus
L >> r. In another word, the area shown in Figure 4.8 is a sector-like shape in the alarm
node’s transmission range, with a very small central angle as shown in Figure 4.9. Therefore
the difference between δ of different nodes is small. Second, all the areas are symmetric
about the x-axis, and all the probabilities to be integrated are even functions. Thus the
difference introduced by Pss(δ) can be counteracted to the most extent.

r

L

R

Figure 4.9: Detection Area in the Transmission Range

For a node (x, y) in Area3 or Area4, the target’s route fully overlaps with their sensing
area. Thus l = 2

√
r2 − y2. For a node (x, y) in Area2 or Area5, the target’s route partially

overlaps with their sensing area. Thus l = x+
√

r2 − y2 or l = L−x+
√

r2 − y2 respectively.

In summary, the single node detection probability and the area of all the five areas are listed
in Table 4.3.

Here Φ(r, a) = πr2 − 2r2 arccos a
r

+ 2a
√

r2 − a2.

Next we integrate and normalize Psingle(Y |δ = δ̂) over all the five areas.

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 39

Table 4.3: Single Node Detection Probability and Size of Areas

Areai Psingle(Y |δ = δ̂) Size

1 1 2r2 arccos a
r

+ 2(L− 3a)
√

r2 − a2

2 DC +
x+
√

r2−y2

TP ·TS
Φ(r, a)

3 DC +
2
√

r2−y2

TP ·TS
2µSn(r −√r2 − a2)− Φ(r, a) + 4a

√
r2 − a2

4 (1− Pss(δ))
(
DC +

2
√

r2−y2

TP ·TS

)
+ Pss(δ) 2(L− µSn)(r −√r2 − a2)

5 (1− Pss(δ))
(
DC +

L−x+
√

r2−y2

TP ·TS

)
+ Pss(δ) Φ(r, a)

P 1(Y |δ = δ̂) · Areatotal =

∫

Areatotal

Psingle(Y |δ = δ̂)ds

=
5∑

i=1

∫

Areai

Psingle(Y |δ = δ̂)ds

=

∫

Area1

1ds +

∫

Area2

(
DC +

x +
√

r2 − y2

TP · TS

)
ds

+

∫

Area3

(
DC +

2
√

r2 − y2

TP · TS

)
ds

+

∫

Area4

[
(1− Pss(δ))

(
DC +

2
√

r2 − y2

TP · TS

)
+ Pss(δ)

]
ds

+

∫

Area5

[
(1− Pss(δ))

(
DC +

L− x +
√

r2 − y2

TP · TS

)
+ Pss(δ)

]
ds

= P 1
random(Y |δ = δ̂) · Areatotal + P 1

plus(Y |δ = δ̂) · Areatotal

Here P 1
random(Y |δ = δ̂) is the normalized probability when all the nodes work only in the

default mode without sleep scheduling, and P 1
plus(Y |δ = δ̂) represents the enhancement on

the probability introduced by TPSS. In fact, the normalized probability when all the nodes
work only in the default mode without sleep scheduling P 1

random(Y |δ = δ̂) is independent of
δ. Thus in the following discussion we abbreviate it as P 1

random. We have,

P 1
random · Areatotal = DC · Areatotal +

L · Φ(r, a)− 2a
[
Φ(r, a)− πr2

]

TP · TS

and

P 1
plus(Y |δ = δ̂) · Areatotal =

Pss(δ)

TP · TS
{(L− µSn)

[
4ar − Φ(r, a)

]
+ 2a · Φ(r, a)− 8

3
Γ(r, a)}

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 40

where Γ(r, a) = r3 − (
√

r2 − a2)3. Let

A = (2−DC)Φ(r, a)− 8

3TP · TS
Γ(r, a)− 4ar

and

B =
L

TP · TS

[
4ar − Φ(r, a)

]
+ A

for concise expression, we have P 1
plus(Y |δ = δ̂) · Areatotal = B · Pss(δ).

4.5.3 Detection Probability

As the node density is Ds, we suppose that the number of nodes n in Areatotal conforms to
Poisson distribution with the mean λ = Ds · Areatotal. According to the result from theory
of probability, we have,

P (Y |δ = δ̂) = 1− e−λP 1(Y |δ=δ̂)

= 1− e−Ds·P 1
random·Areatotal · e−Ds·P 1

plus(Y |δ=δ̂)·Areatotal

Integrating and normalizing it over (−π, π], we can calculate P (Y) as,

P (Y) =

∫ π

−π

P (Y |δ = δ̂)fT (δ̂)dδ̂

=

∫ π

−π

[
1− e−Ds·P 1

random·Areatotal · e−Ds·P 1
plus(Y |δ=δ̂)·Areatotal

]
f(δ̂)dδ̂

= 1− e−Ds·P 1
random·Areatotal ·

∫ π

−π

e−Ds·B·Pss(δ̂)f(δ̂)dδ̂

Here fT (δ̂) is the probability density function of the target’s actual turning potential. When
we also use the prediction model, i.e., Equation 4.4, to describe it, P (Y) can be calculated
as,

P (Y) = 1− e−Ds·P 1
random·Areatotal · 2

∫ π

0

e−Ds·B·(− 1
p
δ̂+1)(−q

p
δ̂ + q)dδ̂

= 1− 2

DsB
· e−Ds·(P 1

random·Areatotal+B)
[
(

1

DsB
+ 1− πq)e

πDsB
p − (

1

DsB
+ 1)

] (4.9)

Here p and q are both coefficients for our linear prediction model.

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 41

4.5.4 Detection Delay

According to the second result from theory of probability, we have

E[Tdetection|δ = δ̂] =

∫ ∞

0

[1− P (Tdetection ≤ t|δ = δ̂)]dt

And letting L = TS ·t, P (Tdetection ≤ t|δ = δ̂) = P (Tdetection ·TS ≤ L|δ = δ̂) is the probability
that a target is detected before it enters for a distance L, i.e., P (Y |δ = δ̂). Thus

E[Tdetection|δ = δ̂] =

∫ ∞

0

e−Ds·P 1
random·Areatotal · e−Ds·P 1

plus(Y |δ=δ̂)·Areatotaldt

= exp
(−Ds

{
πr2 − (1−DC)Φ(r, a) + Pss(δ) · A

})

·
∫ ∞

0

e−Ds·TS·
{

2r·DC+ 1
TP ·TS

[
Φ(r,a)+Pss(δ)[4ar−Φ(r,a)]

]}
tdt

r

a

Figure 4.10: Simplify E[Tdetection|δ = δ̂]

We simplify this equation by removing Pss(δ) from the exponential inside the integral. Let
us check the meaning of Φ(r, a) + Pss(δ)[4ar − Φ(r, a)]. In Figure 4.10, it is easy to prove
that Φ(r, a) is exactly the size of the shape filled with dots. Then [4ar − Φ(r, a)] is the size
of four small areas filled with diagonals. Compared with the dotted shape, the size of small
areas filled with diagonals can be ignored, especially when multiplied with a real number
Pss(δ) that is less than 1. Therefore, Φ(r, a) + Pss(δ)[4ar − Φ(r, a)] ≈ Φ(r, a), and

E[Tdetection|δ = δ̂] ≈ exp
(−Ds

{
πr2 − (1−DC)Φ(r, a) + Pss(δ) · A

})

Ds · TS · [2r ·DC + Φ(r,a)
TP ·TS

]

Integrating and normalizing it over (−π, π], we can calculate E[Tdetection] as,

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 42

Ddetection = E[Tdetection] =

∫ π

−π

E[Tdetection|δ = δ̂]fT (δ̂)dδ̂

=
e−Ds

[
πr2−(1−DC)Φ(r,a)

]

Ds · TS · [2r ·DC + Φ(r,a)
TP ·TS

] ·
∫ π

−π

e−Ds·A·Pss(δ̂)fT (δ̂)dδ̂

Similarly when we also use the prediction model, i.e., Equation 4.4, to describe it, Ddetection

can be calculated as,

Ddetection =
e−Ds

[
πr2−(1−DC)Φ(r,a)

]

Ds · TS · [2r ·DC + Φ(r,a)
TP ·TS

] · 2
∫ π

0

e−Ds·A·(− 1
p
δ̂+1)(−q

p
δ̂ + q)dδ̂

=
2e−Ds

[
πr2−(1−DC)Φ(r,a)+A

]

D2
sA · TS · [2r ·DC + Φ(r,a)

TP ·TS

] ·
[
(

1

DsA
+ 1− πq)e

πDsA
p − (

1

DsA
+ 1)

]
(4.10)

Here p and q are both coefficients for the linear prediction model, and

A = (2−DC)Φ(r, a)− 8

3TP · TS
Γ(r, a)− 4ar

4.6 Performance Evaluation

We evaluated TPSS scheme in a simulation environment programmed in C++, and compared
it against the Circle scheme and the MCTA algorithm. This section reports our evaluation
results measured in terms of the performance metrics that we defined in Section 3.3.

4.6.1 Simulation Environment

Parameters of our simulation environment included the following:

• Node deployment. 500− 2, 000 nodes were randomly deployed in a 200m× 200m area,
i.e., the node density is 0.5− 4.0 nodes/100m2.

• Target speed. Fifteen target speed values in an arithmetic progression were used
({2, 4, . . . , 30} m/s).

• Target motion. We used a random curvilinear motion model to describe the actual
target motion.

• Algorithms. We simulated four schemes including no sleep scheduling (or NOSS),
Circle, MCTA, and TPSS.

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 43

Table 4.4: Energy Consumption Rates
Status Energy consumption rate (unit)

Active (Pactive) 9.6 (mJ/s)
Transmit (Psend) 720 (nJ/bit), 5.76 (mJ/Byte)
Receive (Prcv) 110 (nJ/bit), 0.88 (mJ/Byte)
Sleep (Psleep) 0.33 (mJ/s)

We estimated the performance metrics against the node density and the target speed. In
the simulation, we configured the node density as 1.25 node/100m2 when retrieving data
regarding to various target speeds, and the target speed as 20 m/s when retrieving data
regarding to various node densities. For each value of the node density (or the target speed),
we simulated 10 deployments (or the route samples), and repeated each deployment (or route
sample) 10 times. The system configuration parameters used in the simulation followed the
default values given in Table 3.1 and Table 4.4.

The energy consumption data in Table 4.4 come from the actual Mica2 platform [68, 69].
We did not list the energy consumption rate for instruction execution, for it is difficult to
measure in the simulation. As a compensation, we increased the energy consumption rate
for TPSS’s active state by 20%.

The random curvilinear motion model that we used in the experiments was completely
different from the model that was established by our prediction in Section 4.2 (because
otherwise everything would be perfect). Instead, we leverage some common sense based
rules to imitate the actual target motion. Assume that the target moves in a random walk
manner starting from a base speed value (e.g. 15 m/s), i.e., at each fixed time interval
(e.g. 200 ms), the target speed may increase/decrease by 1 m/s or keep unchanged with
a probability of 1

3
respectively. For the moving direction, we assume that the target may

turn with a random angle in [0, αmax] at each fixed time interval, where αmax decreases as
the speed v increases. This matches the actual case because a target, especially a vehicle,
may probably turn over if it abruptly changes the direction when moving at a high speed.
We describe this relation between v and αmax with a linear mapping αmax = av + b, where
a and b are linear mapping constants. Now, two (v, αmax) value pairs will fully determine
the linear mapping. αmax = 25o when v = 9 m/s and αmax = 5o when v = 30 m/s were
the example value pairs used in our simulation. Figure 4.11 shows an example moving route
when a target traverses a tracking field of 200m× 200m with a base speed v = 20 m/s.

No sleep scheduling scheme and the Circle scheme are two extreme schemes. When there
is completely no sleep scheduling, all the sensor nodes sleep and wake up randomly. The
energy consumption is the least, but so is the tracking performance. With the Circle scheme,
all the neighbor nodes within one hop range of the alarm node are awakened, and all the
awakened nodes keep active all the time until when the target is expected to leave the alarm
node’s transmission range. Then before awakened nodes recover back to the default sleep

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 44

0 50 100 150 200

80

100

120

140

160

180

200

y
 (

m
)

x (m)

 Target Route

Figure 4.11: A Typical Target Route

pattern or the target leaves the coverage area of awakened nodes, tracking performance is
guaranteed, i.e., 100% covered with zero tracking delay. However, energy efficiency of the
Circle scheme is the worst, which is same during its active period as the case that keeps all
the nodes active all the time. Therefore, NOSS scheme and Circle scheme serve as the upper
bound and the lower bound (may be reversed) on performance metrics for other schemes.

4.6.2 Experimental Results

Since our objective is to achieve more RCEE than RCAD, we present the comparison results
among the four schemes on EE, AD and relative changes one by one.

Extra energy (EE)

We measure the extra energy consumption EE in the unit J to determine how much more
energy is needed for tracking a single target than detecting nothing. Figure 4.12 and Fig-
ure 4.13 show the EEs of four schemes at various node densities and various target speeds
respectively. In general, the energy consumption for tracking increases as the node density
increases, or as the target speed decreases. The former is easy to understand, as denser de-
ployment means more nodes are awakened. The reason for the latter is that a slower target
will stay longer in the alarm node’s transmission range, thereby require awakened nodes to
keep active for a longer time. In both cases, the extra energy for NOSS is the lower bound
with the value 0, which is actually the basis of the definition of EE. As the scheme with
the simplest sleep scheduling effort, Circle provides an upper bound for MCTA and TPSS
in terms of the energy. We observe that TPSS consumes less energy than MCTA.

Something interesting is that, if we check the number of awakened nodes, the curves of
MCTA and TPSS show reverse positions. Figure 4.14 and Figure 4.15 illustrate the number

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 45

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

5000

10000

15000

20000

25000

30000

35000

40000

Node Density (nodes/100m
2
)

E
E

:
E

x
tr

a
 E

n
e

rg
y
 (

J
)

 NOSS

 Circle

 MCTA

 PPSS

Figure 4.12: Extra Energy vs. Node Den-
sity

0 5 10 15 20 25 30

0

10000

20000

30000

40000

50000

60000

E
E

:
E

x
tr

a
 E

n
e

rg
y
 (

J
)

Target Speed (m/s)

 NOSS

 Circle

 MCTA

 PPSS

Figure 4.13: Extra Energy vs. Target
Speed

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

50

100

150

200

250

300

350

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
A

w
a

k
e

n
e

d
 N

o
d

e
s

Node Density (nodes/100m
2
)

 Circle

 MCTA

 PPSS

Figure 4.14: Number of Awakened Nodes
vs. Node Density

0 5 10 15 20 25 30

0

20

40

60

80

100

120

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
A

w
a

k
e

n
e

d
 N

o
d

e
s

Target Speed (m/s)

 Circle

 MCTA

 PPSS

Figure 4.15: Number of Awakened Nodes
vs. Target Speed

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 46

of awakened nodes (averaged for each proactive wake-up), in which the number of awakened
nodes of TPSS is greater than that of MCTA.

Circle MCTA PPSS

0

1000

2000

3000

4000

5000

6000

C
o

m
m

u
n

ic
a

ti
o

n
 E

n
e

rg
y
 &

 S
e

n
s
in

g
 E

n
e

rg
y

Node Density=1.25 node/100m
2
 & Target Speed=20 m/s

 Communication Energy

 Sensing Energy

Figure 4.16: Sensing Energy and Communication Energy when Node
Density=1.25 node/100m2 and Target Speed=20 m/s

This seeming contradiction can be explained by comparing energy for sensing and energy
for communication separately. Note that energy is consumed primarily for sensing and com-
munication. Sensing energy includes Pactive and Psleep, while communication energy includes
Psend and Prcv. Figure 4.16 shows the comparison among the three schemes (except Circle)
for sensing energy and communication energy separately. We observe that sensing energy
and communication energy of TPSS are both less than MCTA. On one hand, TPSS con-
sumes less sensing energy because of the sleep scheduling effort that shortens the active
time as much as possible. On the other hand, TPSS consumes less communication energy
because the frequency of proactive wake-up of TPSS is lower than that of MCTA. TPSS
awakens neighbor nodes up to one transmission range away from the alarm node, and exe-
cutes the next wake-up only when the target is about to leave the alarm node’s transmission
range. However, the interval between two adjacent wake-up actions of MCTA depends on
the refresh time which is not necessarily as long as the transmission range. Such a short
time interval increases the frequency of wake-up actions, thereby increases the energy for
sending wake-up messages (or alarm messages). This can be verified by checking the number
of proactive wake-up actions: when the node density is 1.25 node/100m2 and the target
speed is 20 m/s, the average number of proactive wake-up actions of MCTA and TPSS are
respectively 5.48 and 2.91. This accomplishment of TPSS is attributed to the design from
its prediction scheme to the sleep scheduling mechanism.

Average detection delay (AD)

Figure 4.17 and Figure 4.18 show the average detection delay on various node densities and
various target speeds respectively. The curve for the NOSS scheme is not shown in the figure,

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 47

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

A
D

:
A

v
e

ra
g

e
 D

e
c
ti
o

n
 D

e
la

y
 (

s
)

Node Density (nodes/100m
2
)

 Circle

 MCTA

 PPSS

Figure 4.17: Average Detection Delay vs.
Node Density

0 5 10 15 20 25 30

2.0

2.5

3.0

3.5

4.0

4.5

A
D

:
A

v
e

ra
g

e
 D

e
c
ti
o

n
 D

e
la

y
 (

s
)

Target Speed (m/s)

 Circle

 MCTA

 PPSS

Figure 4.18: Average Detection Delay vs.
Target Speed

for otherwise the granularity will be too large to show the difference among Circle, MCTA
and TPSS clearly. The NOSS scheme serves as an upper bound for AD, since the detection
delay is the longest with no proactive wake-up completely. The values of NOSS’s AD spreads
around 10 s for the node density case and in 6.5−85 s for the target speed case. We observe
that TPSS has longer delay than Circle and MCTA as a cost for enhancing energy efficiency.

Relative changes RCEE and RCAD

From the separate results of absolute values of EE and AD, we cannot determine if the
increase in energy efficiency is worthy of the performance loss. According to the definition
of RCEE and RCAD in Section 3.3, our goal is to obtain an overall conclusion on the quality
of the tradeoff.

Figure 4.19 and Figure 4.20 show the relative changes of EE and AD of TPSS over MCTA
(i.e., using MCTA as the reference scheme). Columns in slashes are relatively improved
energy efficiency of TPSS over MCTA as the output, and columns in mesh are relatively
increased detection delay of TPSS over MCTA as a cost. Then the difference between two
styles of columns provide us the “net profits” of TPSS over MCTA.

The height change of columns in Figure 4.19 is a result of multiple competing factors. When
the node density is low, both MCTA and TPSS are close to the no sleep scheduling scheme
(i.e., the effect of proactive wake-up and sleep scheduling is neglectable). Thus, the difference
of TPSS and MCTA on energy and delay is not significant. However, when nodes are highly
densely deployed, the number of awakened nodes of TPSS increases faster than MCTA. Thus
the improvement on energy efficiency is not as significant as lower densities. Moreover, the
coverage of awakened nodes is much better than a sparse deployment, especially for TPSS

Bo Jiang Chapter 4. Detection Delay in Event Observation Phase 48

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

5

10

15

20

25

30

35

40

R
e

la
ti
v
e

 C
h

a
n

g
e

s
 (

%
)

Node Density (nodes/100m
2
)

 RC
EE

 RC
AD

Figure 4.19: Relative Changes vs. Node
Density

5 10 15 20 25 30

0

10

20

30

40

50

60

Target Speed (m/s)

R
e

la
ti
v
e

 C
h

a
n

g
e

s
 (

%
)

 RC
EE

 RC
AD

Figure 4.20: Relative Changes vs. Target
Speed

which disperses awakened nodes along all the directions. Thus the increase of the detection
delay is not as severe as lower node densities.

For most cases, TPSS introduces an improvement of 25% − 45% on energy efficiency based
on MCTA, and suffers an increase of only 5%− 15% on detection delay.

4.7 Conclusion

This chapter presented a probability-based prediction and sleep scheduling scheme (TPSS)
to achieve better tradeoff between energy efficiency and tracking performance for rare event
tracking with sensor networks. We introduce a prediction scheme based on both kinematics
rules and probability models, so that the energy consumed by low value-added sensor nodes
(i.e., nodes that have a low probability of detecting the target) can be reduced. Based on the
prediction results, we discussed two efforts for enhancing energy efficiency, including reducing
the number of awakened nodes and scheduling their sleep patterns. We introduced a concept
of awake region to reduce the number of awakened nodes, and presented a sleep scheduling
mechanism to temporarily adjust their sleep patterns so as to shorten the active time as
much as possible. We also experimentally compared TPSS with no sleep scheduling case,
the legacy circle-based scheme and the MCTA algorithm. The evaluation results showed
that TPSS achieves a better tradeoff between energy efficiency and tracking performance by
serving more improvement on energy efficiency than the cost on tracking performance.

Chapter 5

Propagation Delay in Data
Propagation Phase

5.1 Introduction

In this chapter, we study the queuing delay, one of the major delay sources during data
propagation, together with the real-time capacity. We define real-time capacity as the net-
work’s capability to transmit time sensitive data with deadlines. These deadlines may come
from the specifics of the applications, e.g., for timely response of actors [8], for timely target
tracking [28], etc.

As previously discussed in Chapter 1, constrained network capacity may cause a long queuing
delay. In fact, network capacity is important not just for sensor networks. In [44], Li et.
al. study the capacity of wireless ad hoc networks, showing that the per node throughput
actually available is dozens of times smaller than the apparent radio capacity. They also
point out that, this is because, the interference among nodes may exceed the range at which
they can communicate successfully. Another reason is the overhead of MAC protocols such
as headers, RTS/CTS, and ACK packets. The capacity of wireless networks, in general, has
been well studied since the work of Gupta and Kumar [40]. Except for the interference and
overheads introduced in [44], network size, traffic patterns, and network architecture are the
most commonly studied factors that constrain the achievable capacity.

In summary, we present the queuing delay and the per-hop success probability as well as
define the real-time capacity for a many-to-one event-driven sensor network with unbalanced
traffic loads. The following list shows some major points of design:

1) Many-to-one. Unlike ad hoc networks, sensor networks collect data from a large number
of sensor nodes and report them to a much smaller number of sink nodes. Usually nodes
propagate their measurements to the closest sink node. This data gathering structure leads

49

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 50

to a many-to-one traffic pattern. Without loss of generality, we consider a many-to-one data
gathering network with only one sink node.

2) Per-hop based. Based on an arbitrary event distribution, we compose the network capacity
from the per-hop throughput and slack time. This is because with unbalanced traffic loads,
studying network wide conditions from a macro view may not guarantee that each packet
can meet its respective deadline.

3) Slack distribution. We also present the end-to-end slack time distribution along a packet’s
propagation path. By subtracting the necessary propagation time from the end-to-end dead-
line of a packet, we obtain the end-to-end slack time for which the packet can be delayed at
the most. Previous works use either a uniform distribution or an exponential distribution for
describing the slack time among multiple hops [70]. Uniform distribution allocates the total
end-to-end slack time to all the hops equally. Exponential distribution allocates the slack
time as Lh = Le2e

2h , where L is the slack time and h is the number of hops from the sink node.
With the exponential distribution, nodes close to the sink will therefore obtain more slack
time, because of their (expected) greater congestion. However, either uniform distribution
or exponential distribution is simple and completely based on mathematical models without
considering much of the requirements of realistic networks. Uniform distribution is suitable
only for a chain architecture without congestion, and it is a little casual for exponential
distribution to claim that hop h deserves a slack time double long as that of hop h + 1.
We establish a new distribution scheme which is closer to the realistic network and more
adaptive by supporting more generic cases.

In details, we first establish a relationship between the event distribution and the expected
end-to-end packet delay. Leveraging results from queuing theory, we then design a slack
time distribution scheme. For estimating the probability that a packet can reach the sink
within its deadline, we introduce the concept of per-hop success probability. This end-to-
end probability is computed by multiplying each hop’s probability of meeting the deadline
of that hop. In terms of the per-hop success probability, we verify that the new slack time
distribution scheme is optimal. Finally, we define the real-time capacity of the network, and
study two special cases of traffic generation, i.e., a single source case and a continuous case.
For the single source case, there is only one source node that may produce traffic in a many-
to-one sensor network. On the contrary, each node in the network periodically produces an
equal amount of traffic load for the continuous case. We show that our slack distribution
scheme yields consistent or similar results for these two special cases as the past works, but
is more adaptive by supporting more generic cases.

The rest of this chapter is organized as follows. In Section 5.2, we discuss the relationship
between the allowable throughputs and the expected end-to-end delay. In Section 5.3, we
present the slack time distribution scheme, and introduce the concept of per-hop success
probability. In Section 5.4, we define and analyze real-time capacity, and study two special
cases of traffic generation, including the single source case and the continuous case. The study
of these special cases serves as a verification for the research result of the data propagation

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 51

phase. We also discuss the potential applications of the slack time distribution scheme on
dynamic priority packet scheduling, and provide its computational complexity. Section 5.5
concludes the chapter.

5.2 Traffic Pattern and Node Throughput

We first establish the relationship between the allowable throughputs and the expected end-
to-end delay.

H h-1 01hh+1

source sink

h

h h
N C

h h
N C

Figure 5.1: Propagation Path and Virtual Queue

Figure 5.1 shows the propagation path of a packet from the source that is H hops away from
the sink. Numbers above the node circles represent the hop number. We utilize a queue
to describe the relationship between throughputs of adjacent hop layers, so that we could
leverage results of queuing theory for our analysis. As shown in Figure 5.1, the mean arrival
rate λ of the queue is the total expected incoming throughput NhC

′
h, and the mean service

rate µ is the total expected outgoing throughput NhCh.

Lemma 1 (Throughputs) The outgoing throughput of a node in hop layer h is:

Ch =
W

Nh

(1−
∑h−1

i=1 NiGi∑Hmax

i=1 NiGi

) (5.1)

The incoming throughput of a node in hop layer h is:

C ′
h =

Nh+1

Nh

Ch+1 (5.2)

Proof: The total traffic that nodes produce after events are observed, i.e.,
∑Hmax

i=1 NiGi,
may exceed the receiving capacity of the sink node. Therefore, we need to control the sending
rate of source nodes. For the fairness of rate control, a good approach is to cut by their

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 52

weights. Then the upper bound of the traffic load that a node in hop layer h may generate
is:

WGh∑Hmax

i=1 NiGi

Since the outgoing throughput of a node is composed of the traffic that it produces and that
it relays, we have Ch = WGh∑Hmax

i=1 NiGi
+ C ′

h = WGh∑Hmax
i=1 NiGi

+ Nh+1

Nh
Ch+1. Through iteration, we

have:

C1 =
1

N1

· W∑Hmax

i=1 NiGi

h−1∑
i=1

NiGi +
Nh

N1

Ch

Thus:

Ch =
W

Nh

(1−
∑h−1

i=1 NiGi∑Hmax

i=1 NiGi

)

With the assumption of zero-overhead MAC protocols, the traffic transmitted by nodes in
hop layer h + 1 can arrive at nodes in hop layer h successfully without being dropped. That
is, Nh · C ′

h = Nh+1 · Ch+1. Done.

With Lemma 1, we establish a model for the allowable average incoming and outgoing
throughputs of nodes based on the event distribution. Next we introduce our new slack
distribution scheme based on this throughput model.

5.3 Slack Distribution

How the end-to-end slack time is distributed to multi-hops embodies how a system considers
network congestion and message velocity. The slack distribution scheme may be different in
different network environments.

The continuous model and the chain model are two typical special cases of event-driven
sensor networks with many-to-one traffic pattern. Recall that each node in a continuous
WSN produces an equal amount of original traffic. A continuous sensor network is a special
case when traffic loads are extremely average. A many-to-one sensor network degenerates
to a chain architecture when only one source node generates traffic and propagates it via a
single route. Along the chain path, there is no congestion and the packet velocity does not
need to change, since no other traffic will interfere its transmission.

As previously mentioned, most existing works adopt either uniform distribution or expo-
nential distribution for slack time distribution. Uniform distribution allocates the total
end-to-end slack time to all the hops from the source to the sink equally, implicitly assuming
that a packet suffers the same delay at each intermediate node along the path. In [70], Liu
et. al. present an exponential distribution scheme for slack time, where the per-hop slack

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 53

time is computed as Lh = Le2e

2h , where h is the number of hops from the sink node. Obviously,
uniform distribution is more suitable for the chain model, while exponential distribution is
often utilized for the continuous case. However, both of them are simple and completely
based on mathematical models without considering much of the requirements of realistic
networks. Moreover, neither of them is suitable for generic event-driven sensor networks
with unbalanced traffic patterns.

In a generic sensor network with unbalanced many-to-one traffic pattern, the congestion gets
more and more severe as a packet flows from the source towards the sink [71]. Consequently,
its message velocity will decrease as a packet approaches the sink. Such a variable message
velocity requires variable slack time at each hop, i.e., nodes that are closer to the sink deserve
more slack time as packets suffer more delay. At the same time, the congestion degree at
each hop depends on the specific traffic status. Therefore, the slack distribution should be
based on the event distribution.

For generic many-to-one sensor networks and their random event distribution, we will have
to design a more accurate scheme. The new distribution not only needs to consider the
specific event distribution, but also has to meet the actual requirements instead of simply
establishing a mathematical model.

We discuss the expected delay in two cases, in terms of whether or not nodes produce their
own traffic: 1. when nodes in hop layer h produce their own traffic (i.e., Ch > C ′

h), hop layer
h can be approximated with a M/M/1 queue; and 2. when nodes do not produce their own
traffic (i.e., Ch = C ′

h), hop layer h can be approximated with a D/D/1 queue1.

Both M/M/1 queue and D/D/1 queue are simple queue models. Usually M/M/1 queue is
closer to the actual network environment than the D/D/1 queue [73]. However, a constraint
of M/M/1 queue is that it is stable only if the service rate µ is greater than the arrival
rate λ (i.e., Ch > C ′

h here). Queuing theory shows that only with this constraint, the queue
will not keep growing forever, and the expected waiting time will not approach infinity. For
the Ch = C ′

h case, the expected waiting time of M/M/1 queue will approach infinity and
therefore is not useful for delay analysis. Thus, we adopt the D/D/1 queue for this case,
which is feasible although not as accurate as M/M/1 queue.

From queuing theory, the expected waiting time of a packet in a queue of hop layer h is:

Th,H =

{
1

µ−λ
= 1

NhCh−NhC′h
, (Ch > C ′

h)
1
µ

= 1
NhCh

, (Ch = C ′
h)

(5.3)

where H is the hop layer where the packet is generated.

On average, the tuned traffic load that a node in hop layer h may generate, WGh∑Hmax
i=1 NiGi

, is

just the difference Ch − C ′
h (when Gh = 0, Ch = C ′

h). Substituting this and Equation 5.1

1Based on the Kendall notation, M/M/1 is a queue with Poisson arrival process, exponential service
time, one server, and infinite buffer. D/D/1 is a queue with deterministic arrival rate and service time, one
server, and infinite buffer [72].

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 54

into Equation 5.3, we have:

Th,H =

∑Hmax
i=1 NiGi

WNhGh
, (Ch > C ′

h)∑Hmax
i=1 NiGi

W
∑Hmax

i=h NiGi
, (Ch = C ′

h)

Now, the expected end-to-end waiting time is:

Te2e,H =
H∑

h=1

Th,H

=

∑Hmax
i=1 NiGi

W

∑H
h=1

1
NhGh

, (Ch > C ′
h)∑Hmax

i=1 NiGi

W

∑H
h=1

1∑Hmax
i=h NiGi

, (Ch = C ′
h)

(5.4)

This establishes a relationship between the event distribution and the expected delay.

We distribute the end-to-end slack time Le2e,H in a proportional manner to the expected
delay determined by Equation 5.3. In fact, the distributed per-hop slacks can be considered
as per-hop deadlines.

Definition 1 (per-hop Slack) If the throughputs of all the hops along a packet’s routing
path are known, the per-hop slack time for hop h is given as:

Lh,H =
Th,H

Te2e,H

· Le2e,H

Since the per-hop waiting time of a packet is exponentially distributed [72], the probability
that a packet experiences less time than the distributed per-hop slack Lh,H is:

P [t ≤ Lh,H] = 1− e
−Lh,H

Th,H = 1− e
−Le2e,H

Te2e,H (5.5)

From Equation 5.5, we observe that by the definition of this slack distribution scheme, the
probability that a packet meets the per-hop deadline is independent of the hop number.

Now, we define the per-hop success probability as:

Pe2e(De2e,H , H)

= P [t1 ≤ L1,H , · · · , th ≤ Lh,H , · · · , tH ≤ LH,H]

= P [t1 ≤ L1,H] · · ·P [th ≤ Lh,H] · · ·P [tH ≤ LH,H]

= (1− e
−Le2e,H

Te2e,H)H = (1− e
− Le2e,H∑H

h=1
Th,H)H

(5.6)

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 55

where th is the time actually spent on a node in hop layer h. Pe2e(De2e,H , H) is a function
of a packet’s route length and its deadline in a given network environment with a specific
event distribution.

Theorem 1 (Optimal Slack Distribution Theorem) Based on the relationship between
the event distribution and the expected delay, the slack distribution scheme determined in
Definition 1 is optimal in terms of achieving the highest per-hop success probability.

Proof: Without loss of generality, we consider the case of two hops. Thus

P [t1 ≤ L1,H , t2 ≤ L2,H] = (1− e
−Le2e,H

Te2e,H)2

Now, assume that a different slack distribution scheme distributes the slack at these two
hops as L1,H + δ and L2,H − δ (∀ δ > 0), instead of L1,H and L2,H . Then the probability will
become:

P [t1 ≤ L1,H + δ, t2 ≤ L2,H − δ] (5.7)

= (1− e
−Le2e,H

Te2e,H · e−
δ

T1,H) · (1− e
−Le2e,H

Te2e,H · e
δ

T2,H) (5.8)

We substitute the complicated expressions in Equation 5.7 with constants for simplification.

Let Y = e
−Le2e,H

Te2e,H , A = e
− δ

T1,H , and B = e
δ

T2,H . Then we have 0 < Y < 1 and 0 < A < 1 < B.
Now, we need to prove that (1−AY)(1−BY) < (1−Y)2 ⇔ (AB− 1)Y < A + B− 2. This
inequality can be proved as,

Left = (AB − 1)Y < AB − 1

= (A− 1)(B − 1) + A + B − 2

< A + B − 2 = Right

As δ is arbitrary, the slack distribution scheme in Definition 1 is guaranteed to be optimal.
Done.

The slack distribution scheme presented in Section 5.3 can be used for configuring a packet’s
per-hop deadline, and accordingly for adjusting the packet priority in the queue. Each time
a packet leaves a relay node, its remaining end-to-end slack time Le2e,H can be recalculated,
and the allowable slack time for the next hop can be determined accordingly. This builds a
foundation for dynamic priority scheduling.

We now determine the computational complexity for determining the slack time. Given an
event distribution Ĝ and a network size Hmax, the complexity for computing Te2e,H with
Equation 5.4 is O(H2

max). Thus, the complexity for computing a new per-hop slack time
Lh,H with Definition 1, and the complexity for computing the per-hop success probability
Pe2e(De2e,H , H) with Equation 5.6 are also O(H2

max). Therefore, the complexity for comput-
ing the real-time capacity RTC(α) is O(H3

max).

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 56

5.4 Real-time Capacity

We now define and determine the real-time capacity concept. We also study some special
traffic generation cases as examples of applying the slack time distribution scheme and the
real-time capacity.

5.4.1 Definition

In previous works, the capacity of wireless ad hoc and sensor networks is usually defined
as a function of the network size, and upper or lower bounds of the network capacity are
often the research focus [40, 47]. Delay has been studied in some works, but usually as a
constraint [42]. In [19], the real-time capacity is defined as the upper bound of the sum
of all the in-transit packets’ ratio of the packet size divided by their respective deadlines,
i.e., CRT = W

∑
Ci

Di
, where Ci and Di are the transmission time and the deadline of packet

i, respectively. This definition works for fixed priority packet scheduling discussed in [19].
However, [19] has used it as a network-wide term without considering per-hop details.

Sometimes network-wide conditions cannot provide sufficient guarantees especially for event-
driven sensor networks with unbalanced traffic pattern. For example, two nodes each with
100 bit/s capacity cannot simultaneously guarantee the timely delivery of a data flow requir-
ing 20 bit/s capacity and another requiring 150 bit/s capacity.

We define real-time capacity based on the per-hop success probability defined in Equation 5.6,
i.e., the probability that a packet meets the per-hop deadline of all its hops. Let α denote a
threshold for the per-hop success probability that must be satisfied. Now, we define real-time
capacity as follows:

Definition 2 (Real-time Capacity) The real-time capacity of an event-driven data-gathering
sensor network is defined as the sum of traffic loads, the per-hop success probability of which
is higher than a given requirement threshold α i.e.,

RTC(α) =
W∑Hmax

i=1 NiGi

1≤i≤Hmax∑

Pe2e(De2e,i,i)≥α

NiGi (5.9)

As in Lemma 1, W∑Hmax
i=1 NiGi

is a factor for rate control.

Thus, this definition of real-time capacity defines how much real-time data in bits can meet
their deadlines with a per-hop success probability that is greater than the given threshold
α, for an arbitrary event distribution Ĝ.

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 57

An important advantage of the per-hop success probability concept lies in its ability for
configuring the end-to-end deadline for a packet generated at a node that is H hops away
from the sink. In the past, most works do not discuss how the deadline of packets are
determined or configured. In contrast, here, we provide an approach for configuring the
packet deadline based on the requirement for the delivery probability. For a packet generated
by a node in hop layer H, we can compute the lower bound of its deadline when given a
requirement threshold of the per-hop success probability α. Formally, this is computed as:

Pe2e(De2e,H , H) = (1− e
−Le2e,H

Te2e,H)H ≥ α

⇐⇒ e
−Le2e,H

Te2e,H ≤ 1− α
1
H

⇐⇒ Le2e,H = De2e,H −Hτ ≥ −Te2e,H ln (1− α
1
H)

⇐⇒ De2e,H ≥ Hτ − Te2e,H ln (1− α
1
H)

5.4.2 Examples

We now study some special cases of traffic generation, and show how the real-time capacity
and the per-hop success probability can be applied.

Single Source Case

The single source case yields a chain architecture, where there is only one node that produces
traffic. Assume that this node is located in hop layer H. For each hop layer h ∈ [1, H − 1]∪
[H + 1, Hmax], nodes do not produce their own traffic, i.e., Gh = 0 and Ch = C ′

h. The only
traffic source is shown as GH > 0. Thus, the expected delay for ∀ h ∈ [1, H − 1] is:

Th,H =

∑Hmax

i=1 NiGi

W
∑Hmax

i=h NiGi

=
NHGH

WNHGH

=
1

W

For the hop layer H, the source node produces its own traffic. Thus:

TH,H =

∑Hmax

i=1 NiGi

WNHGH

=
NHGH

WNHGH

=
1

W

Therefore:

Te2e,H =
H∑

h=1

Th,H =
H∑

h=1

1

W
=

H

W

So the per-hop slack time is Lh,H =
Le2e,H

H
, which is independent of the hop number. This is

consistent with the uniform distribution [70].

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 58

The per-hop success probability is:

Pe2e(De2e,H , H) = (1− e
−Le2e,H

Te2e,H)H = (1− e−
WLe2e,H

H)H

The real-time capacity of the whole network is either W or 0 depending on whether Pe2e(De2e,H , H)
is greater than a given threshold α.

Continuous Case

In a continuous sensor network, all the nodes produce the same traffic load. Therefore, ∀ h,
we have Ch > C ′

h and Gh = E. Assume that packets produced by a node located in hop
layer H are configured with an end-to-end deadline De2e,H . Then, the expected delay for
∀ h ∈ [1, H] is:

Th,H =

∑Hmax

i=1 NiGi

WE
· 1

Nh

The end-to-end expected delay is:

Te2e,H =
H∑

h=1

Th,H =

∑Hmax

i=1 NiGi

WE

H∑

h=1

1

Nh

Thus, the per-hop slack time is:

Lh,H =
1

Nh∑H
h=1

1
Nh

Le2e,H

We may observe that the closer a hop layer is to the sink, the smaller Nh is, and the larger
their Lh,H will be. This is consistent with the actual requirement that nodes closer to the sink
deserve more slack time in many-to-one sensor networks. Compared with the exponential
distribution scheme [70], the new slack distribution scheme is optimal in terms of the per-hop
success probability, and therefore more accurate for actual network requirements.

Accordingly, we can also compute the per-hop success probability and the real-time capacity
based on Equation 5.6 and 5.9. However, the detailed results depend on the configuration
of each packet’s deadline.

From these two special cases, we can observe that the research results of this chapter (includ-
ing the slack distribution scheme, the per-hop success probability and real-time capacity)
yield consistent or similar results as that of the past works. In addition, our results for
event-driven sensor networks are more generic by taking the event distribution into account.

Bo Jiang Chapter 5. Propagation Delay in Data Propagation Phase 59

5.5 Conclusions

This chapter investigates the real-time capacity of event-driven data-gathering sensor net-
works with the unbalanced many-to-one traffic pattern. We establish the relationship be-
tween the event distribution and the expected end-to-end delay. We then leverage the
M/M/1 and D/D/1 models of queuing theory to estimate the expected waiting time in
the queues, so as to distribute the end-to-end slack time proportionally to this expected
delay.

We introduce the concept of per-hop success probability to estimate the probability that a
packet can reach the sink meeting its deadline. In terms of the per-hop success probability,
we verify that the new slack time distribution scheme is optimal. We then define the real-time
capacity of the network. Finally, we study two special cases of traffic generation, including a
single source case and a continuous case. Compared with past works, our slack distribution
scheme and real-time capacity analysis yield consistent or similar results for these two special
cases as that of past works, but is more adaptive by supporting more generic cases. Our
work thus lays the foundation for further research on network scheduling for event-driven
sensor networks with unbalanced traffic loads.

Chapter 6

Conclusions, Contributions and
Proposed Post Preliminary Exam
Work

In this dissertation proposal, we analyze the quantitative relation among the end-to-end
delay, the probability of guaranteeing this delay and network parameters in event-driven
sensor networks. We partition the whole process of event observing and reporting into two
phases, i.e., an event observation phase and a data propagation phase. In the end-to-end
delay, the detection delay and the queuing delay are analyzed, each for a phase. We use a
typical event-driven application, i.e., target tracking, as the example for the convenience of
discussion.

For the event observation phase, we present a target prediction and sleep scheduling scheme
named as TPSS to reduce the energy consumption when satisfying the given delay con-
straint. We design a target prediction method based on both kinematics rules and theory of
probability. Then based on the prediction results, we enhance energy efficiency by designing
a novel sleep scheduling mechanism that reduces the number of awakened nodes and sched-
ules their sleep patterns in an integrated manner. We analyze the detection delay and the
detection probability under TPSS scheme, as well as evaluate it with a simulation tool. The
simulation results show that TPSS achieves a better tradeoff between energy efficiency and
tracking performance than the existing works.

For the data propagation phase, we analyze the delay from the point of view of network
capacity. By approximating all the nodes that have the same distance away from the sink
node as a queue, the queuing delay can be estimated, which is the major delay source except
for the transmission delay and the sleep delay during data propagation. We also develop a
new slack time distribution scheme for unbalanced many-to-one traffic patterns. In terms
of the per-hop success probability, which is defined as the probability for a packet to meet
its deadlines at each hop, we prove that the slack distribution scheme is optimal among all

60

Bo Jiang Chapter 6. Conclusions, Contributions and Future Work 61

the sub-delay partition schemes. Finally, we define and analyze the network-wide real-time
capacity. Real-time capacity is defined as when given a per-hop success probability, how
much data (in bit per second) can be delivered to the sink, meeting their deadlines. An
important advantage of the per-hop success probability concept is that application designers
can configure a packet’s deadline based on the required successful delivery probability.

6.1 Contributions

In this proposal, we established a quantitative relation among the end-to-end delay, the prob-
ability of guaranteeing this delay and network parameters in event-driven sensor networks.
Such a quantitative relation can help system designers to configure a sensor network towards
certain real-time constraints. These parameters may include but not limited to node density
Ds, average target speed TS, the toggling period TP , the duty cycle DC and σ∆n (that may
influence the probability with which a node is scheduled).

We presented a two-phase model for event-driven applications, including an event observation
phase and a data propagation phase. Compared with the six-phase model used in [1], this
partition scheme is simpler but more generic, as it only involves two core steps of event-
driven applications. It is more feasible for obtaining system-wide, globally optimal solutions
than the six-phase model.

We designed a target prediction method based on both kinematics rules and theory of proba-
bility. As far as we know, such an integrated prediction method was not studied in the past.
From the prediction result, a target’s movement status can be illustrated with probabilistic
models, which contribute to scheduling the sleep pattern of nodes in a probabilistic manner.
At the same time, the parameters of these probabilistic models can be modified for satisfying
given real-time constraints.

For enhancing energy efficiency, we designed a novel approach by reducing the number of
awakened nodes and scheduling their sleep patterns in an integrated manner. Compared with
past proactive wake-up mechanisms, this integrated effort significantly reduces the energy
consumption, without impairing the tracking performance much. Based on our analysis,
a network will be able to minimize the energy consumption when satisfying a given delay
constraint.

We analyzed the detection probability and the detection delay under TPSS scheme, as well
as evaluated it by simulation-based experimental studies. The simulation results show that
TPSS achieves a better tradeoff between energy efficiency and tracking performance than
the existing works.

For the propagation delay, we leverage the results from queuing theory for estimating the
expected queuing delay, which is one of the major delay sources during data propagation.
We designed a new slack time distribution scheme based on the requirements of realistic

Bo Jiang Chapter 6. Conclusions, Contributions and Future Work 62

networks and results from queuing theory. Also we introduced the concept of per-hop success
probability, in terms of which we proved that the new slack time distribution scheme is
optimal. This provides us a delay partition method in the data propagation phase for
maximizing the end-to-end probability of meeting the deadline.

6.2 Post Preliminary Exam Work

We propose the following questions for post preliminary exam work:

• Five questions. Based on the quantitative relation presented in this proposal, we
propose to answer all the five questions listed in Section 1.1 after the preliminary
exam. In fact, most of these questions are non-linear programming problems. For
example, subject to an upper bounded end-to-end delay, we need to maximize the
product of the detection probability and the per-hop success probability corresponding
to sub-delays for two phases. Another question that deserves more work is about the
difference between the first detection delay and the subsequent detection delays after
the first one. When nodes work in the default mode, the active time (i.e., TP ·DC) is
short for prolonging the network lifetime. Thus the initial detection delay will be very
long. After the first observation, many awakened nodes know the existence of the target
and have already re-scheduled their sleep pattern, which will shorten the subsequent
detection delays significantly. However, the delay constraint for detecting and reporting
an event may be certain specifically for an application. When partitioning the end-
to-end delay, we may need to emphasize the event observation phase for the first
detection, and then emphasize the data propagation phase in the following detections.
This example also requires a global optimal solution.

• Multiple sink nodes. In realistic sensor networks especially those large scale deploy-
ments, designers usually deploy multiple sinks to reduce the distance from source nodes
to the sink, so as to improve the network performance such as the end-to-end delay.
The propagation delay and the network capacity of sensor networks with multiple sink
nodes may be very different from the one sink case. Which sink node a source node
should report to may be configured by applications or dependent on network optimiza-
tion. Moreover, the number of hops away from a sink node can be either obtained from
the routing protocol or calculated by the distance between nodes by Kleinrock-Silvester
formula [74]. We propose to extend the analysis result of the data propagation phase
to the multiple sink case.

• Multiple targets. The current research for the event observation phase is constrained
to the single target tracking case. When multiple targets move close to each other, the
redundant alarm messages of interfering targets may be leveraged for further enhanc-
ing energy efficiency. At the same time, multiple target tracking may introduce new

Bo Jiang Chapter 6. Conclusions, Contributions and Future Work 63

workload of computation. Therefore, the analysis of the algorithm complexity will also
be a new problem. We propose to answer the question that how much more energy
can be saved for multiple target tracking, after excluding the extra energy consumed
on computation.

• Dynamic event distribution. Dynamic event means that the location where events
occur is dynamic. Instead of considering static event distribution, it would be more
accurate and more adaptive if dynamic event distribution is considered with random
processes for the data propagation phase. However, dynamic event distribution will
definitely require a dynamic slack distribution scheme and a dynamic delay partition
method. Each intermediate node has to check the remaining slack time and adaptively
tune its scheduling policy and/or the packet’s priority. This may also require the time
synchronization. In Chapter 3, we assumed time synchronization mainly for target
prediction. However, time synchronization is usually very challenging for realistic
applications of sensor networks. We propose to extend the analysis result of the data
propagation phase to dynamic event distribution, and consider if it is possible to achieve
the target prediction and the propagation delay analysis for dynamic event distribution
without time synchronization.

• Potential applications. We discussed several potential applications of the slack time
distribution scheme and real-time capacity in this proposal. Many more potential
applications can be explored based on the research results of the relation among delay,
probability, and network parameters. For example, based on real-time capacity, the
transmission rate of source nodes can be monitored to ensure the best use of network
resources, but avoid any unnecessary congestions and delays at the same time. Another
example is for packet scheduling. Packets may be scheduled with dynamic priorities,
which are determined by real-time capacity-oriented slack time and delivery probability,
among other possible aspects. We propose to provide more scenarios where the results
of this proposal can help on the design of a sensor network.

Bibliography

[1] T. He, P. Vicaire, T. Yan, and L. L. et al., “Achieving real-time target tracking using
wireless sensor networks,” ACM Transaction on Embedded Computing System (TECS),
2007.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-
works: a survey,” Computer Networks (Amsterdam, Netherlands: 1999), vol. 38, no. 4,
pp. 393–422, 2002.

[3] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of wireless micro-
sensor network models,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 6, no. 2, pp.
28–36, 2002.

[4] P. Bonnet, J. Gehrke, and P. Seshadri, “Querying the physical world,” Personal Com-
munications, IEEE, vol. 7, no. 5, pp. 10–15, Oct 2000.

[5] B. G. Celler, W. Earnshaw, E. D. Ilsar, L. Betbeder-Matibet, M. F. Harris, R. Clark,
T. Hesketh, and N. H. Lovell, “Remote monitoring of health status of the elderly at
home. a multidisciplinary project on aging at the university of new south wales,” Inter-
national Journal of Bio-Medical Computing, vol. 40, no. 2, pp. 147 – 155, 1995.

[6] H. Song, S. Zhu, and G. Cao, “Svats: A sensor-network-based vehicle anti-theft system,”
April 2008, pp. 2128–2136.

[7] S. Oh, L. Schenato, P. Chen, and S. Sastry, “A scalable real-time multiple-target track-
ing algorithm for sensor networks,” Memorandum, 2005.

[8] V. C. Gungor, O. B. Akan, and I. F. Akyildiz, “A real-time and reliable transport
(rt)2 protocol for wireless sensor and actor networks,” in IEEE/ACM Transactions on
Networking, 2008.

[9] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards optimal sleep scheduling
in sensor networks for rare event detection,” in Proceedings of the 4th international
symposium on Information processing in sensor networks, no. 4, 2005.

[10] D. Tian and N. Georganas, “A coverage-preserving node scheduling scheme for large
wireless sensor networks,” 2002.

64

Bo Jiang Bibliography 65

[11] J. Jeong, T. Hwang, T. He, and D. Du, “Mcta: Target tracking algorithm based on
minimal contour in wireless sensor networks,” in INFOCOM, 2007, pp. 2371–2375.

[12] S. S. Choi, “Analysis of low latency mac protocols for clustered sensor networks,” 2008,
pp. 1894–1898.

[13] Y. Li, C. S. Chen, Y.-Q. Song, and Z. Wang, “Real-time qos support in wireless sensor
networks: a survey,” 2007.

[14] X. Xia and Q. Liang, “Latency and energy efficiency evaluation in wireless sensor net-
works,” vol. 3, 2005, pp. 1594–1598.

[15] J. Kleinberg and E. Tardos, Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., 2005.

[16] X. Wang, J.-J. Ma, S. Wang, and D.-W. Bi, “Cluster-based dynamic energy management
for collaborative target tracking in wireless sensor networks,” Sensors, vol. 7, pp. 1193–
1215, 2007.

[17] J. Fuemmeler and V. Veeravalli, “Smart sleeping policies for energy efficient tracking in
sensor networks,” IEEE Transactions on Signal Processing, 2007.

[18] Y. Gu and T. He, “Data forwarding in extremely low duty-cycle sensor networks with
unreliable communication links,” in SenSys ’07: Proceedings of the 5th international
conference on Embedded networked sensor systems, 2007, pp. 321–334.

[19] T. F. Abdelzaher, S. Prabh, and R. Kiran, “On real-time capacity limits of multihop
wireless sensor networks,” in RTSS ’04: Proceedings of the 25th IEEE International
Real-Time Systems Symposium, 2004, pp. 359–370.

[20] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou, Q. Cao, P. Vicaire,
J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh, “Vigilnet: An integrated
sensor network system for energy-efficient surveillance,” ACM Transactions on Sensor
Networks, vol. 2, no. 1, pp. 1–38, 2006.

[21] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “Delay efficient sleep scheduling
in wireless sensor networks,” in IEEE Infocom, 2005.

[22] “Adaptive localized qos-constrained data aggregation and processing in distributed sen-
sor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 9, pp. 923–933, 2006,
zhu,, Jin and Papavassiliou,, Symeon and Yang,, Jie.

[23] M. Caccamo, L. Zhang, L. Sha, and G. Buttazzo, “An implicit prioritized access protocol
for wireless sensor networks,” 2002, pp. 39–48.

Bo Jiang Bibliography 66

[24] O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu, J. Stankovic, and T. Abdelzaher,
“Real-time power-aware routing in sensor networks,” Proceedings of the 14th IEEE
International Workshop on Quality of Service, pp. 83–92, 2006.

[25] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-latency tradeoffs for data
gathering in wireless sensor networks,” in INFOCOM, 2004.

[26] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Optimizing sensor networks
in the energy-latency-density design space,” IEEE Transactions on Mobile Computing,
vol. 1, no. 1, pp. 70–80, 2002.

[27] D. Shuman and M. Liu, “Optimal sleep scheduling for a wireless sensor network node,”
in Fortieth Asilomar Conference on Signals, Systems and Computers (ACSSC), 2006,
pp. 1337–1341.

[28] C. Gui and P. Mohapatra, “Power conservation and quality of surveillance in target
tracking sensor networks,” in Proceedings of the 10th annual international conference
on Mobile computing and networking, 2004, pp. 129–143.

[29] S. Ren, Q. Li, H. Wang, X. Chen, and X. Zhang, “Design and analysis of sensing
scheduling algorithms under partial coverage for object detection in sensor networks,”
in IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 3, 2007, pp.
334–350.

[30] S. Liu, K.-W. Fan, and P. Sinha, “Dynamic sleep scheduling using online experimenta-
tion for wireless sensor networks,” in SenMetrics, 2005.

[31] Y. Chen and E. Fleury, “A distributed policy scheduling for wireless sensor networks,”
in IEEE Infocom, 2007.

[32] J. Denga, Y. S. Hanb, W. B. Heinzelmanc, and P. K. Varshney, “Balanced-energy
sleep scheduling scheme for high density cluster-based sensor networks,” in Computer
Communications: special issue on ASWN04, vol. 28, 2005, pp. 1631–1642.

[33] Y. Wu, S. Fahmy, and N. B. Shroff, “Energy efficient sleep/wake scheduling for multi-
hop sensor networks: Non-convexity and approximation algorithm,” in IEEE Infocom,
2007.

[34] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in wireless sensor
networks,” in Proceedings of the ACM International Symposium on Mobile Ad Hoc
Networking and Computing, 2006.

[35] Z. Guo and M. Zhou, “Prediction-based object tracking algorithm with load balance
for wireless sensor networks,” in Proceedings of IEEE Networking, Sensing and Control,
2005, 2005.

Bo Jiang Bibliography 67

[36] X. Wang, J.-J. Ma, S. Wang, and D.-W. Bi, “Prediction-based dynamic energy man-
agement in wireless sensor networks,” pp. 251–266, 2007.

[37] Y. Xu, J. Winter, and W.-C. Lee, “Prediction-based strategies for energy saving in
object tracking sensor networks,” in Proceedings of the 2004 IEEE International Con-
ference on Mobile Data Management (MDM04), 2004.

[38] “Kinematics.” [Online]. Available: http://en.wikipedia.org/wiki/Kinematics

[39] R. M. Taqi, M. Z. Hameed, A. A. Hammad, Y. S. Wha, and K. K. Hyung, “Adaptive yaw
rate aware sensor wakeup schemes protocol (a-yap) for target prediction and tracking
in sensor networks,” IEICE - Transactions on Communications, vol. E91-B, no. 11, pp.
3524–3533, 2008.

[40] P. Gupta and P. Kumar, “The capacity of wireless networks,” Information Theory,
IEEE Transactions on, vol. 46, no. 2, pp. 388–404, 2000.

[41] M. Grossglauser and D. N. C. Tse, “Mobility increases the capacity of ad hoc wireless
networks,” IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 477–486, 2002.

[42] N. Bansal and Z. Liu, “Capacity, delay and mobility in wireless ad-hoc networks,”
INFOCOM, 2003.

[43] M. Gastpar and M. Vetterli, “On the capacity of wireless networks: The relay case,”
INFOCOM, 2002.

[44] J. Li, C. Blake, D. S. J. De, C. Hu, I. Lee, and R. Morris, “Capacity of ad hoc wireless
networks,” in MobiCom, 2001, pp. 61–69.

[45] B. Liu, Z. Liu, and D. Towsley, “On the capacity of hybrid wireless networks,” INFO-
COM, vol. 2, pp. 1543–1552, 2003.

[46] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of interference on multi-
hop wireless network performance,” in MobiCom ’03: Proceedings of the 9th annual
international conference on Mobile computing and networking, 2003, pp. 66–80.

[47] D. Marco, E. Duarte-Melo, M. Liu, and D. Neuhoff, “On the many-to-one transport
capacity of a dense wireless sensor network and the compressibility of its data,” Proc.
International Workshop on Information Processing in Sensor Networks, 2003.

[48] H. Gamal, “On the scaling laws of dense wireless sensor networks: the data gathering
channel,” Information Theory, IEEE Transactions on, vol. 51, no. 3, pp. 1229–1234,
2005.

Bo Jiang Bibliography 68

[49] J. L. Bredin, E. D. Demaine, M. Hajiaghayi, and D. Rus, “Deploying sensor networks
with guaranteed capacity and fault tolerance,” in MobiHoc ’05: Proceedings of the 6th
ACM international symposium on Mobile ad hoc networking and computing, 2005, pp.
309–319.

[50] E. J. Duarte-melo and M. Liu, “Data-gathering wireless sensor networks: Organization
and capacity,” Computer Networks, vol. 43, pp. 519–537, 2003.

[51] L. Sankaranarayanan, G. Kramer, and N. Mandayam, “Hierarchical sensor networks:
Capacity bounds and cooperative strategies using the multiple-access relay channel
model,” in First Annual IEEE Communications Society Conference on Sensor and Ad
Hoc Communications and Networks, 2004, pp. 191–199.

[52] G. Barrenechea, B. Beferull-Lozano, and M. Vetterli, “Lattice sensor networks: capacity
limits, optimal routing and robustness to failures,” in IPSN ’04: Proceedings of the 3rd
international symposium on Information processing in sensor networks, 2004, pp. 186–
195.

[53] A. Giridhar and P. Kumar, “Computing and communicating functions over sensor net-
works,” Selected Areas in Communications, IEEE Journal on, vol. 23, no. 4, pp. 755–
764, 2005.

[54] A. Giridhar and P. R. Kumar, “Toward a theory of in-network computation in wireless
sensor networks,” Communications Magazine, IEEE, vol. 44, pp. 98–107, 2006.

[55] C. Comaniciu and H. Poor, “On the capacity of mobile ad hoc networks with delay
constraints,” Wireless Communications, IEEE Transactions on, vol. 5, no. 8, pp. 2061–
2071, 2006.

[56] T. Abdelzaher, G. Thaker, and P. Lardieri, “A feasible region for meeting aperiodic
end-to-end deadlines in resource pipelines,” 2004, pp. 436–445.

[57] J. Hightower and G. Borriello, “Location systems for ubiquitous computing,” IEEE
Computer, vol. 34, no. 8, pp. 57–66, August 2001.

[58] R. Stoleru, J. A. Stankovic, and S. Son, “Robust node localization for wireless sensor
networks,” in EmNets, 2007.

[59] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using
reference broadcasts,” SIGOPS Oper. Syst. Rev., pp. 147–163, 2002.

[60] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor
networks,” in SenSys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, New York, NY, USA, 2004, pp. 95–107.

Bo Jiang Bibliography 69

[61] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, , and H. Z. et al., “A line in the sand:
A wireless sensor network for target detection, classification,and tracking,” Computer
Networks (Elsevier), vol. 46, no. 5, pp. 605–634, 2004.

[62] J. Liu, M. Chu, and J. Reich, “Multitarget tracking in distributed sensor networks,”
Signal Processing Magazine, IEEE, vol. 24, no. 3, pp. 36–46, May 2007.

[63] H. Kang, H. Hong, S. Sung, and K. Kim, “Interference and sink capacity of wireless
cdma sensor networks with layer architecture,” in ETRI Journal, vol. 30, no. 1, 2008,
pp. 13–20.

[64] S. Pattem, S. Poduri, and B. Krishnamachari, “Energy-quality tradeoffs for target track-
ing in wireless sensor networks,” in In Proceedings of IPSN03, 2003, pp. 32–46.

[65] CrossBow, “Mica data sheet,” http://www.xbow.com.

[66] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed group management in
sensor networks: Algorithms and applications to localization and tracking,” in Telecom-
munication Systems, vol. 26, no. 2-4, 2004, pp. 235–251.

[67] Q. Cao, T. Yan, J. Stankovic, and T. Abdelzaher, “Analysis of target detection perfor-
mance for wireless sensor networks,” in Intl Conference on Distributed Computing in
Sensor Systems (DCOSS), 2005, pp. 276–292.

[68] M. Athanassoulis, I. Alagiannis, and S. Hadjiefthymiades, “Energy efficiency in wireless
sensor networks: A utility-based architecture,” in European Wireless 2007, 2007.

[69] J. L. Hill and D. E. Culler, “Mica: a wireless platform for deeply embedded networks,”
IEEE Micro, vol. 22, 2002.

[70] K. Liu, N. Abu-Ghazaleh, and K.-D. Kang, “Jits: just-in-time scheduling for real-time
sensor data dissemination,” Fourth Annual IEEE International Conference on Pervasive
Computing and Communications, pp. 5–46, 2006.

[71] M. Ahmad and D. Turgut, “Congestion avoidance and fairness in wireless sensor net-
works,” IEEE Global Telecommunications Conference (GLOBECOM), pp. 1–6, 2008.

[72] M. Zukerman, Introduction to Queueing Theory and Stochastic Teletraffic Models,
2008. [Online]. Available: http://www.ee.unimelb.edu.au/staff/mzu/classnotes.pdf

[73] M. Harchol-Balter and D. Wolfe, “In network of queues, m/m/1 can outperform m/d/1,”
Tech. Rep., 1994.

[74] L. Kleinrock and J. Slivester, “Optimum transmission radii for packet radio networks
or why six is a magic number,” in National Telecomm Conference, 1978.

