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(ABSTRACT)



Peer-to-peer (P2P) technology provides a scalable solution in multimedia streaming.

Many streaming applications, such as IPTV and video conferencing, have rigorous con-

straints on end-to-end delays. Obtaining assurances on meeting those delay constraints in

dynamic and heterogenous network environments is a challenge. In this proposal, we de-

vise a streaming scheme which minimizes the maximum end-to-end streaming delay for a

mesh-based overlay network paradigm. We first formulate the minimum-delay P2P stream-

ing problem, called the MDPS problem, and prove its NP-completeness. We then present a

polynomial-time approximation algorithm to this problem, and show that the performance

of our algorithm is bounded by a ratio of O(
√

log n). For a practical deployment, we ex-

tend the algorithm to a distributed version with the adaptation to network dynamics. Our

simulation study reveals the effectiveness of our algorithm, and shows a reasonable message

overhead.

Besides playback lag, delays occurring in P2P streaming may arise from two other fac-

tors: node churn and channel switching. Considering the fact they both stem from the

re-connecting request in churn, we call them churn-induced delay. A typical channel switch-

ing delay costs around 10 seconds or even more. Current users have been accustomed to

delays under seconds, which are typical in a cable TV system. Thus, this long switching

delay has negatively affected the extensive commercial deployment of P2P systems. In this

proposal, we propose an agent-based scheme to provide preventive connections to all chan-

nels. Once an actual connection is requested, time will be saved in retrieving bootstrapping

information and obtaining authorization as well as authentication in new channel. Towards

an efficient control and message overhead, each channel will select some powerful peers as

agents to represent the peers in the channel. Agents will distill the bootstrapping peers

with superior bandwidth and lifetime expectation to quickly serve the viewer in the initial

period of streaming. We build a queueing theory model to analyze the agent-based scheme.

Based on this model, we numerically compare the performance of our scheme with previous

general scheme. The results of numerical experiments justify the significant performance of

our scheme.
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Chapter 1

Introduction

1.1 Problems and Motivation

In the recent decade, P2P networks have greatly enhanced content distribution on the Inter-

net by enabling efficient cooperation among end users [1, 2]. Benefiting from its significant

scalability, there is an increasing demand on applications of P2P live streaming, such as

IPTV, VOIP, and video conferencing [3–6]. As a result, many P2P live video systems, such

as PPLive, Coolstreaming, and Sopcast, etc., have been successfully deployed in the recent

years, and most of them have over 100 channels, prevailing with millions of users [7,8]. How-

ever, recent measurement studies of P2P streaming indicate the detrimental impacts from

node churn, long switching delay, and playback lag, have hindered the extensive commercial

deployment of P2P systems [9, 10]. Motivated by this, in this proposal, we work towards

reducing several types of streaming delay in P2P networks.

First, we will focus on minimizing playback lag, i.e. end-to-end streaming delay. As we

know, in many classes of P2P streaming applications, the delivery of real-time video content

imposes rigorous constraints on the end-to-end delay. Obtaining assurances on meeting

such delay constraints in highly dynamic and heterogenous P2P network environments is a

1



Chapter 1. Introduction 2

challenging and open problem. The streaming delay has negatively affected the extensive

commercial deployment of P2P systems. For example, IPTV deployment from commercial

service providers is far below the industry expectation [1]. Motivated by this, our first target

is to minimize the end-to-end streaming delay in P2P networks.

Minimizing streaming delays in P2P networks is an NP-complete problem. This is due

to heterogeneous bandwidth requirements and network dynamics of P2P systems. Thus,

obtaining optimal solutions to this problem for large-scale networks is intractable. In this

proposal, we propose an efficient approximation algorithm for this problem, which provably

achieves a delay assurance by an approximation ratio of O(
√

log n) where n represents the

number of peers in the network. Based on an analytical model, we then design an adaptive

distributed version of the algorithm, which can be easily deployed in a fully dynamic network

environment.

Previous work on P2P streaming can be broadly classified into two classes: (1) multiple

tree-based overlays, and (2) mesh-based overlays [8,11–15]. Recent studies have shown that

the mesh-based approach consistently exhibits a superior performance over the tree-based

approach [12,16]. The tree-based P2P streaming approach organizes peers into multiple di-

verse trees. After obtaining the description of a Multiple Description Coded (MDC) content,

it pushes each description through separate trees [11, 12]. In contrast, the mesh-based P2P

streaming approach arranges peers into a randomly connected mesh and employs swarming

content delivery [12]. The major advantages of mesh-based systems are easy maintenance

and inherent robustness in high-churn P2P environments [8]. Motivated by these promising

advantages, we study the minimum-delay problem under the mesh-based model. Although

our algorithm is developed with a mesh paradigm, our study also indicates its readiness to

fit the multiple tree-based model after simple modifications. To reduce the complexity of

the problem, our proposal focuses only on minimizing the communication delay. For packet

scheduling, there exists a vast array of solutions, such as [15, 17, 18]. The mesh built from

our algorithm can adopt any of these scheduling algorithms to yield low-delay streaming.
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Existing heuristics on the problem of reducing P2P streaming delay either provides no

theoretical bound on the worst-case performance or loosely estimate the bound without a

robust theoretical analysis [13, 14, 19]. The estimated bound of previous algorithms [19, 20]

is O(log n). In this proposal, we not only present an approximation algorithm with a strong

theoretical basis, but also reduce the approximation factor to a ratio of O(
√

log n).

Second, besides playback lag, delays occurring in P2P streaming may arise from two

other factors: node churn and channel switching. Node churn represents the frequent event

of peer arrival or departure. Typically, peer departure can lead to streaming interruption to

the downstream peers, where delay will happen in downstream peers during the restoration

of streaming connections [9]. We call such delay as recovery delay. Another type of churn

is channel churn, which represents the event of channel switching in multi-channel P2P

streaming system. It has been found that channel churn is much more frequent than node

churn [7], which brings severe instability to the system. In multi-channel P2P streaming

system, the video content of each channel is distributed by a different swarm of peers. Similar

to the node churn, when a peer switches from channel A to channel B, its downstream peers

need to locate new data feed from other peers in the swarm of A. Additionally, channel

switching delay occurs as well when this peer attempts new stream connections in swarms

of B. As we can see, all those types of delay stem from the churns of node departure and

channel switching. We generally call such delay churn-induced delay.

Current users have been accustomed to delays under seconds, which are typical in a

cable TV system [7]. However, churn-induced delays are significant in current P2P system.

For example, measurement studies indicate that channel switching delays are typically on

the scale of 10-60 seconds [8]. From the perspective of user experience, this is obviously

undesirable. Motivated by this, we propose a novel agent-based P2P architecture to preven-

tively reduce the churn-induced delay. The scheme built from this proposal can adopt our

minimum-playback-delay scheme in this proposal [21] or any of the existing algorithms, such

as [14,22], to yield low-delay streaming.
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In this proposal, we consider the fact that churn-induced delays identically stem from

the time of re-connecting to new peers. Thus, our scheme propose preventive connections

to all channels. Once an actual connection is requested, time will be saved in retrieving

bootstrapping information and obtaining authorization as well as authentication. However,

maintaining preventive connections for all peers to all channels makes it impractical in terms

of the enormous control signals and message overhead. Towards an efficient control and

message overhead, we propose that each channel will select some powerful peers as agents

to represent the peers in the channel. Agents will distill the bootstrapping peers with

superior bandwidth and lifetime expectation to quickly serve the viewer in the initial period

of streaming. Moreover, agent will pre-schedule the downloading plan about data chunk

partition and streaming for future viewers, and coordinate with each other to build the

preventive connections for peers represented by them.

1.2 Summary of Current Research and Contributions

In summary, our main goal in current research is to design the schemes for reducing the major

delays occurring in P2P streaming. Our work makes the following important contributions:

(1) To the best of our knowledge, our work represents the first approximation algorithm

that optimizes P2P streaming delay. The result of this scheme provides an provable upper

bound of O(
√

log n). First, we partition the peers V into different clusters according to the

regional aggregated streaming capacities. Then, we filter the peers by keeping one repre-

sentative peer for each cluster, whose streaming capacity is virtualized by the aggregated

streaming capacities of the entire cluster. As a result, we form a backbone using the repre-

sentative nodes. Since the backbone nodes are virtual representatives of clusters, in the next

step, we expand the mesh connections from the representative nodes into clusters, which

constitutes a final streaming mesh for the overlay network.

(2) We analyze the approximation algorithm’s performance and derive the algorithm’s
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approximation ratio, which is found to be the lowest ratio when compared with past results.

We not only present an approximation algorithm with a strong theoretical basis, but also

reduce the approximation factor to a ratio of O(
√

log n).

(3) We extend the approximation algorithm to a practical distributed version that is

robust to high user churn. Our simulation results indicate our algorithm can actively ensure

the end-to-end streaming delay in the worst-case scenario.

(4) Our work on reducing the churn-induced delay provides the first scheme in this topic

with analytical model and numerical evaluation on the performance. Our scheme proposes

preventive connections to all channels. Once an actual connection is requested, time will

be saved in retrieving bootstrapping information and obtaining authorization as well as

authentication. Our scheme suggests an idea of agent, which facilitates the bootstrapping

process in channel switching and peer recovery.

(5) We build a queueing theory model for the agent-based scheme. Based on this model,

we theoretically analyze the performance of our scheme.

(6) We analyze the scheme’s performance and derive the scheme’s optimal settings based

on the numerical experiments. Our numerical experiment results indicate our scheme can

significantly reduce the churn-induced delay, especially for the channel-switching delay.

1.3 Summary of Proposed Post-Preliminary-Exam Work

Based on these research results, we propose the following major research directions for the

post-preliminary-exam work:

(1) Minimize the end-to-end streaming delay in multi-channel scenario. We propose

to devise an algorithm to minimize the end-to-end streaming delay specifically working on

multi-channel scenario. Our current work on the problem of reducing P2P streaming delay

only focus on the single-channel scenario. However, in most P2P streaming applications,
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there commonly exists hundreds of channels [7]. As we know, bandwidth allocation and peer

assignment in multi-channel streaming pose extra challenge to the minimum-delay problem.

Furthermore, current algorithms on the single-channel scenario, if applied in the multi-

channel scenario, either provides no theoretical bound on the worst-case performance or

loosely estimate the bound without a robust theoretical analysis [13, 14, 19]. The estimated

bound of those previous algorithms [19, 20] is O(log n). However, O(log n) is trivial as any

depth first search tree will provide such delay bound. Several directions can be considered to

reduce the multi-channel streaming delay. For example, by smartly utilizing the bandwidth

allocation between channels, we may balance the resource among channels so as to improve

the worst delay in less popular channel and provide a minimum average delay on viewers

of all channels. We propose to design improved approximation-algorithm-based protocols

which considers the optimal bandwidth allocation to achieve a minimum streaming delay.

An example design is to decouple the viewing and uploading functionalities on the viewer

and reassign the uploading bandwidth in popular channel to improve the streaming delay

in less popular channel. By leveraging our current clustering-based approximation, we may

guarantee an approximation bound when allocate the bandwidth optimally among channels.

(2) Design a delay-optimized admission control algorithms. Industrial deployment of P2P

streaming applications may involve different types of peers, including free user, ordinary

member paying fees to watch specific channel and VIP member paying extra fees for high-

quality service. However,the traditional scheme in cable TV to prioritize VIP member when

bandwidth resource is not sufficient is not applicable. For example, some free users may have

excellent bandwidth to contribute. If we simply put them at the edge of streaming mesh

with worst service, we may lost the opportunity to rationally utilize such bandwidth. We

propose to devise an admission control algorithm specifically working on multi-type peers.

An example solution is to put different reward values when satisfying the service of different

types of users and also put rewards based on the streaming delays and bandwidth resources

they have. An optimal solution on reward may well utilize the peers with high bandwidth

even they are free or low-level users.
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In addition to these major directions, we also propose the following minor research

directions:

(3) Design a large-scale simulation based on our algorithms. P2P networks typically

involves hundreds of thousands of users. To evaluate our schemes on large-scale applications,

traditional simulation tool like ns-2 is not applicable with memory issues. Some possible

solutions emerges as simulation tool exclusively for P2P simulation. For example, PeerSim

may handle a simulation for over half-million peers. Such large-scale simulation can evaluates

the performance of our distributed scheme with real scalability and may help us identify some

improvement directions on the schemes.

(4) Minimize the scheduling delay algorithms. P2P streaming need to exchange data

chunk and decide which chunk should transfer with priority. Delayed receiving of chunk

may incur delays or interruptions in streaming. So we propose to design a chunk scheduling

algorithm to maximize the probability that a chunk will arrive to the viewer before it need

to be played. One example solution is that seldom existed chunk should be transferred with

priority so more peers may span out this chunk to start a smooth streaming.

(5) Design a gossip-based message exchange scheme. In our current study, gossip is pro-

posed to exchanging agent data and search for resources. We propose to design an improved

gossip scheme to ensure a time constraints on message receipts. One possible solution is

to utilize super-peers to manage the normal peers and exchange resource information with

them. So gossip only needs to run through these super-peers. Since super-peers have long

expected lifetime, i.e. less probability to departure, we can ensure the time constraints in

resource searching with certain probability guarantee.

1.4 Outline

The rest of this proposal is organized as follows. Chapter 2 describes an overview of past and

related works. In Chapter 3, we describe and formulate the minimum-delay P2P streaming
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problem. We prove its NP-completeness and then presents our proposed approximation algo-

rithm and derive its performance guarantee. We compare our algorithm against past works

through simulation-based experimental studies. Chapter 4 describe the problem of reduc-

ing churn-induced delay, i.e. channel-switching delay and recovery delay, and propose our

agent-based scheme. We model our scheme by queuing theory model. Based on that, we nu-

merically study the performance our scheme against general scheme. Chapter 5 summarizes

the work in this proposal and describes our post-preliminary-exam work.



Chapter 2

Related Work

First, we describe the related work for the minimum end-to-end streaming delay problem.

Most of the previous protocols for the P2P streaming delay problem are based on tree-

shaped overlays [6, 11, 13, 23, 24]. Tran et al. propose Zigzag in [23], an approach to cluster

peers into a hierarchy, called the administrative organization, for easy management, and

build the multicast tree atop this hierarchy so as to reduce the delay. In [13], Noh et al.

propose an overlay consisting of multiple trees with moderate out-degree to reduce end-to-end

transmission delays in P2P media streaming systems. In [11], Venkataraman et al. present

Chunkyspread, which splits a stream into distinct slices and transmits them over multiple

trees by a P2P multicast algorithm. However, such multiple-tree overlay construction cannot

be easily maintained [12]. In addition, it is difficult to obtain the globally optimal delay

and coordinate among different trees [14]. Moreover, resource utilization of multiple-tree

approaches is generally speaking, relatively low. For example, all leaf nodes do not contribute

any bandwidth or CPU cycles to the multicast trees [25].

Recently, an increasing number of studies have focused on mesh-based P2P live stream-

ing [14,15,20,22]. In [14], Ren et al. propose a heuristic to reduce the delay on mesh topology,

where peers select their parents based on the metric of link capacity divided by the com-

munication delay. In this algorithm, peers located at the edge of mesh may only download

9
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the data without contributing its bandwidth resource, which may lead to low bandwidth

utilization in the network. Thus, when the total uploading capacity is close to the down-

loading capacity among peer nodes, some peers may not be able to receive a live streaming.

Besides, the heuristic does not provide performance guarantees on the end-to-end streaming

delay, which is critical in delay-sensitive applications, such as video conferencing. In [22],

Wu et al. present a distributed algorithm for obtaining the optimal average streaming delay.

They apply several techniques in linear programming, such as Lagrangian relaxation and

the subgradient algorithm. To reduce the computational complexity, they strictly limit the

potential connections for each peer, which may restrict its practical applications. In their ex-

perimental results, we can observe significant time costs for achieving a near-optimal result.

For a large-scale network, the convergence of the algorithm cannot be guaranteed, which

may significantly increase the P2P start-up delay. Moreover, to exchange computational

data between peers, considerable message overhead may be incurred in the network.

Minimum-delay P2P streaming has some similarity with the minimum-delay multicast

tree problem (MDMT problem) [26, 27] and degree-bounded minimum-diameter tree prob-

lem (DBMDT problem) [28–30]. Our algorithm is inspired by the clustering method first

proposed by Könemann et al. [28]. However, previous approximation algorithms on MDMT

and DBMDT generally assume a constant and equivalent degree on all the nodes and con-

sider a single-commodity flow for each receiver. These assumptions are not appropriate for

P2P streaming, where peers have heterogeneous and dynamic bandwidth capacities, i.e.,

heterogeneous degrees on the nodes, and they need to aggregate the multiple flows for a

smooth playback. Toward that end, the clustering in our algorithm will generate a subgraph

which is not simply a tree. Besides, the proofs on DBMDT theorems in [28] highly depend

on the equality of node degree, which will cause the major proofs in their work do not hold

in our case. Moreover, the DBMDT problem in [28] is bounded by a bidirectional degree,

which does not distinguish out-degree and in-degree. For example, when calculating the

aggregated cluster degree, their method, if used in our paradigm, will depend on both in

and out degrees; however, only the out-degree should be counted in this scenario. All those
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differences make our problem more challenging than MDMT and DBMDT. In particular,

DBMDT is a special case of the MDPS problem, in which every node has uniform outlink

capacity and an inlink capacity of 1.

On the following, we introduce the related work on reducing churn-induced delay. Pre-

vious works in IPTV indicate the next channel a user will watch can be predicted with the

probability analysis based on user switching pattern [31–34]. For example, a viewer watching

a live news channel may switch to another news channel with high probability. Also, it is

highly probable that a viewer will switch to the adjacent channel in the channel list when he

is seeking for some interesting channel in sequence. Thus, several papers, such as [31,32], in

multicast IPTV system propose to send contents of the predicated next channels in parallel

with the currently viewed channel. Should the user switch to one of the predicated channels,

he can immediately watch the next channel without delay. However, such method is band-

width consuming in transmitting multiple streams, which is not practical for the current

P2P streaming system due to the limited upload and download bandwidth resource.

Channel-switching delay problem has high similarity with segment-seeking delay prob-

lem in video-on-demand (VoD), where users feel delay when they’re browsing the channel for

a segment they are interested in. Segment-seeking delay is defined as the interval between

the time requesting a segment and the time when the segment is ready for playback [35]. Ex-

isting studies [35,36] in video-on-demand (VoD) reveal prefetching algorithms with segment

prediction can be effective to reduce seeking delay. Prefetching scheme streams one or multi-

ple predicted segments while the current segment is being played [35]. For example, in [35],

He et al. presents an optimal prefetching scheme and an optimal cache replacement policy

to minimize the expected seeking delay at every viewing position. Their scheme captures the

seeking statistics, and based on that, estimates the segment access probability. Clearly, this

method can be extended to the multi-channel VoD system by prefetching predicted chan-

nels [8]. However, such methods can not be extended to live channel applications, where

prefetching of live video content is not applicable.
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The algorithm of reducing churn-induced delay in P2P streaming has close relation to

the problem of improving the churn resilience because a resilient system generally has less

streaming interruptions [7, 37–40]. In [7], Wu propose a strategy, called view-upload de-

coupling (VUD), to reduce the channel churn. The VUD-based P2P streaming approach

decouples the role of peer into viewing and uploading. In another word, what a peer up-

loads is independent of what it views [9]. The major advantages of VUD-based systems

are inherent robustness in the high-channel-churn environments and flexible cross-channel

resource sharing capability. The drawback of this approach comes from the fact VUD costs

more bandwidth overhead. To tackle this problem, Wu et al. propose a substream-swarming

enhancement [9]. Specifically, each swarm only distributes a small portion of the stream,

called substream, to viewers. Viewers needs to collect substreams from multiple swarms

for a complete streaming. This substream concept can improve the viewing performance

without significant bandwidth overhead. As we can see, in VUD, the distribution swarms

are more stable than traditional system where peers deliver the same channel content they

are viewing. As a churn-resilient scheme, the channel-switching behavior of a peer in VUD

will not influence its downstream peers. Yet, on the other side, VUD can neither reduce

the delay consumed at the peer that is switching the channel, nor the delay from the node

churn.

In stead of mitigating one type of delay, our strategy focuses on retrenching the con-

nection time for all cases of churn-induced delay. Additionally, considering the promising

advantages in VUD, we can integrate our scheme with VUD to obtain better performance.



Chapter 3

Minimum-Delay P2P Streaming

In this chapter, we describe the problem of minimum-delay P2P streaming, i.e. minimum

playback lag problem. First, we formulate the minimum-delay P2P streaming problem and

prove its NP-hardness. Then we present our proposed approximation algorithm and justify

its sub-optimum performance assurance. Simulation results are demonstrated at the end of

this chapter.

3.1 Problem Formulation

In this section, we formally state the minimum-delay P2P streaming problem (MDPS prob-

lem) and show that the problem is NP-complete.

3.1.1 Minimum-Delay P2P Streaming Problem

We model an overlay network as a directed graph G = (V,E), where V is the set of vertices

representing peer nodes, and E is the set of overlay edges representing directed overlay

links. Let n represent the number of peers in the network, i.e. n = |V |. Each overlay link

(i, j) ∈ E is associated with a communication delay d(i,j). In the rest of this proposal, we

13
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define the length of edge (i, j) as d(i,j), ∀(i, j) ∈ E . We assume that G is symmetric, i.e.,

d(i,j) = d(j,i),∀i, j ∈ V , and the delays associated with G form a metric, i.e., G satisfies the

triangle inequality. For every peer i ∈ V , we define an upload capacity of Oi units/second

and a download capacity of Ii units/second. For ease of presentation, we define unit as the

minimum package size in P2P streaming, which varies in different applications [5, 41].

We consider a peer-to-peer streaming session to originate from a single source node S

to a set of receivers R, where V = {S} ∪R. Peers may receive the streaming data from the

source node directly or indirectly from multiple P2P paths. Suppose S streams data at a

constant streaming rate of s units/second. We denote fij as the rate at which peer i streams

to peer j. If peer j receives the aggregated stream at s units/second from its parents, we

call peer j as fully served [14]. Mathematically, the fully served requirement of peer j can

be expressed as
∑

i:i∈Lj
fij = s, where Lj is the set of parents of peer j. We assume that

a fully served peer can smoothly play back the streaming content at its original rate of s

units/second [14].

We call the stream from the source to one receiver j as the P2P unicast flow to j.

A P2P unicast flow U may consist of streams from multiple P2P paths, called fractional

flows [22]. Each fractional flow p ∈ U has the arrival latency tp from the source to receiver,

where tp =
∑

(i,j)∈p d(i,j). The latency of the unicast flow U can be defined as the maximum

latency among its fractional flows, i.e., maxp∈U tp. To stream multimedia content to multiple

receivers, we can envision multiple unicast flows from the source to receivers. Thus, the

maximum delay in P2P streaming is defined as the maximum latency of all unicast flows.

We now define the problem formally:

Definition 1. Minimum-Delay P2P Streaming Problem (MDPS problem): Given

the constraints that are previously mentioned, the MDPS problem is to devise a streaming

scheme which minimizes the maximum end-to-end streaming delay with each receiver fully

served.
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To help obtain greater insights about the MDPS problem, we formulate the problem in

the integer linear programming framework, as follows:

min t (3.1)

subject to

∑

(i,j)

d(i,j)x
r
ijm ≤ t, ∀(i, j) ∈ E, ∀r ∈ R, ∀m (3.2)

xr
ijm ∈ {0, 1}, ∀(i, j) ∈ E, ∀r ∈ R, ∀m (3.3)

xr
ijm ≥ f r

ijm/s, ∀(i, j) ∈ E, ∀r ∈ R, ∀m (3.4)

s ≥ f r
ijm ≥ 0, ∀(i, j) ∈ E, ∀r ∈ R, ∀m (3.5)

f r
ijm − f r

jim = br
im, ∀(i, j) ∈ E, ∀r ∈ R, ∀m (3.6)

s∑
m=1

∑
r:r∈R

f r
ijm ≤ yij,∀(i, j) ∈ E (3.7)

∑

j:(i,j)∈E

yij ≤ Oi,∀i ∈ V (3.8)

∑

j:(j,i)∈E

yji ≤ Ii,∀i ∈ V (3.9)

0 < m ≤ s, (3.10)

where

br
im





≥ 0 if i = S,

≤ 0 if i = r,

= 0 otherwise,

(3.11)

∑
m

br
im =





s if i = S,

−s if i = r,

0 otherwise.

(3.12)
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In this integer programming (IP) expression, t denotes the streaming delay of the frac-

tional flow; xr
ijm is set to 1 only if there is a connection between peer i and j on the mth

fractional flow to receiver r; f r
ijm represents the mth fractional flow rate on link (i, j) to

receiver r; and yij is the aggregated flow rate on link (i, j).

The exact solution to this problem is optimal, but is computationally intractable to

determine, and not practical in real applications. We will now show the NP-completeness of

this problem, which motivates us to develop a near-optimal approximation algorithm.

Lemma 1. If the instance of MDPS problem has a solution, then the sum of the upload ca-

pacities, including source and receivers, must be no less than the sum of fully served streaming

rates at all receivers, i.e.,
∑
i∈V

Oi ≥ (|V | − 1)× s. (3.13)

Proof. Suppose we have a feasible streaming scheme described by the graph A = (V,Ef ),

where Ef ⊂ E represents the P2P connections among V . We can envision that each peer

v ∈ V consists of two conceptual nodes vin and vout, where vin represents the download

behavior, and vout represents the upload behavior. Thus, A can be envisioned as a bipartite

graph A′ = (Vin, Vout, Ef ), where Vin is the set of all vin and Vout is the set of all vout. Now,

the flow out of Vout should be equal to the flow into Vin, i.e., (|V | − 1) × s. Since the flow

out of Vout cannot exceed its total upload capacities, we have
∑

i∈V Oi ≥ (|V | − 1)× s. The

lemma follows.

According to Lemma 1, it is reasonable to assume that the preliminary condition in

Equation (3.13) holds. In addition, we presume that the download capacity Ii ≥ s, ∀i ∈ V

for a smooth playback at receivers.

3.1.2 Hardness

Theorem 1. The minimum-delay P2P streaming problem is NP-complete.
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Proof. We first show that the MDPS problem can be reduced from the Freeze-Tag Problem

(FTP), which is well known to be an NP-hard problem [42, 43]. Given a complete graph

G′ = (V ′, E ′) in metric space, FTP can be described by a set of robots V ′, among which

one robot S ′ is initially awake and all the others R′ are asleep. The robot which is awake

will select B′ sleeping robots and awaken them. Once awaken, each new robot is available to

assist in rousing another set of B′ robots. There exists a latency between each pair of robots.

Thus, a solution to the FTP can be described by a wake-up tree T which is a directed B′-ary

tree rooted at S ′, spanning all robots R′. The objective is to minimize the makespan of T ,

i.e., the time t′ when the last robot awakens [42].

Let the formulation of G in MDPS be identical to G′ in FTP, and let the streaming

rate be s = 1 units/second. For all nodes V in G, we set their upload capacities to be B′

units/second. In this case, every node will have exactly one parent and can stream up to B′

children. As we can observe, the resulting topology becomes a B′-ary spanning tree T , and

the maximum end-to-end streaming delay of t is the latency of the last peer in T . Therefore,

the optimal solution to the MDPS problem can also solve the FTP problem optimally. In

other words, the FTP will have a tree T in G′ with minimum delay of min t′ if and only if the

same T in G provides the minimum-delay spanning tree and the resulting min-max delay of

MDPS equals min t′. Since FTP can be reduced to the MDPS problem, the MDPS problem

is NP-hard. Also, we can clearly see MDPS is in NP since it is easy to check whether a

streaming scheme has a delay of t and follows the streaming constraints listed in Equations

(3.8), (3.9), (3.12). Thus, we complete the proof.
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3.2 Approximation Algorithm

3.2.1 Overview of Techniques

Given the NP-complete nature of the MDPS problem, our goal is to design an efficient

polynomial-time approximate solution with a provable performance bound. Our work builds

on by Könemann et al. [28] and we extend a number of their concepts, including clustering

and filtering. First, we partition the peers V into different clusters according to the regional

aggregated streaming capacities. Then, we filter the peers by keeping one representative

peer for each cluster, whose streaming capacity is virtualized by the aggregated streaming

capacities of the entire cluster. As a result, we form a backbone using the representative

nodes. Since the backbone nodes are virtual representatives of clusters, in the next step, we

expand the mesh connections from the representative nodes into clusters, which constitutes

a final streaming mesh for the overlay network.

To simplify the complexity of the problem, we assume that at least half of the nodes

have upload capacities Oi ≥ 2s units/second. Besides, we assume there exists no free-riders,

i.e., min(Oi) > 1 unit/second, ∀i ∈ V . For the case of Oi = 1 unit/second, this reduces

the problem to the traditional traveling salesman path problem (TSP), which has been

extensively studied in the past [44, 45]. Therefore, we will not focus on this scenario in the

proposal.

In the rest of this section, we discuss the details of our algorithm and derive its perfor-

mance bound.
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3.2.2 Centralized Approximation Algorithm

Streaming Backbone Construction

The first step of our algorithm is to construct the virtual streaming backbone. We call it

“virtual”, because the links on the backbone represent the aggregated inter-cluster streams

instead of the actual flows to the representative nodes. Towards that end, we define a metric

C(V ′), called the residual streaming capacity for a group of peers V ′ ⊆ V as:

C(V ′) =
∑

i∈V ′
Oi − (|V ′| − 1)× s. (3.14)

The residual streaming capacity represents the contributable bandwidth that a group of

peers can supply other groups after satisfying its own streaming demands. Next, we define

a threshold γ. The set of peers that are enclosed within the γ radius from peer vi ∈ V is

denoted as Eγ(vi, V ). In addition, we say that vi γ-covers the peers in Eγ(vi, V ) [28].

A parameter t′ is chosen, which can be viewed as a “guess” on the optimal P2P streaming

delay. A reasonable value of t′ should be initialized in the range of [maxv∈V d(S,v), |R| ·
maxv∈V d(S,v)]. For the given value of t′, we set γ = t′/

√
log n. We begin the clustering

process from the source node by defining the first cluster U1 = E3γ(S, W 3γ
1 ) and the first

representative node as u1 = S, where W 3γ
1 = V , represents the initially un-clustered nodes.

For ease of notation, we call the set of peers that are at least γ distance away from existing

i−1 representatives u1, · · · , ui−1 as W γ
i , where W γ

i = V \⋃
1≤j≤i−1 Eγ(uj, V ). We then select

a representative node ui ∈ W γ
i that γ-covers the peers with the highest residual streaming

capacity in W 3γ
i , i.e.:

ui = argmaxv∈W γ
i
C(Eγ(v,W 3γ

i )). (3.15)

Now, we have Ui = E3γ(ui,W
3γ
i ) ∪ Eγ(ui,W

γ
i ). The iteration stops once all the peers

in V are 3γ-covered by the existing representatives. Suppose we have k clusters. Then,

W 3γ
k+1 = ∅ and W 3γ

i 6= ∅,∀1 ≤ i ≤ k.
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Without loss of generality, we reorder the clusters U1, · · · , Uk so that the residual stream-

ing capacities of the clusters except that of U1 are sorted in a non-increasing order, i.e.,

C(Ui) ≥ C(Uj),∀1 < i < j ≤ k. By virtualizing the upload capacity of the representative

ui as C(Ui), we can construct the global streaming mesh of low latency for the backbone

representatives. Algorithm 1 describes this procedure. It will be rerun with different values

of t′ chosen by binary search to achieve the approximated minimum delay.

Corollary 1. Any peer that is 2γ-covered by ui must be in the cluster of Uj with 1 ≤ j ≤
i ≤ k.

Algorithm 1 APX-MDPS(G,n, s, t′, {Oi}, {Ii}): Centralized approximation algorithm

APX-MDPS for the MDPS problem

1: γ = t′/
√

log n

2: W 3γ
1 = V

3: U1 = E3γ(S, W 3γ
1 )

4: u1 = S

5: i = 2

6: while W 3γ
i 6= 0 do

7: ui = argmaxv∈W γ
i
C(Eγ(v,W 3γ

i ))

8: Ui = E3γ(ui, W
3γ
i ) ∪ Eγ(ui,W

γ
i )

9: i = i + 1

10: end while

11: Reorder U2, · · · , Uk so that C(Ui) ≥ C(Uj),∀2 ≤ i < j ≤ k

12: Construct the backbone mesh by Algorithm 2

13: Construct the regional mesh by Algorithm 3

14: Construct the final mesh by Algorithm 4
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Algorithm 2 APX-BACKBONE({Ui}, {ui}): Backbone mesh construction algorithm for

the MDPS problem

1: for i = 2 to k do

2: repeat

3: j = min1≤n≤k{n : Un has remaining bandwidth}
4: Connect ui to uj

5: until Ui is fully served

6: end for

Regional Streaming Mesh Construction

In this section, we show the steps of creating the regional streaming topology for each cluster.

Given a set of clusters, we can identify two types among them by measuring C(Ui) ≥ 0 or

C(Ui) < 0. For the cluster with non-negative residual streaming capacities, a mesh spanning

the peers of Ui can be constructed by Algorithm 3. For the other type of cluster with negative

residual streaming capacities, we can deduce from Lemma 1 that the upload capacities
∑

v∈Ui
Ov inside the cluster cannot satisfy its internal streaming requirement (|Ui| − 1) × s

and thus need extra streaming connections from external clusters. In such clusters, we will

first satisfy the internal peers with the highest upload capacities so that they can timely

serve other internal peers. In that way, only the peers with the lowest upload capacities will

be left for external connections. Algorithm 3 also describes the method to construct the

streaming topology for such clusters.
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Algorithm 3 APX-CLUSTER({Ui}, {ui}): Regional mesh construction algorithm for the

MDPS problem

1: for i = 1 to k do

2: for j = 1 to |Ui| do

3: repeat

4: if j is the peer with largest uploading capacity then

5: Hold j for an uplink connection from other cluster

6: else

7: x = argmaxv∈Ui & v has remaining bandwidthC({v})
8: if x is fully served then

9: Connect j to peer x

10: else

11: Hold j for external connection

12: end if

13: end if

14: until peer j is fully served or on hold

15: end for

16: end for

Complete Streaming Mesh Construction

To complete the final mesh construction, we replace virtual links between representatives

to real inter-cluster connections by Algorithm 4. We then do a binary search over t′ to

obtain the minimum-delay streaming topology. An outline of the algorithm is described

in Algorithm 4. Figure 3.1 illustrates a cluster-based streaming mesh from the source to

receivers.
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Algorithm 4 APX-COMPLETE(G, {Ui}, {ui}): Complete mesh construction algorithm for

the MDPS problem

1: for i = 1 to k do

2: Connect each peer that is held for external connections to the closest available peer in

the virtually linked parent cluster.

3: end for

Performance Bound

Assume t′ is the optimum value. After binary search, it can be approximated within a factor

of 2. We now analyze the performance bound of the approximation algorithm, i.e., the

approximation factor.

We start from a simple scenario with a streaming rate of s = 1 unit/second. In this case,

the resulting streaming topology can be expected as a tree structure denoted as T , because

each peer will only receive stream from one parent. Let T ∗ be the optimal tree with the

minimum streaming delay, denoted by T ∗ = (V,E∗) and E∗ ⊂ E. Now we partition T ∗ into

clusters {U∗
1 , · · · , U∗

q }, which are represented by {u∗1, · · · , u∗q}, respectively. We define two

functions: PATH(i, j), which returns true only if there exists a directed path from i to j in

T ∗ denoted as 〈i, j〉, and HEIGHT(i), which returns the height of node i in tree T ∗ rooted

at S. Let T ∗
B be the backbone after partitioning T ∗.

Our method to partition T ∗ is summarized as follows:

1. Let u∗1 = S and U∗
1 be the set of descendants that is γ-covered by S, i.e., U∗

1 = {u :

u ∈ V , PATH(S, u) = TRUE, and d(S,u) ≤ γ}.

2. Let W ∗ be the uncovered peers where W ∗ = V \ U∗
1 ;

3. Select the lowest uncovered node as the next representative u∗i , i.e., u∗i = argminu∈W ∗HEIGHT(u)

and U∗
i = {u : u ∈ W and PATH(u∗i , u) = TRUE and d(S,u) ≤ γ};
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4. Remove U∗
i from W ∗, i.e., W ∗ = W ∗ \ U∗

i ;

5. Repeat from Step 3 until all the nodes are covered.

Suppose we have q clusters from T ∗ after the above steps. Without loss of generality, we

then reorder the clusters U∗
1 , · · · , U∗

q so that the residual streaming capacities of them except

U1 are sorted in a non-increasing order, i.e., C(U∗
i ) ≥ C(U∗

j ), ∀1 < i < j ≤ q. Moreover, we

denote TB as the backbone constructed from G by Algorithm 1.

Lemma 2. Suppose U∗
i and Uj intersects, i.e., U∗

i ∩Uj 6= ∅. Then, there must exist a cluster

Um covering at least one u ∈ U∗
i \ Uj and satisfying C(Um) ≥ C(U∗

i ), where 1 ≤ m ≤ k.

Proof. If any peer w in U∗
i ∩ Uj is within the γ radius of uj, i.e., d(w,uj) ≤ γ, then every

peer u ∈ U∗
i \ Uj will be 2γ-covered by uj. According to Corollary 1, there must exist some

cluster Um covering u , where 1 ≤ m ≤ j. Since uj γ-covers the peers in U∗
i ∩ Uj, it is easy

to see that C(Uj) ≥ C(U∗
i ). Then we have C(Um) ≥ C(Uj) ≥ C(U∗

i ).

If γ ≤ d(w,uj) ≤ 2γ, then there must exist a cluster Um, which is the first cluster that

covers at least one peer ∈ U∗
i with C(Um) ≥ C(U∗

i ); otherwise, U∗
i will form a cluster itself.

Peer u ∈ U∗
i \Uj may have two possibilities: (1) d(u,uj) ≤ 2γ, or (2) 2γ < d(u,uj) ≤ 3γ. In the

case of d(u,uj) ≤ 2γ, there must exist some cluster Un covering u with 1 ≤ n < j according

to Corollary 1. Since Um should have C(Um) ≥ C(Un) > C(Uj), we deduce Um 6= Uj. In the

other case of 2γ < d(u,uj) ≤ 3γ, the cluster Um that covers u must be within the γ radius of

u and C(Um) ≥ C(U∗
i ); otherwise, U∗

i itself will be more qualified as a cluster than Um.

If d(w,uj) > 2γ, then peer u ∈ U∗
i \ Uj must be within the γ radius of some um and

C(Um) ≥ C(U∗
i ); otherwise, U∗

i will form a cluster itself. Thus, in all cases, the lemma

follows.

Lemma 3. Compare the residual capacities of TB and T ∗
B. We have:

j∑
i=1

C(U∗
i ) ≤

j∑
i=1

C(Ui),∀1 ≤ j ≤ q. (3.16)
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Figure 3.1: Cluster-based streaming mesh.

Proof. We use induction to prove this claim. For j = 1, it is obvious that C(U∗
1 ) ≤ C(U1).

Now, we assume that the claim also holds for j = x. When j = x + 1, we have a new cluster

U∗
x+1. If

⋃
1≤i≤x Ui contains no peer in U∗

x+1, i.e., U∗
x+1 ∩

⋃
1≤i≤x Ui = ∅, then we should

have C(Ux+1) ≥ C(U∗
x+1) because Algorithm 1 always selects Ux+1 with the largest residual

streaming capacity from the uncovered peers. If
⋃

1≤i≤x Ui contains several peers in U∗
x+1,

then we have U∗
x+1 ∩

⋃
1≤i≤x Ui 6= ∅.

For the sake of contradiction, we assume that
∑x+1

i=1 C(U∗
i ) >

∑x+1
i=1 C(Ui). If there is

any cluster U∗
n with n ≤ x satisfying U∗

n ∩
⋃

1≤i≤x Ui = ∅, then C(Ux+1) ≥ C(U∗
n) ≥ C(U∗

x+1).

Thus, to make the assumption correct, we have U∗
n ∩

⋃
1≤i≤x Ui 6= ∅,∀1 ≤ n ≤ x. Therefore,

according to Lemma 2, we must have a Um covering at least one peer in U∗
n \

⋃
1≤i≤x Ui

and satisfying C(Um) ≥ C(U∗
n) with x < m ≤ k. Consequently, we should have C(Ux+1) ≥

C(Um) ≥ C(U∗
n) ≥ C(U∗

x+1). Then,
∑x+1

i=1 C(U∗
i ) ≤ ∑x+1

i=1 C(Ui), which contradicts the

assumption. The lemma follows.

Since the sum of the residual capacities is bounded by
∑

i∈V Oi − (n − 1) × s, we can

easily deduce Corollary 2 from Lemma 3:

Corollary 2. The number of clusters in T is less than that in T ∗, i.e., k ≤ q.
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Lemma 4. Let HI denote the height of a tree I. We have HTB
≤ HT ∗B .

Proof. TB is constructed as a balanced tree. Combining this fact with Lemma 3, which

represents a higher out-degree in TB than that in T ∗
B, we can observe that HTB

≤ HT ∗B .

We call the edge connecting different clusters as the backbone edge and the edge inside

the cluster as the cluster edge.

Lemma 5. Any root-to-leaf path in TB has at most O(
√

log n) backbone edges.

Proof. It follows from Lemma 4 that HTB
≤ HT ∗B . From the construction method of T ∗

B, we

know that any root-to-leaf path in T ∗
B has a length, i.e., latency, which is at least γ · HT ∗B .

Since T ∗
B has a latency which is at most OPT, it follows that:

HTB
≤ HT ∗B ≤

OPT

γ
=

OPT

t′/
√

log n
= O(

√
log n). (3.17)

Lemma 6. Any root-to-leaf path in T has at most O(log n) cluster edges.

Proof. Without loss of generality, we can envision TB is constructed in a breadth-first and

left-to-right order, which means representatives on the same height are arranged from left

to right in a non-increasing order of their residual streaming capacities. In another word, if

ui is on the left of uj on the same height in TB where 0 ≤ i, j ≤ k, we have C(Ui) ≥ C(Uj).

Moreover, if ui has a lower height in TB than uj where 0 ≤ i, j ≤ k, we have C(Ui) ≥ C(Uj).

Denote T (U) as the tree that is constructed inside the cluster U . Let Y be the right-

most root-to-leaf path in TB, denoted as Y = 〈u1, uy1 , · · · , uyb
〉, i.e., Y is formed from

root to leaf by representatives u1, uy1 , · · · , uyb
. For any root-to-leaf path X, where X =

〈u1, ux1 , · · · , uxa〉, we denote the number of cluster edges in X as ζX . Since TB is constructed

as a balanced tree, we can deduct b ≤ a ≤ b + 1.

Because Y is the rightmost root-to-leaf path in TB, it follows that
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ζX = HU1 +
a∑

i=1

HT (Uxi )

= HU1 + HUx1
+

a∑
i=2

HT (Uxi )

≤ HU1 + HUx1
+

b∑
i=1

HT (Uyi )
.

Recall the previous assumption that min(Oi) ≥ 2,∀i ∈ V . For the case of b ≤ 1, it is

easy to deduct ζX ≤ 3 log2 n = O(log n). Otherwise, we can carry out

ζX ≤ HU1 + HUx1
+

b∑
i=1

log2 (C (Uyi
)− 1)

= HU1 + HUx1
+ log2

(
b∏

i=1

(C (Uyi
)− 1)

)
. (3.18)

In addition, the number of the clusters, i.e. k, is bounded by n. Thus, we can deduct

n ≥ k ≥1 + C (U1) + C (U1) · C (Uy1) +

· · ·+ C (U1) ·
b−1∏
i=1

C (Uyi
)

= 1 + C (U1) ·
(

1 +
b−1∑
i=1

i∏
j=1

C (Uyi
)

)
.

Thus, we have

C (U1) ·
b−1∏
i=1

C (Uyi
) ≤ n. (3.19)

Replacing Equation (3.19) into (3.18), we have
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ζX ≤ HU1 + HUx1
+ log2

(
b∏

i=1

C (Uyi
)

)

= HU1 + HUx1
+ log2

(
C (U1) ·

b−1∏
i=1

C (Uyi
)

)

+ log2 (C (Uyb
) /C (U1))

≤ HU1 + HUx1
+ log2 n + log2 (C (Uyb

) /C (U1))

≤ 4 log2 n

= O(log n). (3.20)

Thus, the lemma follows.

Theorem 2. Let OPT be the minimum P2P streaming delay from the source host S to

receivers R in T . The streaming delay of the solution produced by Algorithm APX-MDPS is

at most O(
√

log n) ·OPT.

Proof. It follows from Lemma 5 that any root-to-leaf path has at most a latency of O(
√

log n)·
OPT arising from the backbone edges on the path. In addition, short edges in T have a

latency that is no more than 6γ = 6t′/
√

log n. From Lemma 6, we know that any root-to-leaf

path has at most a latency of 6γ · O(log n) = O(
√

log n) · OPT caused by cluster edges on

the path. T is constructed from the backbone edges and the cluster edges. The theorem

follows.

Now, let us look at the problem when s > 1 units/second.

Theorem 3. Let OPT be the minimum P2P streaming delay from the source host S to

receivers R in G. The streaming delay of the solution that Algorithm APX-MDPS returns

is at most O(
√

log n) ·OPT.

Proof. When s > 1 unit/second, the final streaming topology will be a mesh, which can be

envisioned as a combination of multiple trees constructed by fractional streams. To prove the
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previous bound also holds here, we first normalize all flow rates and capacities by s. Then,

the correctness of Lemmas 1-5 is obvious. For Lemma 6, we start justifying its correctness

from Equation (3.18). Recall the assumption that at least half of the nodes have Oi ≥ 2s.

Because of the balanced topology in connection, we can prove that any node whose Oi < 2s

will always lay on the bottom in its cluster. (Due to space limitations, we do not provide

detailed proof of this claim.) As a result, we can carry out

ζX ≤ HU1 + HUx1
+

b∑
i=1

log2

(
C (Uyi

)× 2s

min(Oi)
− 1

)

≤ HU1 + HUx1
+

b∑
i=1

log2

(
C (Uyi

)× 2s

min(Oi)

)

= HU1 + HUx1
+ log2

(
b∏

i=1

C (Uyi
)

)
+ b · log2

2s

min(Oi)

= HU1 + HUx1
+ log2

(
b∏

i=1

C (Uyi
)

)
+ log2 n× log2 s. (3.21)

Similar to the deduction of Equation (3.20), we have

ζX ≤ (4 + log2 s) · log2 n

= O(log n). (3.22)

Thus, the theorem follows.

3.2.3 Distributed Algorithm

The centralized algorithm described in Section 3.2.2 approximately solves the minimum-

delay P2P streaming problem. In a practical setting, however, we may not have a central
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server that can provide a global computation resource which is implicitly assumed by the

algorithm. Thus, to increase the scalability and reliability, we extend our algorithm to a

distributed version, which can be well adopted and improved as a practical P2P protocol.

For the ease of presentation, we assume that all the representatives have sufficient resources

to coordinate the peers. In the actual deployment, we define a cluster leader to take charge,

which is the peer with the most computing and bandwidth resources in the cluster.

Peer Join

In order to join the clusters, a newly arrived peer i will first contact a rendezvous point (RP),

which caches a list of existing representative peers. The rendezvous point then sends back a

random list of representatives that are approximately nearby the newcomer and the updated

parameter of γ. Peer i will then check the latency and the residual streaming capacity with

each representative uj. If there exists an uj within γ latency of i, peer i will send a request

to join the closest cluster; otherwise, peer i will tentatively join the closest cluster, but

meanwhile measure the feasibility to build a new cluster.

In the attempt to organize a new cluster, peer i will contact a set of nearby representatives

and will retrieve a list of peers that are between γ and 3γ-away from each representative uj.

Next, peer i will pick the peers within its γ radius and activate the new clustering process on

these peers. In the process, they start exchanging the latency and capacity information with

each other and find the center peer, i.e., the representative, which has the maximum residual

streaming capacities for the attempted new cluster. If the residual streaming capacity of the

candidate cluster is less than the existing cluster within 3γ radius of j, the new clustering

process will be terminated; otherwise, the new representative will request peers within its γ

latency to join the new cluster.

Finally, the new representative will request peers within its γ latency to join the new

cluster. After a peer joins a cluster, its representative will allocate the parents and children

for it. Once the new peer receives this information, it will initiate the stream with those
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parents and children directly.

Peer Departure

The departures and failures of peers may lead to interrupted playback at the remaining

receivers. If any peer departs from the cluster, it will inform its representative and request

re-allocating the bandwidth for its downstream peers. To handle this problem of failure, each

peer will buffer for a short period when streaming and always keep an eye for the back-up

peers during streaming. If failure does happen, the downstream peer will utilize those time of

buffering to connect to the backup peers tentatively and then request a stream re-allocation

to the representative. If it is the representative that fails or leaves, the affected peers will

use the buffering time to activate a new round of clustering within γ radius.

Stream Coordination and Dynamic Adaptation

The topology maintenance and stream allocation are mostly coordinated by the representa-

tives. They will assign a new peer to connect to the peer with the most capacity in its list.

If the residual streaming capacity is non-negative, they will always maintain an intra-cluster

streaming by utilizing the idle bandwidth. If the residual streaming capacity is negative,

they will coordinate with the rendezvous point and inform the unserved peers to stream

from the cluster with the most residual capacity. When a new cluster is established, the

same steps are followed to import a complete stream to the cluster. If the γ needs to be

tuned or optimized, the clustering process will be initiated by the rendezvous point and run

in the background without interrupting the existing streams. All connections are updated

until the background computation is completed.

In a distributed environment, peers may join and leave randomly. Thus, peers with high

bandwidth resources may arrive late and as a result, connect far from the source. Cluster

representative and rendezvous point will be responsible for monitoring this scenario at the
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cluster level and backbone level, respectively. Once they detect this scenario, they initiate

new rounds of stream allocation in the background and update the connections until they

reserve the bandwidth.

3.3 Simulation Study

In this section, we describe the results of our simulation study. We simulate a live streaming

session of 300 Kbps from a source with 10 Mbps upload capacity. From previous studies,

we know that network bandwidth exhibits rich diversity [14, 41]. Based on this, we set the

upload capacity among peers as shown in Table 3.1. In this simulation study, we compare

our algorithm with two other recently proposed algorithms: a heuristic approach [14] and a

LP-based approach [22]. The heuristic in [14] is the first algorithm that focuses on reducing

the maximum end-to-end delay on mesh streaming, where peers select their parents based on

the metric of link capacity divided by the communication delay [14]. The LP-based approach

in [22] applies several linear programming techniques to obtain an optimal average delay, such

as Lagrangian relaxation and subgradient algorithm. Please note, to reduce computational

costs, [22] restricts the potential connections for each peer. This actually lowers down the

performance compared with real LP-based solution. However, for the easy of presentation,

we still call it LP-based solution in the rest of this proposal.

To evaluate the algorithm performance, we define four metrics, including average end-

Upload Capacity Percentage of Peers

200 Kbps 30%

1.0 Mbps 50%

2.0 Mbps 15%

10.0 Mbps 5%

Table 3.1: Upload Capacity Distribution
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Figure 3.2: Average end-to-end latency
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Figure 3.3: Maximum end-to-end latency
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Figure 3.4: Message overhead
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to-end delay, maximum end-to-end delay, and message overhead.

The average end-to-end delay is defined as the average latency from the source to all

receivers. Figure 3.2 illustrates the results from our simulation experiments. It shows that the

LP-based approach generally achieves a lower average delay than the other two approaches.

This is reasonable, since the LP-based approach is designed to minimize the average delay.

It is also interesting to observe that the heuristic algorithm exhibits lower average delay than

the approximation algorithm when the network size is relatively small. When the network

size approaches 700 nodes, the approximation algorithm yields an average latency that is

close to that of the heuristic approach. This indicates that the approximation algorithm has

a smaller growth rate with respect to increase in network size, implying that the algorithm

is scalable for large network sizes.

We also measure the maximum delay, which is the worst-case end-to-end delay observed

in the simulation experiments. Note that this is our primary design objective. Figure 3.3

shows the maximum delay of the algorithms. It is apparent that the worst-case performance

of our algorithm is close to that of the LP-based solution and outperforms the heuristic.

This low worst-case delay indicates that our algorithm ensures good streaming performance

with an approximation bound.

Figure 3.4 shows the message overhead of the algorithms, measured in number of packets,

during mesh construction and maintenance. Although a minimum delay is desirable, a large

message overhead will challenge practical deployment of the underlying algorithm. As we can

observe, the LP-based solution generates a huge number of overhead packets during mesh

construction. In addition, its overhead significantly increases with the network size. This is

mainly resulting from the computational message exchange. In contrast, the heuristic and

the approximation algorithm both have much less message overhead and slow growth rate,

as the network size increases. The major overhead of our algorithm occurs in clustering.

From the simulation results, we observe that this overhead is slightly higher than that of the

heuristic algorithm.
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Thus, our simulation results reveal the effectiveness of our algorithm, in terms of ensuring

a worse-case delay with high scalability.



Chapter 4

On Reducing Churn-induced Delay

In this chapter, we describe the problem on reducing churn-induced delay in P2P streaming,

including channel-switching delay and recovery delay. First, we formulate the minimum

churn-induced-delay problem. Then we present our proposed agent-based solution and justify

its performance by the queueing theory model we develop for P2P scenario specifically. The

results of numerical studies validate the effective performance of our scheme at the end of

this chapter.

4.1 Problem Formulation and Methodology

For churns in P2P live streaming systems, we can generally classify them into two categories:

peer churn and channel churn. Peer churn arises from peer arrival and departure [6], and

channel churn comes from channel switching [9, 46]. In this section, we first formulate our

problem for two types of churn-induced delay respectively and then describe the scheme to

reduce it.

36
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4.1.1 On Reducing Delay from Channel Churn

We consider a peer-to-peer streaming system with Q channels, where each channel is asso-

ciated with a distinctive streaming overlay. We denote the set of channels as C. Given a

channel Ci ∈ C, its streaming overlay can be modeled as Gi = (Vi, Ei), where Vi is the set

of vertices representing peer nodes on this overlay, and Ei is the set of overlay edges repre-

senting directed overlay streaming links. Each channel Ci ∈ C is considered as a streaming

session, originating from a single source node Si to a set of receivers Ri, where C =
⋃Q

i=1 Ci

and Vi = {Si}∪Ri. Suppose Si streams data at a constant streaming rate of si units/second.

If a peer p viewing channel Ci receives the aggregated stream at si units/second from its

parents, we call peer p as fully served [14, 36]. We assume that a fully served peer can

smoothly play back the streaming content at its original rate of si units/second [14].

To understand the switching delay problem, we first describe a general channel switching

protocol without switching delay optimization [5,47]. Once a peer p switches to a new channel

Ci, it will initiate a contact with a bootstrap server (BS), which is a server maintaining a

partial list L of current peers on the new overlay [5, 48]. After procedures of authentication

and authorization for new channel connection [47], the BS will send p a list of random

peers LR as the connection candidates for p, where LR ⊂ L [47]. To distinguish with the

bootstrapping peers which will be mentioned later in our scheme, we call here the list of

peers retrieved from BS as ordinary peers. Then p will request streaming from LR. Active

peers in LR will response with their IP address and data chunk information. The sum

of requested streaming rates from LR should be equal to si. If the cumulative available

bandwidth from responding peers in LR satisfies streaming rate and the cumulative chunk

is complete, p will attempt the streaming process with them; otherwise, p will request a new

list of connection candidates from peers of LR, exchange information with new list of peers,

and retry connections. If the above bootstrap procedure is successful, an overlay mesh for

channel Ci will be updated, and subsequently p will receive the channel content from its

upstream peers. Clearly, the expected channel switching delay for peer p, denoted as dsw,
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can be expressed by

dsw = dA + dls + dp + dsc, (4.1)

where dA is the expected time cost in authorization and authentication before watching

a channel, dls is the expected delay to retrieve a peer list of the target channel from the

bootstrap server, dp is the expected time spent in initializing the contact with those peers

in the list, and dsc includes the delay in exchanging data chunk information with responding

peers in the list, the time to schedule downloading different chunks from specific peers and

the communication delay to receive the chunk data. We now define the problem formally:

Definition 1. Minimum Channel Switching Delay Problem (MCSD problem):

Given the delay constraint of each type in channel switching process, the MCSD problem is to

devise an overlay switching scheme which minimizes the average channel switching delay with

each receiver successfully switching to the new channel.Thus, the problem can be transformed

to the following optimization problem:

Measurement studies have revealed the channel switching delay mainly arises from the

bootstrap process [5]. Traditional channel switching protocol arranges the threads of boot-

strap and streaming in sequence. We can see those two threads are independent with each

other, which leads to the feasibility of parallelizing the threads of boot strap and streaming.

In light of that, we propose a more time-efficient protocol to leverage such characteristic. In

an intuitive scheme, peers can proactively start bootstrapping in other channels, including

getting authorization and retrieving list of peers in the channel while viewing current chan-

nel, so it will be in the readiness to switch channel. As we know, a typical live streaming

application, such as PPLive and UUSee, may accommodate hundreds of channels [5,49]. It

is not practical for each peer to personally maintain bootstrapping in all the other channels

due to the expensive message overhead.

Towards a feasible solution for this problem, our protocol suggests a distributed agent-

based bootstrap, where each channel will maintain a set of agents responsible for bootstrap-
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ping in the channel for external peers. Agents in channel Ci, denoted as Ai, are selected

peers with predicated long lifetime, more communication and storage capabilities in the

overlay. They collect the bootstrap information about available peers in the channel with

periodical update, and then exchange such information with agents in other channels. It is

worth mentioning when updating, only changed information will be collected and distributed

to other agents. On the background of current streaming, peer p, once joining the network,

will register at one of the agents a ∈ Ai in its current channel Ci and send a the request for

proactive bootstrap to other channels
⋃

j Cj, where j 6= i. Agent a will buffer and periodi-

cally forward such requests in a package to agents in other channels. Those agents in other

channel will authenticate and authorize p’s join request. Once request is approved, they

notify a. Given the bootstrapping information stored at a as Ia, a will then send p a list of

peers
⋃

j Dj
p about other channels, where Dj

p ⊂ Ia and j corresponds to channel Cj. Since

then, a will update such bootstrapping information if change happens. Bootstrapping data

sent to p will only contain a partial set of peers stored in a’slist for each channel, as long as

the available bandwidth in each channel can fully serve p’s streaming. In addition, agent will

distill the bootstrapping peers with superior bandwidth and lifetime expectation from ordi-

nary peers in its list to quickly serve the viewer in the initial period of streaming. Moreover,

agent will pre-schedule the downloading plan about data chunk partition and streaming for

future viewers, and coordinate with each other to build the preventive connections for peers

represented by them. We call such distilled peers in the bootstrapping data for peer p as

bootstrapping peers,denoted as Bi
p for channel Ci. When p switches to a new channel Cj, it

will call a service to the agent in other channel and simultaneously request streaming from

ordinary peers in Dj
p. Agent will arrange forwarding the service request to the bootstrap-

ping peers in its management for a quick assistance in the initial streaming period. After

bootstrapping peers starts streaming, they will keep looking for other ordinary peers to take

over their streaming job to p. So agent can recycle back the bootstrapping peers. By way

of this proactive bootstrap, channel switching delay will be reduced.

To save the massage overhead for updating data on agents, bootstrapping peers in each
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channel can work only for the initial streaming period T and during the time hand over

the streaming to other ordinary peers they found, called handover peers. It is reasonable

to evaluate T as the expected time that bootstrapping peers cost to find handover peers.

Because bootstrapping peers can be reused in this way, agents will not need to update the

bootstrapping peers as long as they are still in the channel. To reduce the influence from

channel switching of bootstrapping peers, strategy of view-upload decoupling (VUD) can be

applied with our scheme, where what a peer uploads is independent of what it views [9].

Similar to agent selection, bootstrapping peers should have predicted long lifetime and more

bandwidth resources. We will discuss the properties of bootstrapping peers and agents in

Section 4.2.

Furthermore, given a peer p that is not new in the network, i.e., p has been viewing

some channel in the network, when switching channel it will only register at the new agent

a but not send bootstrap request since it has done this previously. Bootstrapping data has

the time stamp. On p’s registration, a will compare the time stamp ta on its bootstrapping

data with tp that is stored in p. If ta > tp, a will update the bootstrapping data to p.

4.1.2 On Reducing Delay from Peer Churn

In this section, we discuss the protocol to reduce the delay from another type of churn,

i.e., peer churn. Peers can randomly join or leave the overlay of current channel. For most

P2P live streaming applications, peer departures have a greater detrimental effect on the

delay than new peers arrivals. Peer departures may lead to streaming interruption to their

downstream peers. In the proposal, we focus on reducing the delay from peer departure.

We call the departure-induced delay as recovery delay, which occurs when downstream

peers restore their streaming connections. We denote the recovery delay delay as dre. It can

be carried out that
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dre = dp + dsc. (4.2)

Comparing with switching delay in Equation (4.1), we can notice a recovery delay has

no dA and dls since the peer has already been authorized and owns the peer list in current

channel. We now define the problem:

Definition 2. Minimum Departure-induced Delay Problem (MDD problem): The

MDD problem is to devise an overlay resilience scheme which minimizes the recovery delay

during peer departure.

Similar to MSCD problem, we can observe the feasibility of parallelizing the threads

of streaming and recovery in this problem. Thus, we can reduce the delay by keeping a

proactive bootstrap to the overlay of current channel. This can be accomplished by a simple

modification on the protocol described in Section 4.1.1. Specifically, given an agent a for

peer p that is viewing channel Ci, Ia stored on a will extend the coverage of its bootstrapping

data to the current channel Ci. Likewise, Di
p is stored and updated in peer p as well.

4.1.3 Agent

Agent will exchange information with other. A resilient way to realize that is gossip based

method. Due to the page limit, we will not focus on how to implement an optimal gossip

plan. In addition, agent may leave the network, so peers may not reach the agent when

they call for a service to the agent. Thus, heart-beat signal will send among agents to

timely monitor the existence of the agent. In the section of numerical studies, we will detail

the setting of heart-beat signal frequency. Once an agent departure is detected, neighboring

agents of this agent will initialize a process to select new agent. Neighboring agents exchange

the copies of bootstrapping information. So when they select new agent, they will put back

such information in the left agent to the new agent.
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4.2 Modeling and Analysis

In this section, we formally model and analyze our scheme described in the previous section.

We call the newly arrived peers who did not view any channels new peers to the network.

For peers that have been viewing channel content, we call them existing peers. We model

the arrival of new peers to a channel by a Poisson process. In detail, suppose the expected

number of new peer arrivals in one time unit is λn, then the probability that there are exactly

k arrivals of new peers in t time units is equal to

f(k; λnt) =
(λnt)

ke−λnt

k!
.

Likewise, we model arrivals of existing peers from any other channel by Poisson process.

Suppose the expected number of existing peers switching from Ci to Cj in one time unit is

λi,j, the probability that there are exactly ki,j of such arrivals in time units is expressed by

f(ki,j; λi,jt) =
(λi,jt)

ki,je−λi,jt

ki,j!
.

Theorem 4. Given the expected lifetime of peers on channel Cj as 1/µj , the expected

number of viewers on Cj, denoted as N j, is (
∑

i λi,j + λn)/µj in steady state, where i 6= j.

Proof. It is known the sum of two independent Poisson variables still follow the Pois-

son distribution. Mathematically, given X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2), Y ∼
Poisson(λ1 + λ2) where Y = X1 + X2. In light of this, we can iteratively deduct the sum of

multiple finite Poisson variables also follows a Poisson distribution. Thus, the arrival rates

on Channel Cj follow Poisson(
∑

i λi,j + λn).

The P2P streaming system is modeled as an M/G/∞ system here. According to the

queueing theory, the expected number of viewers can be carried out by
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N j = (
∑

i

λi,j + λn)/µj, (4.3)

where i 6= j.

Thus, the theorem follows.

Suppose the lifetime of bootstrapping peers, denoted as Ls, follows an exponential dis-

tribution, whose probability density function (PDF) can be expressed by

fLs(t; γ) =





γe−γt if t ≥ 0,

0 if t < 0,

where 1/γ is the expected lifetime of bootstrapping peers.

As we know, agent will collect the bootstrapping information in its channel and period-

ically update it. To simplify the problem, we assume the update frequencies on all agents

are the same as F . Define the probability that a bootstrapping peer is in the network when

it is called to serve other peers as availability.

Theorem 5. The expected availability of bootstrapping peer is (1− e−γ/F )F/γ.

Proof. From the lifetime distribution of bootstrapping peers, we can carry out the probability

that it will stay for at least time t by

Pr{Ls ≥ t} = 1− FLs(t; γ)

= e−γt, (4.4)

where FLs is the cumulative distribution function (CDF) of Ls.

As we know, the exponential distribution is memoryless, which means its conditional

probability obeys
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Pr{Ls ≥ TR + t|Ls > TR} = Pr{Ls ≥ t}. (4.5)

Let TR be update time when an agent is checking if the bootstrapping peer is still in

the network. If some bootstrapping peers has left the network, agent will fill in new ones.

According to Equation (4.5), once a bootstrapping peer is in the network on the update point,

the probability that it will stay for at least time t will be the same as those newly joined

bootstrapping peers. Thus, we can apply the same Equation (4.4) for all bootstrapping

peers.

It is obvious that the time of a service call for a bootstrapping peer, i.e., t in Equation

(4.4), is uniformly distributed on the time between [TR, TR + Ta] where Ta = 1/F . Accord-

ingly, the expected availability of a bootstrapping peer on a service call, denoted as Av,

is

Av =
1

Ta

∫ TR+Ta

TR

Pr{Ls ≥ TR + t|Ls > TR}dt

=
1

Ta

∫ Ta

0

Pr{Ls ≥ t}dt

=
1

Ta

∫ Ta

0

e−γtdt

=
1− e−γTa

γTa

=
(1− e−γ/F )F

γ
.

Thus, the theorem follows.

Corollary 3. Suppose the 1/γa is the expected lifetime of agents and Fa is the frequency of

heart-beat signal to check if the agent is still in the network. The expected availability of an

agent Aais (1− e−γa/Fa)Fa/γa.



Chapter 4. On Reducing Churn-induced Delay 45

Figure 4.1: M/M/m/m + k model

Figure 4.2: Isolated model on bth level

Suppose that agent can store at most m bootstrapping peers and serve up to m + k new

peer requests, where m and k are both non-negative integers. To facilitate the modeling of

our scheme, we make the following assumptions: 1) the arrivals of new viewers to the agent

follow a Poisson process, denoted as Poisson(λ) where λ is the expected arrival rate; 2) the

service time of a bootstrapping peer, i.e., the time it takes to hand over the current streaming

to other peers, follows an exponential distribution, denoted as Exponential(µ) where 1/µ is

the expected service time; 3) the arrivals of new bootstrapping peers to the agent follow

Poisson(τ) where τ is the expected arrival rate.

Accordingly, we can model the bootstrapping system on each agent by an M/M/m/m+k

queue with bootstrapping peer failure and repair. Figure 4.1 illustrates our multi-level

model, where color-shaded states means available bootstrapping peers are all busy. Given

a state (a, b), a represents the number of viewers that are served or waiting to be served

by bootstrapping peers, and b describes the number of available bootstrapping peers. To

simplify the modeling, we assume a bootstrapping peer can only serve one peer at a time,

i.e., J = 1. For other numbers of J , this model can also work well after simple modifications

on b and state transition parameters.
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Figure 4.3: Single-column model

We sequentialize the levels, i.e. rows, in M/M/m/m + k from bottom to top, beginning

with 0. Thereby, bth level consists of states that have b available bootstrapping peers. To

obtain the steady-state probabilities, we can first isolate out each level in state graph as a

single 1-level model, analyze it for the steady-state probabilities, and then replace each row

by a single state in the original model, analyze this single-column model and carry out the

joint probabilities from both models. Figure 4.2 shows the isolated model on bth level. After

replacing each row by a single state in M/M/m/m + k model, we can obtain Figure 4.3,

where each state (b) represents the number of available bootstrapping peers.

Theorem 6. The probability that a working bootstrapping peer is immediately available for

a service call is

m∑

b=1

b−1∑
n=0

(λ/µ)n(τ/γ)b

n!b![
∑m

i=0
1
i!
( τ

γ
)i][

∑b
i=0

1
i!
(λ

µ
)i +

∑m+k
i=b+1

1
bi−bb!

(λ
µ
)i]

.

Proof. First, we analyze the isolated 1-level model on each row. On the bth level, the prob-

ability that a working bootstrapping peer is immediately available once a viewer calls for a

service is the sum of probabilities on unshaded states, including states (0, b), (1, b), ...and(b, b).

To solve the steady-state probabilities of the bth-level model, we use the local balance on

each state, i.e. the flow of probability into a state equals the flow out of the same state.

Let the probability on state (n, b) be Pr (n, b). Thus, we have the following table of state

equilibriums.
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State Equilibrium

(0, b) λ Pr (0, b) = µ Pr (1, b)

(1, b) λ Pr (1, b) = 2µ Pr (2, b)
...

...

(b, b) λ Pr (b, b) = bµ Pr (b + 1, b)

(b + 1, b) λ Pr (b + 1, b) = bµ Pr (b + 2, b)
...

...

(m + k − 1, b) λ Pr (m + k − 1, b) = bµ Pr (m + k, b)

By solving the equilibriums in the table, we can carry out the probability on state (n, b)

by

Pr (n, b) =





1
n!

(λ
µ
)n Pr (0, b) if n ≤ b,

1
bn−bb!

(λ
µ
)n Pr (0, b) if n > b.

(4.6)

Second, we replace each row by a single state in the original M/M/m/m + k model, and

analyze this single-column model. Obviously, the model in Figure 4.3 is a M/M/m/m queue.

Applying the same method, we can obtain

Pr (0) =
1∑m

i=0
1
i!
( τ

γ
)i

;

Pr (b) =
1

b!
(
τ

γ
)b Pr (0).

Next, we apply normalization equation, i.e.
∑m+k

i=0 Pr (i, b) = Pr (b). Therefore, the

following can be carried out



Chapter 4. On Reducing Churn-induced Delay 48

Pr (0, b) =
Pr (b)∑b

i=0
1
i!
(λ

µ
)i +

∑m+k
i=b+1

1
bi−bb!

(λ
µ
)i

=
( τ

γ
)b Pr (0)

b![
∑b

i=0
1
i!
(λ

µ
)i +

∑m+k
i=b+1

1
bi−bb!

(λ
µ
)i]

=
(τ/γ)b

b![
∑m

i=0
1
i!
( τ

γ
)i][

∑b
i=0

1
i!
(λ

µ
)i +

∑m+k
i=b+1

1
bi−bb!

(λ
µ
)i]

.

(4.7)

So in general, the probability that a working bootstrapping peer is immediately available

for service, denoted as As, can be obtained by

As =
m∑

b=1

b−1∑
n=0

Pr (n, b)

=
m∑

b=1

b−1∑
n=0

(λ/µ)n(τ/γ)b

n!b![
∑m

i=0
1
i!
( τ

γ
)i][

∑b
i=0

1
i!
(λ

µ
)i +

∑m+k
i=b+1

1
bi−bb!

(λ
µ
)i]

.

Thus, the theorem follows.

Theorem 7. The probability that a viewer will be rejected when the agent already has m+ k

service requests is

m∑

b=0

(λ/µ)m+k(τ/γ)b

bm+k−b(b!)2[
∑m

i=0
1
i!
( τ

γ
)i][

∑b
i=0

1
i!
(λ

µ
)i +

∑m+k
i=b+1

1
bi−bb!

(λ
µ
)i]

.

Proof. The probability that a viewer will be rejected, denoted as Pr(R), is the sum of

probabilities on the right-most states, i.e.,

Pr(R) =
m∑

b=0

Pr (m + k, b).



Chapter 4. On Reducing Churn-induced Delay 49

Applying the results in Equation (4.6) and (4.7), we can have

Pr(R) =

m∑

b=0

(λ/µ)m+k(τ/γ)b

bm+k−b(b!)2[
∑m

i=0
1
i!
( τ

γ
)i][

∑b
i=0

1
i!
(λ

µ
)i +

∑m+k
i=b+1

1
bi−bb!

(λ
µ
)i]

.

Theorem 8. The probability that all bootstrapping peers in an agent has left the network is

1∑m
i=0

1
i!
( τ

γ
)i

Proof. The probability that all bootstrapping peers are offline, denoted as Pr(L), is the sum

of probabilities on the bottom states, i.e.,

Pr(L) =
m+k∑
n=0

Pr (n, 0)

= Pr(0)

=
1∑m

i=0
1
i!
( τ

γ
)i

.

The theorem follows.

Theorem 9. The probability that an agent is idle, i.e. no viewer is now requesting boot-

strapping service to it, is

m∑

b=0

(τ/γ)b

b![
∑m

i=0
1
i!
( τ

γ
)i][

∑b
i=0

1
i!
(λ

µ
)i +

∑m+k
i=b+1

1
bi−bb!

(λ
µ
)i]

.



Chapter 4. On Reducing Churn-induced Delay 50

Proof. Similarly, we can deduce the probability that an agent is idle, denoted as Pr(I), is

the sum of probabilities on the left-most states, i.e.,

Pr(I) =
m∑

b=0

Pr (0, b)

=
m∑

b=0

(τ/γ)b

b![
∑m

i=0
1
i!
( τ

γ
)i][

∑b
i=0

1
i!
(λ

µ
)i +

∑m+k
i=b+1

1
bi−bb!

(λ
µ
)i]

.

The theorem follows.

Lemma 7. Let the expected number of viewers that are served by the agent be nv, including

those that are being served or waiting to be served. We have

nv =
m∑

b=0

m+k∑
a=1

a Pr(a, b).

Lemma 8. The throughput of the peers that is served by the agent is

m∑

b=1

(
b−1∑
a=1

aµ Pr(a, b) +
m+k∑

a=b

bµ Pr(a, b)).

Proof. Throughput, denoted as x, is the number of viewers that are served in an unit time,

i.e. cumulative service rate based on the service rate on each state. To obtain the expected

throughput, we should sum up the multiplication of service rate on each state and the

probability of the state, i.e.,

x =
m∑

b=1

(
b−1∑
a=1

aµ Pr(a, b) +
m+k∑

a=b

bµ Pr(a, b)).
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Theorem 10. The expected waiting time of the viewer, denoted as dw, i.e. the time a peer

waits to be served by a bootstrapping peer, is

∑m
b=0

∑m+k
a=1 a Pr(a, b)∑m

b=1(
∑b−1

a=1 aµ Pr(a, b) +
∑m+k

b bµ Pr(a, b))
− 1

µ

Proof. According to Little’s law, the total service delay, is nv/x, which is the sum of 1/µ, i.e.

the expected time a peer spends in service, and dw. Combining the results from Lemma 7

and 8, we can carry out

dw =
nv

x
− 1

µ

=

∑m
b=0

∑m+k
a=1 a Pr(a, b)∑m

b=1(
∑b−1

a=1 aµ Pr(a, b) +
∑m+k

b bµ Pr(a, b))
− 1

µ
.

Suppose that a peer will contact j agents for bootstrapping services to avoid agent

departure or busy status. To simplify the complexity, we assume there is no bootstrapping

agents shared among these agents. The probability that a viewer successfully obtains the

service from bootstrapping peers can be expressed by

Pr(S) = (1− (1− Aa)
j))(1− Pr(R)j).

Theorem 11. The expected churn-induced delay based on our scheme, denoted as d, can be

carried out by

d = Pr(S)(dw + df + dpv) + (1− Pr(S))db, (4.8)
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where db = dp + dsc is the bootstrapping delay by contacting ordinary peers in the channel

for connections, including communication delay and delay to get served by ordinary peers,

df is the sum of delays between viewer contacting an agent and agent forwarding the service

request to bootstrapping peers, and dpv is the expected transmission delay from bootstrapping

peer to the viewer.

We do not include the time of retrieving ordinary peer list from agents in the channel

because this process runs preventively in the background of viewing current channel and

makes on delay when peer switches the channel. Additionally, it is worth mentioning recovery

delay has a shorter dsc than channel-switching delay because the viewer in recovery has

already exchanged the chunk information with some other peers still in the network.

4.3 Performance Evaluation

In this section, we evaluate our scheme against previous general scheme by numerical exper-

iments in terms of delay. Then, we check influences of some key parameters to the system

by tuning them in the numerical studies.

To evaluate the performance of our scheme against the general scheme, we compare the

delay occurring in our scheme, expressed by Equation (4.8), with channel switching delay in

the original scheme, i.e., Equation (4.1) and recovery delay in Equation (4.2). Besides the

dA + dls, we may find the major difference happens between dw + df + dpv and db, where our

scheme saves the time by leveraging agents to pre-schedule the downloading plan and utilize

the pre-selected bootstrapping peers to provide a quick and fully streaming service in the

initial streaming period.

We abbreviate our agent-based scheme as AS and the general scheme as GS. In the first

experiment, we compare AS with GS with the change of viewer arrival rate to the agent.

According to [5], we set the typical properties of a P2P streaming system as following: 1)
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the expected time a bootstrapping peer will serve a viewer before hand over it to other peers

in the network is 6 seconds; 2) the expected lifetime of a bootstrapping peer is 10 minutes;

3) the expected arrival rate of a bootstrapping peer is 1/20; 4) the maximum number of

bootstrapping peers that an agent will manage is 100; 5) the number of viewers that will

wait for the service from bootstrapping peers, if they’re not occupied in serving other viewers,

is 10; 6) the expected lifetime of an agent is 10 minutes; 7) the frequency of heartbeat signal

to check if agent is still in the network is every 60 seconds; 8) dA = 0.5 second; dls = 0.5

second; dp = 1 second; dsc = 6 seconds; dp = 1 second; dpv = 0.5 second; and df = 2

seconds. For recovery delay, we change dsc to 2 seconds since viewers in recovery has already

contacted some other peers for chunk information before interruption occurs.

From Figure 4.4, we can observe that AS significantly outperforms GS in terms of chan-

nel switching delay. Especially when the arrival rates are lower than 40, almost half of the

delay can be avoided. With the increase of viewer arrival rate, the number of idle boot-

strapping peers decreases, which leads to the increase in delay. For recovery delay, AS is

better than GS when the arrival rates are lower than 40. When arrival rates goes up, the

performance AS almost converges to that of GS. This is because viewer waiting time is longer

when bootstrapping peers are busy. We should notice viewer also contacts ordinary peers

simultaneously when they contact the agent for streaming service. This strategy make the

worst-case performance of AS at least equal to GS. To increase the performance, we can add

more agents in the channel so as to keep the viewer arrival rate low.

Now, we compare AS with GS with the change of heartbeat signal frequency. For a better

illustration, we use the reciprocal of frequency, i.e. heartbeat signal interval. We keep the

setting as the last experiment except that viewer arrival rate is fixed to 25. From Figure 4.5,

we can also see AS generally outperforms GS in terms of channel switching delay. As of

recovery delay, the difference is very close, about 12%. As we know, heartbeat signal is to

check if the agent is still in the network, so a larger interval, i.e. less frequency, will increase

the probability that an agent has left the network when a viewer contacts it. In that case,

agent will use ordinary peers in the startup process, which saves less time than bootstrapping
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Figure 4.4: Agent-based Scheme v.s. General Scheme when viewer arrival rate changes.

peers. Moreover, it is interesting to see when the heartbeat signal interval is the same as the

expected lifetime of an agent, i.e. 10 minutes, AS can save 43% in channel-switching delay.
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Figure 4.5: Agent-based Scheme v.s. General Scheme when heartbeat signal interval changes.

In the last experiment, we check the influence from the maximum number of bootstrap-

ping peers that can be managed by an agent. As illustrated in Figure 4.6, when the maximum

number of bootstrapping peers increases, the delay will decrease. It can be easily understood

that more bootstrapping peers will reduce the waiting time when a viewer seeks the service.

When the maximum number of bootstrapping peers is lower than 10, the difference between

AS and GS in channel-switching delay is only 1.8 seconds at most.

From the above numerical analysis, we can conclude some methods to improve the per-
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Figure 4.6: Agent-based Scheme v.s. General Scheme when the maximum number of boot-

strapping peers changes.

formance of our proposed scheme, which includes adding the number of agents, increasing

the heartbeat signal frequency and selecting more bootstrapping peers.



Chapter 5

Summary and Future Work

Our works is motivated by minimizing delays in current P2P streaming system. In this

proposal, we focus on two problems:

1) Building delay-minimized overlay streaming mesh. We formulated the minimum-delay

P2P streaming problem and presented two solutions for it: a centralized approximation algo-

rithm and a distributed version. We show that our algorithms have a guaranteed performance

bound. The distributed version has been extended to adopt to network churn and improve

resource utilization. The basic idea of our algorithm can be described by the following.

First, we partition the peers V into different clusters according to the regional aggregated

streaming capacities. Then, we filter the peers by keeping one representative peer for each

cluster, whose streaming capacity is virtualized by the aggregated streaming capacities of

the entire cluster. As a result, we form a backbone using the representative nodes. Since the

backbone nodes are virtual representatives of clusters, in the next step, we expand the mesh

connections from the representative nodes into clusters, which constitutes a final streaming

mesh for the overlay network;

2) Devising an agent-based scheme to reduce churn-induced delay. we consider the fact

that churn-induced delays identically stem from the time of re-connecting to new peers.

56
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Thus, our scheme propose preventive connections to all channels. Once an actual connection

is requested, time will be saved in retrieving bootstrapping information and obtaining autho-

rization as well as authentication. However, maintaining preventive connections for all peers

to all channels makes it impractical in terms of the enormous control signals and message

overhead. Towards an efficient control and message overhead, we propose that each channel

will select some powerful peers as agents to represent the peers in the channel. Agents will

distill the bootstrapping peers with superior bandwidth and lifetime expectation to quickly

serve the viewer in the initial period of streaming. Moreover, agent will pre-schedule the

downloading plan about data chunk partition and streaming for future viewers, and coordi-

nate with each other to build the preventive connections for peers represented by them.

Our contribution can be summarized as following.

(1) To the best of our knowledge, our work represents the first approximation algorithm

that optimizes P2P streaming delay and provides an provable upper bound of O(
√

log n).

(2) We analyze the approximation algorithm’s performance and derive the algorithm’s

approximation ratio, which is found to be the lowest ratio when compared with past results.

We not only present an approximation algorithm with a strong theoretical basis, but also

reduce the approximation factor to a ratio of O(
√

log n).

(3) We extend the approximation algorithm to a practical distributed version that is

robust to high user churn. Our simulation results indicate our algorithm can actively ensure

the end-to-end streaming delay in the worst-case scenario.

(4) We propose the first scheme on reducing the churn-induced delay with analytical

model. Our scheme propose preventive connections to all channels. Once an actual connec-

tion is requested, time will be saved in retrieving bootstrapping information and obtaining

authorization as well as authentication. Our scheme suggests an idea of agent, which facili-

tates the bootstrapping process in channel switching and peer recovery.

(5) We build a queueing theory model for the agent-based scheme. Based on this model,
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we theoretically analyze the performance of our scheme.

(6) We analyze the scheme’s performance and derive the scheme’s optimal settings based

on the numerical experiments. Our numerical experiment results indicate our scheme can

significantly reduce the churn-induced delay, especially for the channel-switching delay.

Based on our current direction of research, we propose the following works with the top

priority for our post preliminary exam work:

Minimize the end-to-end streaming delay in multi-channel scenario. We propose to de-

vise an algorithm specifically working on multi-channel scenario. Existing heuristics on the

problem of reducing P2P streaming delay only focus on the single-channel scenario. However,

in most P2P streaming applications, there commonly exists hundreds of channels [7]. As we

know, bandwidth allocation and peer assignment in multi-channel streaming pose extra chal-

lenge to the minimum-delay problem. Furthermore, current algorithms on the single-channel

scenario either provides no theoretical bound on the worst-case performance or loosely es-

timate the bound without a robust theoretical analysis [13, 14, 19]. The estimated bound

of previous algorithms on single channel scenario [19, 20] is O(log n). Several directions can

be considered to reduce the multi-channel streaming delay. For example, by smartly uti-

lizing the bandwidth allocation between channels, we may improve the worst delay in less

popular channel while keep the delay in popular channel with a reasonable approximation

bound. We propose to design improved clustering-based protocols which considers the opti-

mal bandwidth allocation to achieve a minimum streaming delay. An example design is to

decouple the viewing and uploading functionalities on the viewer and reassign the uploading

bandwidth in popular channel to improve the streaming delay in less popular channel. By

leveraging our current clustering-based approximation, we may guarantee an approximation

bound when allocate the bandwidth optimally.

Design a delay-optimized admission control algorithms. Industrial deployment of P2P

streaming application may involve different types of peers, including free user, ordinary

member paying fees to watch specific channel and VIP member paying extra fees for high-
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quality service. However,the traditional scheme in cable TV to prioritize VIP member when

bandwidth resource is not sufficient is not applicable. Some free users may have excellent

bandwidth to contribute. If we simply put them at the edge of streaming mesh with worst

service, we may lost the opportunity to rationally utilize its bandwidth. We propose to

devise an admission control algorithm specifically working on multi-type peers. An example

solution is to put different reward values when satisfying different types of users and also

put rewards based on the streaming delays they have. An optimal solution may well utilize

the peers with high bandwidth even they are free or low-level users.

Besides, we are also interesting to solve the following three problems,

Design a large-scale simulation based on our algorithms. P2P networks typically involves

hundreds of thousands of users. To evaluate our schemes on large-scale applications, tradi-

tional simulation tool like ns-2 is not applicable with memory issues. Some possible solutions

emerges as simulation tool exclusively for P2P simulation. For example, PeerSim may han-

dle a simulation for over half-million peers. Such large-scale simulation can evaluates the

performance of our distributed scheme with real scalability and may help us identify some

improvement directions on the schemes.

Minimize the scheduling delay algorithms. P2P streaming need to exchange data chunk

and decide which chunk should transfer with priority. Delayed receiving of chunk may incur

delays or interruptions in streaming. So we propose to design a chunk scheduling algorithm

to maximize the probability that a chunk will arrive to the viewer before it need to be played.

One example solution is that seldom existed chunk should be transferred with priority so

more peers may span out this chunk to start a smooth streaming.

Design a gossip-based message exchange scheme. In our current study, gossip is proposed

to exchanging agent data and search for resources. We propose to design an improved gossip

scheme to ensure a time constraints on message receipts. One possible solution is to utilize

super-peers to manage the normal peers and exchange resource information with them. So

gossip only needs to run through these super-peers. Since super-peers have long expected
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lifetime, i.e. less probability to departure, we can ensure the time constraints in resource

searching with certain probability guarantee.



Bibliography

[1] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the

peer-to-peer stream?” Communications Magazine, IEEE, vol. 45, no. 6, pp. 86–92, June

2007.

[2] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p streaming systems,”

May 2007.

[3] S.-Y. Hu, T.-H. Huang, S.-C. Chang, W.-L. Sung, J.-R. Jiang, and B.-Y. Chen, “FLoD:

A framework for peer-to-peer 3D streaming,” in INFOCOM 2008. The 27th Conference

on Computer Communications. IEEE, April 2008.

[4] F. Picconi and L. Massoulie, “Is there a future for mesh-based live video streaming?”

in Peer-to-Peer Computing , 2008. P2P ’08. Eighth International Conference on, Sept.

2008.

[5] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study of a large-scale

P2P IPTV system,” Multimedia, IEEE Transactions on, vol. 9, no. 8, Dec. 2007.

[6] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “Anysee: Peer-to-peer live streaming,”

in INFOCOM 2006, April 2006.

[7] D. Wu, C. Liang, Y. Liu, and K. Ross, “View-upload decoupling: A redesign of multi-

channel p2p video systems,” in INFOCOM 2009, April 2009.

61



Chapter 5. Summary and Future Work 62

[8] X. Hei, Y. Liu, and K. Ross, “IPTV over P2P streaming networks: the mesh-pull

approach,” Communications Magazine, IEEE, vol. 46, no. 2, pp. 86–92, February 2008.

[9] D. Wu, Y. Liu, and K. Ross, “Queuing network models for multi-channel p2p live

streaming systems,” in INFOCOM 2009, April 2009.

[10] S. Liu, R. Zhang-Shen, W. Jiang, J. Rexford, and M. Chiang, “Performance bounds for

peer-assisted live streaming,” in SIGMETRICS ’08: Proceedings of the 2008 ACM SIG-

METRICS international conference on Measurement and modeling of computer systems,

2008.

[11] V. Venkataraman, P. Francisy, and J. Calandrino, “Chunkyspread: Multitree unstruc-

tured peer-to-peer multicast,” in Proceedings of IPTPS06, 2006.

[12] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A comparative study of

live P2P streaming approaches,” in INFOCOM 2007, May 2007.

[13] J. Noh, A. Mavlankar, P. Baccichet, and B. Girod, “Reducing end-to-end transmission

delay in P2P streaming systems using multiple trees with moderate outdegree,” in

Multimedia and Expo, 2008 IEEE International Conference on, 23 2008-April 26 2008.

[14] D. Ren, Y.-T. Li, and S.-H. Chan, “On reducing mesh delay for peer-to-peer live stream-

ing,” in INFOCOM 2008, April 2008.

[15] Z. Chen, K. Xue, and P. Hong, “A study on reducing chunk scheduling delay for mesh-

based P2P live streaming,” in Grid and Cooperative Computing, 2008. GCC ’08. Seventh

International Conference on, Oct. 2008.

[16] N. Magharei and R. Rejaie, “PRIME: Peer-to-peer receiver-driven mesh-based stream-

ing,” in INFOCOM 2007. 26th IEEE International Conference on Computer Commu-

nications. IEEE, May 2007.



Chapter 5. Summary and Future Work 63

[17] A. da Silva, E. Leonardi, M. Mellia, and M. Meo, “A bandwidth-aware scheduling

strategy for P2P-TV systems,” in Peer-to-Peer Computing , 2008. P2P ’08. Eighth

International Conference on, Sept. 2008.

[18] A. Caminero, O. Rana, B. Caminero, and C. Carrion, “Improving grid inter-domain

scheduling with P2P techniques: A performance evaluation,” in Grid and Cooperative

Computing, 2008. GCC ’08. Seventh International Conference on, Oct. 2008.
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