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(ABSTRACT)



Advances in computer architecture and networking have increased the number of distributed
real-time systems being developed. At the same time, chip manufacturing considerations
have caused a paradigm change in the computer industry: multicore and hyperthreading
architectures, rather than increasing clock rates, are now the preferred method for increasing
computing performance. The twin occurrences necessitate a new shift in focus of the real-
time community to distributed and multiprocessor solutions.

In this dissertation proposal, we investigate a number of issues associated with these emerging
architectures. First, to address the scheduling problem on distributed systems, we investigate
the relative merits of collaborative scheduling, an approach to system wide scheduling in
which all nodes participate in a collaborative manner. Towards that end, we design three
different collaborative scheduling algorithms (ACUA, QBUA and DQBUA). We analytically
and empirically evaluate the properties of these algorithms. The result of our studies indicate
that collaborative scheduling algorithms can provide better timeliness assurances compared
to non-collaborative scheduling algorithms (where nodes do not cooperate while constructing
their schedules).

However, our studies also indicate that collaborative scheduling algorithms, particularly
when distributed dependencies are involved, can have a significant overhead. There are
a class of applications, such as Network Centric Warfare [12], that have sufficiently large
execution timescales to benefit from the improved timeliness of collaborative scheduling.
We also believe that collaborative scheduling, because it integrates failure detection with
the actual scheduling algorithm, can provide more seamless performance assurances during
failures than previous attempts where failure detection (and the response to such failure)
was disjoint from the actual scheduling algorithm.

We identify distributed dependencies as one of the major sources of overhead in collaborative
scheduling algorithms. Particularly, the cost of distributed lock management and distributed
deadlock detection and resolution can become quite significant. This is particularly impor-
tant for emerging multicore architectures where concurrency is becoming the norm rather
than the exception. In order to alleviate this problem, we propose an alternative to lock-
based concurrency control known as software transactional memory (or STM).

In this proposal, we indicate the set of algorithms and protocols that are necessary for making
STM a part of a real-time programmer’s repertoire. In addition, we design two different
schedulability analysis algorithms for computing the response times of threads programmed
using STM as the concurrency control mechanism. The first of these algorithms targets
distributed systems where each node is a uniprocessor, while the second targets distributed
systems where each node is a multiprocessor. We also identify a number of research problems
associated with STM that we propose to tackle after the preliminary exam.
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Chapter 1

Introduction

Advances in the computer, and networking, industry have resulted in the increased use of
distributed systems. The real-time domain has also seen a rise in the number of applications
deployed on distributed systems. These applications range from relatively tightly coupled
systems, e.g., embedded distributed systems used to control, for example, cars and planes,
to applications deployed on loosely coupled systems such as those envisioned by the DoD for
its vision of Network Centric Warfare [12].

Thus, it becomes necessary to extend the standard analysis techniques of classical real-
time theory to deal with such systems. Some of these emerging networked embedded sys-
tems are dynamic in the sense that they operate in environments with uncertain properties
(e.g., [12]). These uncertainties include transient and sustained resource overloads (due to
context-dependent activity execution times), arbitrary activity arrivals and completions, and
arbitrary node failures and message losses. Reasoning about end-to-end timeliness is a diffi-
cult and unsolved problem in such systems. Another distinguishing feature of such systems
is their relatively long activity execution time scales (e.g., milliseconds to minutes), which
permits more time-costly real-time resource management.

In particular, it is necessary to provide some measure of assurances on the end-to-end time-
liness of the computations on such system if they are to support real-time applications. The
problem of providing end-to-end timeliness assurances for distributed real-time systems has
been studied in the past (e.g., [20,22,74,75]). These past efforts can be broadly categorized
into two classes: independent node scheduling and collaborative scheduling.

In the independent scheduling approach (e.g., [20,75]), threads are scheduled at nodes using
propagated thread scheduling parameters and without any interaction with other nodes.
Fault-management is separately addressed by thread integrity protocols that run concurrent
to thread execution. Thread integrity protocols employ failure detectors (FDs) to detect
failures of the thread abstraction, and to deliver failure-exception notifications [20]. In the
collaborative scheduling approach (e.g., [74]), nodes explicitly cooperate to construct system-

1



Sherif F. Fahmy Chapter 1. Introduction 2

wide thread schedules, anticipating and detecting node failures using FDs.

FDs employed in both paradigms in past efforts have assumed a totally synchronous com-
putational model—e.g., deterministically bounded message delay. While the synchronous
model is easily adapted for real-time applications due to the presence of a notion of time,
this results in systems with low coverage—i.e., the high likelihood for the resulting timing
assurances to be violated, when the synchrony assumptions are violated at run-time (e.g.,
due to overloads, or other exigencies). On the other hand, it is difficult to design real-time
algorithms for the asynchronous model due to its total disregard for timing assumptions.

Thus, there have been several recent attempts to reconcile these extremes. For example,
in [2], Aguilera et. al. describe the design of a fast FD for synchronous systems and show how
it can be used to solve the consensus problem for real-time systems. Their algorithm achieves
the optimal bound for both message and time complexities. In [44], Hermant and Widder
describe the Theta-model, where only the ratio, Θ, between the fastest and slowest message
is known. This increases the coverage of algorithms designed under this model, as less
assumptions are made about the system. Though Θ is sufficient for proving the correctness
of such algorithms, an upper bound on communication delay is needed to establish timeliness
properties. In this dissertation proposal, we attempt to provide timeliness assurances for
systems where propagation delay and message loss can be stochastically described as well as
for standard synchronous systems.

To summarize, there are different approaches to providing end-to-end timeliness. These
approaches can be either collaborative or independent and can be deployed on systems with
different levels of“synchronicity”. One of the main questions we try to answer in this proposal
is whether or not the higher overhead of collaborative scheduling is justifiable. Another
important research point addressed in this proposal, is whether the integration of failure
detection and handling into a scheduling solution offers any advantages over using orthogonal
failure handling techniques.

One of the major contributors to the overhead of collaborative scheduling is the cost of
distributed concurrency control. In this proposal, we investigate alternatives to the tradi-
tional method of using locks and condition variables to reduce this overhead. In particular,
we investigate the use of software transactional memory (STM), and study the real-time
assurances that can be provided when STM is used to manage concurrency control.

To summarize, the aim of this dissertation is to study the problem of scheduling distributed
threads. In order to do so, we investigate the assurances that can be provided on partially
synchronous distributed systems, study the performance of collaborative scheduling and
compare it with independent node scheduling, identify performance bottlenecks in scheduling
distributed systems and attempt to remedy them.

The rest of this Chapter is organized as follows, in Section 1.1, we describe the timeliness
models used in this dissertation proposal. In particular, since some of our target systems are
soft real-time systems that are subject to overloads, we describe the Time Utility Function
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(TUF) timeliness model, and show how TUFs can be used to describe both the urgency and
importance of a task. Using TUFs allows us to develop real-time scheduling algorithms that
exhibit graceful performance degradation during overloads.

In Section 1.2, we describe our current research contribution. In Section 1.3, we present an
overview of the work we plan to conduct after the preliminary exam in order to achieve the
goals of this dissertation and Section 1.4 provides a road map for the rest of the proposal.

1.1 Timeliness models

A real-time system can be either hard real-time or soft real-time. In hard real-time systems,
all tasks must meet their deadlines. This timeliness model is essential when the consequences
of not meeting a deadline could be disastrous (e.g., in the code controlling a nuclear reactor).
For hard real-time systems, a deadline for each task is sufficient to describe the timeliness
requirements of the application.

On the other hand, in a soft real-time system, if a task does not meet its deadline, the
consequences are not disastrous. In such a system, it is possible to tolerate periods of
overload (when the offered load of the application is more than the processor can service) by
missing deadlines. In such a scenario, it becomes important to make a decision about which
set of tasks will be allowed to meet their deadline and which set of tasks will be delayed.

The notion of “importance” plays an important role in these scenarios. If each computation
task has an importance, it is in the best interest of the application to meet the deadline of
tasks with higher importance and delay less important tasks.

The urgency, closeness of a deadline, of an activity is sometimes orthogonal to the relative
importance of the activity – e.g., the most urgent activity may be the least important,
and vice versa; the most urgent may be the most important, and vice versa. Hence when
overloads occur, completing the most important activities irrespective of activity urgency
is desirable. Thus, a distinction has to be made between urgency and importance during
overloads. (During underloads, if all time constraints are deadlines, optimal algorithms exist
that can meet all deadlines – e.g., EDF [21].)

Deadlines cannot express both urgency and importance. Thus, our soft timeliness criteria
considers the time/utility function (or TUF) timeliness model [48] that specifies the utility
of completing an activity as a function of that activity’s completion time. We specify a
deadline as a binary-valued, downward“step” shaped TUF; Figure 1.1 shows some examples.
An activity’s TUF decouples its importance and urgency – urgency is measured on the X-
axis, and importance is denoted (by utility) on the Y-axis. Some real-time systems also have
activities with non-deadline time constraints, such as those where the utility attained for
activity completion varies (e.g., decreases, increases) with completion time.

When activity time constraints are expressed with TUFs, the scheduling optimality criteria
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-

Time

6

Utility

0

Figure 1.1: Step TUFs

are based on maximizing accrued activity utility – e.g., maximizing the total activity accrued
utility. Such criteria are called utility accrual (or UA) criteria, and sequencing (scheduling,
dispatching) algorithms that optimize UA criteria are called UA sequencing algorithms. UA
algorithms that maximize total utility under downward step TUFs (e.g., [21]) default to
EDF during underloads, since EDF satisfies all deadlines during underloads. Consequently,
they obtain the optimum total utility during underloads. During overloads, they inherently
favor more important activities over less important ones (since more utility can be attained
from the former), irrespective of activity urgency, and thus exhibit adaptive behavior and
graceful timeliness degradation. This behavior of UA algorithms is called “best-effort” [21] in
the sense that the algorithms strive their best to feasibly complete as many high importance
activities – as specified by the application through TUFs – as possible. Consequently, high
importance activities that arrive at any time always have a very high likelihood for feasible
completion (irrespective of their urgency). Note also that EDF’s optimal timeliness behavior
is a special-case of UA scheduling.

1.2 Summary of Current Research and Contributions

The main aims of the research being conducted are; 1) Determine the possibility of providing
timeliness assurances in non-synchronous systems that are subject to failures, 2) Investigate
the properties of collaborative scheduling, 3) Identify the major performance bottlenecks in
collaborative scheduling, and 4) Attempt to overcome these bottlenecks.

Towards that end we have conducted a series of studies to address these problems. Specif-
ically, in [33] (described in Chapter 3), we attempt to address the first problem by solving
the consensus problem on a partially synchronous system, and then using the consensus
algorithm as a basis for collaborative scheduling.

The partially synchronous system we target is one where both communication delay and
communication failure are described stochastically [17]. On top of this system we design
an S-class failure detector and use that to develop a consensus algorithm. We then use the
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consensus algorithm as the basis for a collaborative scheduling algorithm, ACUA. Essentially,
this addresses two issues. First, we show how it is possible to provide stochastic timeliness
guarantees on partially synchronous systems. Second, we analytically and empirically prove
that the collaborative scheduling algorithm thus developed can provide better timeliness,
when compared to independent scheduling, for systems that can tolerate its higher overhead.

We then attempt to reduce the communication overhead of the algorithm by using a quorum-
based approach, QBUA [30] (described in Chapter 4), instead of the consensus based ap-
proach used in ACUA. The algorithm developed uses the partially synchronous model and
QoS failure detectors described in [17]. Again, we analytically and empirically compare the
algorithm developed to other algorithms, both independent and collaborative. These first
two algorithms, ACUA and QBUA, did not consider distributed dependencies. Thus we de-
veloped a modified quorum-based algorithm, DQBUA [32], specifically to address this issue.
DQBUA is described in Chapter 5.

While our research indicates that collaborative scheduling can provide better timeliness by
taking global scheduling information into account, it also indicates that collaborative schedul-
ing has a high overhead that may not be suitable for all situations.

Thus, our next step was to identify the largest contributor to this overhead. Naturally, the
communication overhead has a significant effect on the overhead of the algorithm, but this,
apart from network techniques to improve communication efficiency and algorithmic designs
to reduce communication, was relatively inevitable. One interesting source of overhead, was
the concurrency control portion of the scheduling algorithms.

The standard method of using locks for concurrency control introduced a significantly large
overhead to the scheduling algorithm. This overhead manifested itself in both the design
of the sequencing algorithm used to arrange the tasks in an order that did not violate
the precedence constraints imposed on them by their locks, and in detecting and resolving
deadlock when it occurs.

The problem becomes more complicated when we consider distributed dependencies which
can result in distributed deadlocks. The standard methods for solving such problems in
distributed systems [11, 19, 24, 25, 27, 56, 57, 65, 76], break down for real-times systems [81].
Essentially, this occurs because deadlock is no longer a stable property when deadlines are
considered. In normal distributed systems, deadlocks are a stable property, and algorithms,
such as edge chasing deadlock detection algorithms, depend on this property for their cor-
rectness. However, the spontaneous termination of tasks, when their deadline passes, in
real-time systems invalidates the assumption that deadlocks are stable and necessitates a
large number of trade-offs in designing real-time distributed deadlock detection and resolu-
tion algorithms [81].

Thus we came to the conclusion that seeking alternatives to lock-based concurrency control
can offer significant performance and semantic improvements. For example, it is possible to
come up with non-lock based concurrency control solutions that are not subject to dead-
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locks. This is beneficial from two points of view. First, it reduces the complexity of the
scheduling algorithm in terms of both its semantic complexity (by freeing it from dealing
with deadlocks) and time complexity (by eliminating the need for deadlock detection and
resolution, one of the major contributors to scheduling time complexity). Second, the use of
non-lock based concurrency control can significantly increase the semantic simplicity of the
application code being written thus improving programmer productivity. After considering
several alternatives to lock based concurrency control, some of which are briefly overviewed
in Section 2.0.1, we concluded that software transactional memory would be most suited for
our purpose.

In order to incorporate STM into distributed real-time systems, we have developed several
response time analysis techniques to provide timeliness assurances for such systems. First,
in Chapter 7, we provide such an analysis for distributed systems where each node is a single
processor, and then extend this notion to include distributed systems, in Chapter 8, where
each node is a multiprocessor. In Section 1.3 we indicate the post preliminary examination
work we intend to pursue in order to achieve our goal of making STM one of the tools
available for real-time programmers in an attempt to reduce the overhead introduced by
lock-based concurrency control.

The following list briefly summarizes the contribution of the proposal:

1. Designed a consensus-based collaborative scheduling algorithm, ACUA, that can pro-
vide fault tolerant timeliness assurances in partially synchronous systems.

2. Provided empirical and analytical evaluation of the properties of ACUA.

3. Designed a quorum-based collaborative scheduling algorithm, QBUA, designed for fault
tolerant partially synchronous systems in an attempt to reduce the communication
overhead of the consensus-based algorithm, ACUA.

4. Provided empirical and analytical evaluation of the properties of QBUA.

5. Designed a modified version of QBUA, DQBUA, that can handle distributed depen-
dencies.

6. Provided empirical and analytical evaluation of the properties of DQBUA.

7. Identified the problems associated with lock-based scheduling in our target domain and
suggested STM as an alternative.

8. Designed a schedulability analysis algorithm for distributed real-time systems where
each node is a uniprocessor and concurrency control is managed using STM.

9. Designed a schedulability analysis algorithm for distributed real-time systems where
each node is a multiprocessor and concurrency control is managed using STM.
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1.3 Summary of Proposed Post Preliminary-Exam Work

Based on our current direction of research, we propose the following work:

• Investigate Different Progress Guarantees for Real-Time STM: Since STM
is, essentially, a non-lock based method for concurrency control, it can only provide
non-blocking progress guarantees. The three main categories of non-blocking progress
guarantees, in descending order of strength, are; 1) Wait-freedom: this combines system
wide throughput guarantees with starvation-freedom, 2) Lock-freedom: this provides
only guarantees on system-wide throughput but may allow individual threads to starve,
and 3) Obstruction-freedom: this is the weakest non-blocking progress guarantee and
ensures that a single thread executed in isolation for a bounded number of steps will
complete its operation.

One of the trends in software transactional memory is to implement an obstruction-free
STM system (e.g., [41]), and to leave stronger non-blocking guarantees of progress to an
orthogonal contention manager. Several contention managers have been proposed and
studied in the literature (e.g., [79,91]). However, none of these contention managers are
designed with real-time constraints in mind. We propose to design a set of real-time
contention managers that take real-time scheduling criteria into account. The effect of
these contention managers will be both empirically and analytically evaluated to see if
they offer any performance assurances for real-time systems. Another trend is to drop
the guarantee of even obstruction-freedom [28] in order to speed up execution. We will
study such an approach and determine its viability for real-time systems.

• Design Distributed Cache Coherence Protocols for real-time STM: The use of
RPCs, and other forms of remote procedure invocations, to design distributed systems
has been extensively investigated. An alternative that has seen little research is that of
using a distributed cache coherence protocol and thus turning distributed applications
into a data migration paradigm.

We intend to design a distributed cache coherence protocol that can provide some real-
time assurances. On top of this distributed cache coherence protocol, we can design an
STM system and investigate it properties. The contribution here is two-fold, first we
propose to design a distributed cache coherence protocol which can provide timeliness
assurances, second, we propose to investigate the different trade-offs usually considered
in designing STMs (more details can be found in Chapter 6, but this includes, for
example, whether to use eager or lazy memory updates). We believe that the effect of
these design parameters for distributed STM will be different from their effect on stand
alone systems (for which they have been exhaustively investigated), thus we propose to
qualify the effect of these parameters on the novel environment of a distributed STM.

• Compiler Instrumentation for STM: One of the major factors affecting the wide-
spread use of STM in production software is the high overhead involved in instrument-
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ing all loads and stores to provide the semantics of STM. Specifically, the access of
shared variables outside transactions can result in a weak atomic semantics (i.e., atom-
icity is guaranteed among transactions, but non-transactional code accessing a shared
variable can violate atomicity).

There are several possible solutions to such a problem, for example, using synchroniza-
tion barriers or instrumenting all loads and stores in the code. However, as previously
mentioned, this would greatly increase the overhead of the STM system. What is re-
quired is an automatic static analysis of the code that instruments only those loads and
stores that need the instrumentation. This would greatly reduce the overhead of the
STM system. This area has not been adequately researched, although similar compiler
related research, alias analysis and escape analysis, have been considered. We believe
that the nature of most real-time code lends itself to a reasonably efficient implemen-
tation of automatic compiler instrumentation of loads and stores in STM transactions.
Thus we propose to design and implement different static analysis techniques for the
automatic instrumentation of loads and stores in real-time systems.

• Integrating hard and soft real-time analysis for STM: As mentioned in Sec-
tion 1.1, there are two different approaches to timeliness. Our current research on
STM (see Chapters 7 and 8) concentrate on providing timeliness assurances for hard
real-time systems. We proposed to extend this analysis to deal with soft real-time
systems using the timeliness model described in Section 1.1.

This will allow programmers to use STM in systems where overloads (due to, for
example, context-dependent activity execution times) can occur, thus increasing the
coverage of the algorithms proposed.

• Hybrid data/code migration: Instead of using either data or code migration to
develop distributed applications, it may be possible to provide performance gains if a
hybrid solution that can move either code or data, depending on some performance
criteria, is used. In Chapter 6, we describe some of these criteria and discuss the various
trade-offs necessary in achieving this goal. Studying the various algorithms that can
be used to achieve this is also a proposed post preliminary examination research point.

1.4 Proposal outline

The rest of this dissertation proposal is organized as follows, in Chapter 2, we provide a brief
review of the relevant literature. Chapter 3 presents a collaborative scheduling algorithm
and shows how this can provide better timeliness assurances than independent scheduling al-
gorithms. In Chapter 4, we attempt to reduce the overhead of the consensus-based algorithm
designed in Chapter 3 by using a quorum-based approach. In Chapter 5, the quorum-based
approach is extended to deal with distributed dependencies.
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We present our case for using software transactional memory (or STM) in Chapter 6, provide
an overview of the requirements of incorporating STM into real-time systems and propose a
set of problems we can solve to make STM in distributed real-time systems a reality. In Chap-
ters 7 and 8, we present response time analysis for uniprocessor and multiprocess distributed
systems programmed using STM respectively. We conclude the proposal in Chapter 9.



Chapter 2

Past and Related Work

As mentioned in Chapter 1, the main aim of this dissertation is to study the scheduling
problem for real-time distributed systems. Specifically, the main aims of the research be-
ing conducted are; 1) Determine the possibility of providing timeliness assurances in non-
synchronous systems that are subject to failures, 2) Investigate the properties of collaborative
scheduling, 3) Identify the major performance bottlenecks in collaborative scheduling, and
4) Attempt to overcome these bottlenecks.

There have been a number of papers published in the literature addressing fault tolerant
distributed real-time scheduling. In this chapter, we provide a brief overview of the publi-
cations most relevant to our current work. As mentioned in Chapter 1, there are two main
approaches to scheduling threads on distributed real-time systems; collaborative and inde-
pendent. Most past work has focused on independent scheduling due to its simplicity and
low overhead.

In independent scheduling, each node in a distributed system schedules the tasks it hosts
without recourse to communication with other nodes. Therefore, it was simple to extend the
state of the art in single node scheduling to accommodate this model. A task making a remote
invocation propagates its scheduling parameters to its destination node. The destination
node then uses these propagated scheduling parameters to perform its own local scheduling.

Due to its simplicity and relatively low overhead, this approach has been incorporated into
many real-time distributed programming standards. For example, Real-Time CORBA [67]
makes extensive use of this approach. However, even within the independent scheduling
approach, there are a number of different factors to consider.

One of the most elusive factors (in terms of optimality) is the question of how to derive
local scheduling parameters from global scheduling parameters. Specifically, since we are
considering real-time systems, the question becomes how to derive local deadlines from global
deadlines in order to ensure optimal system performance in terms of deadlines met. There
are many different methods for decomposing global end-to-end deadlines in order to derive

10
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local deadlines. It is possible to use the end-to-end, or global, deadline to perform local
scheduling, however, this approach may underestimate the urgency of components of end-
to-end abstractions (since each component is given the urgency of the entire end-to-end
abstraction). This may result in excessive delay to said components and thus to deadline
misses.

Other approaches include dividing the end-to-end deadline equally among all its component
tasks, or dividing the end-to-end deadline in proportion to the execution times of each
component. As mentioned before, the“best”method for decomposing end-to-end deadlines is
elusive and depends on the application being considered and many other different heuristics.
The same set of issues arise if we consider TUFs (see Chapter 1) as our timeliness abstraction.
There have been a number of papers addressing this issue [49,50,59,78]. Note that deadline
(or TUF) decomposition is essential for independent node scheduling, since it is this technique
that allows an end-to-end scheduling problem to be broken down to a series of independent
scheduling problems.

Deadline, or TUF, decomposition is not the only issue addressed by researchers in the dis-
tributed real-time field. Other important issues include synchronization protocols to ensure
precedence constraints are met, scheduling algorithms, and the development of sufficiently
tight schedulability analysis for the scheduling and synchronization protocols developed. A
good example of previous work that investigates these issues for the independent scheduling
paradigm is Sun’s thesis [85].

Another work that has addressed the problem of end-to-end scheduling of programming
abstractions in distributed real-time systems is [8]. In this paper, the authors consider
the flow-shop version of the end-to-end scheduling problem, in which all tasks executed on
different processors in the same order. The authors identify two tractable versions of this
problem, and suggest a heuristic method for the general NP-hard instance of the problem.
The paper, however, does not address fault tolerance or non-synchronous systems. Nor does
it consider the behavior of systems during overloads or the possible benefits of collaborative
scheduling. All of these factors are taken into consideration in this dissertation.

In [51], Kao et. al. present an approach to scheduling soft real-time systems using com-
mercial off the shelf components. However, none of the algorithms used in the paper are
specifically designed for scheduling soft real-time systems during overload and hence do not
offer reasonable assurances in such scenarios.

Not all the papers on distributed real-time systems have focused on deadline (or TUF)
decomposition, and distributed scheduling algorithms. A number of papers have addressed
the important issue of developing the necessary schedulability analysis techniques to provide
suitable timeliness assurances.

One of the first papers to address the development of scheduling analysis techniques for
distributed real-time systems is [88]. In this seminal paper, Tindell et. al. develop a method
for analyzing distributed real-time systems that many later approaches have built on. The
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main difficult of schedulability analysis on distributed systems is the fact that the start times
of some tasks will depend on the end times of others (since some tasks are invoked when
their predecessor task completes and makes a remote invocation).

In order to solve this problem, Tindell et. al. proposed the idea of initially setting the start
times of a task to the earliest possible completion time of its predecessor task (assuming
that each task executes on the processor uninterrupted by other tasks), and then iteratively
adjusting these start times as the analysis yields more accurate completion times for tasks
in the system. This iterative process is guaranteed to converge if the recurrence relations
being iterated over are monotonic in their parameters.

Since Tindell et. al.’s seminal paper, several authors have attempted to refine the algorithms
and analysis techniques to provide tighter bounds on response times in distributed systems.
For example, in [38, 69, 70], the authors propose methods for using jitters and offsets to
represent the programming models on a distributed system. The proposed methods allow
the authors to develop response time analysis algorithms that can provide tighter bounds on
the response times of tasks than previous algorithms. This trend is continued in [72], where
the authors attempt to provide an even tighter bound on response times by eliminating the
need for jitters. We make use of some of these results while developing our own schedulability
analysis techniques for STM based distributed real-time systems in Chapters 7 and 8.

Other previous studies that are relevant to our work include [3–5,47] which describe schedu-
lability analysis algorithms for stand alone systems programmed using lock-free concurrency
control mechanisms. These papers have a relevance to our own STM schedulability analysis
algorithms with the major difference being that we concentrate on distributed systems while
the papers mentioned address stand alone systems only.

Most of the previous work on distributed real-time systems did not consider either fault
tolerance or non-synchronous distributed systems. As previously mentioned, newly emerging
distributed systems operate in domains where faults are possible and the system is not always
synchronous. One of the proposed directions in this thesis proposal is to determine whether
or not it is possible to provide some sort of timeliness assurances in such environments.

Despite the fact the few papers address fault tolerance, there have been some research ad-
dressing this issue. For example, the Alpha Kernel was built with fault tolerance in mind.
Specifically, the concept of thread maintenance and repair (TMAR), was used to monitor the
health of end-to-end threads in distributed systems and to recover in case of failure. Chapter
5 in [34] discusses the different algorithms and protocols that can be used to provide TMAR
in the Alpha kernel.

More recently, Ravindran et. al. [75] develop HUA, an independent node scheduling al-
gorithm for synchronous systems that uses propagated thread scheduling information to
perform local scheduling. HUA uses TMAR for fault tolerance and is assumed to execute in
a synchronous environment. The problem with independent scheduling is that it achieves its
encouragingly low overhead by limiting the information available at each node. Specifically,
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each node has information about the tasks it hosts only. This lack of information about
what is happening on other nodes may result in some decisions that are locally optimal but
that compromise global optimality. In this thesis proposal, we study this issue and attempt
to qualify the scenarios under which collaborative scheduling is preferable to independent
scheduling and whether the significantly higher overhead of collaborative scheduling is jus-
tified. This issue is discussed in Chapters 3, 4 and 5.

There have been some recent attempts at designing collaborative scheduling algorithms
(e.g., [30, 32, 33, 74], etc). In collaborative scheduling algorithms, scheduling decisions are
arrived at after collaboration among the nodes in the distributed system. This collaboration
allows better timeliness assurances since nodes can now make informed scheduling decisions
to ensure global optimality. However, these algorithm have higher overheads than inde-
pendent scheduling algorithms and can only benefit systems that can tolerate their higher
overhead. In [74], a scheduling algorithm for synchronous systems that uses the collabora-
tive scheduling approach, CUA, is developed. This algorithm uses fast consensus [2] to solve
the scheduling problem. The other collaborative scheduling algorithms investigated in this
proposal (ACUA [33] , QBUA [30] and DQBUA [32]) are discussed in Chapters 3, 4 and 5
respectively. Another advantage of collaborative scheduling algorithms is that, since global
state is shared, at least to some extent, it becomes possible to handle fault tolerance as an
integral part of the scheduling algorithm instead of relying on orthogonal thread integrity
protocols (such as TMAR). This offers the opportunity to provide better assurances about
the behavior of the system in the presences of failures.

From our research in this domain, one fact has become quite obvious. Concurrency control
contributes significantly to the complexity of real-time distributed systems. This complex-
ity encompasses both the time complexity of the scheduling algorithms and the semantic
complexity of writing correct, deadlock-free code using the standard method of locks and
condition variables. We discuss this difficulty and make our case for using an alternative
to locks, software transaction memory (or STM), in Chapter 6, however, in Sections 2.0.1
and 2.0.2 we review the literature on this topic.

2.0.1 Alternatives to lock-based programming

Academia, and certain parts of industry, have realized the limitations of lock-based software,
thus a number of proposed alternatives to lock-based software exist. The design of lock-free,
wait-free or obstruction-free data structures is one such approach. The main problem with
this approach is that it is limited to a small set of basic data structures, e.g., [5,18,40]. For
example, to the best of our knowledge, there is no lock-free implementation of a red-black
tree that does not use STM (this does not imply that it is impossible to do so, it is indeed
possible, but merely indicates that the difficulty of designing such a complex data structure
from basic principles has discouraged researchers from attempting it). Most of the literature
on lock-free data structures concentrates on basics such as queues, stacks, and other simple
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data structures. It should be noted that lock-freedom, wait-freedom and obstruction-freedom
are concepts and as such can encompass non lock-based solutions like STM. However, we use
these terms in this context to refer to hand crafted code that allows concurrent access to a
data structure without suffering from race conditions.

The discrete event model presented in [92, 93] provides an interesting alternative to thread
based programming. While interesting and novel, it still remains to be seen whether program-
mers find the semantics of the model easier than the semantics of thread-based computing.
In addition, the requirement of static analysis to determine a partial order on the events
makes the system inapplicable to dynamic systems where little or no information is available
a priori.

Transactional processing, the semantic ancestor of STM, has been around for a significant
period of time and has proven its mettle as a method of providing concurrency control in
numerous commercial database products, in addition, it does not place any restriction on
the dynamism of the system on which it is deployed. Unfortunately, the use of a distributed
commit protocol, such as the two-phase commit protocol, increases the execution time of a
transaction and can lead to deadline misses [35]. STM is a lighter-weight version of trans-
actional processing, with no distributed commit protocol required in most cases. As such, it
allows us to gain the benefits of transactional processing (i.e., fault tolerance and semantic
simplicity), without incurring all its associated overhead.

We believe that STM is an attractive alternative to thread and lock-based distributed pro-
gramming, since it eliminates many of the conceptual difficulties of lock-based concurrency
control at the expense of a justifiable overhead that becomes less significant as the number
of processors in the system scales.

2.0.2 Software transactional memory

Since the seminal papers about hardware and software transactional memory were published,
renewed interest in the field has resulted in a large body of literature on the topic (e.g,
see [9, 55, 63]). This body of work encompasses both purely software transactional memory
systems and hybrid systems where software and hardware support for transactional memory
are used in conjuncture to improve performance. Despite this large body of work, to the
best of our knowledge, only three papers investigate STM for distributed systems [10,43,61].

We believe that distributed embedded systems stand to benefit significantly from STM. Such
systems are most distinguished by their need to: 1) react to external events asynchronously
and concurrently; 2) react to external events in a timely manner (i.e., real-time); and 3) cope
with failures (e.g., processors, networks) – one of the raison d’être for building distributed
systems. Thus, concurrency that is fundamentally intrinsic to distributed embedded systems
naturally motivates the usage of STM. Their need to (concurrently) react timely to external
events in the presence of failures is also a compelling reason – such behaviors are very complex
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to program, reason about, and obtain timing assurances using lock-based concurrency control
mechanisms.

There has also been a dearth of work on real-time STM systems. Notable work on trans-
actional memory and lock-free data structures in real-time systems include [3–5, 47, 62].
However, most of these works only consider uni-processor systems (with [47] being a no-
table exception). In this chapter, we propose to study the issues involved in implementing
STM in distributed embedded real-time systems. Past work has shown that STM has lower
throughput for systems with a small number of processors compared to fine-grain lock-based
solutions but that this difference in performance is quickly reversed as the number of pro-
cessors scales [39]. This, coupled with easier programming semantics of STM, makes it an
attractive concurrency control mechanism for next generation embedded real-time systems
with multi-core architectures and high distribution.

With STM, deadlocks are entirely or almost entirely precluded. This will immediately result
in significant reductions in the cost of scheduling and resource management algorithms, as
distributed dependencies are avoided and no expensive deadlock detection/resolution mech-
anisms are needed. Implementing higher level programming constructs, like, for example,
Hoare’s conditional critical regions (or CCR) [46], on top of STM [39], allows programmers
to take advantage of the deadlock freedom and simple semantics of STM in their programs.



Chapter 3

Consensus-based collaborative
scheduling

3.1 Introduction

In this chapter, we consider the problem of scheduling threads in the presence of the un-
certainties mentioned in Chapter 1, focusing particularly on (arbitrary) node failures and
message losses. In the model we consider, communication delay and message losses are
stochastically described as in [17]. The proposed algorithm is compared to previous dis-
tributable thread scheduling algorithms, HUA [75], CUA [74], and ACUA [33].

In this chapter, we target partially synchronous systems, and consider the partially syn-
chronous model in [17], where message delay and message loss are probabilistically described.
For such a model, we design a collaborative thread scheduling algorithm called the Asyn-
chronous Consensus-based Utility accrual scheduling Algorithm (or ACUA). We show that
ACUA satisfies thread time constraints in the presence of crash failures and message losses,
is early-deciding (i.e., its decision time is proportional to the actual number of crashes), and
has a message and time complexity that compares favorably with other algorithms in its
class. Furthermore, we show that ACUA has a better best-effort property — i.e., the affinity
for feasibly completing as many high importance threads as possible, irrespective of thread
urgency — than past thread scheduling algorithms [74, 75]. We also prove the exception
handling properties of ACUA. To the best of our knowledge, this is the first collaborative
thread scheduling algorithm designed under a partially synchronous model.

The rest of the chapter is organized as follows: We describe the system models and objectives
in Section 3.2. In Section 3.3, we present ACUA. Its analytical properties and an empirical
comparison of its performance to other scheduling algorithms are provided in Sections 3.4
and 3.5 respectively. We conclude the chapter in Section 3.6.

16
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3.2 Models and Objective

3.2.1 Models

Distributable Threads. Distributable threads execute in local and remote objects by location-
independent invocations and returns. The portion of a thread executing an object operation
is called a thread segment. Thus, a thread can be viewed as being composed of a concatenation
of thread segments. A thread can also be viewed as being composed of a sequence of sections,
where a section is a maximal length sequence of contiguous thread segments on a node.

We assume that execution time estimates of the sections of a thread are known when the
thread arrives into the system and are described using TUFs (see our timeliness model). The
sequence of remote invocations and returns made by a thread can typically be estimated by
analyzing the thread code. The total number of sections of a thread is thus assumed to
be known a-priori. The application is thus comprised of a set of threads, denoted T =
{T1,T2, . . .}. The set of sections of a thread Ti is denoted as [Si

1,S
i
2, . . . ,S

i
k].

Timeliness Model. We consider the TUF timeliness model described in Chapter 1.

System Model. We consider a set of nodes Π = {1, · · · ,N}, with a logical communication chan-
nel between each pair of nodes. We assume that each node is equipped with two processors: a
processor that executes thread sections on the node and a scheduling co-processor as in [20].
The dual processor assumption is used to reduce ACUA’s scheduling overhead. The dual-
processor assumption is also reasonable, given the current proliferation of multi-core/CPU
chips. We assume that communication links are unreliable, i.e., messages can be lost with
probability p, and communication delay is described by some probability distribution.

Bi-directional logical communication channels are assumed to exist between every pair of
node. We assume that these basic communication channels may lose messages with proba-
bility p, and communication delay is described by some probability distribution.

On top of this basic communication channel, we consider a reliable communication protocol
that delivers a message to its destination in probabilistically bounded time provided that the
sender and receiver both remain correct, using the standard technique of sequence numbers
and retransmissions. We assume that each node is equipped with two processors (a processor
that executes thread sections on the node and a scheduling co-processor as in [20]), have
access to GPS clocks that provides each node with a UTC time-source with high accuracy
(e.g., [23,36,84]).

We also assume that each node is equipped with N− 1 QoS failure detectors (FDs) [17] to
monitor the status of all other nodes. On each node, i, these N− 1 FDs output the nodes
they suspect to the list suspecti

Exceptions and Abort Model. Each section of a thread has an associated exception handler.
We consider a termination model for thread failures including termination time violations and
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node failures. When such thread failures occur, the section exception handlers are triggered
to restore the system to a safe state. The exception handlers may have time constraints
expressed as TUFs.

A handler’s TUF’s initial time is the time of failure of the handler’s thread. The handler’s
TUF’s termination time is relative to its initial time. Thus, a handler’s absolute and relative
termination times are not the same. Each handler also has an execution time estimate.
This estimate along with the handler’s TUF are described by the handler’s thread when the
thread arrives at a node. A handler is marked as ready for execution when either its latest
start time (see Section 3.3.1) expires, or it receives an explicit invocation from its successor.

Failure Model. The nodes in our system are subject to crash failures. Up to fmax ≤ n− 1
nodes can fail in our system. The actual number of failures in the system is denoted as
f ≤ fmax.

3.2.2 Scheduling Objectives

Our primary objective is to design a thread scheduling algorithm that will maximize the
total utility accrued by all threads as much as possible. Further, the algorithm must provide
assurances on the satisfaction of thread termination times in the presence of (up to fmax)
crash failures. Moreover, the algorithm must exhibit the best-effort property.

3.3 The Proposed Algorithms

3.3.1 ACUA: Algorithm Rationale

ACUA is a collaborative consensus-based scheduling algorithm. Being a collaborative al-
gorithm, ACUA can construct schedules that result in higher system-wide accrued utility
by avoiding locally optimal decisions that can compromise system-wide optimality (“local
minimums”). It also allows ACUA to respond to node failures by eliminating threads that
are affected by the failures, thus allowing the algorithm to gracefully degrade timeliness in
the presence of failures.

In ACUA, when a thread arrives into the system, each node suggests a set of threads for
rejection from the system based on local scheduling conditions. The nodes must then agree on
a set of threads to reject from the system-wide schedule. We formulate this as a consensus
problem with the following properties: (a) If a correct node decides on a reject set rSet,
then some node proposed rSet; (b) Nodes do not decide on different reject sets (Uniform
agreement); (c) Every correct node eventually decides (i.e. termination).

Since ACUA is a consensus-based algorithm, it can only run on systems on which the dis-
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tributed consensus problem is solvable. In Section 3.3.1, we show that it is possible to design
an S class FD, one of the Chandra-Toueg unreliable FDs, on the system model we consider
and thus prove that consensus is solvable on that system [14]. Specifically, we show that
it is possible to design a FD that provides the semantics of an S class FD with very high
probability for the duration of the consensus algorithm.

Past work [74, 75] had considered the existence of a perfect FD (P class FD), since they
considered a synchronous system model. In this work, we use the S class FD (which is
weaker than a P class FD) because we consider partially synchronous systems. An S class
FD has the following properties: 1) Completeness Property:- There is a time, TD, after which
a failed node is permanently suspected by all nodes; and 2) Accuracy Property:- There is
some correct node that is never suspected by all other nodes.

In Section 3.3.1, we describe how end-to-end thread TUFs are decomposed in order to obtain
the section TUFs necessary for local scheduling on each node.

Failure Detection

As mentioned in Section 3.2.1, each node is equipped with an aggregate FD consisting of
N−1 QoS FDs. Assume that this aggregate FD is polled every δ time units in order to learn
the state of the system.

From [17] we know that the probability, PA, that the result of one of the QoS FDs is accurate
when it is queried at random is E(TG)/E(TMR), where E(TG) is the average time that the
FD’s output remains correct and E(TMR) is the average time between consecutive mistakes.
We also know that E(TG) = E(TMR)−E(TM), where E(TM) is the average time it takes for the
FD to correct an erroneous failure suspicion. Both E(TMR) and E(TM) are input QoS values
chosen when designing the FD, thus we can control PA by choosing appropriate values for
these two parameters.

To show that we can implement an S-class FD using the QoS FD in [17], we need to determine
when the consensus algorithm needs the service of the FD. The consensus algorithm used in
ACUA is the quorum-based algorithm in [66] which requires the service of the FD in line 5
only.

In the worst case, the algorithm takes N rounds (in each of the first N−1 rounds an erroneous
suspicion of the round coordinator leads to the next round until round N is reached). Let ∆
be the communication delay described by the probability density function delay(t) and the
cumulative distribution function DELAY (t), the consensus algorithm will spend either ∆ to
receive the coordinator’s estimate or TD to detect the coordinator’s failure.

In the worst case, the consensus algorithm will query the FD n times, where n =
⌊N×TD

δ
⌋
. We

consider each of these queries to be an independent experiment with probability p = 1−PA
of resulting in an erroneous suspicion. Therefore, the probability that the FD monitoring
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a single node makes at least one erroneous suspicion during the execution of the algorithm
is PFDM = 1−bino(0,n, p), where bino(x,n, p) is the binomial distribution with parameters n
and p. Since there are N−1 FDs on each node, the probability that a given node erroneously
suspects x nodes is given by bino(x,N− 1,PFDM) and the probability that a node suspects
a majority of the nodes in the system is ∑N−1

i= N−1
2 +1

bino(i,N− 1,PFDM). Using this analysis,

we constructed a FD that suspected a majority of nodes with probability 1.5× 10−110 for
realistic settings. We believe this probability is too low to be of practical concern for the
time scales we consider.

Since it is not practically possible for a node to erroneously suspect a majority of other nodes
during the execution of the consensus algorithm, the set of nodes not suspected by all nodes
in the system have to intersect in at least one node. That node is never suspected by any
of the other nodes in the system, thus satisfying the accuracy property of an S class FD. In
addition, the TD detection time of our FD satisfies the completeness property of an S class
FD. Therefore, we are able to implement an S class FD with very high probability on our
system during the execution of our consensus algorithm.

Numerical Example

We now present a numerical example to show that the analysis in Section 3.3.1 can result in
an S class FD. As in [17], we assume that the message delay is modeled by an exponential
distribution with mean and variance of 0.02 seconds. We also assume that the probability
of message loss is 0.01 and that there are 100 nodes in the system. In designing the FD, we
chose TD = 1 second, E(TM) = 0.5 seconds and E(TMR) = 1 month. We also assume that the
consensus algorithm queries the FD every 10ms when it needs it. Therefore we can conclude
that the consensus algorithm will make n = 1∗100/(10×10−3) = 10000 queries to the FD.

E(TG)= E(TMR)−E(TG)= 2591999.5. Therefore, PA' 0.99999981, and p = 1.92901234541409×
10−7. As described in Section 3.3.1, the probability that the FD detector makes at least one
mistake is PFDM = 1−bino(0,n, p), PFDM = 0.000964041279072125. Using this value of PFDM,
we compute the probability that a node suspects a majority of other nodes in the system,

∑N−1
i= N−1

2 +1
bino(i,N−1,PFDM), to be 1.50224277975635×10−110. We believe that this prob-

ability is too low to be of practical concern for the time scales we are considering. To get
a perspective, note that the number of protons in the whole universe is a 24 digit number.
Therefore, since it is not practically possible for a node to erroneously suspect a majority of
other nodes during the execution of the consensus algorithm, the set of nodes not suspected
by all nodes in the system have to intersect in at least one node. That node is never sus-
pected by any of the other nodes in the system, thus satisfying the accuracy property of an
S class FD.
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TUF Decomposition

Thread time constraints are expressed using TUFs. The termination time of each section
belonging to a thread needs to be derived from that thread’s end-to-end termination time.
This derivation should ensure that if all the section termination times are met, then the
end-to-end termination time of the thread will also be met.

For the last section of a thread, we derive its termination time as the thread’s termination
time. The termination time of the other sections is the latest start time of the section’s
successor minus the communication delay. Thus the section termination times of a thread
Ti, with k sections, is:

Si
j.tt =

{
Ti.tt j = k
Si

j+1.tt−Si
j+1.ex−D 1≤ j ≤ k−1

where Si
j.tt denotes section Si

j’s termination time, Ti.tt denotes Ti’s termination time, and

Si
j.ex denotes the estimated execution time of section Si

j. The communication delay, which
we denote by D above, is a random variable ∆, as mentioned in Section 3.3.1. Therefore, the
value of D can only be determined probabilistically. This implies that if each section meets
the termination times computed above, the whole thread will meet its termination time with
a certain, high, probability. This is further explored in Section 3.5.

As mentioned in Section 3.2.1, each handler has a TUF that specifies its relative termination
time, Sh

j .X . However, a handler’s absolute termination time is relative to the time it is
released, more specifically, the absolute termination time of a handler is equal to the sum
of the relative termination time of the handler and the failure time t f (which cannot be
known a priori). In order to overcome this problem, we delay the execution of the handler as
much as possible which allows us to delay the execution of the exception handlers as much as
possible, thus leaving room for more important threads. Therefore, in the equations below
we replace t f with Si

k.tt, the termination time of thread i’s last section:

Sh
j .tt =

{
Si

k.tt +Sh
j .X +TD + ta j = k

Sh
j+1.tt +Sh

j .X +D 1≤ j ≤ k−1

where Sh
j .tt denotes section handler Sh

j ’s termination time, Sh
j .X denotes the relative termina-

tion time of section handler Sh
j , ta is a correction factor corresponding to the execution time

of the scheduling algorithm, and TD is the time needed to detect a failure by our QoS FD.
From this decomposition, we compute start times for each handler:

Sh
j .st =

{
Sh

j .tt−Sh
j .ex 1≤ j ≤ k

where Sh
j .ex denotes the estimated execution time of section handler Sh

j . Thus, we assure the
feasible execution of the exception handlers of failed sections, in order to revert the system
to a safe state.
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Algorithm Description

Algorithm 1 shows the general structure of ACUA. Algorithm 1 is triggered when a thread
arrives into the system or when a node fails. When ACUA is triggered, each node constructs
a local schedule (line 5). In lines 6-14 each node suggests a set of threads for rejection based
on the local schedule it constructs in line 5. In line 15, the nodes send the set of threads they
suggest for rejection to all other nodes in the system. Each node then waits for a certain time
period to collect the suggestions that other nodes send (lines 15-16). Using these suggestions,
each node makes a decision about which set of threads should be rejected from the system
(line 18). A consensus protocol is then started in order to reach agreement among the nodes
about the set of threads that will be rejected, using the decision each node made in line 18
as input to the consensus protocol (line 19). After reaching agreement, the nodes remove the
set of rejected threads from their waiting queue (line 20) and construct a new local schedule
containing the remaining threads (line 21).

An important part of ACUA is how it selects a set of threads for rejection locally (lines 7-14).
ACUA distinguishes between threads that become unschedulable due to local overloads, and
threads that become unschedulable in order to accommodate a newly arrived thread. This
is necessary because a newly arrived thread can only be accepted into the system if all its
future head nodes accept its sections. Thus, if some nodes reject other threads’ sections in
order to accommodate the arriving thread, and other nodes reject the sections of the arriving
thread, the new thread should not be accepted into the system and the sections rejected to
accommodate the new thread’s sections on some nodes should be allowed to execute normally.

Algorithm 1: ACUA: ACUA on each node i

input: σi
r; // σi

r: unordered ready queue;1:
input: σp; // σp : previous schedule;2:
output σi; // σi: schedule;3:
Initialization: Σi = /0; wi = /0;4:

σi = ConstructSchedule(σi
r);5:

if i is head node for newly arrived thread j then6:
σtmp = ConstructSchedule(σi

r−Si
j);7:

if Si
j /∈ σi then8:
rSet = 0∪ (σp−σi);9:

else10:
tmp = (σp−σtmp);11:

rSet = 1∪ (σp− (σi−Si
j)− tmp)∪⊥∪ tmp;12:

else13:
rSet = /0∪ (σp−σi);14:

send(rSeti, i, t) to all;15:
upon receive(rSet j, j) until 2D do16:

Σi = Σi ∪ rSet j;17:
wi=DetRejectSet(Σi);18:
wi=UniformConsensus(wi);19:

UpdateSectionSet(wi,σi
r);20:

σi =ConstructSchedule(σi
r);21:

σp = σi;22:
return σi;23:
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Lines 7-12 perform this function. If the section of the newly arrived thread is not part of
the constructed schedule, it cannot be responsible for the elimination of other threads from
the system. Thus the difference between the current schedule and the previous schedule is
the set of threads that the node proposes for rejection (lines 8-9). On the other hand, if a
section of the newly arrived thread is part of the schedule, we need to differentiate between
two possible causes for rejecting threads: 1) overload conditions may render some threads
unschedulable and 2) the newly arrived thread may render some threads unschedulable.

The former set can be determined by constructing a schedule without considering Si
j (line 7)

and then subtracting that set from the set of previously schedulable threads (line 11). On
line 12 we place a separator, ⊥, between the set of threads rendered unschedulable due to
overload and the set of threads rendered unschedulable due to the acceptance of a section
of the newly arrived thread. Note that nodes indicate whether they accept, reject, or are
not responsible for the sections of a newly arrived thread by prepending 1, 0 and /0 to their
suggestions respectively.

Using this additional information, the problem mentioned above can be eliminated by only
eliminating threads rendered unschedulable by an arriving thread if all its future head nodes
accept the thread. The details of this functionality is contained in the function DetRejectSet.
Note that the timeout value on line 16 is a stochastic value, thus even if none of the nodes
fail, there is a non-zero probability that some nodes do not receive the suggestions of all
other nodes. This is further addressed in Section 3.5.

Algorithm 2: ACUA: DetRejectSet on node i

input: Σi; // Σi: set of suggestions for rejection.1:
output wi; // wi: rejection set output.2:
accept=true;3:
wi = /0;4:
for each future head node, j, of newly arrived thread do5:

tmp j=retrieve node j’s entry from Σi;6:
if head(tmp j)=0 then7:

accept=false;8:

for each node j do9:
rSet j=retrieve node j’s entry from Σi;10:
rSet j = rSet j - first element in rSet j;11:
if j is a future head node then12:

if accept=true then13:
wi=wi ∪ elements before and after ⊥ in rSet j;14:

else15:
wi=wi ∪ only elements after ⊥ in rSet j;16:

else17:
wi=wi ∪ rSet j;18:

if node j is a head node for thread set Γ with a section on node i then19:
if node i does not receive node j’s suggestion then20:

wi=wi ∪ Γ;21:

return wi;22:

Algorithm 2 describes how nodes determine the set of threads to suggest for rejection from
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the system. The algorithm first checks whether the newly arrived thread has been accepted
into the system by all future head nodes (lines 5-8). Lines 10 and 11 retrieve the suggestion
of node j and remove the first element. Lines 12-16 determine which threads to consider for
rejection based on the fact that threads rendered unschedulable by the newly arrived thread
on some nodes should only be rejected if all head nodes accept the sections of the newly
arrived thread. Line 18 adds the set of threads that non-head nodes suggest for rejection.
Finally, lines 19-21 suggests threads for rejection if they have a section hosted on the current
node and the current node does not receive any suggestions from one of the previous, current,
or future head nodes of the threads. This is done because a node suspects those nodes it does
not receive suggestions from to have failed, and thus suggests for elimination the threads that
are hosted by them. The uniform consensus algorithm we use is described in [66].

We now turn our attention to the scheduling algorithm that nodes use to construct a local
schedule. This algorithm is encapsulated by the function ConstructSchedule (see Algo-
rithm 3). The algorithm takes a list of sections, and constructs a total order with each
section’s global Potential Utility Density (or PUD). The global PUD of a section is the ratio
of the utility of the thread that the section belongs to, to the sum of the remaining execu-
tion times of all the thread’s sections. The algorithm examines each section in PUD-order,
including them in the schedule, and testing for schedule feasibility. If infeasible, the inserted
section is rejected, and the process is repeated until all sections are examined. Note that
we construct a total order on global Potential Utility Density (PUD) in order to attempt to
maximize system-wide accrued utility. This can be seen in line 8 of the algorithm, where the
execution time of the whole thread, Ti.ex, is used instead of the execution time for each in-
dividual section, Si.ex, when computing PUD. The algorithm for UpdateSectionSet involves
a simple removal of the rejected threads from a node’s ready queue.

3.4 Experimental Results

We performed a series of simulation experiments on ns-2 [64] to compare the performance of
ACUA to CUA and HUA in terms of Accrued Utility Ratio (AUR) and Termination-time
Meet Ratio (TMR). We define AUR as the ratio of the accrued utility (the sum of Ui for all
completed threads) to the utility available (the sum of Ui for all available jobs) and TMR as
the ratio of the number of threads that meet their termination time to the total number of
threads in the system. We considered threads with three segments. Each thread starts at its
origin node with its first segment. The second segment is a result of a remote invocation to
some node in the system, and the third segment occurs when the thread returns to its origin
node to complete its execution. The periods of these threads are fixed, and we vary their
execution times to obtain a range of utilization ranging from 0 to 200%. In order to make
the comparison fair, all the algorithms were simulated using a synchronous system model,
where communication delay varied according to an exponential distribution with mean and
standard deviation 0.02 seconds but could not exceed an upper bound of 0.5 seconds. Our
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Algorithm 3: ACUA: ConstructSchedule

input: σr,σp,H; output σ;1:
Initialization: t = tcur;σ = /0;HandlerIsMissed = fasle;2:
for each Si ∈ σp such that Si /∈ σr do3:

Insert(Sh
j ,H,Sh

j .tt);4:

σ = H;5:
for each Si ∈ σr do6:

if Si
j−1.tt +D+Si

j.ex≤ Si
j.tt then7:

Si.PUD = min
(

Ui(t+Ti .ex)
Ti.ex ,

Uh
i (t+Ti.ex+T h

i .ex)
Ti.ex+T h

i .ex

)
8:

else9:
Si.PUD = 010:

σtmp=sortByPUD(σr);11:
for each Si ∈ σtmp from head to tail do12:

if Si.PUD≥ 0 then13:
Insert(Si,σ,Si.tt);14:

Insert(Sh
i ,σ,Sh

i .tt);15:
if Feasible(σ) = false then16:

Remove(Si,σ,Si.tt);17:

if Sh
i /∈ H then18:
Remove(Sh

i ,σ,Sh
i .tt);19:

else20:
break;21:

σp = σ;22:
return σ;23:

system consisted of fifty client nodes and five servers. In all the experiments we perform, the
utilization of the system is considered the maximum utilization experienced by any node.
While conducting our experiments, we considered three different thread sets.

Thread set I. In the first thread set we consider, our thread set parameters — i.e., section
execution times, thread termination times, and thread utility — are chosen to highlight the
better distributed best-effort properties of ACUA. The strength of ACUA lies in its ability
to give priority to threads that will result in the most system-wide accrued utility. Therefore,
the thread set that highlights this property is one that contains threads that would be given
low priority on a node if local scheduling is performed but should be assigned high priority
due to the system-wide utility that they accrue to the system. Therefore, our first thread
set contains high utility threads that have one section with above average execution time
(resulting in low PUD for that section) and other sections with below average execution
times (resulting in high PUD for those section). Such thread sets test the ability of the
algorithm to take advantage of collaboration to avoid making locally optimal decisions that
would compromise global optimality.

Thread set II. In the second thread set, the section execution times, thread utilities and
termination times are generated using uniform random variables. This thread set represents
the random load that a system may experience during normal execution. Using this thread
set, we compare the performance of the algorithms to see how they respond to “normal”
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thread sets.

Thread set III. Finally, since the second threat set is neutral to all algorithms in the sense
that it is randomly generated and does not fit the performance of any particular algorithm
better than the other, and the first thread set favors ACUA since it specifically contains
thread sets that are best scheduled by collaborative algorithms to avoid “local minimums”,
our last thread set is designed to contain threads that can be scheduled to accrue maximum
utility without requiring collaboration. Our intention in choosing such a thread set is to see
how ACUA compares to other algorithms when collaboration is not required.
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Figure 3.1: ACUA: AUR vs. Utilization (no failures)
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Figure 3.2: ACUA: TMR vs. Utilization (no failures)

Figures 3.1 and 3.2 show the result of our AUR and DSR experiments in the absence of
node failure for thread set I. As Figures 3.1 and 3.2 show, the performance of ACUA during
underloads is similar to that of other distributed real-time scheduling algorithms. However,
during overloads, ACUA begins to outperform other algorithms due to its better best effort
property. During overloads, ACUA accrues, on average, 10% more utility that CUA, and 6%
more utility than HUA. The maximum difference between the performance of ACUA and
the other algorithms in our experiment was the 16% difference between ACUA’s and CUA’s
AUR at the 1.31 system load point. Throughout our experiment, the performance of HUA
was the closest to ACUA with the difference in performance between these two algorithms
getting more pronounced as system load increases (the largest difference in performance is
12% and occurs at about 1.48 system load). Another interesting aspect of the experiment is
that CUA and ACUA do not accrue 100% utility during all cases of underload. As the load
on the system approaches 1.0 some deadlines are missed because their overhead becomes
more significant at this point. This is true to a lesser extent for non-collaborative scheduling
algorithms such as HUA due to their lower overhead.

Figures 3.3 and 3.4 show the effect of failures on ACUA when thread set I is used. In these
experiments we programmatically fail fmax = 0.2N nodes — i.e., we fail 20% of the client
nodes. From Figure 3.3, we see that failures do not degrade the performance of ACUA
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Figure 3.3: ACUA: AUR vs. Utilization (failures)
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Figure 3.4: ACUA: Effect of failures on ACUA

compared to other scheduling algorithms — i.e., the relationship between the utility accrued
by ACUA to the utility accrued by other scheduling algorithms remains relatively the same
in the presence of failures.

In Figure 3.4 we compare the behavior of ACUA in the presence of failure to its behavior
in the absence of failure. As can be seen, ACUA’s performance suffers a degradation in
the presence of failures. As can be seen from the figure, the difference in performance of
ACUA in the presence of failure is most pronounced during underloads, and becomes less
pronounced as the system load is increased. The reason for this is that during underloads
all threads are feasible and therefore the failure of a particular node deprives the system
of the utility of all the threads that have a section hosted on that node. However, during
overloads, not all sections hosted by a node are feasible, thus the failure of that node only
deprives the system of the utility of the feasible threads that have a section hosted by that
node. This amount is less than would occur if the system were deprived of the utility of
all threads hosted on the node and leads to a less pronounced effect on the performance of
ACUA in the presence of failures.

In Figures 3.5, 3.6, 3.7 and 3.8, the same experiments as above are repeated using thread
set II. As can be seen, the results follow a similar pattern to the experiments for thread set
I, but now the difference between ACUA and other algorithms is not so pronounced. This
occurs because the randomly generated thread set is likely to contain some threads that need
collaborative scheduling but not as many as in the thread set that we specifically designed
to contain such threads.

In Figures 3.9, 3.10, 3.11 and 3.12, the same experiments as above are repeated using thread
set III. In these experiments, the best performing algorithm is HUA since it has the least
overhead (it does not perform any collaborative scheduling). The performance of the other
algorithms are similar to each other.
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Figure 3.5: ACUA: AUR vs. Utilization (no failures),
thread set II
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Figure 3.6: ACUA: TMR vs. Utilization (no failures),
thread set II
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Figure 3.7: ACUA: AUR vs. Utilization (failures),
thread set II
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Figure 3.8: ACUA: Effect of failures of ACUA, thread
set II
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Figure 3.9: ACUA: AUR vs. Utilization (no failures),
thread set III
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Figure 3.10: ACUA: TMR vs. Utilization (no failures),
thread set III
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Figure 3.11: ACUA: AUR vs. Utilization (failures),
thread set III
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Figure 3.12: ACUA: Effect of failures of ACUA, thread
set III



Sherif F. Fahmy Chapter 3. Consensus-based collaborative scheduling 30

We now turn our attention to studying the effect of ACUA’s overhead on scheduling. In
order to do so, we fix the communication delay at 60ms, fix section execution times (as
shown on the x-axis of Figure 3.13), and vary the period of the threads to obtain different
utilizations. Theoretically, ACUA should meet all deadlines in underloaded systems (i.e.,
systems with a load less than or equal to one). However, in practise, the overhead of the
algorithm interferes with the running tasks and so causes deadline misses before full system
utilization is reached. In this experiment, we attempt to determine the system utilization at
which the first deadline misses occur (we call this the Deadline Miss Load, or DML). This
experiment gives us a notion on the thread execution time scales that can withstand the
overhead of ACUA.
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Figure 3.13: ACUA: DML vs. Section Execution Time
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Figure 3.14: ACUA: DML vs. Section Execution Time

As can be seen in Figure 3.13, the system performs poorly for section execution times below
3D, where D is the communication delay. This occurs because that is the minimum time
period required for the algorithm to work properly. It should also be noted that CUA
performs slightly better than ACUA, this occurs because CUA depends on the existence
of a fast failure detector and thus has lower overhead. In both algorithms, as the section
execution times increase, the DML begins to approach one.

We performed another experiment to determine the effect of failures on the section execution
time scales that can tolerate the overhead of the algorithms. The result is depicted in
Figure 3.14. In this experiment, we fixed the section execution time at 7D, fixed the failure
rate, i.e., the percentage of nodes that fail, (shown on the x-axis of Figure 3.14), and varied
the period to determine the utilization, DML, at which the first deadline is missed due to
time overruns rather than node failures. Note that this new definition of DML is necessary
because we wish to determine the effect of failures on the overhead, thus we need to exclude
the deadline misses that occur because nodes hosting certain sections fail.

As can be seen in Figure 3.14, the DML for both algorithms drop, however, the DML for
ACUA drops faster than that of CUA. The reason for this is that the time complexity of
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ACUA is O( f ∆ + nk) (see Section 3.5), while that of CUA is O(D + d f + nk) [74]. Where
f is the number of failures, D and ∆ are the communications delays for CUA and ACUA
respectively (note that ∆ is a random variable, while D is not), n is the number of nodes, k is
the number of sections in each thread and d (d ¿D) is the detection time of the fast failure
detector used in CUA. As can be noted, both time complexities are a function of the number
of failures f , however, for CUA f is multiplied by d while for ACUA it is multiplied by ∆,
so for CUA each additional failure introduces an additional d (d ¿ D) overhead, while for
ACUA, the system suffers a full communication delay, ∆, for each failure. Therefore, CUA
scales better in the presence of failure.

However, a number of factors need to be taken into account when understanding this result.
First, for sufficiently large section execution times, the DML for both algorithms approach
one. Also, for cases that require collaboration (such as thread set I used in the first set
of experiments described in this chapter), ACUA will outperform CUA despite its higher
overhead because it makes better system-wide decisions. Finally, since CUA is designed for
a fully synchronous system the algorithm breaks down if any of the synchrony assumptions
are violated, in contrast to ACUA which has higher coverage since it is designed for partially
synchronous systems.

3.5 ACUA properties

We compare the best-effort properties of ACUA, CUA [74], and HUA [75]. In HUA (an
independent node scheduling algorithm), thread sections are scheduled locally at each node
they arrive at using their propagated scheduling parameters. The local scheduler is a mod-
ified version of DASA [21], which uses the heuristic of favoring tasks with a high utility to
execution time ratio, i.e., high PUD, when constructing the schedule. These modifications
allow HUA to manage the scheduling of exception handlers in case of thread failure.

In CUA (a collaborative scheduling algorithm), when a thread arrives, its sections are sent
to all its future head nodes. Each node constructs its schedule locally according to a mod-
ified version of DASA. The nodes then cooperate with each other to reach agreement on a
system-wide set of threads eligible for execution. Basically, this agreement step involves the
elimination of any threads that have any of their sections missing from the global schedule.

We quantify the best-effort property by introducing the concept of DASA Best Effort (or
DBE) property:

Definition 1. Consider a distributed scheduling algorithm A. DBE is defined as the property
that A orders its threads in non-increasing order of global PUD while considering them for
scheduling and schedules all feasible threads in the system in that order.

Note that the DBE property is essential for any UA algorithm that attempts to maximize
system-wide accrued utility by favoring tasks that offer the most utility for the least amount



Sherif F. Fahmy Chapter 3. Consensus-based collaborative scheduling 32

of execution time (which is the heuristic used by DASA [21]).

Lemma 1. HUA, does not have the DBE property.

Proof. The proof is by counterexample. Assume that a system has two nodes, n1 and n2,
and two threads, T1 and T2. Assume that each thread has two sections, one hosted on each
of the nodes. Let the sections be S1

1 and S2
1 for T1 and S1

2 and S2
2 for T2. Assume that both

threads have end-to-end step-down TUFs, with the utility for T1 being 5 and the utility of T2
being 6. Also assume that both threads arrive at n1 at t0. Assume that the execution times
of S1

1, S2
1, S1

2 and S2
2 are 2, 3, 3 and 1 time units respectively and that both threads have a

relative termination time of 5.

The parameters above ensure that only one of the threads can be scheduled successfully.
Therefore, an algorithm that has the DBE property would choose T2 for execution since its
global PUD, 6

4 = 1.5, is greater than the PUD of T1,
5
5 = 1. Note that the DBE property will

result in a system-wide accrued utility of 6 in this case.

In contrast, HUA computes the PUD of the sections of each thread hosted on each node
when constructing its schedule [75]. Since the PUD of S1

1,
5
2 = 2.5, is greater than the PUD

of S1
2,

6
3 = 2, the scheduler on n1 will choose S1

1 for scheduling first. By the time S1
1 has

finished execution, t0 + 3, releasing S1
2 for execution will mean that it will finish past the

global termination time of T2 (T0 + 5). Thus, only T1 will execute with a resulting accrued
utility of 5 for the system.

Thus HUA does not have the DBE property.

Lemma 2. CUA does not have the DBE property.

Proof. CUA does not have the DBE property became it does not schedule all feasible threads
in the system. For example, if two nodes host sections of two threads, T1 and T2, during
overloads, one node may schedule the section belonging to T2 at the expense of that belonging
to T1 and the other may schedule the section belonging to T1 at the expense of that belonging
to T2. Since CUA excludes threads from the system if they are missing any of their sections
and both of the above threads have one of their sections missing, both threads will be
excluded from the system. This is unnecessary since excluding one thread will render the
other schedulable, thus the algorithm does not schedule all feasible threads and therefore
does not have the DBE property.

Theorem 3. ACUA has the DBE property for threads that can be delayed O( f ∆ + nk) (see
Lemma 5) and are still schedulable.

Proof. ACUA overcomes the issue mentioned in Theorem 1 because it uses the PUD of the
entire thread when constructing local schedules on each node. Thus sections that are ex-
cluded are those with the least system-wide PUD. In other words, the threads in ACUA
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are considered in non-increasing order of global PUD for scheduling. In addition, ACUA
overcomes the issue mentioned in Theorem 2 by preventing an arriving thread from elimi-
nating other threads if at least one of the nodes that will be hosting a future head of the
arriving thread does not accept that section for scheduling. The details of this procedure
are explained in Algorithms 1 and 2. This allows ACUA to schedule all feasible threads.
Thus all feasible threads that can tolerant the scheduling overhead of ACUA and still re-
main feasible will be scheduled in non-increasing order of global PUD. The theorem follows
from Definition 1.

Theorem 4. ACUA can tolerate up to fmax = n−1 faulty processors.

Proof. This follows directly from the fault tolerant property of the S class based consensus
algorithm in [66] which we use in our work.

Lemma 5. ACUA has time complexity O( f ∆+nk).

Proof. Lines 5 and 7 in Algorithm 1 have complexity O(k2) where k is the maximum number
of sections in the ready queue of system nodes. Lines 8-15 have constant complexity, lines
16-17 have complexity 2∆, line 18 has complexity O(nk), line 19 has complexity O(( f +1)∆),
line 20 has complexity O(k) and line 21 has complexity O(k2). Therefore, the algorithm has
actual complexity of 3k2 + 2∆ + nk +( f +1)∆ + k, which is asymptotically O( f ∆ + nk) if we
consider k a constant.

This time complexity compares favorably with the time complexity of CUA, which is O(D+
d f + nk) [74], asymptotically. However, the value of the time complexity of CUA is lower
than that of ACUA since it makes the additional assumption of the existence of a fast FD [2].
In addition, ∆ is a random variable, thus the timing guarantee for ACUA is stochastic in
nature.

Lemma 6. ACUA has message complexity O( f n2).

Proof. Lines 16-17 in Algorithm 1 have message complexity n (one for each suggested re-
jection set sent by a node). Line 19 has message complexity n2( f + 1) since each round
has a message cost of n2. The algorithm is early deciding so it will take f + 1 rounds [66].
Therefore the actual message cost of the algorithm is n+n2( f +1), which is asymptotically
O( f n2).

Lemma 7. The message size in ACUA is smaller than that in CUA for well behaved systems.

Proof. The input to the consensus algorithm in ACUA is the set of rejected threads while
the input to the consensus algorithm in CUA is the set of schedulable threads. Since the
set of rejected threads should be smaller than the set of accepted threads in well behaved
systems, we claim that the message size in ACUA is smaller than that in CUA.
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Lemma 8. If each section of a thread meets its derived termination time (see Section 3.3.1),
then under ACUA, the entire thread meets its termination time with high, computable prob-
ability, psuc.

Proof. Since the termination times derived for sections are a function of communication
delay, and this communication delay is a random variable with CDF DELAY (t), the fact
that all sections meet their termination times implies that the whole thread will meet its
global termination time only if none of the communication delays used in the derivation in
Section 3.3.1 are violated during runtime.

Let D be the communication delay used in the derivation of section termination times. The
probability that D is violated at runtime is p = 1−DELAY (D). For a thread with k sections,
the probability that none of the section to section transitions incur a communication delay
above D is psuc = bino(0,k, p). Thus, the probability that the thread meets its termination
time is also psuc = bino(0,k, p).

Lemma 9. If all nodes are underloaded and no nodes fail, then no threads will be suggested
for rejection by ACUA with high, computable, probability pnore j.

Proof. Since the nodes are all underloaded and no nodes fail, Algorithm 3 ensures that all
sections will be accepted. Thus, the only source of thread rejection is if a node does not
receive a suggestion from other nodes during the timeout value, D, (see Algorithm 1 in
Section 3.3.1). This can occur due to one of two reasons; 1) the broadcast message (line
15), that indicates the start of the consensus algorithm, may not reach some nodes 2) the
broadcast message reaches all nodes, but these nodes do not send their suggestions to other
nodes in the system during the timeout value assigned to them.

The probability that a node does not receive a message within the timeout value from one
of the other nodes is p = 1−DELAY (D). We consider the broadcast message to be a series
of unicasts to all other nodes in the system. Therefore, the probability that the broadcast
start of consensus message reaches all nodes is Ptmp = bino(0,N, p) where bino(x,n, p) is the
binomial distribution with parameters n and p. If this message is received, a node waits for
messages from all other nodes. The probability that none of these messages arrive after the
timeout is tmp = bino(0,N, p). Since there are N nodes, the probability that none of these
nodes miss a message is bino(N,N, tmp). Therefore the probability that no threads will be
rejected is the product of the probability that the broadcast message reaches all nodes, and
the probability that all nodes receive suggestions from all other nodes in response to this
start of consensus message i.e. pnore j = bino(N,N, tmp)×Ptmp.

Theorem 10. If all nodes are underloaded, no nodes fail (i.e. f = 0), and threads can
be delayed O( f ∆ + nk) time units once and still be schedulable, ACUA meets all the thread
termination times yielding optimal total utility with high, computable, probability, Palg.
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Proof. By Lemma 9, no threads will be considered for rejection from a fault free, underloaded
system with probability pnore j. This means that all sections will be scheduled to meet their
derived termination times by Algorithm 3. Thus, by Lemma 8, each thread, j, will meet
its termination time with probability p j

suc. Therefore, for a system with X threads, the
probability that all threads meet their termination time is Ptmp = ∏X

j=1 p j
suc. Given that the

probability that all threads will be accepted is pnore j, Palg = Ptmp× pnore j.

ACUA takes O( f ∆+nk) time units to determine a newly arrived thread’s schedulability. If
this delay causes any of the thread’s sections to miss their termination times, the thread will
not be schedulable. We require that a thread suffer this delay once because we assume that
there is a scheduling co-processor on each node. Thus, the delay will only be incurred by
the newly arrived thread while other threads continue to execute uninterrupted on the other
processor.

Theorem 11. ACUA is an early deciding algorithm that achieves consensus on the system-
wide execution eligible thread set in a partially synchronous system with virtually certain
probability.

Proof. Since the consensus algorithm in [66], on which we base our algorithm, is early de-
ciding so is our algorithm. In addition, we show in Section 3.3.1 that we can provide an S
class FD with very high probability during the execution of our algorithm (with probability
of error 1.50×10−110), therefore the S class FD based consensus algorithm in [66] executes
on our system with virtually certain probability. Since the input to the consensus algorithm
is the set of threads to reject from the system, at its completion all nodes will agree on the
set of threads to reject from their schedules and hence on the system-wide set of execution
eligible threads.

Theorem 12. If n− f nodes do not crash, are underloaded, and all incoming threads can be
delayed O( f ∆+nk) and still be schedulable, ACUA meets the execution time of all threads in
its eligible execution thread set, Γ, with high computable probability, Palg.

Proof. By Theorem 11, ACUA achieves system-wide consensus on the set of schedulable
threads. By Lemma 9, the probability that none of the threads hosted by the surviving
nodes are rejected is, pnore j = bino(N− f ,N− f , tmp)× tmp where tmp = bino(0,N− f , p) and
p = 1−DELAY (D). Thus all sections belonging to those threads will be scheduled to meet
their derived termination times. By Lemma 8, this implies that each of these threads, j,
will meet its termination time with probability p j

suc. Therefore, for a system with an eligible
thread set, Γ, the probability that all threads meet their termination times is Ptmp = ∏ j∈Γ p j

suc.
Thus, the probability that all the remaining threads are accepted is Palg = Ptmp× pnore j.

Definition 2 (Section Failure). A section, Si
j, is said to have failed when one or more of

the previous head nodes of Si
j’s thread (other than Si

j’s node) has crashed.
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Lemma 13. If a node hosting a section, Si
j, of thread Ti fails at time t f , every correct node

will include handlers for thread Ti in H by time t f +TD + ta, where ta is an implementation-
specific computed execution bound for ACUA calculated per the analysis in Theorem 5.

Proof. Since the QoS FD we use detects a failed node in TD time units [17], all nodes detect
the failure of the failed node at time t f +TD. As a result, ACUA is triggered and excludes Ti
from the system because nodes will not receive any suggestions from node j (see lines 19-21
of Algorithm 2). Consequently, Algorithm 3 will include the section handlers for this thread
in H (see lines 3-4 of Algorithm 3). Execution of ACUA completes in time ta and thus all
handlers will be included in H by time t f +TD + ta.

Again it should be noted that ta is a stochastic value and therefore the timeliness property
above is probabilistic in nature. The probability that a particular value of ta can be met is
easy to obtain by considering the CDF of ∆ when conducting the analysis in Theorem 5.

Lemma 14. If a section Si, where i 6= k, fails at time t f (per Definition 2) and section Si+1
is correct, then under ACUA, its handler Sh

i will be released no earlier than Sh
i+1’s completion

and no later than Sh
i+1.tt +D+Sh

i .X−Sh
i .ex.

Proof. For i 6= k, a section’s exception handler can be released due to one of two events; 1)
its start time expires; or 2) an explicit invocation is made by the handler’s successor.

For the first case, we know from the analysis in Section 3.3.1 that the start time of Sh
i is

Sh
i+1.tt + Sh

j .X + D− Sh
j .ex. Thus, by definition, it satisfies the upper bound in the theorem.

Also, since Sh
j .X ≥ Sh

j .ex (otherwise the handler would not be schedulable), Sh
i+1.tt + Sh

j .X +
D−Sh

j .ex > Sh
i+1.tt, and this satisfies the lower bound of the theorem.

For the second case, an explicit message has arrived indicating the completion of Sh
i+1. Since

the message was sent, this means that Sh
i+1.tt has already passed, thus satisfying the theorem

lower bound. Further, the message should have arrived D time units after Sh
i+1 finishes

execution (i.e., at Sh
i+1.tt +D), since Sh

i+1.tt +D≤ Sh
i+1.tt +D+Sh

i .X−Sh
i .ex (as Sh

i .X ≥ Sh
i .ex),

thus satisfying the upper bound.

Lemma 15. If a section Si fails (per Definition 2), then under ACUA, its handler Sh
i will

complete no later than Sh
i .tt (barring Sh

i ’s failure).

Proof. If one or more of the previous head nodes of Si’s thread has crashed, it implies that Si’s
thread was present in a system-wide schedulable set previously constructed. This means that
Si and its handler were previously determined to be feasible before Si.tt and Sh

i .tt, respectively
(lines 13-19, Algorithm 3). When some previous head node of Si’s thread fails, ACUA will be
triggered and will remove Si from the pending queue. In addition, Algorithm 3 will include
Sh

i in H and construct a feasible schedule containing Sh
i (lines 3-21). Since the schedule is

feasible and Sh
i is inserted to meet Sh

i .tt (line 4), then Sh
i will complete by time Sh

i .tt
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Theorem 16. When a thread fails, the thread’s handlers will be executed in LIFO (last-in
first-out) order. Furthermore, all (correct) handlers will complete in bounded time. For a
thread with k sections, handler termination times Sh

i .X , which fails at time t f , and (dis-
tributed) scheduler latency ta, this bound is Ti.X +∑i Sh

i .X + kD+TD + ta.

Proof. The LIFO property follows from Lemma 14. Since it is guaranteed that each handler,
Sh

i , cannot begin before the termination time of handler Sh
i+1 (the lower bound in Lemma 14),

thus we guarantee LIFO execution of the handlers. Lemma 15 shows that all correct handlers
complete in bounded time. Finally, if a thread fails at time t f , all nodes will include handlers
for this thread in their schedule by time t f + TD + ta (Lemma 13) and ACUA guarantees
that all these sections will complete before their termination times (Lemma 15). Due to
the LIFO nature of handler executions, the last handler to execute is the first exception
handler, Sh

1. The termination time of this handler (from the equations in Section 3.3.1) is
Ti.X +∑i Sh

i .X + kD+TD + ta. The theorem follows.

3.6 Conclusion

We presented a best-effort utility accrual scheduling algorithm, ACUA, for scheduling dis-
tributable real-time threads in partially synchronous systems. We compared ACUA in terms
of its best-effort property, and message and time complexity to two previous thread schedul-
ing algorithms including CUA and HUA. We showed that ACUA has a better best-effort
property during overloads than HUA and CUA, and has message and time complexities
that are comparable to CUA (which is in its class). We also showed the exception handling
properties of ACUA.

Both CUA and HUA have optimal best-effort properties during underloads. The two al-
gorithms, as well as ACUA, achieve optimal total utility during underloads (for CUA and
ACUA this property comes with the caveat that the threads should be able to tolerate the
algorithm overheads). However, during overloads, Lemmas 1, 2 and Theorem 3 show that
ACUA has better best-effort semantics. In addition, if we choose to implement ACUA on a
totally synchronous system, it will have exactly the same message and time complexity as
CUA (since we can now use the fast consensus algorithm in [2] instead of the quorum-based
algorithm in [66]) and yet possess better best-effort properties than CUA during overloads.
In addition, all ACUA’s stochastic properties will become deterministic.



Chapter 4

Quorum-based collaborative
scheduling

4.1 Introduction

In this chapter, we consider the problem of scheduling threads in the presence of the un-
certainties mentioned in Chapter 1, focusing particularly on (arbitrary) node failures and
message losses. In the model we consider, communication delay and message losses are
stochastically described as in [17]. The proposed algorithm is compared to previous dis-
tributable thread scheduling algorithms, HUA [75], CUA [74], and ACUA [33].

We present a collaborative scheduling algorithm called the Quorum-Based Utility Accrual
scheduling (or QBUA) algorithm. The algorithm considers the partially synchronous model
in [17], and uses a Quorum set of nodes for majority agreement on constructing system-wide
thread schedules. We show that QBUA satisfies thread time constraints in the presence
of node crash failures and message losses, has efficient message and time complexities that
compare favorably with other algorithms in its class, and superior timeliness than past algo-
rithms including CUA and HUA. We also show that the algorithm’s lower overhead, in the
presence of failure, enables it to allow more threads to benefit from its superior timeliness,
than that allowed by past algorithms.

The rest of the chapter is organized as follows: We describe the system models and objectives
in Section 4.2. In Section 4.3, we present QBUA. Its analytical properties and an empirical
comparison of its performance to other scheduling algorithms are provided in Sections 4.4
and 4.5 respectively. We conclude the chapter in Section 4.6.

38
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4.2 Models and Objective

4.2.1 Models

Distributable Threads. As in Chapter 3, we use the distributable thread abstraction as our
programming model.

Timeliness Model. We employ the TUF timeliness model described in Chapter 1.

System Model. We consider a networked embedded system to consist of a set of client nodes
Πc = {1,2, · · · ,N} and a set of server nodes Π = {1,2, · · · ,n} (server and client are logical
designations given to nodes to describe the algorithm’s behavior). Bi-directional logical
communication channels are assumed to exist between every client-server and client-client
pair. We also assume that these basic communication channels may lose messages with
probability p, and communication delay is described by some probability distribution.

On top of this basic communication channel, we consider a reliable communication protocol
that delivers a message to its destination in probabilistically bounded time provided that the
sender and receiver both remain correct, using the standard technique of sequence numbers
and retransmissions. We assume that each node is equipped with two processors (a processor
that executes thread sections on the node and a scheduling co-processor as in [20]), and have
access to GPS clocks that provides each node with a UTC time-source with high accuracy
(e.g., [23,36,84]).

We also assume that each node is equipped with N− 1 QoS failure detectors (FDs) [17] to
monitor the status of all other nodes. On each node, i, these N− 1 FDs output the nodes
they suspect to the list suspecti

Exceptions and Abort Model. We employ the same exception and abort model described in
Chapter 3.

Failure Model. Nodes are subject to crash failures. When a process crashes, it loses its state
memory — i.e., there is no persistent storage. If a crashed client node recovers at a later
time, we consider it a new node since it has already lost all of its former execution context. A
client node is correct if it does not crash; it is faulty if it is not correct. In the case of a server
crash, it may either recover or be replaced by a new server assuming the same server name
(using DNS or DHT — e.g, [26] — technology). We model both cases as server recovery.

Since crashes are associated with memory loss, recovered servers start from their initial state.
A server is correct if it does not fail; it is faulty if it is not correct. DQBUA tolerates up to
N− 1 client failures and up to f s

max ≤ n/3 server failures. The actual number of failures is
denoted as f s ≤ f s

max for servers and f ≤ fmax where fmax ≤ N−1 for clients.
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4.2.2 Scheduling Objectives

Our primary objective is to design a thread scheduling algorithm that will maximize the
total utility accrued by all threads as much as possible. Further, the algorithm must provide
assurances on the satisfaction of thread termination times in the presence of (up to fmax)
crash failures. Moreover, the algorithm must exhibit the best-effort property.

4.3 Proposed Algorithm

4.3.1 QBUA: Algorithm Rationale

QBUA is a collaborative scheduling algorithm. Thus, QBUA can construct schedules that
result in higher system-wide accrued utility by avoiding locally optimal decisions that can
compromise system-wide optimality (“local minimums”). It also allows QBUA to respond
to node failures by eliminating threads that are affected by the failures, thus allowing the
algorithm to gracefully degrade timeliness in the presence of failures. There are two types of
scheduling events that are handled by QBUA; a) local scheduling events and b) distributed
scheduling events.

Local scheduling events are handled locally on a node without consulting other nodes. Ex-
amples of local scheduling events are section completion and section handler expiry events.
For a full list of local scheduling events, please see Algorithm 10. Distributed scheduling
events need the participation of all nodes in the system to handle them. In this work, only
two distributed scheduling events exit; a) the arrival of a new thread into the system and b)
failure of a node.

A node that detects a distributed scheduling event sends a START message to all other nodes
requesting their scheduling information so that it can compute a System Wide Executable
Thread Set (or SWETS). Nodes that receive this message, send their scheduling information
to the requesting node and wait for schedule updates (which are sent to them when the
requesting node computes a new system-wide schedule). This may lead to contention if
several different nodes detect the same distributed scheduling event concurrently.

For example, when a node fails, many nodes may detect the failure concurrently. It is
superfluous for all these nodes to start an instance of QBUA. In addition, events that occur
in quick succession may trigger several instances of QBUA when only one instance can handle
all of those events. To prevent this, we use a quorum system to arbitrate among the nodes
wishing to run QBUA. In order to perform this arbitration, the quorum system examines the
time-stamp of incoming events. If an instance of QBUA was granted permission to run later
than an incoming event, there is no need to run another instance of QBUA since information
about the incoming event will be available to the version of QBUA already running (i.e., the
event will be handled by that instance of QBUA).
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In order to perform this functionality, QBUA requires timeliness information for each of the
sections it schedules. As mentioned in Section 4.2.1, end-to-end thread timeliness require-
ments are described using TUFs.

4.3.2 Algorithm Description

We use the same method of TUF decomposition as mentioned in Chapter 3. As mentioned
above, whenever a distributed scheduling event occurs, a node attempts to acquire permission
from the quorum system to run a version of QBUA. After the quorum system has arbitrated
among the nodes contending to execute QBUA, the node that acquires the “lock” executes
Algorithm 4. In Algorithm 4, the node first broadcasts a start of algorithm message (line
1) and then waits 2T time units1 for all nodes in the system to respond by sending their
local scheduling information (line 2). After collecting this information, the node computes
SWETS (line 3) using Algorithm 8. After computing SWETS, the node contacts affected
nodes (i.e. nodes that will have sections added or removed from their schedule as a result of
the scheduling event).

Algorithm 4: QBUA: Compute SWETS

Broadcast start of algorithm message, START;1:
Wait 2T collecting replies from other nodes;2:
Construct SWETS using information collected;3:
Multicast change of schedule to affected nodes;4:
return;5:

The algorithm that client nodes run when attempting to acquire a“lock”on running a version
of QBUA, Algorithm 5, is loosely based on Chen’s solution for FTME [16]. Upon the arrival
of a distributed scheduling event, a node tries to acquire a “lock” on running QBUA (the try1
part of the algorithm that starts on line 3). The first thing that the node does (lines 4-5)
is check if it is currently running an instance of QBUA that is in its information collection
phase (line 2 in Algorithm 4). If so, the new event that has occurred can simply be added
to the information being collected by this version of QBUA. However, if no current instance
of QBUA is being hosted by the node, or if the instance of QBUA being hosted has passed
its information collection phase, then the event may have to spawn a new instance of QBUA
(this starts at line 6 in the algorithm).

The first thing that Algorithm 5 does in this case is send a time-stamped request to the set
of server nodes, Π, in the system (lines 8-10). The time-stamp is used to inform the quorum
nodes of the time at which the event was detected by the current node. Beginning at line 3,
Algorithm 5 collects replies from the servers. Once a sufficient number of replies have arrived
(line 14), Algorithm 5 checks whether its request has been accepted by a sufficient (d2n

3 e see
Section 4.5) number of server nodes. If so, the node computes SWETS (lines 15-16).

1T is communication delay derived from the random variable describing the communication delay in the
system.
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On the other hand, if an insufficient number of server nodes support the request, two possi-
bilities exist. The first possibility is that another node has been granted permission to run
an instance of QBUA to handle this event. In this case, the current node does not need
to perform any additional action and so releases the “lock” it has acquired on some servers
(lines 17-21).

The second possibility is that the result of the contention to run QBUA at the servers was
inconclusive due to differences in communication delay. For example, assume that we have
5 servers and three clients wishing to run QBUA and all three clients send their request to
the servers at the same time, also assume different communication delay between each server
and client. Due to these communication differences, the messages of the clients may arrive
in such a pattern so that two servers support client 1, another 2 servers support client 2
and the last server supports client 3. This means that no client’s request is supported by a
sufficient — i.e., 2n

3 — number of server nodes. In this case, the client node sends a YIELD
message to servers that support it and an INQUIRE message to nodes that do not support
it (line 22-28) and waits for more responses from the server nodes to resolve this conflict.
Lines 30-35 release the “lock” on servers after the client node has computed SWETS, lines
36-38 are used to handle the periodic cleanup messages sent by the servers and lines 39-41
respond to the START of algorithm message (line 1, Algorithm 4).

Algorithm 6 is run by the servers, the function of this algorithm is to arbitrate among the
nodes contending to run QBUA so as to minimize the number of concurrent executions of the
algorithm. Since there may be more than one instance of QBUA running at any given time,
the server nodes keep track of these instances using three arrays. The first array, cowner[],
keeps track of which nodes are running instances of QBUA, the second, towner[], stores the
time at which a node in cowner[] sends a request to the servers (i.e., the time at which that
node detects a certain scheduling event), and tgrant [] keeps track of the time at which server
nodes grant permission to client nodes to execute QBUA. Also, a waiting queue for each
running instance of QBUA is kept in Rwait [].

When a server receives a message from a client node, it first checks to see if this is a stale
message (which may happen due to out of order delivery). A message from a client node,
c1, that has a time-stamp older than the last message received from c1 has been delivered
out of order and is ignored (line 7-8). Starting at line 9, the algorithm begins to examine
the message it has received. If it is a REQUEST message, the server checks if the time-
stamp of the event triggering the message is less than the time at which a client node was
granted permission to run an instance of QBUA. If such an instance exists, a new instance
of QBUA is not needed since the event will be handled by that previous instance of QBUA.
Algorithm 6, inserts the incoming request into a waiting queue associated with that instance
of QBUA and sends a message to the client (lines 10-13).

However, if no current instance of QBUA can handle the event, a client’s request to start an
instance of QBUA is granted (lines 14-18). If a client node sends a YIELD message, the server
revokes the grant it issued to that client and selects another client from the waiting queue
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Algorithm 5: QBUA: QBUA on client node i

timestamp; // time stamp variable initially set to nil1:
upon thread arrival or detection of a node failure:2:

try1:3:
if a current version of QBUA is waiting for information from other nodes then4:

Include information about event when computing SWETS;5:

else6:
timestamp← GetTimeStamp;7:
for all r j ∈Π do8:

resp[ j] ← (nil,nil);9:
send (REQUEST, timestamp) to r j;10:

repeat11:
wait until [received (RESPONSE, owner, t) from some r j];12:
if (c1 6= owner or timestamp = t) then resp[ j] ← (owner, t);13:
if among resp[], at least m of them are not (nil, nil) then14:

if at least m elements in resp[] are (c1, t) then15:
return Compute SWETS;16:

else if at least m elements in resp[] agree about a certain node then17:
for all rk ∈Π such that resp[k] 6= (nil, nil) do18:

if resp[k].owner = c1 then19:
send (RELEASE,timestamp) to rk;20:

Skip rest of algorithm; //Event is already being handled21:

else22:
for all rk ∈Π such that resp[k] 6= (nil, nil) do23:

if resp[k].owner = c1 then24:
send (YIELD,timestamp) to rk;25:

else26:
send (INQUIRE,timestamp) to rk;27:

resp[k]← (nil,nil);28:

until forever ;29:
exit1:30:

oldtimestamp← timestamp;31:
timestamp← GetTimeStamp;32:
for all rk ∈Π do33:

send (RELEASE, oldtimestamp) to r j;34:
return;35:

upon receive (CHECK, t) from r j36:
if for all instances of QBUA running on this node, timestamp 6= t then37:

send (RELEASE, t) to r j;38:

upon receive (START) from some client node39:

Update RE i
j for all sections;40:

send σ j and RE i
j’s to requesting node;41:
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for that event (lines 21-31). This part of the algorithm can only be triggered if the result
of the first round of contention to run QBUA is inconclusive (as discussed when describing
Algorithm 5). Recall that this inconclusive contention is caused by different communication
delays that allow different requests to arrive at different severs in different orders. However,
all client requests for a particular instance of QBUA are queued in Rwait [], therefore, when a
client sends a YIELD message, servers are able to choose the highest priority request (which
we define as the request with the earliest time-stamp and use node id as a tie breaker). Thus,
we guarantee that this contention will be resolved in the second round of the algorithm.
Lines 32-34 show servers’ response to INQUIRE messages and lines 35-39 show the clean up
procedures to remove stale messages. As can be seen on line 36, when a node that is currently
running an instance of QBUA fails, HandleFailure(cowner[i],cowner[], towner[],tgrant [],Rwait []) is
called to handle this failure. Algorithm 7 shows the details of this function. If the waiting
queue corresponding to this instance of QBUA, Rwait [i], is empty, then there are no other
nodes that have detected the event that triggered QBUA on cowner[i] and so the system
is cleared of this instance of QBUA (lines 1-3). Otherwise, there are other nodes that
have detected the event that triggered QBUA on cowner[i], or another concurrent event, and
therefore the failure of cowner[i] results in selecting another node from the waiting queue
Rwait [i] to run QBUA to handle this event (lines 4-9).

Algorithm 8 is used by a client node to compute SWETS once it has received information
from all other nodes in the system (line 2 in Algorithm 4). It performs two basic functions,
first, it computes a system wide order on threads by computing their global Potential Utility
Density (PUD). It then attempts to insert the remaining sections of each thread, in non-
increasing order of global PUD, into the scheduling queues of all nodes in the system. After
the insertion of each thread, the schedule is checked for feasibility. If it is not feasible,
the thread is removed from SWETS (after scheduling the appropriate exception handler if
necessary).

First we need to define the global PUD of a thread. Assume that a thread, Ti, has k
sections denoted {Si

1,S
i
2, · · · ,Si

k}. We define the global remaining execution time, GEi, of
the thread to be the sum of the remaining execution times of each of the thread’s sections.
Let {RE i

1,RE i
2, · · · ,RE i

k} be the set of remaining execution times of Ti’s sections, then GEi =
∑k

j=1 RE i
j. Assuming that we are using step-down TUFs, and Ti’s TUF is Ui(t), then its global

PUD can be computed as Ti.PUD = Ui(tcurr +GEi)/GEi, where U is the utility of the thread
and tcurr is the current time. Using global PUD, we can establish a system wide order on
the threads in non-increasing order of “return on investment”. Thus allowing us to consider
them for scheduling in an order that attempts to maximize accrued utility [21].

In Algorithm 8, each node, j, sends the node running QBUA its current local schedule σp
j .

Using these schedules, the node can determine the set of threads, Γ, that are currently in
the system. Both these variables are inputs to the scheduling algorithm (lines 1 and 2 in
Algorithm 8). In lines 3-6, the algorithm computes the global PUD of each thread in Γ.

Before we schedule the threads, we need to ensure that the exception handlers of any thread
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Algorithm 6: QBUA: QBUA on server node i

cowner[]; Array of nodes holding lock to run QBUA1:
towner[]; towner[i] contains time-stamp of event that triggered QBUA for node in cowner[i]2:
tgrant []; tgrant [i] contains time at which node in cowner[i] was granted lock to run QBUA3:
Rwait []; Rwait [i] is waiting queue for instance of QBUA being run by cowner[i];4:
upon receive (tag, t)5:

CurrentTime← GetTimeStamp;6:
if (c1, t ′) appears in (cowner[],towner[]) or Rwait [] then7:

if t < t’ then Skip rest of algo; //This is an old message8:

if tag = REQUEST then9:
if ∃ tgrant ∈ tgrant [] such that t ≤ tgrant then10:

send (RESPONSE, c, tgrant) to c1; //where c← cowner[i], such that tgrant [i] = tgrant ;11:
Enqueue (c1, t) in Rwait [i], such that tgrant [i] = tgrant ;12:
Skip rest of algorithm;13:

else14:
AddElement(cowner[],c1);15:
AddElement(towner[], t);16:
AddElement(tgrant [],CurrentTime);17:
send (RESPONSE, c1, t) to c1;18:

else if tag = RELEASE then19:
Delete entry corresponding to c1, t from cowner[], towner[], tgrant [], and Rwait [];20:

else if tag = YIELD then21:
if (c1, t) ∈ (cowner[], towner[]) then22:

For i, such that (c1, t) = (cowner[i], towner[i])23:
Enqueue (c1, t) in Rwait [i];24:
(cwait , twait)← top of Rwait [i];25:
cowner[i]← cwait ; towner[i]← twait ;26:
tgrant [i]←CurrentTime;27:
send (RESPONSE, cwait , twait) to cwait ;28:

if c1 /∈ cowner[] then29:
(c, tp)← (cowner[i], towner[i]), for min i such that t ≤ tgrant [i];30:
send (RESPONSE, c, tp) to c1;31:

else if tag = INQUIRE then32:
(c, tp)← (cowner[i], towner[i]), for min i such that t ≤ tgrant [i];33:
send (RESPONSE, c, tp) to c1;34:

upon suspect that cowner[i] has failed:35:
HandleFailure(cowner[i],cowner[], towner[],tgrant [],Rwait []);36:

periodically:37:
∀ cowner ∈ cowner[]:38:

send (CHECK, towner) to cowner; //NB. towner is the entry in towner[] that corresponds to cowner.39:

Algorithm 7: QBUA: HandleFailure(cowner[i],cowner[], towner[],tgrant [],Rwait [])

if Rwait [i] is empty then1:
remove cowner[i]’s entry from cowner[], towner[], tgrant [];2:
Delete Rwait [i];3:

else4:
CurrentTime← GetTimeStamp;5:
(cwait , twait)← top of Rwait [i];6:
cowner[i]← cwait ; towner[i]← twait ;7:
tgrant [i]←CurrentTime;8:
send (RESPONSE, cwait , twait) to cwait ;9:
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Algorithm 8: QBUA: ConstructSchedule

input: Γ; //Set of threads in the system1:
input: σp

j , H j ← nil; //σp
j : Previous schedule of node j, H j: set of handlers scheduled2:

for each Ti ∈ Γ do3:
if for some section Si

j belonging to Ti, tcurr +Si
j.ex > Si

j.tt then4:
Ti.PUD← 0;5:

else Ti.PUD← Ui(tcurr+GEi)
GEi

;6:

for each task el ∈ σp
j do7:

if el is an exception handler for section Si
j then Insert(el, H j, el.tt);8:

σ j ← H j;9:
σtemp ← sortByPUD(Γ);10:
for each Ti ∈ σtemp do11:

Ti.stop←false;12:

if did not receive σ j from node hosting one of Ti’s sections Si
j then13:

Ti.stop←true;14:

for each remaining section, Si
j, belonging to Ti do15:

if Ti.PUD > 0 and Ti.stop 6=true then16:
Insert(Si

j, σ j, Si
j.tt);17:

if Sh
j /∈ σp

j then Insert(Sh
j , σ j, Sh

j .tt);18:

if isFeasible(σ j)=false then19:
Ti.stop←true;20:

Remove(Si
k, σk, Si

k.tt) for 1≤ k ≤ j;21:

if Si
j /∈ σp

j then Remove(Sh
j , σ j, Sh

j .tt);22:

for each j ∈ N do23:
if σ j 6= σp

j then Mark node j as being affected by current scheduling event;24:
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that has already been accepted into the system can execute to completion before its termi-
nation time. We do this by inserting the handlers of sections that were part of each node’s
previous schedule into that node’s current schedule (lines 7-9). Since these handlers were
part of σp

j , and QBUA always maintains the feasibility of a schedule as an algorithm in-
variant, we are sure that these handlers will execute to completion before their termination
times.

In line 10, we sort the threads in the system in non-increasing order of PUD and consider
them for scheduling in that order (lines 11-21). In lines 13-14 we mark as failed any thread
that has a section hosted on a node that does not participate in the algorithm. If the thread
can contribute non-zero utility to the system and the thread has not been rejected from the
system, we insert its sections into the scheduling queue of their corresponding node (line 17).

After inserting the section into its corresponding ready queue (at a position reflecting its
termination time), we check to see whether this section’s handler had been included in the
previous schedule of the node. If so, we do not insert the handler into the schedule since
this has been already taken care of by lines 7-8. Otherwise, the handler is inserted into its
corresponding ready queue (line 18). Once the section, and its handler, have been inserted
into the ready queue, we check the feasibility of the schedule (line 19). If the schedule is
infeasible, we remove the thread’s sections from the schedule (line 21). However, we first
check to see whether the section’s handler was part of a previous schedule before we remove
it (line 22). We perform this check before removing the handler because if the handler was
part of a previous schedule, then its section has failed and we should keep its exception
handler for clean up purposes. Finally, if the schedule of any node has changed, these nodes
are marked to have been affected by the current instance of QBUA (lines 23-24). It is to
these nodes that the current node needs to multicast the changes that have occurred (line
4, Algorithm 4). In order to test the feasibility of a schedule, we need to check if all the
sections in the schedule can complete before their derived termination times.

We use a function isFeasible in Algorithm 8 to determine the feasibility of the schedules we
construct. Algorithm 9 contains the details of this algorithm. In order to determine whether
a schedule is feasible or not, we need to check if all the sections in the schedule can complete
before their derived termination times.

The loop on lines 3-6 examines each section in the schedule and attempts to determine
whether or not it can complete before its termination time. Since QBUA is executed before
sections have actually arrived at some of the nodes in the system, we need to provide an
estimate for the starting time of each section on a node. A section can start immediately
when it arrives at a node or it may wait some time if other sections are scheduled for
execution before it. Therefore, the start time of a section is the maximum of the termination
time of the last section scheduled to execute before it (CumExeTime) and the time it arrives
at the node, which we estimate using the termination time of its predecessor section, plus
the communication delay Si

j−1.tt + T . To this start time, we add the execution time of the

section, Si
j.ex, to obtain an estimate of the expected completion time of the section (line 4).
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We then check if this value is greater than the derived termination times of the section; if
so, the schedule is infeasible (lines 6-7).

Algorithm 9: QBUA: isFeasible

input: σ;output: true or false;1:
Initialization: CumExeTime=tcurr;2:

for each section Si
j ∈ σ do3:

CumExeTime←max(CumExeTime,Si
j−1.tt +T )+Si

j.ex; // If j=1, then T = 0;4:

if CumExeTime > Si
j.tt then return f alse;5:

return true;6:

QBUA’s dispatcher is shown in Algorithm 10. Only two scheduling events result in collab-
orative scheduling, viz: the arrival of a thread into the system, and the failure of a node,
all other scheduling events are handled locally. Since we are talking about a partially syn-
chronous system, the FD we use to detect node failures can make mistakes. Thus, QBUA
may be started due to an erroneous detection of failure. The this can be reduced by designing
a QoS FD [17] with appropriate QoS parameters.

Algorithm 10: QBUA: Event Dispatcher on each node i

Data: schedevent, current schedule σp;1
switch schedevent do2

case invocation arrives for Si
j3

mark segment Si
j ready;4

case segment Si
j completes5

remove Si
j from σr,σp;6

remove Sh
j from H;7

set RE i
j to zero;8

case Sh
j ∈ H and Sh

i .st expires9
mark handler Sh

j ready;10

case downstream handler Sh
j+1 completes11

mark handler Sh
j ready;12

case handler Sh
j completes13

remove Sh
j from σp,H;14

notify scheduler for Sh
j−1;15

case new thread, Ti, arrives16
if origin node, send segments Si

j to all;17

pass event to QBUA;18

case node failure detected19
pass event to QBUA;20

execute first ready segment in σp;21

4.4 Experimental Results

We performed a series of simulation experiments on ns-2 [64] to compare the performance of
QBUA to ACUA, CUA and HUA in terms of Accrued Utility Ratio (AUR) and Termination-
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time Meet Ratio (TMR). We define AUR as the ratio of the accrued utility (the sum of Ui
for all completed threads) to the utility available (the sum of Ui for all available jobs) and
TMR as the ratio of the number of threads that meet their termination time to the total
number of threads in the system. We considered threads with three segments. Each thread
starts at its origin node with its first segment. The second segment is a result of a remote
invocation to some node in the system, and the third segment occurs when the thread returns
to its origin node to complete its execution. The periods of these threads are fixed, and we
vary their execution times to obtain a range of utilization ranging from 0 to 200%. In
order to make the comparison fair, all the algorithms were simulated using a synchronous
system model, where communication delay varied according to an exponential distribution
with mean and standard deviation 0.02 seconds but could not exceed an upper bound of 0.5
seconds. Our system consisted of fifty client nodes and five servers. In all the experiments we
perform, the utilization of the system is considered the maximum utilization experienced by
any node. While conducting our experiments, we considered the same three different thread
sets considered in Chapter 3.
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Figure 4.1: QBUA: AUR vs. Utilization (no failures),
thread set I
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Figure 4.2: QBUA: TMR vs. Utilization (no failures),
thread set I

Figures 4.1 and 4.2 show the result of our AUR and DSR experiments in the absence of
node failure for thread set I. As Figures 4.1 and 4.2 show, the performance of QBUA during
underloads is similar to that of other distributed real-time scheduling algorithms. However,
during overloads, QBUA begins to outperform other algorithms due to its better best effort
property. During overloads, QBUA accrues, on average, 17% more utility that CUA, 14%
more utility than HUA and 8% more utility than ACUA. The maximum difference between
the performance of QBUA and the other algorithms in our experiment was the 22% difference
between ABUA’s and CUA’s AUR at the 1.88 system load point. Throughout our experi-
ment, the performance of ACUA was the closest to QBUA with the difference in performance
between these two algorithms getting more pronounced as system load increases (the largest
difference in performance is 11.7% and occurs at about 2.0 system load). The reason for
this behavior is that QBUA has a similar best-effort property to ACUA (see Theorem 34).
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In addition, we believe that the difference between these two algorithms becomes more pro-
nounced as system load increases because the delay caused by the scheduling overhead has
greater consequences on the schedulability of the system due to the decreased system slack
during overloads. Thus QBUA’s lower overhead allows it to scale better with system load.
Another interesting aspect of the experiment is that, contrary to Theorem 23, QBUA does
not accrue 100% utility during all cases of underload. As the load on the system approaches
1.0 some deadlines are missed because the overhead of QBUA becomes more significant at
this point. This is also true for other collaborative scheduling algorithms such as CUA and
ACUA, and is true to a lesser extent for non-collaborative scheduling algorithms such as
HUA due to their lower overhead.
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Figure 4.3: QBUA: AUR vs. Utilization (failures),
thread set I
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Figure 4.4: QBUA: Effect of failures on QBUA, thread
set I

Figures 4.3 and 4.4 show the effect of failures on QBUA when thread set I is used. In these
experiments we programmatically fail fmax = 0.2N nodes — i.e., we fail 20% of the client
nodes. From Figure 4.3, we see that failures do not degrade the performance of QBUA
compared to other scheduling algorithms — i.e., the relationship between the utility accrued
by QBUA to the utility accrued by other scheduling algorithms remains relatively the same
in the presence of failures. However, it is interesting to note that now QBUA accrues,
on average, 18.5% more utility than CUA, 13.6% more utility than HUA and 9.9% more
utility than ACUA. It should be noticed that both ACUA and CUA suffer a further loss in
performance relative to QBUA in the presence of failures. The main reason this occurs is
that both these algorithms have a time complexity that is a function of the number of node
failures, therefore they have higher overheads in the presence of failures and this affects their
results.

In Figure 4.4 we compare the behavior of QBUA in the presence of failure to its behavior
in the absence of failure. As can be seen, QBUA’s performance suffers a degradation in
the presence of failures. As can be seen from the figure, the difference in performance of
QBUA in the presence of failure is most pronounced during underloads, and becomes less
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pronounced as the system load is increased. The reason for this is that during underloads
all threads are feasible and therefore the failure of a particular node deprives the system
of the utility of all the threads that have a section hosted on that node. However, during
overloads, not all sections hosted by a node are feasible, thus the failure of that node only
deprives the system of the utility of the feasible threads that have a section hosted by that
node. This amount is less than would occur if the system were deprived of the utility of
all threads hosted on the node and leads to a less pronounced effect on the performance of
QBUA in the presence of failures.

In Figures 4.5, 4.6, 4.7 and 4.8, the same experiments as above are repeated using thread
set II. As can be seen, the results follow a similar pattern to the experiments for thread set
I, but now the difference between QBUA and other algorithms is not so pronounced. This
occurs because the randomly generated thread set is likely to contain some threads that need
collaborative scheduling but not as many as in the thread set that we specifically designed
to contain such threads.
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thread set II
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Figure 4.6: QBUA: TMR vs. Utilization (no failures),
thread set II

In Figures 4.9, 4.10, 4.11 and 4.12, the same experiments as above are repeated using thread
set III. In these experiments, the best performing algorithm is HUA since it has the least
overhead (it does not perform any collaborative scheduling). The performance of the other
three algorithms are similar to each other.

We also perform a set of experiments to determine the appropriate job time scales to use
when QBUA is employed as the scheduling algorithm. For these set of experiments, we fix
the communication delay at 60ms. We fixed the execution time for each section (shown
on the x-axis of Figure 4.13), and then varied the periods to obtain different utilization
factors. We recorded the utilization factor, the Deadline Miss Load (DML), at which the
first deadline miss occurred. Theoretically, QBUA should only miss deadlines for overloaded
systems, however, practically, the overhead of the system becomes more significant when the
section execution time is on the same order as the overhead.
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Figure 4.7: QBUA: AUR vs. Utilization (failures),
thread set II
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Figure 4.8: QBUA: Effect of failures of QBUA, thread
set II
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Figure 4.9: QBUA: AUR vs. Utilization (no failures),
thread set III
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thread set III
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Figure 4.11: QBUA: AUR vs. Utilization (failures),
thread set III
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Figure 4.12: QBUA: Effect of failures of QBUA, thread
set III
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As can be seen in Figure 4.13, this causes QBUA to perform poorly for systems with small
section execution times. However, as the section execution time increases, the DML increases
to approach one. In particular, when the section execution times exceeds 5T (2T for quorum
arbitration without contention) and 3T for the algorithm to execute, the system begins to
perform adequately.

In Section 4.5, we prove that QBUA scales better than ACUA in the presence of failure.
In order to further investigate this, we conducted the following experiment. We fixed the
section execution time at 7T , fixed the failure rate, i.e., the percentage of nodes that fail,
(shown on the x-axis of Figure 4.14), and varied the period to determine the utilization,
DML, at which the first deadline is missed due to time overruns rather than node failures.
Note that this new definition of DML is necessary because we wish to determine the effect
of failures on the overhead, thus we need to exclude the deadline misses that occur because
nodes hosting certain sections fail.

As can be seen, the DML of ACUA decreases as the failure rate increases, while the DML for
QBUA remains relatively unchanged. This occurs because the overhead of ACUA varies in
direct proportion to the number of failed nodes, while the overhead of QBUA is independent
of the number of failed nodes. This is further elaborated on in Section 4.5.

4.5 QBUA Properties

We now turn our attention to proving some theoretical results for QBUA. Below, T is the
communication delay, and Γ is the set of threads in the system.

Lemma 17. A node determines whether or not it needs to run an instance of QBUA at
most 4T time units after it detects a distributed scheduling event, with high, computable
probability, Plock.

Proof. When a distributed scheduling event is detected by a node, it contacts the quorum
system to determine whether or not to start an instance of QBUA (see Section 4.3.2). T
time units is used to contact the quorum nodes, and another T time units is taken for the
reply of the quorum nodes to reach the requesting node. After these two communication
steps, two outcomes are possible.

One possibility is that a quorum (2n
3 ) of servers receive a particular node’s request first and

so grant that node permission to run an instance of QBUA (lines 15-23, Algorithm 5). In
this case, only 2T time units are necessary to come to a decision.

The second possibility is that none of the client nodes receive permission from a quorum
of server nodes, and therefore the result of the first round of contention is inconclusive (see
Section 4.3.2 for an example). In this case, all nodes send YIELD messages to the server
nodes to relinquish the “lock” they where granted to run an instance of QBUA (lines 24-30,
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Algorithm 5). As discussed in Section 4.3.2, the above scenario is caused by differences
in communication delays between different client-server pairs. However, by the time that
the YIELD messages reach the server nodes (3T ), all client requests must have reached
the server nodes and will be present in their waiting queue (line 12, Algorithm 6) so the
server nodes can now make a decision about which node gets to run QBUA (lines 22-31,
Algorithm 6) by selecting the earliest request in its waiting queue (ties are broken using
client ID). Therefore, the contention is resolved in 4T messages delays, one T for each of the
REQUEST, RESPONSE, YIELD and RESPONSE messages communicated between client
server pairs.

Thus, the whole process of using the quorum system to determine whether or not to run an
instance of QBUA takes 4T time units in the worst case. Since each of the communication
delays, T , are random variables with CDF DELAY (t). The probability that a communication
round will take more than T time units is p = 1−DELAY (T ). Since there are four commu-
nication rounds, the probability that none of these rounds take more than T time units is
P = bino(0,4, p), where bino(x,n, p) is the binomial distribution with parameters n and p.
Thus the probability that a node determines whether or not it needs to run a version of
QBUA after 4T is also Plock = bino(0,4, p).

Lemma 18. Once a node is granted permission to run an instance of QBUA, it takes O(T +
N + |Γ| log(|Γ|)) time units to compute a new schedule, with high, computable, probability,
PSWET S.

Proof. Once a node is granted permission to run an instance of QBUA it executes Al-
gorithm 4. This algorithm has three communication steps, one to broadcast the START
message, another to receive the replies from other nodes in the system and one to multicast
any changes to affected nodes. Thus the algorithm takes a total of 3T time units for its
communication with other nodes.

In addition to these communication steps, Algorithm 4 also takes time to actually compute
SWETS (line 3). Algorithm 8 is the algorithm that is used to compute SWETS. In this
algorithm, lines 3-7 take |Γ|k time units for threads with k sections each. The for loop on
lines 8-10 will take wN time units to examine the w sections in the scheduling queue of each
of the N nodes in the system. Line 12 takes O(|Γ| log(|Γ|)) time units to sort the threads in
non-increasing order of global PUD using quick sort. The two nested loops on lines 13-26
take |Γ|k2w in the worst case, since there are |Γ| threads each with k sections to insert into
scheduling queues and each queue needs to be tested for feasibility after the insertion of a
section using the linear time function isFeasible in O(w) time and removing all previously
accepted sections, line 24, can take at most O(k) time. Finally, lines 27-29 determines which
nodes need to be notified of changes in O(N) time.

Thus the total time complexity of the algorithm is 3T + |Γ|k+wN +O(|Γ| log(|Γ|))+ |Γ|k2w+
O(N). If we consider the number of sections in a thread, k, and the number of sections in
the waiting queue of a node, w, to be constants, then the asymptotic time complexity of the
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algorithm is O(T +N + |Γ| log(|Γ|)).
There are three communication rounds in this procedure. However, the first two of these
communication rounds depend on timeouts (line 2, Algorithm 4), therefore it is only the
third that is probabilistic in nature. Therefore, the probability that SWETS is computed
in the time derived above is equal to the probability that the nodes receive the multicast
message sent on line 4 of Algorithm 4 within T time units. Since the communication delay
has CDF DELAY (t), the probability that T is not violated during runtime, and thus that the
time bound above is respected, is PSWET S = DELAY (T ).

%endcomment

Theorem 19. A distributed scheduling event is handled at most O(T +N + |Γ| log(|Γ|)+TD)
time units after it occurs, with high, computable, probability, Phand.

Proof. There are two possible distributed scheduling events: 1) the arrival of a new thread
into the system and 2) the failure of a node.

In case of the arrival of a new thread, the root node of that thread immediately attempts
to acquire a “lock” on running an instance of QBUA. By Lemma 17, the node takes 4T
time units to acquire a lock and by Lemma 18, it takes the algorithm O(T +N + |Γ| log(|Γ|))
to compute SWETS. Therefore, in the case of the arrival of a thread the event is handled
O(T + N + |Γ| log(|Γ|) + 4T )=O(T + N + |Γ| log(|Γ|)) time units after it occurs. Note that
O(T +N + |Γ| log(|Γ|)) is O(T +N + |Γ| log(|Γ|)+TD).

In case of a node failure, some node will detect this failure after TD time units. That node
then attempts to acquire a lock from the quorum system to run an instance of QBUA. By
Lemmas 17 and 18, this takes O(T +N + |Γ| log(|Γ|)) time units. Thus the event is handled
O(T +N + |Γ| log(|Γ|)+TD) time units after it occurs.

In both these cases, the result relies on Lemmas 17 and 18, so the probability that events
are handled within the time frame mentioned above is Phand = PSWET S×Plock.

Lemma 20. The worst case message complexity of the algorithm is O(n+N).

Proof. The actual message cost of the algorithm is 5n+3N. The 5n component of the message
complexity comes from the quorum based arbitration system used in the algorithm. The 5n
comes from n messages for REQUEST, RESPONSE, YIELD/INQUIRE, RESPONSE and
RELEASE respectively. After a node has acquire a “lock”, it broadcasts a start message (line
1, Algorithm 4) this takes N messages. The nodes then reply to the current node (line 2,
Algorithm 4) using another N messages. Finally, the current node multicasts its results to
affected nodes (line 4, Algorithm 4) using another N messages (because in the worst case all
nodes in the system may be affected). Thus the actual message complexity of the algorithm
is 5n+3N which is asymptotically O(n+N).
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Lemma 21. If all nodes are underloaded and no nodes fail, then no threads will be suggested
for rejection by QBUA with high, computable, probability pnore j.

Proof. Since the nodes are all underloaded and no nodes fail, Algorithm 8 ensures that all
sections will be accepted for scheduling in the system. Therefore, the only source of thread
rejection is if a node does not receive a suggestion from other nodes during the timeout
value, 2T , (see line 2 in Algorithm 4). This can occur due to one of two reasons; 1) the
broadcast message (line 1, Algorithm 4), that indicates the start of the algorithm, may not
reach some nodes 2) the broadcast message reaches all nodes, but these nodes do not send
their suggestions to the node running QBUA during the timeout value assigned to them.

The probability that a node does not receive a message within the timeout value from one
of the other nodes is p = 1−DELAY (T ). We consider the broadcast message to be a series
of unicasts to all other nodes in the system. Therefore, the probability that the broadcast
START message reaches all nodes is Ptmp = bino(0,N, p) where bino(x,n, p) is the binomial
distribution with parameters n and p. If the START message is received, each node sends
its schedule to the node that sent the START message. The probability that none of these
messages violate the timeout is tmp = bino(0,N, p). As mentioned before, if none of the
nodes miss a message, no threads will be rejected, thus the probability that no threads will
be rejected is the product of the probability that the broadcast message reaches all nodes,
and the probability that all nodes send their schedule before the timeout expires. Therefore,
pnore j = tmp×Ptmp.

Lemma 22. If each section of a thread meets its derived termination time, then under
QBUA, the entire thread meets its termination time with high, computable probability, psuc.

Proof. Since the termination times derived for sections are a function of communication
delay and this communication delay is a random variable with CDF DELAY (t) the fact that
all sections meet their termination times implies that the whole thread will meet its global
termination time only if none of the communication delays used in the derivation are violated
during runtime.

Let T be the communication delay used in the derivation of section termination times. The
probability that T is violated during runtime is p = 1−DELAY (T ). For a thread with k
sections, the probability that none of the section to section transitions incur a communication
delay above T is psuc = bino(0,k, p). Therefore, the probability that the thread meets its
termination time is also psuc = bino(0,k, p).

Theorem 23. If all nodes are underloaded, no nodes fail (i.e. f = 0) and each thread can
be delayed O(T + N + |Γ| log(|Γ|)) time units once and still be schedulable, QBUA meets all
the thread termination times yielding optimal total utility with high, computable, probability,
Palg.
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Proof. By Lemma 21, no threads will be considered for rejection from a fault free, under-
loaded system with probability pnore j. This means that all sections will be scheduled to meet
their derived termination times by Algorithm 8.

By Lemma 22, this implies that each thread, j, will meet its termination time with probability
p j

suc. Therefore, for a system with X = |Γ| threads, the probability that all threads meet

their termination time is Ptmp = ∏X
j=1 p j

suc. Given that the probability that all threads will
be accepted is pnore j, Palg = Ptmp× pnore j.

We make the requirement that a thread tolerate a delay of O(T +N + |Γ| log(|Γ|)) time units
and still be schedulable because QBUA takes O(T +N + |Γ| log(|Γ|)) time units to reach its
decision about the schedulability of a newly arrived thread. Thus if this delay causes any
of the thread’s sections to miss their deadlines, the thread will not be schedulable. We only
require that the thread suffer this delay once because we assume that there is a scheduling
coprocessor on each node, thus the delay will only be incurred by the newly arrived thread
while other threads continue to execute uninterrupted on the other processor.

Theorem 24. If N− f nodes do not crash, are underloaded, and all incoming threads can be
delayed O(T +N + |Γ| log(|Γ|)) and still be schedulable, then QBUA meets the execution time
of all threads in its eligible execution thread set, Γ, with high computable probability, Palg.

Proof. As in Lemma 21, no thread in the eligible thread set Γ will be rejected if nodes receive
the broadcast START message and respond to that message on time. The probability of
these two events is bino(0,N− f , p) where p = 1−DELAY (T ). Therefore, the probability
that none of the threads in Γ are rejected is Pnore j = bino(0,N− f , p)×bino(0,N− f , p). This
means that all the sections belonging to those threads will be scheduled to meet their derived
termination times. By Lemma 22, this implies that each of these threads, Tj, will meet their

termination times with probability p j
suc. Therefore, for a system with an eligible thread set,

Γ, the probability that all threads meet their termination times if their sections meet their
termination times is Ptmp = ∏ j∈Γ p j

suc. The probability that all the remaining threads are
execute to completion is thus Palg = Ptmp× pnore j.

Lemma 25. QBUA has a quorum threshold, m, (see Algorithm 5) of d2n
3 e and can tolerate

f s = n
3 faulty servers.

Proof. Our algorithm considers a memoryless crash recovery model for the quorum nodes.
This means that a quorum node that crashes and then recovers losses all its state information
and starts from scratch. What this implies is that for our algorithm to tolerate such failures,
the threshold m should be large enough such that there is at least one correct server in the
intersection of any two quorums.

Assume that f is the maximum number of faulty servers in the system (i.e. servers that may
fail at some time in the future), then the above requirement can be expresses as 2m−n > f s.
On the other hand, m cannot be too large since some servers will fail and choosing too large a
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value of m may mean that client nodes may wait indefinitely for responses from servers that
have failed. The requirement translates to m ≤ n− f s. Combining the two we get, f s = n

3
and m can be set to d2n

3 e.
Definition 3 (Section Failure). A section, Si

j, is said to have failed when one or more of

the previous head nodes of Si
j’s thread (other than Si

j’s node) has crashed.

Lemma 26. If a node hosting a section, Si
j, of thread Ti fails (per Definition 3) at time

t f , every correct node will include handlers for thread Ti in its schedule by time t f +TD + ta,
where ta is an implementation-specific computed execution bound for QBUA calculated per
the analysis in Theorem 19, with high, computable, probability, Phand

%begincomment

Proof. Since the QoS FD we use in this work detects a failed node in TD time units [17],
all nodes in the system will detect the failure of the node at time t f + TD. As a result, the
QBUA algorithm will be triggered and will exclude Ti from the system because node j will
not send its schedule (lines 15-16 Algorithm 8). Consequently, Algorithm 8 will include the
section handlers for this thread in H. Execution of QBUA completes in time ta and thus all
handlers will be included in H by time t f +TD + ta.

Of all these timing terms, only ta is stochastic. From Theorem 19, we know that ta will be
obeyed with probability Phand , therefore, the time bound derived above is also obeyed with
probability Phand.

Lemma 27. If a section Si, where i 6= k, fails (per Definition 3) at time t f and section Si+1
is correct, then under QBUA, its handler Sh

i will be released no earlier than Sh
i+1’s completion

and no later than Sh
i+1.tt +T +Sh

i .X −Sh
i .ex.

Proof. For i 6= k, a section’s exception handler can be released due to one of two events; 1)
its start time expires (lines 9-10 in Algorithm 10); or 2) an explicit invocation is made by
the handler’s successor (lines 11-12 in Algorithm 10).

In the first case, we know from the analysis in Section 4.3.2 that the start time of Sh
i is

Sh
i+1.tt + Sh

j .X + T − Sh
j .ex. Thus, by definition, it satisfies the upper bound in the theorem.

Also, since Sh
j .X ≥ Sh

j .ex (otherwise the handler would not be schedulable), Sh
i+1.tt + Sh

j .X +
T −Sh

j .ex > Sh
i+1.tt, and this satisfies the lower bound of the theorem.

In the second case, an explicit message has arrived indicating the completion of Sh
i+1. Since

the message was sent, this indicates that Sh
i+1.tt has already passed, thus satisfying the lower

bound of the theorem. In addition, the message should have arrived T time units after Sh
i+1

finishes execution (i.e at Sh
i+1.tt +T ), since Sh

i+1.tt +T ≤ Sh
i+1.tt +T +Sh

i .X−Sh
i .ex (remember

that Sh
i .X ≥ Sh

i .ex), then the upper bound is satisfied.
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Lemma 28. If a section Si fails (per Definition 3), then under QBUA, its handler Sh
i will

complete no later than Sh
i .tt (barring Sh

i ’s failure).

Proof. If one or more of the previous head nodes of Si’s thread has crashed, it implies that Si’s
thread was present in a system wide schedulable set previously constructed. This implies that
Si and its handler were previously determined to be feasible before Si.tt and Sh

i .tt respectively
(lines 18-26 of Algorithm 8).

When some previous head node of Si’s thread fails, QBUA will be triggered and will remove
Si from the pending queue. In addition, Algorithm 8 will include Sh

i in H and construct a
feasible schedule containing Sh

i (lines 8-11 and lines 18-26). Since the schedule is feasible and
Sh

i is inserted to meet Sh
i .tt (line 10), then Sh

i will complete by time Sh
i .tt.

We now state QBUA’s bounded clean-up property.

Theorem 29. In the event of a failure of a thread, the thread’s handlers will be executed in
LIFO (last-in first-out) order. Furthermore, all (correct) handlers will complete in bounded
time. For a thread with k sections, handler termination times Sh

i .X , which fails at time t f ,
and (distributed) scheduler latency ta, this bound is Ti.X + ∑i Sh

i .X + kT + TD + ta, with high
computable probability Pexep.

Proof. The LIFO property follows from Lemma 27. Since it is guaranteed that each handler,
Sh

i , cannot begin before the termination time of handler Sh
i+1 (the lower bound in Lemma 27),

then we guarantee LIFO execution of the handlers.

The fact that all correct handlers complete in bounded time is shown in Lemma 28, where
each correct handler is shown to complete before its termination time.

Finally, if a thread fails at time t f , all nodes will include handlers for this thread in their
schedule by time t f + TD + ta (Lemma 26) with probability Phand and QBUA guarantees
that all these sections will complete before their termination times (Lemma 28). Due to
the LIFO nature of handler executions, the last handler to execute is the first exception
handler, Sh

1. The termination time of this handler (from the equations in Section 4.3.2) is
Ti.X +∑i Sh

i .X + kT +TD + ta (which is basically the sum of the relative termination times of
all the exception handlers, plus the termination time of the last section, which is used as an
estimate for the worst case failure time of the threads per the discussion in Section 4.3.2, k
communication delays T to notify handlers in LIFO order, TD to detect the failure after it
occurs and ta for QBUA to execute).

Since Lemma 28 guarantees that all handlers will finish before their derived termination
times, the only stochastic part of the theorem is the probability that QBUA will include the
handlers of all the section in time t f +TD + ta. From Lemma 26, we know this probability is
Phand, thus Pexep = Phand.
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Lemma 30. QBUA has the DBE property for threads that can survive the scheduling over-
head of the algorithm — i.e., threads that can be delayed O(T + N + |Γ| log(|Γ|)) (see Theo-
rem 19) and still be schedulable.

Proof. The DBE property requires all threads to be ordered in non-decreasing order of global
PUD, and this is accomplished in lines 3-7 and line 12 of Algorithm 8. In addition, the DBE
property requires that all feasible threads be scheduled in non-decreasing order of PUD, and
this is accomplished in lines 13-26 of Algorithm 8. Thus QBUA has the DBE property for
all threads that can withstand the O(T +N + |Γ| log(|Γ|)) overhead of the algorithm and still
remain schedulable.

Lemma 31. HUA [75], does not have the DBE property.

Lemma 32. CUA [74] does not have the DBE property.

Lemma 33. ACUA has the DBE property for threads that can survive the scheduling over-
head of the algorithm — i.e., threads that can be delayed O( f T +Nk) and still be schedulable.

The proof for Lemmas 31, 32, and 33 can be found in [33].

Theorem 34. QBUA has a better best-effort property than HUA and CUA and a similar
best-effort property to ACUA.

Proof. The proof follows directly from Lemmas 31, 32, 33 and 30. In particular, HUA and
CUA do not have the DBE property while QBUA does, and both QBUA and ACUA have
the DBE property but for threads that can survive their, different, scheduling overheads.

Lemma 35. The message overhead of QBUA is better than the message overhead of ACUA
and scales better with the number of node failures.

Proof. The message complexity of ACUA is O( f N2) which is clearly asymptotically more
expensive than the O(n + N) message complexity of QBUA. In addition, since the message
complexity of ACUA is a linear function of f , the number of failed nodes, and the message
complexity of QBUA does not depend on f —i.e., is not affected by the number of node
failures— the message overhead of QBUA scales better in the presence of failure.

Lemma 36. The time overhead of QBUA is asymptotically similar to the time overhead of
ACUA and scales better with the number of node failures. In addition, when the number of
threads in the system is fixed, the time complexity of QBUA is asymptotically better than
that of ACUA and scales better in the presence of failure.

Proof. The time complexities of the two algorithms, O(T + N + |Γ| log(|Γ|)) for QBUA and
O( f T + kN) for ACUA, are asymptotically similar, but since the time complexity of ACUA
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is a function of f and QBUA’s is not, QBUA’s time complexity scales better in the presence
of failure.

When the number of threads in the system is fixed, the term |Γ| log(|Γ|) in the time complex-
ity of QBUA becomes a constant and thus its asymptotic time complexity becomes O(T +N)
which is better than the time complexity of ACUA, O( f T + kN). Further, since the time
complexity of QBUA is not a function of f and the time complexity of ACUA is, QBUA’s
complexity scales better in the presence of failure.

Theorem 37. QBUA has lower overhead than ACUA and its overhead scales better with
the number of node failures.

Proof. The proof follows directly from Lemmas 35 and 36.

In should be noted that in our computation of time complexity of algorithms, we do not
take into account the effect of message overhead. However, the message complexity affects
the utilization of the communication channel and the queue delay at nodes and hence has
a direct impact on communication delay (which appears as a term in both time complex-
ities mentioned above). The effect of this higher message complexity can be seen in our
experiments (see Section 4.4), where the higher overhead of ACUA, both message and time
overheads, results in performance that is worse than that of QBUA.

Theorem 38. QBUA limits thrashing by reducing the number of instances of QBUA spawned
by concurrent distributed scheduling event.

Proof. Thrashing occurs when concurrent distributed events spawn, superfluous, separate
instances of QBUA. QBUA prevents this by having nodes wishing to run an instance of
QBUA contact a quorum system to gain permission for doing so (see Section 4.3.2). In
lines 9-13 of Algorithm 6, the quorum system does not spawn a new instance of QBUA if
there is an instance of QBUA already running that was granted permission to start after
the timestamp of the arriving scheduling event. This occurs because the instance of QBUA
that started after the scheduling event occurred will have information about that event and
will thus handle it. This reduces thrashing by prevent superfluous concurrent instances from
running at the same time.

4.6 Conclusion

We presented a collaborative, quorum-based thread scheduling algorithm, QBUA, for unre-
liable distributed real-time systems. The collaborative approach employed allows QBUA to
outperform non-collaborative algorithms during overloads.

This occurs because the collaborative approach allows QBUA to take into account global
information when constructing the schedule and thus avoid making locally optimal decisions
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that can compromise global optimality. The collaborative approach also allows the algorithm
to take into account node failures and to attempt to maximize timeliness in the presence of
these failures.

In is noticed however, that the higher overhead associated with collaborative approaches
allows non-collaborative scheduling algorithms to outperform QBUA during underloads. De-
spite this disadvantage, QBUA performs better than ACUA, another collaborative scheduling
algorithm, since it avoids the use of distributed consensus and instead relies on quorum-based
algorithms.

QBUA is designed for a partially synchronous system where message loss and communication
delay is stochastically described. Thus QBUA has better coverage than algorithms designed
for fully synchronous systems. The performance and properties of QBUA were analytically
established and empirically compared to other algorithms.



Chapter 5

Quorum-based-collaborative
scheduling with resource dependencies

5.1 Introduction

In this chapter, we consider the problem of scheduling dependent threads in the presence of
uncertainties mentioned in Chapter 1. We design a collaborative thread scheduling algorithm,
DQBUA, that can handle distributed dependencies. To the best of our knowledge, this is the
first collaborative scheduling algorithm to consider distributed dependencies. We compare
DQBUA to RTG-DS [37], a dependent thread scheduling algorithm that uses gossip ro
improve the reliability of the communication layer and to find the next head node of a
thread. RTG-DS falls under the independent category of thread scheduling algorithms.

5.2 Models and Objective

Since this is essentially an extension the algorithm described in Chapter 4 (QBUA), all of
the models used there are the same of this algorithm. However, we introduce, below, the
resource model which is not used by QBUA.

Resource Model Threads can access serially reusable non-CPU resources (e.g., disks, NICs)
located at their nodes during their execution. We consider the single resource model where
only one instance of each resource exists in the system. Resources can be shared under
mutual exclusion constraints. A thread may request multiple resources during its lifetime
but can only have one outstanding request at any given instance of time. Threads explicitly
release all granted requests before the end of their execution.

All resource request/release pairs are assumed to be confined within one node. Thus, a node

64
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cannot lock a resource on one node and release it on another. However, it is possible for
a thread to lock a resource on a node and then make a remote invocation to another node
(carrying the lock with it). Since resource reqeust/release pairs are confined to one node,
the lock is released when the thread’s node returns back to the node on which the resource
was acquired.

Resources are assumed to access their resources in an arbitrary order — i.e., which resources
are needed by which threads is not known a priori. Consequently we employ deadlock
detection and resolution methods instead of prevention and avoidance techniques. Deadlock
resolution is performed by aborting one of the deadlocked threads by executing its exception
handler.

Scheduling Objectives. Our primary objective is to design a thread scheduling algorithm that
will maximize the total utility accrued by all threads as much as possible in the presence of
dependencies. Further, the algorithm must provide assurances on the satisfaction of thread
termination times in the presence of (up to fmax) crash failures. Moreover, the algorithm
must bound the time threads remain in deadlock.

5.3 Algorithm Rationale

In [29], we develop QBUA, a scheduling algorithm for distributable real-time threads in par-
tially synchronous systems. In this work, we extend QBUA by adding resource dependencies
and precedence constraints handling capabilities, we call the resulting algorithm DQBUA. As
in [21], precedence constraints can be programmed as resource dependencies and are handled
the same way.

As in QBUA, when a node detects a distributed scheduling event (the failure of a node, the
arrival of a new thread into the system or a resource request) it contacts a quorum system
requesting permission to run an instance of DQBUA (in order to construct a global schedule).
All other scheduling events, such as resource releases and section completion, are dealt with
locally, see Algorithm 11. Once permission is granted, it broadcasts a start of algorithm
message to all other nodes requesting their scheduling information. Nodes that receive this
message reply by sending their scheduling information. When all nodes have sent their
scheduling information to the requesting node, it computes a system-wide schedule, which
we call a System Wide Executable Thread Set (or SWETS), and multicasts any updates to
nodes whose schedule has been affected.

The purpose of the quorum system is to arbitrate among nodes that detect a distributed
scheduling event concurrently. This arbitration reduces thrashing by minimizing the number
of instances of DQBUA that are started to handle the same or concurrent scheduling events.
Due to space limitations, we do not reproduce the details of the quorum arbitration algorithm,
see [29] for details.
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Algorithm 11: DQBUA: Event Dispatcher on each node i

Data: schedevent, current schedule σp;1
switch schedevent do2

case invocation arrives for Si
j3

mark segment Si
j ready;4

case segment Si
j completes5

remove Si
j from σp;6

remove Sh
j from H;7

set RE i
j to zero;8

case Sh
j ∈ H and Sh

i .st expires9
mark handler Sh

j ready;10

case downstream handler Sh
j+1 completes11

mark handler Sh
j ready;12

case handler Sh
j completes13

remove Sh
j from σp,H;14

notify scheduler for Sh
j−1;15

case new thread, Ti, arrives16
if origin node, send segments Si

j to all;17

pass event to DQBUA;18

case node failure detected19
pass event to DQBUA;20

case Si
j requests a resource21

pass event to DQBUA;22

case Si
j releases a resource23

free resource;24

execute first ready segment in σp;25
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While computing a system-wide schedule, threads are ordered in non-increasing order of their
global Potential Utility Density (PUD) (which we define as the ratio of a thread’s utility to
its remaining execution time), the threads are then considered for scheduling in that order.
Favoring high global PUD threads allows us to select threads for scheduling that result in
the most increase in system utility for the least effort. This heuristic attempts to maximize
total accrued utility [21].

Both local and distributed resource dependencies are possible, therefore both local and dis-
tributed deadlock can occur. By considering resource requests as distributed scheduling
events, DQBUA detects and resolves both local and distributed deadlock in a timely man-
ner. In addition, contention for resources is resolved using their global PUD.

5.4 Algorithm Description

Once the arbitration phase of the algorithm is complete and a node has been granted permis-
sion to run an instance of DQBUA, that node runs the algorithm depicted in Algorithm 12.
In Algorithm 12, the node first broadcasts a start of algorithm message (line 1) and then
waits 2T time units for all nodes in the system to respond by sending their local scheduling
information (line 2). After collecting this information, the node computes SWETS (line 3)
using Algorithm 15. After computing SWETS, the node contacts affected nodes (i.e. nodes
that will have sections added or removed from their schedule).

Algorithm 12: DQBUA: Compute SWETS

Broadcast start of algorithm message, START;1:
Wait 2T collecting replies from other nodes;2:
Construct SWETS using information collected;3:
Multicast change of schedule to affected nodes;4:
return;5:

Algorithm 15 is used by a client node to compute SWETS once it has received information
from all other nodes in the system (line 3 in Algorithm 12). It performs two basic functions,
first, it computes a system wide order on threads by computing their global PUD. It then
attempts to insert the remaining sections of each thread, in non-increasing order of global
PUD, into the scheduling queues of all nodes in the system. After the insertion of each
thread, the schedule is checked for feasibility. If it is not feasible, then the thread is removed
from SWETS (after scheduling the appropriate exception handler if necessary).

First we need to define the global PUD of a thread. Assume that a thread, Ti, has k
sections denoted {Si

1,S
i
2, · · · ,Si

k}. We define the global remaining execution time, GEi, of
the thread to be the sum of the remaining execution times of each of the thread’s sections.
Let {RE i

1,RE i
2, · · · ,RE i

k} be the set of remaining execution times of Ti’s sections, then GEi =
∑k

j=1 RE i
j. Assuming that we are using step-down TUFs, and Ti’s TUF is Ui(t), then its global

PUD can be computed as: Ti.PUD = Ui(tcurr +GEi)/GEi, where U is the utility of the thread



Sherif F. Fahmy Chapter 5. Quorum-based-collaborative scheduling with resource dependencies 68

and tcurr is the current time. Using global PUD, we can establish a system wide order on the
threads in non-increasing order of “return on investment”. Thus we consider the threads for
scheduling in an order that is designed to maximize accrued utility [21].

In the absence of dependencies, the above computation can be used to represent the utility
that would be accrued if a thread where to execute immediately. However, since we consider
dependencies, the utility of a thread can only be accrued if all the threads it depends on
either complete their execution or are aborted first. Therefore when a section requests a
resource, we compute its dependency list by following the chain of resource requests and
ownership. Since a resource request is a distributed scheduling event, the node that gets
permission to run an instance of DQBUA (after arbitration by the quorum system) will be
sent all the information necessary for it to compute the dependency chain.

Once the dependency list has been computed, we compute the PUD of the current thread
by using a least effort heuristic —i.e., while examining the threads in the dependency list
to compute PUD, if it is faster to abort them than to continue execution, then the threads
are aborted and vice versa. Thus we compute the PUD of a thread if it is executed as
soon as possible. A similar heuristic is used in [21] but for a single processor, in contrast
to the distributed system we consider in this work. Note that this heuristic minimizes the
amount of time a high utility thread waits for a resource, at the expense of having to possibly
re-execute threads that have been aborted (see [21] for details).

Algorithm 13: DQBUA: computePUD

Input: Ti, Dep(i,k), j; // j is node where resource request occurred1:
Util ← 0; Time← 0; Seen← /0;2:
for each Dep(i,k) do3:

for each S ∈ Dep(i,k) do4:
if S.ID /∈ Seen then5:

Seen← Seen∪S.ID;6:
//Γ1: sections from S until last visit to j7:

S.Rem← Σk∈Γ1 RES.ID
k ;8:

//Γ2: all downstream sections9:

S.Abort ← Σk∈Γ2 Sh
k .ex;10:

if S.Abort > S.Rem then11:
Time← Time+S.Rem;12:
Util ←Util +UT (tcurr +S.Rem)13:

else Time← Time+S.Abort;14:

Time← Time+GEi;15:
Util ←Util +Ui(tcurr +GEi);16:
Ti.PUD = Util/Time;17:
return Ti.PUD;18:

Since we are computing the PUD of the whole thread, we need to consider the dependencies of
all sections belonging to the thread. Therefore, Algorithm 13 considers the dependency list,
Dep(i,k), of each of the k sections of thread Ti while computing the PUD. While computing
the global PUD of a thread, we take into account the utility of the threads that it depends
on. The reason that we do this is that in order to schedule a thread, we need to schedule its
dependencies first, so when the thread completes, its dependencies will also have completed
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thus accruing the utility of both the dependencies and the thread itself. Thus we compute
the utility of completing the current thread as the sum of the utility of the current thread
and the threads it depends on (lines 13 and 16). We measure the potential utility of a thread
and its dependents as the ratio of the utility they can accrue and the time taken for them
to accrue this utility (line 17).

We assume that each thread in the system has a globally unique ID, and that each of the
thread’s sections, Si, store this global ID in the variable, Si.ID. Since a thread has multiple
sections, each of these sections may be dependent on a number of different sections. It is
possible that two sections of a thread are dependent on two sections of another thread. In
this case, we should only consider the utility of the dependent thread once (since the utility
of this thread will only be accrued once when it completes execution). Therefore, in line 5,
we check whether a section in a dependency chain, Dep(i,k), belongs to a thread that has
been handled before (because another of its sections is in the dependency list of a different
section belonging to the current thread). Only threads that have not been considered before
are used to compute the current thread’s global PUD.

Note that when computing the time remaining for a section, S, to release a resource (line 8),
we consider the remaining time for sections starting from S until the last section belonging
to S’s thread arrives at the current node j. The reason for this is that we do not know
when the resource will be released by section S, however since we assume that all resource
request/release pairs occur on the same node (see Section 5.2), the latest time at which the
resource will be released is when the last section belonging to S’s thread to visit node j
terminates.

Similarly, when we compute the abort time for section S (line 10), we only consider the abort
times of downstream sections. The reason for this is that DQBUA ensures LIFO execution
of abort handlers and therefore the current section’s abort handler will only execute after
the handlers of its downstream sections have terminated. Note that neither the abort time
computed in line 10 nor the remaining time to release the resource computed in line 8 are
actual times at which those events will occur (interference by other threads ensures that this
is not the case), rather the values are merely used as an indication of the amount of work
necessary to abort a section to release its resources or to complete a section to release its
resources respectively. Since we consider a heuristic of performing the least amount of work,
we choose the scenario that takes the least amount of time (line 13).

When computing the global PUD of a section, we need to have up-to-date information about
threads that have a section in Dep(i,k). Since resource requests are distributed scheduling
events, this information will be received when all nodes in the system send their schedul-
ing information to the node constructing the schedule in response to its broadcast start of
algorithm message (lines 1-2 in Algorithm 12).

We now turn our attention to the method used to check schedule feasibility. For a schedule to
be feasible, all the sections it contains should complete their execution before their assigned
termination time. Since we are considering threads with end-to-end termination times, the
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termination time of each section needs to be derived from its thread’s end-to-end termination
time. This derivation should ensure that if all the section termination times are met, then
the end-to-end termination time of the thread will also be met. For the last section in a
thread, we derive its termination time as simply the termination time of the entire thread.
The termination time of the other sections is the latest start time of the section’s successor
minus the communication delay. Thus the section termination times of a thread Ti, with k
sections, is:

Si
j.tt =

{
Ti.tt j = k
Si

j+1.tt−Si
j+1.ex−T 1≤ j ≤ k−1

where Si
j.tt denotes section Si

j’s termination time, Ti.tt denotes Ti’s termination time, and

Si
j.ex denotes the estimated execution time of section Si

j. The communication delay, which
we denote by T above, is a random variable ∆. Therefore, the value of T can only be de-
termined probabilistically. This implies that if each section meets the termination times
computed above, the whole thread will meet its termination time with a certain, high, prob-
ability. In addition, each section’s handler has a relative termination time, Sh

j .X . However,
a handler’s absolute termination time is relative to the time it is released, more specifically,
the absolute termination time of a handler is equal to the sum of the relative termination
time of the handler and the failure time t f (which cannot be known a priori). To overcome
this problem, we delay the execution of the handler as much as possible, thus leaving room
for more important threads. We compute the handler termination times as follows:

Sh
j .tt =

{
Si

k.tt +Sh
j .X +TD + ta j = k

Sh
j+1.tt +Sh

j .X +T 1≤ j ≤ k−1

where Sh
j .tt denotes section handler Sh

j ’s termination time, Sh
j .X denotes the relative termina-

tion time of section handler Sh
j , Si

k.tt is the termination time of thread i’s last section, ta is a
correction factor corresponding to the execution time of the scheduling algorithm, and TD is
the time needed to detect a failure by our QoS FD [17]. From this, we compute latest start
times for each handler: Sh

j .st = Sh
j .tt−Sh

j .ex for 1≤ j ≤ k, where Sh
j .ex denotes the estimated

execution time of section handler Sh
j . Using these derived termination times, we can check

whether a schedule is feasible or not.

Algorithm 14 shows how this is done in DQBUA. If the estimated completion time, Si.Fin,
of a section is greater than its derived termination, Si.tt, then the schedule is not feasible
(lines 13-14). We compute Si.Fin as the sum of the start time of a section and its execution
time. However, it is important to note that, except for current and previous head nodes,
these sections haven’t arrived at their nodes yet when Algorithm 14 is invoked. Therefore we
need to estimate the start time of these sections when computing the estimated completion
time of those sections.

We estimate the start time of a section to be the maximum of the estimated completion time
of the section preceding it in the local queue (line 10) and the arrival time of the section on a
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node (which we estimate as the sum of the completion time of the section’s predecessor and
the communication delay, Si−1.Fin+T ). We assume that each section’s estimated completion
time, Si.Fin, is set to infinity before algorithm Algorithm 14 is run.

Algorithm 14: DQBUA: isFeasible

Input: σi; //Schedule for each node1:
for 1≤ i≤ N do2:

posi ← 1;3:

Until (posi = length(σi) , 1≤ i≤ N) do4:
for 1≤ i≤ N do5:

Si ← getElement(σi, posi);6:
pre← getElement(σi, posi−1);7:
if posi = 1 then pre.Fin← 0;8:
if i = 1 then Si−1.Fin← Si.Arr; T ← 0;9:
Start ←max(pre.Fin,Si−1.Fin+T );10:
if Start 6= ∞ then11:

Si.Fin← Si.ex+Start;12:
if Si.Fin > Si.tt then13:

return f alse;14:

posi ← posi +1;15:

return true;16:

We use this relatively expensive method for checking the feasibility of schedules since alter-
native methods can be misleading. As mentioned before, when Algorithm 14 is invoked, only
the current head section and its predecessors will have started in the system, thus the start
time of the remaining sections in a thread need to be estimated. The expedient method, used
in some previous work, of using the latest start time of a section (computed as its predeces-
sor’s latest termination time plus a communication delay, Si−1.tt +T ) as an estimated for a
section’s start time means that a section will have no slack time in the schedule. Therefore,
the section cannot tolerate any interference by other sections. This usually leads to pes-
simistic results with some threads being rejected from an underloaded system. Algorithm 14
handles this by computing a better estimate of the start time of sections that haven’t started
yet.

In Algorithm 15, each node, j, sends the node running DQBUA its current local schedule
σp

j . Using these schedules, the node can determine the set of threads, Γ, that are currently
in the system. Both these variables are inputs to the scheduling algorithm (lines 1 and 2
in Algorithm 15). In lines 3-8, the algorithm DQBUA computes the global PUD of each
thread in Γ. The global PUD is computed by first checking whether all sections in a thread
can complete execution before their termination time if they were executed immediately. If
this is not the case, the thread is assigned a PUD of zero since it cannot possibly accrue any
utility to the system (lines 4). Otherwise, we compute the dependency chain for the thread’s
sections and call Algorithm 13 to compute the global PUD of the thread (lines 6-7). In line
6, we check for cycles to detect any deadlock that may exist. If a cycle is found, it is broken
by aborting the thread with the least PUD by executing its exception handler.

Before we schedule the threads, we need to ensure that the exception handlers of any thread
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Algorithm 15: DQBUA: ConstructSchedule

input: Γ; //Set of threads in the system1:
input: σp

j , H j ← nil; //σp
j : Previous schedule of node j, H j: set of handlers scheduled2:

for each Ti ∈ Γ do3:
if for some section Si

j ∈ Ti, tcurr +Si
j.ex > Si

j.tt then Ti.PUD← 0;4:

else5:
Compute Dep(i, j), resolving deadlock if necessary;6:
Ti.PUD←ComputePUD(Ti,Dep(i, j));7:

for each task el ∈ σp
j do8:

if el is an exception handler for section Si
j then Insert(el, H j, el.tt);9:

σ j ← H j;10:
σtemp ← sortByPUD(Γ);11:
for each Ti ∈ σtemp do12:

Ti.stop←false;13:

if do not receive σ j from node hosting Si
j ∈ Ti then14:

Ti.stop←true;15:

if Ti.PUD > 0 and Ti.stop 6=true then16:
insertByEDF(Ti,Dep(i, j));17:

for each j ∈ N do18:
if σ j 6= σp

j then Mark node j as being affected;19:

that has already been accepted into the system can execute to completion before its termi-
nation time. We do this by inserting the handlers of sections that were part of each node’s
previous schedule into that node’s current schedule (lines 8-9). Since these handlers were part
of σp

j , and DQBUA always maintains the feasibility of a schedule as an algorithm invariant,
we are sure that these handlers will meet their termination times.

In line 11, we sort the threads in the system in non-increasing order of PUD and consider
them for scheduling in that order (lines 12-17). In lines 14-15 we mark as failed any thread
that has a section hosted on a node that does not participate in the algorithm. If a thread
can contribute non-zero utility to the system and the thread has not been rejected from
the system, then we insert its sections, and their dependencies, into the scheduling queue
of the node responsible for them in non-decreasing order of termination time by calling
Algorithm 16 (lines 16-17).

When Algorithm 16 is invoked, a copy is made of the current schedule so that any changes
that result in an infeasible schedule can be undone (line 2). We then consider each of the
remaining sections of the thread being considered, if the section does not already belong to
the current schedule (because it was part of the dependency chain of a previous thread), the
section and its handler are inserted into the current schedule (lines 5-7).

We then consider the dependencies of that section (lines 8-32). Although sections are consid-
ered for scheduling in non-increasing order of global PUD, they are inserted into the schedule
in non-decreasing termination time order. Thus during underloads, when no threads are re-
jected, the resulting schedule is basically a deadline ordered list. So during underloads, our
scheduling algorithm defaults to Earliest Deadline First (EDF) scheduling, which is an op-
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Algorithm 16: DQBUA: insertByEDF

input: σp
j , σ j;1:

σtmp
j ← σ j; // make a copy of the schedule2:

for each remaining section, Si
j, belonging to Ti do3:

if Si
j /∈ σtmp

j then4:

Insert(Si
j,σ

tmp
j ,Si

j.tt);5:

T Tcur ← Si
j.tt;6:

if Sh
j /∈ σp

j then Insert(Sh
j ,σ

tmp
j ,Sh

j .tt);7:

for ∀Sk
n ∈ Dep(i, j) do8:

if Sk
n ∈ σtmp

n then9:
if Sk

n is an abortion handler then10:
Remove all sections belonging to Sk

n’s thread;11:

T T ← lookUp(Sk
n,σ

tmp
n );12:

if T T < T Tcur then13:
T Tcur ← T T ;14:
Continue;15:

else16:

Remove(Sk
n,σ

tmp
n ,T T );17:

Insert(Sk
n,σ

tmp
n ,T Tcur);18:

δ←T T −T Tcur;19:

for all predecessors, Sx
l , of Sk

n do20:
//If Sk

n is an abortion handler, Sx
l s are also abortion handlers.21:

//Otherwise, Sx
l s are normal sections22:

T T ← lookUp(Sx
l ,σ

tmp
l ); γ← δ;23:

if Sk
n.tt−T T < δ then24:

γ← δ− (Sk
n.tt−T T ) ;25:

Remove(Sx
l ,σ

tmp
l ,T T );26:

Insert(Sx
l ,σ

tmp
l ,T T − γ);27:

else28:
T Tcur ←min(T Tcur,Sk

n.tt);29:

Insert(Sk
n,σ

tmp
n ,T Tcur);30:

if Sk
n is not an abortion handler then31:

if Sh
n /∈ σp

n then Insert(Sh
n,σ

tmp
n ,Sh

n.tt);32:

if isFeasible(σtmp
j ’s)=true then33:

σ j ← σtmp
j for all j ;34:

return σ j for all j;35:
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timal realtime scheduling algorithm [60] that accrues 100% utility during underloads. Note
that if a section, Sk

n, in the dependency chain, Dep(i, j), needs to be aborted in order to
reduce the blocking time of a thread, then all the sections belonging to Sk

n’s thread need to
be aborted as well (lines 10-11).

In order to ensure that the order of the dependencies is maintained, if the termination time of
a section is greater than the termination time of a section that depends on it, its termination
time is moved up to the termination time of the section that depends on it (lines 17 and 27).
In addition, all the predecessors of that current section have their termination time adjusted
to reflect this new value (lines 20-27).

5.5 Algorithm Properties

We now turn our attention to proving some theoretical results for the algorithm. Below, T
is the communication delay, Γ is the set of threads in the system and k is the maximum
number of sections in a thread.

Lemma 39. A node determines whether or not it needs to run an instance of DQBUA
at most 4T time units after it detects a distributed scheduling event, with high, computable
probability, Plock.

Proof. This follows from Lemma 1 in [29].

Lemma 40. Once a node is granted permission to run an instance of DQBUA, it takes
O(|Γ|2k3 log(|Γ|k)+T ) time units to compute a new schedule, with high, computable, proba-
bility, PSWET S.

Proof. Once a node is granted permission to run an instance of DQBUA it executes Al-
gorithm 12. This algorithm has three communication steps, one to broadcast the START
message, another to receive the replies from other nodes in the system and one to multicast
any changes to affected nodes. Thus the algorithm takes a total of 3T time units for its
communication with other nodes. In addition to these communication steps, Algorithm 12
also takes time to actually compute SWETS (line 3). Algorithm 15 is the algorithm that
is used to compute SWETS. In this algorithm, lines 3-7 iterate |Γ| times, and the function
computePUD, invoked in line 7, takes |Γ|k2 time in the worst case. Therefore the time
complexity of lines 3-7 is |Γ|2k2.

Lines 8-9 take O(|Γ|k) time in the worst case, line 11 sorts the threads in O(|Γ| log(|Γ|))
time. The for loop in lines 12-17 iterates |Γ| times in the worst case. The body of this loop
calls Algorithm 16 in line 17. The time complexity of Algorithm 16 is dominated by three
nested loops in lines 3-32. The outer loop iterates k times in the worst case, the middle
loop (starting at line 8) iterates O(|Γ|k) times in the worst case, and the inner most loop
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(starting at line 20) iterates k times in the worst case. The time complexity of the body of
the inner loop is dominated by the time complexity of the peek, insert and remove operations
(lines 23, 26 and 27 respectively). Using self-balancing binary search trees to represent the
queues, all these operations can be performed in O(log(|Γ|k)) time. Therefore the nested loop
structure, and thus Algorithm 16, has a time complexity of O(|Γ|k3 log(|Γ|k)). Therefore the
time complexity of lines 12-17 is O(|Γ|2k3 log(|Γ|k)).
Thus the complexity of the algorithm is O(|Γ|2k2 + |Γ|k+ |Γ| log(|Γ|)+ |Γ|2k3 log(|Γ|k)), which
is asymptotically O(|Γ|2k3 log(|Γ|k)). Adding the communication delay to this computational
complexity we get O(|Γ|2k3 log(|Γ|k)+ 3T ), which is asymptotically O(|Γ|2k3 log(|Γ|k)+ T ).
There are three communication rounds in this procedure. However, the first two of these
communication rounds depend on timeouts (line 2, Algorithm 12), therefore it is only the
third that is probabilistic in nature. Therefore, the probability that SWETS is computed
in the time derived above is equal to the probability that the nodes receive the multicast
message sent on line 4 of Algorithm 12 within T time units. Since the communication delay
has CDF DELAY (t), the probability that T is not violated during runtime, and thus that the
time bound above is respected, is PSWET S = DELAY (T ).

Theorem 41. A distributed scheduling event is handled at most O(|Γ|2k3 log(|Γ|k)+T +TD)
time units after it occurs, with high, computable, probability, Phand.

Proof. There are three possible distributed scheduling events: 1) the arrival of a new thread
into the system, 2) a resource request and 3) the failure of a node.

In case of the arrival of a new thread or a resource request, the head node of the thread
immediately attempts to acquire a “lock” on running an instance of DQBUA. By Lemma 39,
the node takes 4T time units to acquire a lock and by Lemma 40, it takes the algorithm
O(|Γ|2k3 log(|Γ|k)+T ) to compute SWETS. Therefore, in the case of the arrival of a thread or
a resource request the event is handled O(|Γ|2k3 log(|Γ|k)+ T + 4T )=O(|Γ|2k3 log(|Γ|k)+ T )
time units after it occurs. Note that O(|Γ|2k3 log(|Γ|k)+T ) is O(|Γ|2k3 log(|Γ|k)+T +TD).

In case of a node failure, some node will detect this failure after TD time units. That node
then attempts to acquire a lock from the quorum system to run an instance of DQBUA. By
Lemmas 39 and 40, this takes O(|Γ|2k3 log(|Γ|k)+T ) time units. Thus the event is handled
O(|Γ|2k3 log(|Γ|k)+T +TD) time units after it occurs.

In both these cases, the result relies on Lemmas 39 and 40, so the probability that events
are handled within the time frame mentioned above is Phand = PSWET S×Plock.

Lemma 42. If all nodes are underloaded and no nodes fail, then no threads will be suggested
for rejection by DQBUA with high, computable, probability pnore j.

Proof. Since the nodes are all underloaded and no nodes fail, Algorithm 15 ensures that all
sections will be accepted for scheduling in the system. Therefore, the only source of thread
rejection is if a node does not receive a suggestion from other nodes during the timeout
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value, 2T , (see line 2 in Algorithm 12). This can occur due to one of two reasons; 1) the
broadcast message (line 1, Algorithm 12), that indicates the start of the algorithm, may not
reach some nodes 2) the broadcast message reaches all nodes, but these nodes do not send
their suggestions to the node running DQBUA during the timeout value assigned to them.

The probability that a node does not receive a message within the timeout value from one
of the other nodes is p = 1−DELAY (T ). We consider the broadcast message to be a series
of unicasts to all other nodes in the system. Therefore, the probability that the broadcast
START message reaches all nodes is Ptmp = bino(0,N, p) where bino(x,n, p) is the binomial
distribution with parameters n and p. If the START message is received, each node sends
its schedule to the node that sent the START message. The probability that none of these
messages violate the timeout is tmp = bino(0,N, p). As mentioned before, if none of the
nodes miss a message, no threads will be rejected, thus the probability that no threads will
be rejected is the product of the probability that the broadcast message reaches all nodes,
and the probability that all nodes send their schedule before the timeout expires. Therefore,
pnore j = tmp×Ptmp.

Lemma 43. If each section of a thread meets its derived termination time, then under
DQBUA, the entire thread meets its termination time with high, computable probability,
psuc.

Proof. Since the termination times derived for sections are a function of communication
delay and this communication delay is a random variable with CDF DELAY (t) the fact that
all sections meet their termination times implies that the whole thread will meet its global
termination time only if none of the communication delays used in the derivation are violated
during runtime.

Let T be the communication delay used in the derivation of section termination times. The
probability that T is violated during runtime is p = 1−DELAY (T ). For a thread with k
sections, the probability that none of the section to section transitions incur a communication
delay above T is psuc = bino(0,k, p). Therefore, the probability that the thread meets its
termination time is also psuc = bino(0,k, p).

Theorem 44. If all nodes are underloaded, no nodes fail (i.e. f = 0) and each thread can
be delayed O(|Γ|2k3 log(|Γ|k)+T ) time units once and still be schedulable, DQBUA meets all
the thread termination times yielding optimal total utility with high, computable, probability,
Palg.

Proof. By Lemma 42, no threads will be considered for rejection from a fault free, under-
loaded system with probability pnore j. This means that all sections will be scheduled to meet
their derived termination times by Algorithm 15.

By Lemma 43, this implies that each thread, j, will meet its termination time with probability
p j

suc. Therefore, for a system with X = |Γ| threads, the probability that all threads meet
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their termination time is Ptmp = ∏X
j=1 p j

suc. Given that the probability that all threads will
be accepted is pnore j, Palg = Ptmp× pnore j.

We make the requirement that a thread tolerate a delay of O(|Γ|2k3 log(|Γ|k)+T ) time units
and still be schedulable because DQBUA takes O(|Γ|2k3 log(|Γ|k)+ T ) time units to reach
its decision about the schedulability of a newly arrived thread. Thus if this delay causes any
of the thread’s sections to miss their deadlines, the thread will not be schedulable. We only
require that the thread suffer this delay once because we assume that there is a scheduling
coprocessor on each node, thus the delay will only be incurred by the newly arrived thread
while other threads continue to execute uninterrupted on the other processor.

Theorem 45. If N− f nodes do not crash, are underloaded, and all incoming threads can be
delayed O(|Γ|2k3 log(|Γ|k)+T ) and still be schedulable, then DQBUA meets the termination
time of all threads in its eligible execution thread set, Γ, with high computable probability,
Palg.

Proof. As in Lemma 42, no thread in the eligible thread set Γ will be rejected if nodes receive
the broadcast START message and respond to that message on time. The probability of
these two events is bino(0,N− f , p) where p = 1−DELAY (T ). Therefore, the probability
that none of the threads in Γ are rejected is Pnore j = bino(0,N − f , p)× bino(0,N − f , p).
This means that all the sections belonging to those threads will be scheduled to meet their
derived termination times. By Lemma 43, this implies that each of these threads, Tj, will

meet their termination times with probability p j
suc. Therefore, for a system with an eligible

thread set, Γ, the probability that all threads meet their termination times if their sections
meet their termination times is Ptmp = ∏ j∈Γ p j

suc. The probability that all the remaining
threads are execute to completion is thus Palg = Ptmp × pnore j. The reason for tolerating
O(|Γ|2k3 log(|Γ|k)+T ) delay is the same as in Theorem 44.

Definition 4 (Section Failure). A section, Si
j, is said to have failed when one or more of

the previous head nodes of Si
j’s thread (other than Si

j’s node) has crashed.

Lemma 46. If a node hosting a section, Si
j, of thread Ti fails (per Definition 4) at time

t f , every correct node will include handlers for thread Ti in its schedule by time t f +TD + ta,
where ta is an implementation-specific computed execution bound for DQBUA calculated per
the analysis in Theorem 41, with high, computable, probability, Phand

Proof. Since the QoS FD we use in this work detects a failed node in TD time units [17],
all nodes in the system will detect the failure of the node at time t f + TD. As a result, the
DQBUA algorithm will be triggered and will exclude Ti from the system because node j will
not send its schedule (lines 14-15 Algorithm 15). Consequently, Algorithm 15 will include
the section handlers for this thread in the schedule. Execution of DQBUA completes in time
ta and thus all handlers will be included in the schedule by time t f +TD + ta.
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Of all these timing terms, only ta is stochastic. From Theorem 41, we know that ta will be
obeyed with probability Phand , therefore, the time bound derived above is also obeyed with
probability Phand.

Lemma 47. If a section Si, where i 6= k, fails (per Definition 4) at time t f and section Si+1 is
correct, then under DQBUA, its handler Sh

i will be released no earlier than Sh
i+1’s completion

and no later than Sh
i+1.tt +T +Sh

i .X −Sh
i .ex.

Proof. For i 6= k, a section’s exception handler can be released due to one of two events; 1)
its start time expires; or 2) an explicit invocation is made by the handler’s successor.

In the first case, we know from the analysis in Section 5.4 that the start time of Sh
i is

Sh
i+1.tt + Sh

j .X + T − Sh
j .ex. Thus, by definition, it satisfies the upper bound in the theorem.

Also, since Sh
j .X ≥ Sh

j .ex (otherwise the handler would not be schedulable), Sh
i+1.tt + Sh

j .X +
T −Sh

j .ex > Sh
i+1.tt, and this satisfies the lower bound of the theorem.

In the second case, an explicit message has arrived indicating the completion of Sh
i+1. Since

the message was sent, this indicates that Sh
i+1.tt has already passed, thus satisfying the lower

bound of the theorem. In addition, the message should have arrived T time units after Sh
i+1

finishes execution (i.e at Sh
i+1.tt +T ), since Sh

i+1.tt +T ≤ Sh
i+1.tt +T +Sh

i .X−Sh
i .ex (remember

that Sh
i .X ≥ Sh

i .ex), then the upper bound is satisfied.

An interesting thing about the property above is that it is not probabilistic in nature. At first
sight, it would seem that the property is stochastic due to the probabilistic communication
delay used in the second case mentioned in the proof. One would expect the upper bound
in the property to be respected only probabilistically in the second case. However, if the
upper bound is not met in the second case (i.e. the stochastic communication delay causes
the notification of the completion of handler Sh

i+1 to arrive after the upper bound in the
theorem), then the first case kicks in and starts the handler before the upper bound expires
anyway. Therefore this result is deterministic in nature.

Lemma 48. If a section Si fails (per Definition 4), then under DQBUA, its handler Sh
i will

complete no later than Sh
i .tt (barring Sh

i ’s failure).

Proof. If one or more of the previous head nodes of Si’s thread has crashed, it implies that Si’s
thread was present in a system wide schedulable set previously constructed. This implies that
Si and its handler were previously determined to be feasible before Si.tt and Sh

i .tt respectively
(lines 5-7 of Algorithm 16).

When some previous head node of Si’s thread fails, DQBUA will be triggered and will remove
Si from the pending queue. In addition, Algorithm 15 will include Sh

i in H and construct a
feasible schedule containing Sh

i (lines 8-9 and line 10). Since the schedule is feasible and Sh
i

is inserted to meet Sh
i .tt (line 7, Algorithm 16), then Sh

i will complete by time Sh
i .tt.
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Note that the termination times mentioned in the proofs above may be modified to reflect
dependencies (lines 20-27 in Algorithm 16). We now state DQBUA’s bounded clean-up
property.

Theorem 49. In the event of a failure of a thread, the thread’s handlers will be executed in
LIFO (last-in first-out) order. Furthermore, all (correct) handlers will complete in bounded
time. For a thread with k sections, handler termination times Sh

i .X , which fails at time t f ,
and (distributed) scheduler latency ta, this bound is Ti.X + ∑i Sh

i .X + kT + TD + ta, with high
computable probability Pexep.

Proof. The LIFO property follows from Lemma 47. Since it is guaranteed that each handler,
Sh

i , cannot begin before the termination time of handler Sh
i+1 (the lower bound in Lemma 47),

then we guarantee LIFO execution of the handlers.

The fact that all correct handlers complete in bounded time is shown in Lemma 48, where
each correct handler is shown to complete before its termination time.

Finally, if a thread fails at time t f , all nodes will include handlers for this thread in their
schedule by time t f + TD + ta (Lemma 46) with probability Phand and DQBUA guarantees
that all these sections will complete before their termination times (Lemma 48). Due to
the LIFO nature of handler executions, the last handler to execute is the first exception
handler, Sh

1. The termination time of this handler (from the equations in Section 5.4) is
Ti.X +∑i Sh

i .X + kT +TD + ta (which is basically the sum of the relative termination times of
all the exception handlers, plus the termination time of the last section, which is used as an
estimate for the worst case failure time of the threads per the discussion in Section 5.4, k
communication delays T to notify handlers in LIFO order, TD to detect the failure after it
occurs and ta for DQBUA to execute).

Since Lemma 48 guarantees that all handlers will finish before their derived termination
times, the only stochastic part of the theorem is the probability that DQBUA will include
the handlers of all the section in time t f +TD + ta. From Lemma 46, we know this probability
is Phand, thus Pexep = Phand .

Theorem 50. A deadlock is resolved in at most O(|Γ|2k3 log(|Γ|k)+T ) time units by termi-
nating the thread that can contribute the least amount of utility to the system.

Proof. A resource request is a distributed scheduling event. Therefore, when the resource re-
quest that causes a wait-for cycle to form occurs, it is handled in at most O(|Γ|2k3 log(|Γ|k)+
T ) time units (see Theorem 41). While computing the dependency chain in Algorithm 15,
the cycle will be detected and broken by terminating the thread in the cycle with the lowest
PUD. The theorem follows.

Theorem 51. Resource contention is resolved in order of thread PUD.
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Proof. Threads are ordered according to their PUD in Algorithm 15. Therefore if more than
one thread is waiting for a particular resource, threads with higher PUD will be considered
before threads with lower PUD.

Theorem 52. DQBUA limits thrashing by reducing the number of instances of DQBUA
spawned by concurrent distributed scheduling event.

Proof. This follows from the proof of Theorem 22 of [29].

5.6 Experimental Results

We performed a series of simulation experiments on ns-2 to compare the performance of
DQBUA to RTG-DS in terms of Accrued Utility Ratio (AUR) and Deadline Satisfaction
Ratio (DSR). We define AUR as the ratio of the accrued utility (the sum of Ui for all
completed threads) to the utility available (the sum of Ui for all available jobs) and DSR as
the ratio of the number of threads that meet their termination time to the total number of
threads in the system. We considered threads with three segments. Each thread starts at its
origin node with its first segment. The second segment is a result of a remote invocation to
some node in the system, and the third segment occurs when the thread returns to its origin
node to complete its execution.
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Figure 5.1: DQBUA: AUR vs. Utilization
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Figure 5.2: DQBUA: DSR vs. Utilization

The periods of these threads are fixed, and we vary their execution times to obtain a range of
utilization ranging from 0 to 200%. For fair comparison, all algorithms were simulated using
a synchronous system model, where communication delay varied according to an exponential
distribution with mean and standard deviation 0.02 seconds but could not exceed an upper
bound of 0.5 seconds. Our system consisted of fifty client nodes and five servers. In our
experiments, the utilization of the system is considered the maximum utilization experienced
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by any node. We assume that there are two, different, resources on each node in the system.
Each section randomly choose which resource, if any, it wishes to acquire. The time spent
using a resource is a uniformly distributed random number that represents a proportion of
that section’s remaining execution time.

DQBUA is a collaborative scheduling algorithm, as such, its strength lies in its ability to give
priority to threads that will result in the most system-wide accrued utility even if the sections
of those threads do not maximize local utility on the nodes they are hosted. The thread
set that highlights this property contains threads that would be given low priority if local
scheduling is performed but should be assigned high priority due to the system-wide utility
they accrue. Therefore, we chose a thread set that contains high utility threads that have
one section with above average execution time (resulting in low PUD for that section) and
other sections with below average execution times (resulting in high PUD for those sections).
Such thread sets test the ability of the algorithm to take advantage of collaboration to avoid
making locally optimal decisions that would compromise global optimality.

As can be seen in Figures 5.1 and 5.2, the performance of DQBUA is better than that of
DTG-DS during overloads. This occurs, because DQBUA performs collaborative scheduling
thus maximizing, as much as possible, system-wide accrued utility. On the other hand,
RTG-DS does not perform collaborative scheduling (but uses gossip to identify the next head
node of a thread and to improve the reliability of the communication layer) and therefore
performs worse during overloads.

5.7 Conclusions

We presented an algorithm, DQBUA, for scheduling dependent distributable threads in a
partially synchronous system. We showed that it accrues optimal utility during underloads
and attempts to maximize the accrued utility during overloads. We experimentally compared
DQBUA to another scheduling algorithm for dependent threads, RTG-DS, and showed that
DQBUA outperforms RTG-DS during overloads.



Chapter 6

The case for STM

6.1 Introduction

Recently, due to fundamental physical constraints such as heat emanations, the computer
industry has undergone a paradigm shift: increasing computer performance is now done by
increasing the number of cores on a chip rather than increasing clock speed [86]. Today, most
machines produced are multi-core and the use of distributed systems is on the increase. Co-
inciding with this new direction of using concurrency to increase application throughput, is
the discovery of a rich set of applications that are a natural fit for parallel and distributed ar-
chitectures. From distributed databases to emerging distributed real-time systems [12], such
emerging applications are only meaningful in a distributed system with multiple computing
cores cooperating to execute the semantics of the application.

This parallelism offers a great opportunity for improving performance by increasing applica-
tion concurrency. Unfortunately, this concurrency comes at a cost: programmers now need
to design programs, using existing operating system and programming language features, to
deal with shared access to serially reusable resources and program synchronization. The de
facto standard for programming such systems is using threads, locks, and condition vari-
ables. Using these abstractions, programmers have been trying to write correct concurrent
code ever since multitasking operating systems made such programs possible.

Unfortunately, the human brain does not seem to be well suited for reasoning about concur-
rency [58]. The history of the software industry contains numerous cases where the difficulty
inherent in reasoning about concurrent code has resulted in costly software errors that are
very difficult to reproduce and hence debug and fix. Among the more common errors en-
countered in lock-based software systems are deadlocks, livelocks, lock convoying, and, in
systems where priority is important (e.g, embedded real-time systems), priority inversion.
Such errors stem from the difficulty in reasoning about concurrent code.

82
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Transactions have proven themselves to be a successful abstraction for handling concurrency
in database systems. Due to this success, researchers have attempted to take advantage
of their features for non-database systems. In particular, there has been significant recent
efforts to apply the concepts of transactions to shared memory. Such an attempt originated
as a purely hardware solution [42, 54] and was later extended to deal with systems where
transactional support was migrated from the hardware domain to the software domain [80].
Software transactional memory (or STM) has, until recently, been an academic curiosity
because of its high overhead. However, as the state-of-the-art improved and more efficient
algorithms were devised, a number of commercial and non-commercial STM systems have
been developed (see implementations section of [90]). In this chapter, we discuss the issues
involved in implementing software transactional memory in distributed embedded real-time
systems.

6.2 Motivation

Currently, the industry standard abstractions for programming distributed embedded sys-
tems include OMG/Real-Time CORBA’s client/server paradigm and distributable threads [67]
and OMG/DDS’s publish/subscribe abstraction [71]. The client/server and distributable
threads abstractions directly facilitate the programming of causally-dependent, multi-node
application logic. In contrast, the publish/subscribe abstraction is a data distribution ser-
vice for logically-single hop communications (i.e., from one publisher to one subscriber), and
therefore, higher-level abstractions must be constructed – on an application-specific basis
– to express causally-dependent, multi-node application logic (e.g., publication of topic A
depends on subscription of topic B; B’s publication, in turn, depends on subscription of
topic C, and so on). All of these abstractions rely on lock-based mechanisms for concurrency
control, and thus suffer from their previously mentioned inherent limitations.

In particular, lock-based concurrency control can easily result in local and distributed dead-
locks, due to programming errors that occur as a result of the conceptual difficulty of the
(lock-based) programming model. Detecting and resolving deadlocks, especially distributed
deadlocks, that can potentially arise due to distributed dependencies is complex and expen-
sive. Note that deadlocks can only be detected and resolved, as opposed to being avoided
or prevented, in those distributed embedded systems where it is difficult to obtain a-priori
knowledge of which activities need which resources and in what order. When a deadlock
is detected in such systems, the usual method of resolving it is to break the cycle of the
waiting processes by terminating one of them. Unfortunately, the choice of which process
to terminate is not a simple one in real-time systems. By terminating one of the processes
that are waiting in a cycle, we produce a chain of waiting processes. Depending on how, i.e.,
where, we break this cycle, it may or may not be feasible to meet the timing requirements of
the remaining processes. Thus, we need to consider the structure of the dependency chain,
after terminating a process to end the deadlock, in order to break the cycle in a way that
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optimizes end-to-end timeliness objectives. Furthermore, a process’s dependencies must be
taken into account when making the choice about which process to terminate. For exam-
ple, if a significant number of processes depend on the result of a process, terminating it to
resolve a deadlock may not be in the best interest of the application. In addition, the cost
of deadlock detection/resolution is exacerbated by the extra work necessary to restore the
system to an acceptable state when failure occurs. Thus, deadlock resolution is a complex
process.

The problem of distributed deadlock detection and resolution has been exhaustively studied,
e.g., [24, 25, 27, 57, 65, 76, 81]. A number of these algorithms turned out to be incorrect by
either detecting phantom deadlocks (false positives) or not detecting deadlocks when they do
exist, e.g., [19, 25]. These errors occur because of the inherent difficulty of reasoning about
distributed programs. This led to attempts at providing a formal method for analyzing such
protocols to ensure correct behavior (e.g., [24]). Despite the difficulty of reasoning about
distributed deadlock, solutions for this problem on synchronous distributed systems have
been developed. Unfortunately, for asynchronous systems, errors in the deadlock detection
process become inevitable. For real-time systems, these issues become more severe [81].
The semantic difficulty of thread and lock based concurrency control and the high overhead
associated with detecting and resolving distributed deadlock, as indicated above, are the
driving motivations for finding different programming abstractions for distributed embedded
real-time systems. Chapter 2 contains a review of the literature regarding this matter and
contains our reasoning for believing that STM is a promising solution to this problem.

6.3 STM for distributed embedded systems

There are a number of competing abstractions for implementing STM in distributed em-
bedded real-time systems. An interesting abstraction is the notion of real-time distributed
transactional objects, where code is immobile and objects migrate between nodes to provide
a transactional memory abstraction. Another alternative is to allow remote invocations to
occur within a transaction, spawning sub-transactions on each node (where they are executed
using STM), and using a distributed commit protocol to ensure atomicity. A third alterna-
tive is to provide a hybrid model, where both data and code are mobile and the decision of
which is moved is heuristically decided either dynamically or statically. Several key issues
need to be studied in order to use STM in distributed embedded systems, these are:

• Choosing an appropriate abstraction for including STMs in distributed embedded sys-
tems;

• Designing the necessary protocols and algorithms to support these abstractions;

• Implementing these abstractions in a programming language by making necessary
changes to its syntax and in the run-time environment; and
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• Designing scheduling algorithms to provide end-to-end timeliness using these new pro-
gramming abstractions.

6.3.1 Choosing an appropriate abstraction.

STM is a technology for multiprocessor systems, to use it in a multicomputer environment,
we need to develop appropriate abstractions. We are currently considering three competing
programming abstractions into which to incorporate STM:

• A model where cross-node transactions are permitted using remote invocations and
atomicity is enforced using an atomic commit protocol;

• A model where a distributed cache coherence protocol is used to implement an ab-
straction of shared memory on top of which we can build STM; and

• A hybrid model where code or data is migrated depending on a number of heuristics
such as size and locality.

In the first approach, we manage concurrency control on each node using STM, but allow
remote invocations to occur within a transaction. Thus we allow a transaction to span multi-
ple nodes. At the conclusion of the transaction, the last node on which transactional code is
executed acts as a coordinator in a distributed commit protocol to ensure an atomic commit-
ment decision. Our preliminary research, which we intend to elaborate upon, indicates that
such an approach may be prone to “retry thrashing” especially when the STM implemented
on each node is lock-free.

Since lock-free STM is an optimistic concurrency control mechanism, extending the duration
of a transaction by allowing it to sequentially extend across nodes results in a significantly
higher probability of conflicts among transactions. Such conflicts lead to aborted transactions
that are later retried. Retrying is antagonistic to real-time systems since it degrades one of
the most important features of real-time systems: predictability. Lock-based STM tends to
reduce some of this “thrashing” behavior since it eliminates part of the “optimism” of the
approach. However, long transactions are still more susceptible to retries and introducing
locks into the STM implementation necessitates a deadlock detection and resolution solution.
Fortunately such a solution does not need to be distributed since it only needs to resolve
local deadlocks.

Implementing STM on top of a distributed cache coherence protocol has been investigated
in [43, 61]. In this approach, code is immobile, but data objects move among nodes as
required. The approach uses a distributed cache coherence protocol to find and move objects.
We intend to design real-time cache coherence protocols, where timeliness is an integral part
of the algorithm. We plan to design STM on top of these protocols and compare their
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performance to the flow control abstraction. An important advantage of this approach is
that it eliminates the need for a distributed commit protocol. Since distributed commit
protocols are a major source of inefficiency in real-time systems [35], such an approach is
expected to yield better performance.

The last approach we intend to study is touched upon in [10]. This is a hybrid approach
where either data objects or code can migrate while still retaining the semantics of STM. By
allowing either code or data to migrate, we can choose a migration scenario that results in
the least amount of communication overhead. For example, suppose we have a simple trans-
actional program that increments the value of a shared variable X and stores the new value
in the transactional store. Assume further that X is remote, using a data flow abstraction
would necessitate two communication delays; one to fetch X from its remote location and
the other to send it back once it has been incremented. Using a control flow abstraction in
this case may be more efficient since it will only involve a single communication delay.

On the other hand, assume that several processes need access to a small data structure and
that these processes are in roughly the same location and are far away from the data they
need. Since communication delay depends on distances, it may make sense to migrate the
data to the processes in this case rather than incur several long communication delays by
moving the code to the data. In short, the choice of whether to migrate code or data can
have a significant effect on performance. In [10], this is accomplished under programmer
control by allowing an on construct which a programmer can use to demarcate code that
should be migrated. We intend to elaborate on this by coming up with solutions that would
use static analysis at compile-time (or dynamically at run-time) to make decisions about
which part of the application to move using a number of heuristics such as, for example, size
of code/data and locality considerations.

6.3.2 Designing suitable protocols and algorithms.

The algorithms and protocols that need to be designed depend on the programming abstrac-
tion we choose to implement. Some of the necessary abstractions have been touched upon
in Section 6.3.1, here we elaborate on these points.

For the model where code migrates, creating cross-node transactions, and data is immobile,
the main abstraction that needs to be designed is a real-time distributed commit protocol.
Since cross-node transactions are permitted, with each node involved hosting part of the
transaction, a distributed commit protocol is necessary to ensure atomicity. A number of
distributed commit protocols have been studied in the literature, with the two phase com-
mit protocol being the most commercially successful protocol. Unfortunately, the blocking
semantics of the two phase commit protocol may not be very suitable for real-time systems.
Therefore alternatives like the three phase commit protocol (despite its larger overhead) may
be more appropriate due to its non-blocking semantics. Other alternatives that involve the
relaxation of certain properties of distributed commit protocols in order to improve efficiency
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are discussed in [35]. We intend to design distributed commit protocols whose timeliness be-
havior can be quantified theoretically and/or empirically, in order to allow the system to
provide guarantees on end-to-end timeliness.

For the approach where code is immobile and data migrates, the most important protocol
that needs to be designed is a distributed real-time cache coherence protocol. This protocol
needs to be location aware in order to reduce communication latency and should be designed
to reduce network congestion. The cache coherence problem for multiprocessors has been
extensively studied in the literature [83]. There are also some solutions for the distributed
cache coherence problem (see [1, 15, 52, 87] for a, not necessarily representative, sample of
research on this issue). Distributed cache coherence bears some similarity to distributed
hash table (or DHT) protocols which have been an active topic of research recently due to
the popularity of peer-to-peer applications. Examples of DHT algorithms that are of interest
are [45,73,77].

We envision a cache coherence algorithm based on hierarchical clustering to reduce network
traffic and path reversal to synchronize concurrent requests, an approach used in [43]. Other
approaches for implementing distributed cache coherence will also be considered. An impor-
tant part of our research in this area will be to design cache coherence protocols that can
provide timeliness guarantees that we can verify theoretically and empirically.

For the hybrid abstraction, where both code and data can move, several issues need to
be determined. Among the issues that need to be resolved are the different methods of
distributing transactional meta-data in order to ensure efficient execution of the STM system,
providing a mechanism to support atomic commitment when code is allowed to migrate thus
resulting in multi-node transactions, aggregating communication in order to reduce the effect
of the extra communication necessary to manage the STM system (possibly by piggybacking
this information over normal network traffic) and optimizing network communication to
reduce latency. It is also necessary to design appropriate mechanisms for choosing whether
data or code migration is going to occur. Currently, the choice of which part of the program
to migrate is performed under programmer control [10]. We intend to design automated
methods for deciding which part of the program moves through either compile-time analysis
or at run-time.

6.3.3 Programming language implementation.

We need to incorporate the programming abstraction chosen and the protocols and algo-
rithms necessary to support them into a suitable programming language. Issues that need to
be addressed are extending the programming language syntax to include support for higher
level abstractions built upon STM. We introduce a number of syntactic modifications to
support the new constructs we propose to implement. The most basic syntactic extension
required is a method for demarcating atomic blocks (i.e. blocks of code that will be executed
within the context of STM), additions such as programmer controlled retry and providing
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alternative transactional execution can also be considered.

In addition to these syntactic extensions, modifications to the run-time environment are also
required. Our top candidate for implementing these abstractions is the emerging DRTSJ
RI. We choose this language for a number of reasons. First, the language is still under
development with a substantial part of the implementation details coming out of our research
group. Second, the RI will be evaluated by the standard’s expert community (e.g., Sun’s JSR-
50 experts group in the case of DRTSJ) as part of the standard’s approval process, resulting in
immediate and invaluable user feedback. Third, using a garbage collected language alleviates
some of the issues involved in memory management associated with STM (by, for example,
eliminating the problem of having transactions free allocated memory explicitly while other
transactions are still working on it). Of course this necessitates augmenting the garbage
collector with information about STM in order to prevent harmful interference with STM’s
meta-data.

Naturally, the actual modifications made to the programming language will depend on the
programming abstraction chosen. Regardless of the choice made about the abstraction used
to incorporate STM in distributed embedded systems, modifications to the run-time envi-
ronment are necessary to support STM. The actual modifications made are dependent on
the particular design we choose for our implementation of STM and so will not be elaborated
upon in this chapter. However, some of the design issues involved are choosing appropri-
ate meta-data to represent STM objects, providing appropriate mechanisms to atomically
commit transactions (for example by using atomic hardware instructions such as compare-
and-swap, or CAS, on suitably indirected meta-data), providing implementations for the
different design choices of STM (e.g., visible reads versus invisible reads and weak versus
strong atomicity).

6.3.4 Scheduling algorithms and analysis.

Finally, we will design scheduling algorithms that allow systems programmed using STM
to meet end-to-end timeliness requirements. This is a challenge due to the fact that the
retry behavior of STM is antagonistic to predictability. There have been several attempts
at providing timing assurances when STM is used in real-time systems or when lock-free
data structures are used in real-time systems [3–5, 62]. These approaches only consider
uni-processor systems and use the periodic task arrival model to bound retries.

Some of the approaches are fairly sophisticated and use, for example, linear programming [3]
to derive schedulability criteria for lock-free code. The basic idea of these approaches is
that, on a uni-processor system, the number of retries is bounded by the number of task
preemptions that occur. This bound exists because a uni-processor can only execute one
process at a time. Since it is not possible for a process to perform conflicting operations on
shared memory, and hence cause the retry of another process, unless it is running, the number
of preemptions naturally bounds the number of retries on uni-processors. Given this premise,
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the analysis performed in [3–5, 62] bounds the number of retries by bounding the number
of times a process can be preempted under different scheduling algorithms. This analysis
allows the authors to derive schedulability criteria for different scheduling algorithms based
on information about process execution times, execution times of the retried code sections,
process periods, etc.

More recently, attempts have been made at providing timeliness guarantees for lock-free data
structures built on multiprocessor systems [47]. The approach used in [47] is suitable for
Pfair-scheduled systems and other multiprocessor systems where quantum-based scheduling
is employed. The most restrictive assumption made in this approach is that access to a
shared lock-free object takes at most two quanta of processor time. Using this assumption,
the authors go on to bound the number of retries by determining the worst-case number of
accesses that can occur to a shared object during the quanta in which it is being accessed. For
an M processor system, the worst-case number of processes that can interfere with access to
a particular shared object is M−1. Given an upper bound on the number of times a process
can access a shared object within a quanta, it is possible to derive an upper bound on the
number of retries in such a system. The authors also go on to describe how it is possible
to use the concept of a “supertask”, basically a single unit that is composed of several tasks
that are to be scheduled as one unit, to reduce the worst-case number of retries and hence
improve system performance.

The particular method used to bound the number of retries in the system(s) we develop will
depend on the model we target. There are two possible alternatives. The first approach is
to target uni-processor distributed systems. In such systems, each node has only one proces-
sor. In order to provide scheduling criteria for such systems, we would use the approaches
developed for uni-processor systems to derive the number of retries that can occur on each
node, and then combine these bounds to determine the number of retries that can occur to
cross-node transactions, thus deriving schedulability criteria for STM implementations.

The second approach is to consider multiprocessor distributed systems. In such systems,
each node is a multiprocessor or multi-core machine. Schedulability analysis and scheduling
algorithms for such systems are considerably more difficult due to the difficulty in deriving
bounds on the number of retries in the system. A first possible approach is to consider the
Pfair-scheduling algorithm considered in [47] for obtaining bounds on the number of retries
on each node and then combining these bounds to obtain bounds for cross-node transactions.
Other approaches will also be considered in order to reduce the number of assumptions made
on the system model. We will design scheduling algorithms that can ensure that timeliness
requirements are not violated by the retry behavior of STM on distributed systems, and
provide analytical expressions for the schedulability criteria of these scheduling algorithms.
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6.4 Conclusions

Programming distributed systems using lock-based concurrency control is semantically diffi-
cult and computationally expensive. In order to alleviate some of these problems, we propose
the use of STM for concurrency control. In order to achieve this goal, a number of issues
need to be addressed. This chapter outlines these issues and proposes a method for solving
them.

Three different abstractions for incorporating STM into distributed embedded real-time sys-
tems are mentioned, and the algorithms and protocols necessary for implementing these
abstractions are briefly outlined. We also briefly indicate the type of schedulability analysis
that will be required to provide timeliness guarantees for systems programmed using these
abstractions.



Chapter 7

Response time analysis of
uni-processor distributed systems
using STM

7.1 Introduction

As mentioned in Chapter 6, STM is a promising alternative to traditional lock-based con-
currency control. However, while STM has many promising features, it is not a silver bullet.
Some problems associated with STM include handling irrevocable instructions such as I/O,
the weak atomic semantics of some of the current implementations [31] and the overhead
of retries. Despite these disadvantages, its semantic simplicity makes it a very promising
alternative to lock-based concurrency control.

In this chapter, we consider using STM as the concurrency control mechanism for (non-I/O
code in) distributed real-time systems. Toward this, we propose a method for comput-
ing an upper bound on the worst-case response time of periodic tasks, programmed using
STM, running in a distributed real-time system that employs Earliest Deadline First (EDF)
scheduling.

7.2 General Framework

There are different ways of incorporating STM into distributed systems [31]. In this chap-
ter, we consider a model where a distributed application consists of several pieces of code,
which we will refer to as tasks, executing on single nodes that are subject to crash failures.
Concurrency control on each node is managed using STM. A task makes an invocation (a
procedure call or an RPC, depending on whether the successor resides on the same node)
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after it has finished execution (at which point all its STM transactions should have been
committed). We do not allow cross-node critical sections (i.e. cross node transactions).

We present a method for analyzing the worst-case response times in such a system. In
order to do this, we first show how to extend Spuri’s response time analysis technique [82]
to include the overhead associated with the retry behavior of STM on a single machine
without considering offsets in Section 7.3.2. We then extend this analysis to include offsets
in Section 7.4.2. Including offsets is necessary since it enables us to handle the precedence
constraints of a distributed system where tasks make RPC calls to remote nodes and therefore
some tasks cannot start before their predecessor makes an invocation.

The ability to use offsets and jitters to represent these precedence constraints is discussed
in Section 7.6. In Section 7.5.1, we show how failures can be considered in the analysis by
ensuring that exception handlers can be executed if necessary. Our goal is to prove that it is
possible to provide real-time assurances for distributed systems where concurrency control
is managed using STM. Introducing STM to the repertoire of programming tools available
for the real-time programmer can considerably improve the quality of distributed concurrent
real-time programs and reduce the software development time by reducing the complexity of
the programming environment. As such, this chapter is our first step towards achieving the
goal of studying STM for distributed real-time systems in all its possible varieties as outlined
in [31].

7.3 Tasks with jitter

Given a set of periodic, independent tasks scheduled by EDF on a single processor, Spuri,
in [82], proposed an algorithm for computing an upper bound on the worst-case response time
for a task. In this section we extend the algorithm to consider tasks with mutually exclusive
resource access requirements that are programmed using software transactional memory.
We extend Spuri’s analysis to consider these tasks and compare the tightness of the bound
we obtain by comparing it to the utilization based schedulability analysis of lock-free code
proposed in [4].

Spuri’s idea for computing an upper bound on worst-case response time is based on finding
a “critical instant”, the release time of a task, τa, that would cause it to experience maximal
interference from other tasks. This critical instant is found in a busy period, which is defined
as a period of time during which a processor is busy executing tasks in the system. The
following theorem is helpful in finding that critical instant:

Theorem 53 (Spuri [82]). The worst-case response time of a task τa is found in a busy period
in which all other tasks are released simultaneously at the beginning of the busy period, after
having experienced their maximum jitter.

The proof of this theorem, presented in [82], rests on the fact that the conditions in Theo-
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rem 53 result in the largest number of interferences from other tasks. The same condition
holds for tasks using STM, since the largest number of interferences will result in the largest
number of transaction retries and hence the worst-case response time. Note that we make
the assumption that each interference by a task results in a transactional retry. This is a pes-
simistic assumption since the task may not be executing its transactional code at this point
in time, or the transactional operations may not conflict before the transaction commits.
However, we make this assumption to give our analysis the nature of an upper bound. In
Section 7.3.2, we present the modified analysis for independent tasks on a single processor.

7.3.1 Task model

We consider a task model with periodic tasks scheduled with the EDF discipline. The
system is composed of a set of N periodic tasks executing in a single processor. Each task τi
is activated periodically with a period of Ti, has a computation time of Ci +mis, where Ci is
the computation time of the task instance without considering the transactional part of the
code, mi is the number of times transactional code is executed in the task activation and s
is the computation cost of the transactional part of the code. In the rest of the chapter, we
shall refer to a task activation as job. Each job has a relative deadline di and a release jitter
bounded by Ji. We refer to the absolute deadline of a job as Di.

7.3.2 Analysis

In this section, we compute the worst-case contribution of a task τi to the response time of
the task under analysis τa. Specifically, we compute the worst-case contribution of task τi
during a busy period of duration t when the deadline of τa is D. Without loss of generality,
we label the time at which the busy period starts as t0, and measure the duration of the busy
period, t, and the deadline of τa, D, from t0.

As per Theorem 53, the worst-case contribution of a task, τi, occurs when it is released at
the start of the busy period after having experienced its maximum jitter. This scenario is
chosen so as to maximize the number of instances of τi that occur during the busy period in
order to maximize interference.

Only jobs with a deadline less than or equal to D can interfere with τa, also, jobs that start
outside the busy period, t, do not contribute to the interferences that occur within that
period. Using this information, we can compute the maximum number of jobs of τi that can
interfere with τa.

From [69], we know that the number of jobs of τi within the busy period, pt , is:

pt =
⌈

t + Ji

Ti

⌉
(7.1)
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and the number of task instances with deadlines at or before D is:

pD =
⌊

Ji +D−di

Ti

⌋
+1 (7.2)

Since both conditions, pD and pt , must be satisfied, the maximum number of interferences
of the jobs of τi in τa is:

ni = min
(⌈

t + Ji

Ti

⌉
,

⌊
Ji +D−di

Ti

⌋
+1

)

0
(7.3)

The zero that appears as a subscript in the equation above causes the result of the bracketed
expression to be zero if its value is negative. This is necessary because if di > D, no activation
of τi will interfere with τa. Thus, the worst-case contribution of τi to the response time of τa
is:

Wi(t,D) = ni(Ci +mis) (7.4)

Given this equation, it is possible to compute the response time of τa after having determined
the critical instant. Unfortunately, we do not know which instant in the busy period is the
critical instant. However, it is known that the critical instant can be found either at the
beginning of the busy period, or at an instant of time such that the deadline of the analyzed
job of τa coincides with the deadline of a task τi’s job. Otherwise, it would be possible
to make the activation time of τa earlier, without changing the schedule, to increase the
response time. The set of instants, Ψ, at which the deadline of τa’s job coincides with the
deadline of the job of some other task in the busy period, is:

Ψ =
[

{(p−1)Ti− Ji +di} (7.5)

∀p = 1 · · ·
⌈

L+ Ji

Ti

⌉
, ∀i

In the above equation, L is the worst-case length of a busy period. The following recurrence
relation can be used in computing L:

L = ∑
∀i

⌈
L+ Ji

Ti

⌉
Cexe

i (7.6)

where Cexe
i is an estimate of the processing load placed on the processor by a job during the

busy period.
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Equation (7.6), one of the many recurrence equations that can be found in response time
analysis [53], can be solved by starting with a small initial value for L and then iterating
until the equation converges. The equation is guaranteed to converge if the system is not
over-utilized (i.e., the load is under 100%). The execution time of a job, without considering
any interference, is Ci + mis. To this execution time, we need to add the load that a job
can place on the processor during the busy period if it interferes with another job. For
uni-processor systems scheduled using EDF an interference can only occur when a new job
arrives with a lower deadline than those already executing causing a context switch. Thus,
a job can cause, at most, one retry in some other job. Therefore, the load a job places on
the processor during the busy period is Ci +mis+ s, giving us:

L = ∑
∀i

⌈
L+ Ji

Ti

⌉
(Ci +mis+ s) (7.7)

Thus, we can compute the set of critical instants by subtracting da from each element in Ψ.
We then consider all the critical instants in our analysis to find the critical instant that gives
us the worst-case response time.

There may be several jobs of τa in the busy period, therefore we need to examine all of
these jobs in order to determine which one of them results in the worst-case response time.
Assuming that the first instance of τa occurs A time units after the start of the busy period,
the completion time of job p of τa, wA

a (p), can be computed as:

wA
a (p) = p(Ca +mas)+ ∑

∀i6=a
Wi(wA

a (p),DA(p))+ Is (7.8)

where I is the maximum number of interferences that can occur in jobs of higher priority
(lower deadline) than the instant of τa being studied as expressed in Equation (7.9).

I = ∑
∀i

min
(⌈

t + Ji

Ti

⌉
,

⌊
Ji +D−di

Ti

⌋
+1

)

0
(7.9)

In Equation (7.8), the term DA(p) is the deadline of job p when the first job of τa occurs A
time units after the start of the busy period and can be computed as:

DA(p) = A− Ja +(p−1)Ta +da (7.10)

The response time is obtained by subtracting the activation time from the completion time
of each task:

RA
a (p) = wA

a (p)−A+ Ja− (p−1)Ta (7.11)
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Next we need to determine the set of values we will use for A. Note that we have already
established that the critical instant can only be in the set Ψ computed in Equation (7.5).
We now further narrow down the set of values that need to be considered. Naturally, for
each value of p we only need to check values of A within one period. Thus, we can further
narrow down the critical instants we should consider to:

Ψ∗ = {Ψx ∈Ψ | (p−1)Ta− Ja +da ≤Ψx < pTa− Ja +da} (7.12)

For each of the values, Ψx, in Ψ∗, we need to check the values A(Ψx) = Ψx− [(p−1)Ta−Ja +
da].

Finally, we determine the worst-case response time by examining all instants of τa within
the busy period and taking the maximum response time as our result:

Ra = maxRA
a (p) (7.13)

∀p = 1 · · ·
⌈

L−Ja
Ta

⌉
,∀A(Ψx) |Ψx ∈Ψ∗

In Sections 7.4.2 and 7.6, this analysis is extended to allow us to handled distributed systems
(while Section 7.5.1 shows how we can include exception handlers in the analysis).

7.4 Tasks with jitter and offsets

In this section, we study a system where groups of tasks are grouped together into logical
entities which we shall call“transactions”. Each transaction is activated by a periodic external
event. Once this external event has arrived, the tasks in each transaction begin execution
after a certain time period, which we refer to as the offset, has passed. This model can be
used to model distributed systems. Already, several papers have been published showing
how to obtain an upper bound on the response time of distributed systems programmed
using this task model, e.g., [38, 69, 72]. Those attempts are based on the Holistic analysis
first proposed by Tindell and Clark [89]. In this section, we extend such analysis to deal
with STM based concurrency control.

7.4.1 Task model

We consider a system composed of a set of tasks executing on the same processor. These
tasks are grouped into logical entities referred to as transactions. Each transaction, Γi, is
activated by a periodic external event with period Ti. A transaction consists of ni tasks (not
to be confused with the ni used in the analysis of Section 7.3.2). We designate the tasks τi j,
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with the first subscript, i, identifying the transaction the task belongs to, and the second
subscript, j, specifying the order of the task within the transaction in non-decreasing order
of offsets.

Each of these tasks has an execution time of Ci j + mi js, where Ci j and s are the execution
times of the transactional and non-transactional part of a task, respectively, and mi j is the
number of times transactional code is invoked in a task. Tasks are activated after a certain
time, which we shall refer to as the offset, elapses from the arrival of the external event that
triggered the transaction. For each τi j, its offset is designated φi j. We also allow a task to
suffer release jitter which is bounded by the term Ji j. Both offsets and jitter can be larger
than the period of their transaction.

7.4.2 Analysis

In this section, we compute the worst-case response time for task τab. In order to do this,
we must determine the worst-case contribution of each transaction to the response time of
the task under analysis. The theorem below can be used for this purpose:

Theorem 54 (Palencia and Harbour [69]). The worst-case contribution of transaction Γi
to the response time of a task τab is obtained when the first activation of some task τik that
occurs within the busy period coincides with the beginning of the busy period, after having
experienced the maximum possible delay, i.e., the maximum jitter, Jik.

Again, this theorem is based on the fact that the worst-case contribution will occur when
the most number of tasks are released within the busy period. For the sake of being concise,
we will not reproduce the whole derivation of the analysis, which can be found in [69], but
will only include the final results and the modifications necessary for accommodating STM.

The worst-case contribution of a task, τi j, to the response time of the task under analysis,
τab, during a busy period of duration t and deadline D, when the task whose activation time
coincides with the start of the busy period is τik, is:

Wi jk(t,D) =(⌊
Ji j +ϕi jk

Ti

⌋
+min

(⌈
t−ϕi jk

Ti

⌉
,

⌊
D−ϕi jk−di j

Ti
+1

⌋))

0
(Ci j +S) (7.14)

where ϕi jk = Ti − (φik + Jik − φi j) mod Ti. Thus, the contribution of transaction Γi is the
summation of the contribution of all its tasks:

Wik(t,D) = ∑Wi jk, ∀ j ∈ Γi (7.15)
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In order to make the analysis tractable, the worst-case contribution of a transaction, Γi, is
considered to be the maximum of all possible contributions that could have been caused by
considering each of the tasks of Γi as the start of the busy period:

W ∗
i (t,D) = max(Wik(t,D)), ∀k ∈ Γi (7.16)

We number the activations of a job within the busy period using the index p, and consider
the first activation to start within the busy period to have an index of p = 1. The activations
that start before the busy period and suffer their maximum jitter to start at the beginning
of the busy period have indices p≤ 0. Thus, we can determine the index of the first, P0,i jk,
and last, PL,i jk, activations to contribute to the busy period as follows:

P0,i jk =−
⌊

Ji j+ϕi jk
Ti

⌋
+1 (7.17) ,PL,i jk =

⌈
L−ϕi jk

Ti

⌉
(7.18)

where L is the maximum length of the busy period as computed in Equation (7.7).

Thus, like in Section 7.3.2, the set of values to analyze is:

Ψ =
[
{ϕi jk +(p−1)Ti +di j} (7.19)

∀p = P0,i jk · · ·PL,i jk, ∀ j,k ∈ Γi

Thus, if the first activation of τab occurs after A time units from the start of the busy period,
the worst-case completion time of activation p of task τab can be computed as:

W A
abc(p) = (p−P0,i jk +1)(Cab + s) (7.20)

+W−
ac(W

A
abc(p),DA

abc(p))+∑∀i6=aWi(W A
abc(p),DA

abc(p))

where W−
ac is the result of Equation (7.15) without considering the contribution of τab and

DA
abc(p) is the deadline of activation p when the first one occurs at time A:

DA
abc(p) = A+ϕabc +(p−1)Ta +dab (7.21)

Thus, we can obtain the response time of a task by subtracting from the completion time
the arrival time of the external event:

RA
abc(p) = W A

abc(p)−A−ϕabc− (p−1)Ta +φab (7.22)

Also, as in Section 7.3.2, we only need to check the value of A within one period, thus, the
points we need to check are:
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Ψ∗ = {Ψx ∈Ψ | ϕabc +(p−1)Ta +dab ≤Ψx < ϕabc + pTa +dab} (7.23)

For each value of Ψx above, we check A = Ψx− [ϕi jk +(p−1)Ta +dab]. Naturally, the worst-
case response time is the maximum response time obtained from the analysis, i.e.,

Rab = max(RA
abc(p)) (7.24)

∀p = P0,abc · · ·PL,abc ∀c ∈ ΓA, ∀A ∈Ψ∗

7.5 Handling Failures

In this section, we extend our analysis to take failures into account. In some distributed
systems, failures are the norm rather than the exception. Therefore, it is necessary to provide
some form of assurance on system performance in their presence. We assume that each task,
τi j, has an exception handler that can be used to restore the system to a safe state in case of
failure, and that this exception handler has an execution time Ch

i j and relative deadline dh
i j.

The absolute deadline of the handler is relative to the time that failure is detected, t f , i.e.,
Dh

i j = t f +dh
i j.

When a node fails, all the jobs executing on that node cease to exist. Since we are considering
“transactions”where a sequence of consecutive jobs execute within one logical computational
context, it is necessary to understand the effect of failures on this abstraction. Naturally, a
failure may fragment a transaction leading to several orphan jobs (i.e., jobs that have been
disconnected from their downstream predecessor due to node failure). These jobs need to be
identified and their exception handlers need to be executed in order to restore the system to
a safe state.

Therefore, in order to have a fault-tolerant system, it must be possible to execute the ex-
ception handlers before their deadlines when failure occurs. In this section, we show how we
can take the execution time of the exception handlers into account when computing response
times in order to ensure safe execution of the system in the presence of failures.

7.5.1 Analysis

We need to determine the maximum number of exception handlers that can execute within
a busy period in order to take their overhead into account. As in Sections 7.3.2 and 7.4.2,
there are two conditions that determine the number of jobs, in this case exception handlers,
that can contribute to the worst-case response time of an instance of a task, τab, within busy
period of duration t; 1) The number of exception handlers that execute within the duration
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of the busy period (including exception handlers that were released before the busy period
but whose activation time is delayed until the start of the busy period), and 2) the number
of handlers with deadline less than or equal to the deadline of the job being analyzed.

From [69], we know that the number of interferences from the jobs of task τi j that occur
from jobs that start at the beginning of a busy period, after suffering some jitter, is:

xi =
⌊

Ji j +ϕi jk

Ti

⌋
(7.25)

Each of these activations has an associated exception handler. In the worst-case, each job
executes to completion, thus, using up as much processor time as possible, and then an error
occurs that causes the trigger of its exception handler, thus, using up more processor time
to execute the handler. It is this worst-case scenario from which we derive the deadline of
the exception handlers. Note that since we are considering activations of the same task, and
all of these activations start at the beginning of the busy period, their exception handlers
have the same deadline which is:

D
h f irst
i j = di j +dh

i j (7.26)

If we consider, without loss of generality, that the beginning of the busy period tB is time

zero, the contribution of these exception handlers is xiCh
i j if D

h f irst
i j ≤ D and zero otherwise.

We now turn our attention to determining the number of interferences that occur from job
instances started within the busy period. Below, is the equation that determines the number
of instances that can occur within a busy period of duration t:

ninst =
⌈

t−ϕi jk

Ti

⌉
(7.27)

For each of these activations, the deadline of their handler can be computed as:

De = ϕi jk+(p−1)Ti +di j +dh
i j (7.28)

∀p = 1 · · ·ninst

and they each contribute a factor of Ch
i j to the worst-case response time if their deadline is

less than or equal to D.

At this point we have computed the contribution of the execution time of handlers of the
activations of τi j that start at or after the beginning of the busy period tB. Figure 7.1 depicts
the types of scenarios we will be considering. The term in Equation (7.25) represents the
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ts

Ji j tB

D

t

T∗ + Ji j +di j

T∗

Figure 7.1: Uniprocessor: Scenario for calculating worst-case contribution

number of jobs that can be delayed at most Ji j so that their activation starts at tB. In
Figure 7.1, the first such job starts at ts; other jobs that follow it will be delayed an amount
of time less than Ji j in order to start at the beginning of the busy period. Equation (7.27)
computes the number of jobs that will start after the beginning of the busy period, i.e.,
after tB. However, if failures are not considered, jobs that start before ts, such as the one
depicted as starting at time T ∗ in Figure 7.1, do not contribute to the busy period. This
lack of contribution occurs because even if these jobs were delayed Ji j, their activation time
would fall before ts. However, now that we consider failures, it is possible for these tasks to
contribute to the worst-case response time if their exception handlers start within the busy
period. Using similar reasoning as in Section 7.4.2, we compute the worst-case contribution
of these exception handlers by considering how many can start at the beginning of the busy
period. The latest start time of a handler whose job starts at T ∗ is:

S = T ∗+di j (7.29)

If this start time, S, is greater than or equal to tB then the handler will contribute to the
busy period. In other words:

T ∗+di j ≥ T ∗+nTi + Ji j (7.30)

which gives us:

n <
di j− Ji j

Ti
(7.31)

Since n is an integer, Equation (7.31) resolves to:

n =
(⌈

di j− Ji j

Ti

⌉
−1

)

0
(7.32)

As before, the zero subscript indicates that negative values are considered zero (in this case,
such an event indicates that none of the jobs starting before ts can contribute to the busy
period). Thus, the contribution of these jobs is nCh

i j if dh
i j ≤ D and zero otherwise. We can
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now compute the contribution of the exception handlers of τi j to the response time of a job
of τab in a busy period of duration t and deadline D, when the task whose activation time
coincides with the start of the busy period is τik, using the following function:

Thus, we can modify Equation (7.14) from Section 7.4.2 to:

Wi jk(t,D) =(⌊
Ji j +ϕi jk

Ti

⌋
+min

(⌈
t−ϕi jk

Ti

⌉
,

⌊
D−ϕi jk−di j

Ti
+1

⌋))

0
(Ci j +S) (7.33)

+W h
i jk(t,D)

Also, we need to modify the critical instants to be examined in order to accommodate the
inclusion of the exception handlers in the busy period, thus, Equation (7.19) becomes:

Ψ =
[
{ϕi jk +(p−1)Ti +di j}

[
{ϕi jk +(p−1)Ti +di j +dh

i j} (7.34)

∀p = P0,i jk · · ·PL,i jk, ∀ j,k ∈ Γi

Algorithm 17: W h
i jk(t,D)

sum=0;1:

if dh
i j ≤ D then2:

n =
(⌈

di j−Ji j
Ti

⌉
−1

)
0
; sum← sum+nCh

i j;3:

if di j +dh
i j ≤ D then4:

xi ←
⌊

Ji j+ϕi jk
Ti

⌋
;5:

sum← sum+ xiCh
i j; ninst =

⌈
t−ϕi jk

Ti

⌉
;6:

for 1≤ p≤ ninst do7:
De = ϕi jk +(p−1)Ti +di j +dh

i j;8:

if De≤ D then sum← sum+Ch
i j;9:

return sum;10:

Similarly, Equation (7.7) needs to be modified to:

L = ∑
∀i, j

⌈
L+ Ji j

Ti

⌉
(Ci +mis+ s+Ch

i j) (7.35)

Essentially extending the execution time of a job by Ch
i j because, in the worst-case, the

exception handler is triggered at the last instant of time in the execution of the job, thus,
placing a demand on the processor equal to the total time of the job and the handler. The
rest of the analysis remains unchanged.
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7.6 Dynamic Jitter and offsets

In this section we briefly indicate how the iterative techniques first developed by Palencia
and Harbour in [70], based on Tindell and Clark’s Holistic analysis [89], and later improved
in [38,69,72] can be used to provide response time analysis of distributed systems programmed
using STM. From the analysis in Sections 7.4.2 and 7.5.1, we can perform response time
analysis of systems where concurrency control is managed using STM, tasks have offsets
and jitters, and failures are possible. Initially, the offset of each task is set to the minimum
possible completion time of its predecessor, i.e.,

φi j = ∑
i≤k≤ j

(δik +Ci j)+δi j ∀1≤ j ≤ Ni (7.36)

where δi j is the communication delay between nodes i and j. The jitters are all set to zero
and the response time, Ri j, is computed using either the analysis in Section 7.4.2, if failures
are not being considered, or Section 7.5.1, if we wish to consider failures. Then, jitters are
modified as follows:

Ji1 = 0 (7.37)

Ji j = Ri j−1 +δi j−φi j ∀1 < j ≤ Ni (7.38)

Offsets remain unchanged. Essentially, this means that the jitters are modified so that each
task, τi j, is released at most δi j, the communication delay, time units after the completion of
its predecessor τi j−1. We then compute the response times again using either the analysis in
Section 7.4.2 or 7.5.1. This process is repeated until the result of two successive iterations
are the same, at which point we have obtained the response time for each task. If the
response times do not diverge, the process above is guaranteed to converge to the solution
since the process is monotonic in its parameters. Naturally, during the computation only
the contribution of the tasks running on the same processor is taken into account when
computing the response times.

7.7 Experiments

In this section, we experimentally evaluate the performance of the proposed algorithm against
a system simulated using RTNS [68]. In the first set of experiments, we measure the average
ratio, Rana/Rsim, between the response time of the analysis to the response time of the
simulation. Execution times and periods are randomly generated as is the number of STM
transactions in each task. Figure 7.2 shows the result of our first set of experiments.
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Figure 7.2: Uniprocessor: Ratio vs. Utilization

The utilization depicted on the x-axis is derived from ∑∀i
Ci+mis+s

Ti
≤ 1 [4]. Therefore, ideally,

all tasks should meet their deadline for all utilizations at or below one. In this experiment,
we studied three different systems. In the first system, only two processors exist and the
tasks make remote invocations to either one at random. The utilization, in all three case we
studied, is defined as the maximum utilization experienced by any node in the system. The
other systems have four and ten processors respectively.

In all our experiments, the response time derived from the proposed analysis is higher than
that of the simulation. This can be seen from the fact that the ratio Rana/Rsim never falls
below one in Figure 7.2. Also, the ratio becomes worse as system load increases. This occurs
because as the system gets more loaded, the number of interruptions increases and hence the
pessimism of the analysis increases (since we assume each interruption will result in a retry).
Also, as the number of processors in the system increases, the ratio becomes better. This
occurs because the utilization measured on the x-axis is the maximum utilization experienced
by any node. Therefore, it is possible for other nodes in the system to be lightly loaded,
leading to less interferences and, thus, less pessimism in the analysis.

Also, the pessimism of the analysis depends on the cost of the transactional part of the code,
s, relative to the execution time of the non-transactional part of the code Ci j. The larger
the ratio of s to Ci j, the more pessimistic the analysis becomes, because the pessimism in
the proposed analysis is in the number of retries. Increasing the weight of the retries in the
analysis by increasing the cost of the transactional component of the code results in larger
estimates of worst-case response times. Figure 7.3 shows the result of an experiment where
we compare the performance of a system to other systems that have a value of s twice as
large and half as large as the base system.

It can be seen that the larger values of s cause greater divergence from the simulation results.
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7.8 Conclusion

In this chapter we presented an algorithm for computing an upper bound on the response
time of tasks in a distributed real-time system where concurrency control is managed using
STM and nodes are subject to crash failures. We compared the result of our analysis to a
simulation of the system in order to determine the efficacy of the proposed solution.

The result of this study indicates that it is possible to provide timeliness assurances for dis-
tributed systems programmed using STM. This allows for the first time, the usage of STM
as a concurrency control mechanism (among others) for programming distributed real-time
systems. Future research includes studying the different approaches for incorporating STM
as outlined in [31] and dealing with some of its shortcomings. For example, we can consider
whether buffered I/O can be used in STM code blocks and whether it is possible to eliminate
the problem of weak atomicity using declarative languages or placing restrictions on the use
of variables in imperative programming languages. Other areas of research include reducing
the overhead of STM using software-hardware hybrid techniques and implementation opti-
mizations. We also plan to consider aperiodic tasks and overload scheduling (i.e., providing
assurances during overload conditions).



Chapter 8

Response time analysis of
multi-processor distributed systems
using STM

8.1 Introduction

In this chapter, we present an algorithm for computing a worst-case bound on the response
time of tasks in a real-time distributed multiprocessor system (we define a distributed multi-
processor system as a distributed system where each node is a multiprocessor), where failures
may occur and concurrency control is managed using STM.

We consider using STM as the concurrency control mechanism for (non-I/O code in) dis-
tributed real-time systems. Toward this, we propose a method for computing an upper
bound on the worst-case response time of periodic tasks, programmed using STM, running
in a distributed real-time system that employs PFair [6].

8.2 Roadmap

In this chapter, we provide timeliness assurances for multiprocessor distributed systems pro-
grammed using STM. Pfair scheduling is an optimal scheduling algorithm for multiprocessor
real-time systems during underload conditions [6]. Therefore, we propose an algorithm for
computing an upper bound on the worst-case response times of tasks running on distributed
multiprocessor systems scheduled using the Pfair discipline. Towards that end, we first show
how Pfair scheduling on a single processor can be represented as EDF scheduling of the
transactional model proposed in [69]. We then show how an upper bound can be placed on
Pfair scheduled systems on a multiprocessor and extend this result using holistic analysis to

106
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deal with distributed systems. We then show how to incorporate the retry overhead of STM
into the analysis. Finally, we show how our analysis can be extended to deal with crash
failures.

8.3 Pfair scheduling on a single processor

We consider periodic tasks scheduled using the Pfair discipline on a single processor. Each
task, τi, is characterized by its period, Ti, and its execution time Ci. We assume that the
deadline of each task is equal to its period. The idea of Pfair scheduling [6] is to divide
the processor time among the tasks in proportion to their rates (defined as wt(τi) = Ci/Ti).
To do this, a task, τi, is subdivided into several quanta sized subtasks, τi j, pseudo-release
times, r(τi j), and pseudo-deadlines, d(τi j), are derived for these subtasks and then they are
scheduled using the EDF discipline (ties are broken using tie breaking rules [6]).

In the rest of the chapter, we refer to pseudo-deadlines and pseudo-release times as simply
deadlines and release times for simplicity. For synchronous tasks, the deadlines and release
times of subtasks can be derived using the following equations:

r(τi j) =
⌊

j−1
wt(τi)

⌋
(8.1) , d(τi j) =

⌈
j

wt(τi)

⌉
(8.2)

For asynchronous tasks, assume that task τi releases its first subtask at time r and let
τi j ( j ≥ 1) be this task. The release time and deadline of each subtask τik (k ≥ j) can be
obtained by computing the term ∆(τi) = r−b( j−1)/wt(τi)c and adding it to Equations (8.1)
and (8.2).

In [69], the authors show how it is possible to perform schedulability analysis for EDF systems
programmed using “transactions”. A transaction, as used in [69], is a sequence of tasks that
belong to a single programming context. A sort of precedence constraint is placed on the
relative execution times of these tasks by using offsets and jitters. It can be easily shown that
this transactional model can be used to represent tasks scheduled using the Pfair discipline.

Specifically, since each task in Pfair scheduling is subdivided into subtasks and these subtasks
belong to the same execution context, we can represent each task as a transaction. It now
becomes necessary to obtain values for the jitter and offsets to specify the precedence con-
straints of the subtasks (i.e, τi j can only start executing after τi j−1 has completed executing).
In Section 8.3.1 we show how this is performed.

8.3.1 Application to Pfair scheduling

In this Section, we show how the analysis of [69] can be applied to Pfair scheduled systems.
As mentioned before, in Pfair scheduling, each task, τi, is subdivided into several quantum
length subtasks, τi j. Therefore, we first need to determine the scheduling parameters of these
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subtasks. The execution time of each subtask is one quantum (i.e., Ci j = Q, where Q is the
duration of a scheduling quantum). To keep the analysis simple, we shall assume Q = 1, it is
trivial to extend this analysis for Q≥ 1. Each subtask retains the period of its parent task,
Ti, and di j is set to the value of Equation (8.2). We now turn our attention to the offset, φi j,
and jitter, Ji j of our subtasks.

The initial values of the offsets, φi j are set as follows:

φi j =

{
∑∀k< j Cik if j > 1
0 if j = 1

(8.3)

and all jitters are set to the pseudo-release times of each subtask as computed in Equa-
tion (8.1), i.e., Ji j = r(τi j). We then perform the analysis in [69] and update jitters, after the
analysis, as follows:

Ji j =

{
Ri j−1−φi j if j > 1
0 if j = 1

(8.4)

where Ri j is the response time of τi j. This process is repeated until two successive iterations
produce the same response time, at which point we have the worst-case response time of the
tasks in the system.

8.4 Multi-processors

Now that we have established that Pfair scheduling can be represented as EDF scheduling
using a transactional model, we turn our attention to providing an upper bound on the
worst-case response time of Pfair scheduled multi-processor systems. The following theorem
shows how this can be done

Theorem 55 (Theorem 6 in [7]). An upper bound on the response time of a task τk in an
EDF-scheduled multiprocessor system can be derived by the fixed point iteration on the value
Rub

k of the following expression, starting with Rub
k = Ck:

Rub
k ←Ck +

⌊
1
m ∑

i6=k
Ii
k(R

ub
k )

⌋
(8.5)

with Ii
k(R

ub
k ) = min(Wi(Rub

k ),Ji
k(Dk),Rub

k −Ck +1)

The proof of Theorem 55 can be found in [7]. The term Wi(Rub
k ) is the maximum workload

offered by τi during a period of duration Rub
k , Ji

k(Dk) is the maximum number of interferences
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by τi that can occur before the deadline of τk, and Rub
k −Ck +1 is a natural upper bound on

the interference of any task on τk (because the response time, Rub
k , is naturally composed of

a period of time during which τk executes, Ck, and some interferences Rub
k −Ck +1). In order

to take advantage of Equation (8.5), we need to derive expressions for these terms using our
transactional model.

First, let us consider the term Wi(R
up
k ). Before presenting the analysis we change the notation

to Wi(R
up
ab), since we will be analyzing τab. The maximum workload offered by τi during a

period of length Rup
ab is equal to the maximum number of jobs of τi that can execute during

that period . Remember, however, that, in Pfair scheduling, each task, τi, is divided into
several subtasks to create a transaction Γi. So, in essence, when computing the term Wi(R

up
ab),

we are computing the worst-case contribution of transaction Γi. From the analysis in [69],
we know that the worst-case contribution of Γi to the response time of a task being analyzed
during a period of length Rup

ab occurs when one of its tasks τik coincides with the start of
the period. We also know that when τik coincides with the beginning of the period, the
worst-case contribution of a task τi j during a period of length Rup

ab is:

Wi jk(R
up
ab) =

(⌊
Ji j +ϕi jk

Ti

⌋
+

⌈
Rup

ab −ϕi jk

Ti

⌉)

0
Ci j (8.6)

where ϕi jk = Ti− (φik + Jik−φi j) mod Ti. Thus, the worst-case contribution, workload, of a
transaction Γi to the response time of a task τab when τik coincides with the beginning of the
period is:

Wik(R
up
ab) = ∑Wi jk(R

up
ab), ∀ j ∈ Γi (8.7)

and the upper bound on the contribution of Γi is:

W ∗
i (Rup

ab) = max(Wik(R
up
ab)), ∀k ∈ Γi (8.8)

Likewise, we can determine a value for Ji
k(Dk) from the analysis in [69]. Specifically:

Ji jk(Dab) =
(⌊

Ji j +ϕi jk

Ti

⌋
+

⌊
Dab−ϕi jk−di j

Ti

⌋
+1

)

0
Ci j (8.9)

Jik(Dab) = ∑Ji jk(Dab), ∀ j ∈ Γi (8.10)

Ji
k(Dk) = Ji

ab(Dab) = J∗i (Dab) = max(Jik(Dab)), ∀k ∈ Γi (8.11)

Unlike in [69], we do not have to take into account the interference of tasks belonging to
the transaction being analyzed for two reasons. First, by definition of Pfair scheduling, our
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subtasks have precedence constraints. Thus, when analyzing a subtask we are sure that
all previous subtasks have finished executing and all subsequent subtasks are yet to start.
Second, since we assume that deadlines are equal to periods for transactions (see Section 8.3),
we are sure that while analyzing a particular transaction its predecessor’s deadline has already
passed (and so it is no longer in the system) and its successor is yet to start (otherwise the
period would have been over and the current transaction’s deadline would have already
passed).

Finally, we need to set the value of the offset and jitter for the subtasks in our analysis.
We take a pessimistic approach and set the jitter of each subtask to one quanta after the
deadline of its preceding subtask i.e.,

Ji j =

{
di j−1 +1 if j > 1
0 if j = 1

(8.12)

and the offset of each subtask is set to the best case completion time of its predecessor as in
Equation (8.3).

8.5 Distributed Multiprocessor Systems

Now that we have shown, in Section 8.4, how to obtain an upper bound on the response time
of tasks scheduled using the Pfair discipline on a multiprocessor, we can extend our analysis
to a distributed system. Specifically, we can use the variant of holistic analysis developed
in [69], i.e., task offsets are initially set to the best-case completion time of their predecessor:

φi j = ∑
i≤k≤ j

(δik +Ci j)+δi j ∀1≤ j ≤ Ni (8.13)

where δi j is the communication delay between nodes i and j. The jitters are all set to zero
and the response time, Ri j, is computed using the analysis in Section 8.4. Then, jitters are
modified as follows:

Ji1 = 0 (8.14)

Ji j = Ri j−1 +δi j−φi j ∀1 < j ≤ Ni (8.15)

Offsets remain unchanged. Essentially, this means that the jitters are modified so that each
task, τi j, is released at most δi j, the communication delay, time units after the completion
of its predecessor τi j−1. We then compute the response times again using the analysis in
Section 8.4. This process is repeated until the result of two successive iterations are the
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same, at which point we have obtained the response time for each task. If the response times
do not diverge, the process above is guaranteed to converge to the solution since the process
is monotonic in its parameters. Naturally, during the computation only the contribution of
the tasks running on the same processor is taken into account when computing the response
times.

8.6 Considering STM

For the sake of this analysis, we consider atomic regions programmed using STM (e.g, [39]).
We assume that each atomic region is kept short and that all atomic regions have compu-
tation cost at most s. We now show how the retry overhead of these atomic regions can be
incorporated into our analysis. In [47], Anderson et. al. show how the overhead of lock-free
code can be incorporated into Pfair scheduled systems.

Here, we show how this analysis can be applied to atomic regions programmed using STM.
We assume that any two atomic regions that execute concurrently can interfere with each
other. We further assume that a retry can only occur at the completion of an atomic region
(i.e., validation of the transaction is performed before it commits). The second assumption
implies that the number of retries of an atomic region is at most the number of concurrent
accesses to atomic regions by other tasks. Finally, we assume that each atomic region is
small and spans, at most, two quanta. The last assumption makes sense since atomic regions
are usually designed to be small in order to reduce the likelihood of interferences and hence
retries.

The idea behind the analysis is to compute the worst-case overhead introduced by the retry
behavior of atomic regions. This overhead is then added to the execution time of each task
to compute its worst-case demand on the processor. Using these new execution times, the
analysis in Sections 8.4 and 8.5 can be used to compute the response time on a distributed
system.

We assume that each task, τi, has Ni atomic regions and accesses atomic regions at most AAi
times during each quantum. Thus, the maximum number of interferences that can occur to
τa in a single quantum is:

Ia = maxsumM−1{AAi|i 6= a} (8.16)

where M is the number of processors. Also, since we assume that an atomic region can span
at most two quanta, and hence can only be preempted once, the overhead introduced by a
single access to an atomic region in τa can be computed as in Equation (8.17).

Oone
a = s+(2Ia +1)s (8.17) , Oa = Oone

a ×Na (8.18)

The term (2Ia +1)s in Equation (8.17), represents the overhead of retries. The 2Ia represents
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the maximum number of retries that may occur in the two quanta that the operation spans,
and the 1 added to 2Ia represents the retry that may occur due to interference that occurred
while the task was preempted in the middle of its atomic region (note that by our assumption
this can only occur once). Now that we have computed the overhead of one atomic region,
we can compute the overhead of the Na atomic regions using Equation (8.18).

Thus, we can set the new execution time of task τa to Ca = Oa +Ca and then perform the
analysis of Sections 8.4 and 8.5 using this new value.

8.7 Handling Failures

In this section we show how the analysis in Section 8.4 can be extended to take failures
into account. We assume that each quantum-sized subtask in the system has an associated
exception handler that can be used to restore the system to a safe state in case of failure, and
that this exception handler has execution time Ch

ji and relative deadline dh
i j. The absolute

deadline of the handler is relative to the time failure occurs, t f , thus the absolute deadline of
the handler is Dh

i j = t f +dh
i j. Since we cannot determine t f a priori, we assume a worst-case

scenario where each job executes to completion, using up as much processor time as possible,
and then an error occurs that triggers its exception handler. It is this worst-case scenario
from which we derive the deadline of the exception handlers.

8.7.1 Analysis

In order to incorporate exception handlers in the analysis, it is necessary to extend Equa-
tions (8.6) and (8.9) to take their overhead into account.

tl

tB

T∗

T∗ +nTi + Ji j

L

Ji j

Figure 8.1: Scenario for calculating worst-case contribution

We assume that a critical instant occurs at time tB (note that for this analysis we do not
need to know the value of tB, we just assume that it exists) and compute the worst-case
contribution of the exception handlers during a period of length L starting at tB. From [69],
we know that there are

n1 =
⌊

Ji j +ϕi jk

Ti

⌋
(8.19)



Sherif F. Fahmy Chapter 8. Multi-processor distributed systems 113

jobs of τi j that can start at the beginning of the period being studied after suffering some
jitter. Each of these activations has an associated exception handler that can start, at most,
at time tB +di j. Thus, when computing the maximum number of interferences that can occur
during a period of length L, we only consider these exception handlers if di j < L. There are

n2 =
⌈

L−ϕi jk

Ti

⌉
(8.20)

activations that will occur within a period of duration L. The latest start time of the
exception handlers of these activations are

S = ϕi jk+(p−1)Ti +di j (8.21)

∀p = 1 · · ·n2

We only consider exception handlers for which S < L. We also need to compute the overhead
of exception handlers whose activations do not contribute to the overhead. This may occur
when an activation finishes before the critical instant tB, but its exception handlers execute
after tB. In Figure 8.1, the first activation that can be delayed to start at the beginning of
the period being studied is depicted as starting at tl.

However, if failures are not considered, jobs that start before tl, such as the one depicted
as starting at time T ∗ in Figure 8.1, do not contribute to the analysis because even if these
jobs were delayed Ji j, their activation time would fall before tB. It is, now, possible for these
tasks to contribute to the worst-case response time if their exception handlers start after tB.
The latest start time of a handler whose job arrives at T ∗ is:

S = T ∗+di j (8.22)

If S is greater than or equal to tB then the handler will contribute to the busy period. In
other words:

T ∗+di j ≥ T ∗+nTi + Ji j (8.23)

which gives us:

n <
di j− Ji j

Ti
(8.24)

Since n is an integer, Equation (8.24) resolves to:

n =
(⌈

di j− Ji j

Ti

⌉
−1

)

0
(8.25)
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The zero subscript indicates that negative values are considered zero (in this case, such an
event indicates that none of the jobs starting before tl can contribute to the busy period).
Thus we can compute the contribution of the exception handlers of τi j to the response time
of τab in a period of duration L, when the task whose activation time coincides with tB is τik
using Algorithm 18. Thus, Equation (8.6) becomes:

Wi jk(R
up
ab) =

(⌊
Ji j +ϕi jk

Ti

⌋
+

⌈
Rup

ab −ϕi jk

Ti

⌉)

0
Ci j +W h

i jk(R
up
ab) (8.26)

and Equation (8.9) becomes:

Ji jk(Dab) =
(⌊

Ji j +ϕi jk

Ti

⌋
+

⌊
Dab−ϕi jk−di j

Ti

⌋
+1

)

0
Ci j (8.27)

+W h
i jk(Dab−dh

i j)

Algorithm 18: W h
i jk(L)

sum =
(⌈

di j−Ji j
Ti

⌉
−1

)
0
Ch

i j;1:

if di j < L then2:

sum← sum+
⌊

Ji j+ϕi jk
Ti

⌋
Ch

i j;3:

n2 ←
⌈

L−ϕi jk
Ti

⌉
;4:

for 1≤ p≤ n2 do5:
S← ϕi jk +(p−1)Ti +di j;6:
if S < L then7:

sum← sum+Ch
i j;8:

return sum;9:

The rest of the analysis remains unchanged.

8.8 Experiments

In this section, we perform a number of experiments to verify the validity of the analysis
presented. In our first set of experiments, we determine whether or not the analysis presented
in Section 8.4 can be used to derive suitable upper bounds for the response times of Pfair
scheduled tasks. Toward that goal, we conducted a number of experiments to determine the
Deadline Satisfaction Ratio (or DSR) of the analysis in Section 8.4.

We perform the analysis for ten tasks on multiprocessors that contain 4, 6 and 8 processors.
For each of these systems we fix the execution time of the tasks and vary the periods to
obtain utilizations between 0 and m, where m is the number of processors. We ran our
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experiment 700 times and recorded the average DSR for each utilization. Figure 8.2 depicts
the result of the experiments. The utilization on the x-axis is normalized with respect to the
number of processors used.

The results indicate that the analysis is tighter for a smaller number of processors, but that
it provides a good bound for response time in most cases (for example, the average DSR in
our experiments does not drop below 0.8 until close to the 0.8, normalized, system utilization
point). In the next set of experiments, we compute the ratio of the response time obtained
using the proposed analysis to a system simulated using [68].
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Figure 8.2: DSR vs. Utilization

For this experiment, we fixed the number of processors and nodes, fixed the execution times
and varied the periods to obtain utilizations between 0 and m. Figure 8.3 depicts the result
of our experiments. As can be seen, the response time analysis becomes more pessimistic
as the value of s increases due to the dependence of the analysis on Equation (8.18). Other
sources of pessimisim include Equations (8.5) and (8.12).

8.9 Conclusion

We presented an algorithm for computing an upper bound on the worst-case response time
for tasks on a multiprocessor distributed real-time system where concurrency control is pro-
grammed using STM.

With this result, it is now possible to include STM in the repertoire of real-time program-
ming tools on such architectures. Future work includes tightening the analysis by considering
slack (as in [7]), and considering non-periodic tasks and overload scheduling. Other direc-
tions include investigating other methods [31] for incorporating STM in distributed real-time
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Chapter 9

Conclusions, Contributions and
Proposed Post Preliminary Exam
Work

In this proposal, we addressed the problem of scheduling distributable threads in distributed
real-time systems. Specifically, we investigated the possibility of providing timeliness as-
surances to distributed real-time systems that are non-synchronous and that are subject to
failure.

Our research clarified a number of issues. First, it indicates that collaborative scheduling
algorithms can provide better timeliness assurances than independent node scheduling al-
gorithms. This improved timeliness is achieved because all nodes in the system have full
information of what is going on and therefore can make decisions that optimize system-wide
timeliness. In contrast, the lack of global information at each node in independent node
scheduling forces these nodes to make scheduling decisions using local information only,
thus, possibly, jeopardizing global timeliness.

However, the improved timeliness of collaborative scheduling comes at the price of higher
scheduling overhead and thus can benefit only those systems that can tolerate their higher
overhead. We also believe that collaborative scheduling, since it incorporates failure detection
with scheduling, allows us to more seamlessly provide performance assurances during failures.

The high overhead of collaborative scheduling becomes especially obvious when we consider
distributed dependencies. We showed in this proposal that the overhead introduced by
distributed lock management and distributed deadlock detection and resolution algorithms
are quite significant.

Thus, we proposed an alternative concurrency control mechanism. Specifically, we addressed
the use of software transactional memory for concurrency control in distributed real-time sys-
tems. We proposed two different schedulability analysis algorithms for distributed systems
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programmed using software transactional memory for concurrency control. The schedulabil-
ity analysis we proposed allows programmers of distributed real-time systems to add software
transactional memory to their repertoire of tools.

9.1 Contributions

In this proposal, we studied a number of issues. In particular, our research on collaborative
scheduling resulted in the design of three different collaborative scheduling algorithms. The
first of these, ACUA, is based on the distributed consensus problem. ACUA is designed to run
on a partially synchronous distributed system where both message loss and communication
delay are stochastically described.

Thus, our first step in designing ACUA was to determine the feasibility of implementing one
of the Chandra-Toueg failure detectors on such a platform [13]. In Chapter 3, we showed
how a stochastic S-class failure detector can be designed in such an environment and how
this FD can be used to implement a solution to the distributed consensus problem.

We then proposed a collaborative scheduling algorithm that uses this solution to the dis-
tributed consensus problem to come to agreement on scheduling decisions. We empirically
and analytically evaluated the properties of ACUA and showed that it could provide better
timeliness assurances than independent node scheduling for systems that could tolerate its
higher overhead.

In an attempt to lower the overhead associated with the consensus algorithm (particulary
in the presence of failure), we designed a quorum-based collaborative scheduling solution,
QBUA. QBUA operates in the same environment as ACUA but does not depend on a
solution to the distributed consensus problem. In Chapter 4, we described this algorithm
and empirically and analytically evaluated its properties. The same was performed for an
extension of QBUA, DQBUA, that allowed the algorithm to handle distributed dependencies
(described in Chapter 5).

At this point in our research, we identified distributed concurrency control as one of the major
sources of overhead in these algorithms. Thus we turned our attention to alternatives to
lock-based concurrency control solutions. In particular, we identified software transactional
memory as a promising solution to this problem.

Toward that end, we designed two schedulability analysis algorithms for providing upper
bounds on the response times of tasks in distributed systems programmed using STM (Chap-
ters 7 and 8). The first of these algorithms provides such assurances for distributed systems
where nodes are uniprocessors while the second is an algorithm that targets distributed sys-
tems where each node is a multiprocessor. To further our goal of making STM a part of
distributed real-time systems, we identified some of the issues that need to be resolved in
order to do so. Some of these issues and their proposed solutions are discussed in Chapters 1
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and 6. In Section 9.2, we summarize some of these issues which we propose to address after
the preliminary exam.

9.2 Post Preliminary-Exam Work

We propose the following post preliminary-exam work.

• Investigate Different Progress Guarantees for Real-Time STM: As mentioned
in Chapter 1, we intend to study the different progress guarantees that can be provided
using STM. STM systems are usually designed to be obstruction-free and progress
guarantees are provided by an out of bounds contention manager.

An obstruction-free algorithm is different from algorithms that provide stronger non-
blocking progress guarantees (like wait-freedom and lock-freedom, as explained in
Chapter 1), in that it separates the notion of correctness from the notion of progress.
Essentially, an obstruction-free algorithm only guarantees progress in the absence of
contention. However, it always maintains its algorithmic invariants — in our case, the
invariant is the semantics of STM.

Thus, requiring STM implementations to be obstruction-free is a good design choice
since it allows vendors to concentrate on implementing correct algorithms. The vendor,
end-user, or third parties can then provide orthogonal contention managers to provide
the progress guarantees needed for a particular application.

The function of a contention manager is to determine what happens when two or
more STM transactions need to access the same block of memory. When such a sce-
nario occurs, some scheduling discipline is required to determine which transaction
gets aborted. There have been a number of different contention management policies
proposed, but none of these have considered real-time constraints. The following is a
brief list of some of the most common contention management policies considered in
the literature:

– Aggressive: This contention manager always chooses to abort an enemy (or
conflicting) transaction at conflict time. This is the most basic contention manager
and is the one we consider in our current response time analysis in Chapters 7 and 8
(since we assume that an abort occurs whenever any two conflicting transactions
execute).

– Polite: This contention manager uses exponential back-off techniques, similar to
that used in Ethernet, to determine which transaction to abort.

– Randomized: This contention manager randomly chooses which transaction to
abort.
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– Karma: The Karma contention manager aborts the transaction with the least
amount of work performed when a conflict occurs.

– Eruption: This contention manager increases the priority of a transaction that
others are waiting on in order to make it complete faster (priority is used in
arbitrating which transaction is aborted). The idea of this contention manager is
similar to the popular priority inheritance technique used in lock-based real-time
concurrency control.

– Kindergarten: This policy encourages transactions to take turns accessing shared
memory (like children accessing toys or other shared objects in its namesake).

– Timestamp: This policy attempts to be as fair as possible, and uses timestamps
to arbitrate among the transactions trying to access a shared memory block.

– QueueOnBlock: This policy causes conflicting transactions to wait in a queue
for the transaction currently holding the shared block and spin on a “finished”
flag that is set by the enemy transaction at its commit time. If the transaction
has waited for too long, the definition of too long is application dependent, the
transaction aborts the enemy transaction and acquires the shared block.

Other contention management policies exist, but these are some of the most commonly
studied policies. As can be seen, none of them consider real-time constraints. We
intend to consider real-time parameters for contention management (such as deadlines
or potential utility density) and see how these contention managers affect the timeliness
assurances we can provide.

• Implementing Cache Coherence Protocols for STM: This approach is discussed
in detail in Chapter 6, but we reiterate some of the most important points about it
here. Implementing STM on top of a distributed cache coherence protocol has been
investigated in [43, 61]. In this approach, code is immobile, but data objects move
among nodes as required. The approach uses a distributed cache coherence protocol
to find and move objects. We intend to design real-time cache coherence protocols,
where timeliness is an integral part of the algorithm. We plan to design STM on top
of these protocols and compare their performance to the flow control abstraction. An
important advantage of this approach is that it eliminates the need for a distributed
commit protocol. Since distributed commit protocols are a major source of inefficiency
in real-time systems [35], such an approach is expected to yield better performance.

The cache coherence protocol needs to be location aware in order to reduce communica-
tion latency and should be designed to reduce network congestion. The cache coherence
problem for multiprocessors has been extensively studied in the literature [83]. There
are also some solutions for the distributed cache coherence problem (see [1,15,52,87] for
a, not necessarily representative, sample of research on this issue). Distributed cache
coherence bears some similarity to distributed hash table (or DHT) protocols which
have been an active topic of research recently due to the popularity of peer-to-peer
applications. Examples of DHT algorithms that are of interest are [45,73,77].
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We envision a cache coherence algorithm based on hierarchical clustering to reduce
network traffic and path reversal to synchronize concurrent requests, an approach used
in [43]. Other approaches for implementing distributed cache coherence will also be
considered. An important part of our research in this area will be to design cache coher-
ence protocols that can provide timeliness guarantees that we can verify theoretically
and empirically.

• Compiler instrumentation for STM: As mentioned in Chapter 1, one of the major
hurdles to mainstream acceptance of STM is the overhead associated with the unnec-
essary instrumentation of loads and store.

If only loads and stores within transactions are instrumented, this may lead to weak
atomic semantics where non-transactional access to shared memory can lead to viola-
tion of atomicity properties. In addition, a careful analysis of the code in an application
can reduce the number of loads and stores that need to be instrumented and hence
reduce the overhead of STM.

Thus, what is required is some sort of static analysis at compile time that would allow
us to minimize the number of loads and stores to instrument while at the same time,
possibly, preventing weak atomicity by ensuring that all loads and stores that need
instrumenting are in fact instrumented. This problem is akin to the problems of alias
analysis and escape analysis in standard compiler theory.

From lessons learned from research on alias analysis and escape analysis, we know that
this problem is quite challenging. However, we believe that most real-time code, in
contrast to general purpose code, is more structured and would allow a reasonably
efficient implementation of such an analysis.

We intend to develop algorithms to automatically instrument loads and stores where
necessary and test the efficacy of these algorithms both analytically and empirically.

• Integrating hard and soft real-time analysis for STM: Our current schedulability
analysis (see Chapters 7 and 8) for systems where concurrency control is managed
using STM has concentrated on traditional hard real-time systems. While this analysis
provides a good idea about the schedulability of a system, it does not say anything
about the type of assurances that can be offered during overloads.

As mentioned in Chapter 1, there are a number of emerging distributed real-time
applications that operate in environments where transient or sustained overloads are
possible. Thus, it becomes necessary to extend our analysis to include these cases.

Time Utility Functions, as previously stated, are ideally suited for describing the time-
liness requirements in such systems since they provide us with the ability to describe
an activity’s urgency and importance separately. Utility Accrual schedulers allow us
to take advantage of the descriptive power of TUFs and provide timeliness assurances
that gracefully degrade during overloads.
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We intend to extend our current schedulability analysis to enable them to provide
timeliness assurances for systems scheduled using Utility Accrual schedulers. This will
increase the number of systems for which our results can be applied.

• Hybrid data/code migration: We touched on the research issues involved in de-
veloping a hybrid data/code migration scenario for reducing the overhead of STM in
Chapter 6. Here we reiterate some of the most salient points for this direction of re-
search. This approach is touched upon in [10]. This is a hybrid approach where either
data objects or code can migrate while still retaining the semantics of STM. By allow-
ing either code or data to migrate, we can choose a migration scenario that results in
the least amount of communication overhead. For example, suppose we have a simple
transactional program that increments the value of a shared variable X and stores the
new value in the transactional store. Assume further that X is remote, using a data
flow abstraction would necessitate two communication delays; one to fetch X from its
remote location and the other to send it back once it has been incremented. Using a
control flow abstraction in this case may be more efficient since it will only involve a
single communication delay.

On the other hand, assume that several processes need access to a small data struc-
ture and that these processes are in roughly the same location and are far away from
the data they need. Since communication delay depends on distances, it may make
sense to migrate the data to the processes in this case rather than incur several long
communication delays by moving the code to the data. In short, the choice of whether
to migrate code or data can have a significant effect on performance. In [10], this
is accomplished under programmer control by allowing an on construct which a pro-
grammer can use to demarcate code that should be migrated. We intend to elaborate
on this by coming up with solutions that would use static analysis at compile-time
(or dynamically at run-time) to make decisions about which part of the application to
move using a number of heuristics such as, for example, size of code/data and locality
considerations.
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[56] N. Krivokapić, A. Kemper, and E. Gudes. Deadlock detection in distributed database
systems: a new algorithm and a comparative performance analysis. The VLDB Journal,
8(2):79–100, 1999.

[57] A. D. Kshemkalyani and M. Singhal. A one-phase algorithm to detect distributed
deadlocks in replicated databases. IEEE Trans. on Knowl. and Data Eng., 11(6):880–
895, 1999.

[58] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[59] P. Li. Time/utility function decomposition techniques for utility accrual scheduling
algorithms in real-time distributed systems. IEEE Trans. Comput., 54(9):1138–1153,
2005. Student Member-Haisang Wu and Senior Member-Binoy Ravindran and Member-
E. Douglas Jensen.

[60] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[61] K. Manassiev, M. Mihailescu, and C. Amza. Exploiting distributed version concurrency
in a transactional memory cluster. In PPoPP ’06, pages 198–208. 2006.

[62] J. Manson, J. Baker, A. Cunei, S. Jagannathan, M. Prochazka, B. Xin, and J. Vitek.
Preemptible atomic regions for real-time java. RTSS, 0:62–71, 2005.

[63] V. J. Marathe and M. L. Scott. A qualitative survey of modern software transactional
memory systems. Technical Report TR 839, University of Rochester Computer Science
Dept., Jun 2004.

[64] S. McCanne and S. Floyd. ns-2: Network Simulator. http://www.isi.edu/nsnam/ns/.

[65] D. P. Mitchell and M. J. Merritt. A distributed algorithm for deadlock detection and
resolution. In PODC ’84: Proceedings of the third annual ACM symposium on Principles
of distributed computing, pages 282–284, New York, NY, USA, 1984. ACM.
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