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Robert F. Lyerly

(ABSTRACT)



In recent years there has been a proliferation of parallel and heterogeneous architectures. As
chip designers hit fundamental limits in traditional processor scaling, they began rethinking
processor architecture from the ground up. In addition to creating new classes of processors,
chip designers have revisited CPU microarchitecture in order to target different computing
contexts. CPUs have been optimized for low-power smartphones and extended for high-
performance computing in order to achieve better energy efficiency for heavy computational
tasks. Although heterogeneity adds significant complexity to both hardware and software,
recent works have shown tremendous power and performance benefits obtainable through
specialization. It is clear that emerging systems will be increasingly heterogeneous.

Many of these emerging systems couple together cores of different instruction set archi-
tectures, due to both market forces and the potential performance and power benefits in
optimizing application execution. However, differently from symmetric multiprocessors or
even asymmetric single-ISA multiprocessors, natively compiled applications cannot freely
migrate between heterogeneous-ISA processors. This is due to the fact that applications are
compiled to an instruction set architecture-specific format which is incompatible on other
instruction set architectures. This has serious performance implications, as execution mi-
gration is a fundamental mechanism used by schedulers to reach performance or fairness
goals.

This thesis describes system software for automatically migrating natively compiled ap-
plications across heterogeneous-ISA processors. This thesis describes implementation and
evaluation of a complete software stack using real hardware emulating a datacenter. This
thesis describes a compiler which builds applications for heterogeneous-ISA execution mi-
gration. The compiler generates machine code for every architecture in the system, and lays
out the application’s code and data in a common format. In addition, the compiler generates
metadata used by a state transformation runtime to dynamically transform thread execution
state between ISA-specific formats.

The compiler and runtime is evaluated in conjunction with a replicated-kernel operating
system, which provides thread migration and distributed shared virtual memory across
heterogeneous-ISA processors. This redesigned software stack is evaluated on a setup con-
taining and ARM and an x86 processor interconnected via PCIe. This thesis shows that sub-
millisecond state transformation is achievable. Additionally, it shows that for a datacenter-
like workload using benchmarks from the NAS Parallel Benchmark suite, the system can
trade performance for up to a 66% reduction in energy and up to an 11% reduction in
energy-delay product.

This thesis also proposes post-preliminary examination work. The first proposed work is a
set of techniques for reducing state transformation latencies further, and an extended study
of state transformation using a wider variety of benchmarks. The second proposed work
is a new OpenMP runtime which executes threads across heterogeneous-ISA processors to
achieve performance and power benefits. The third proposed work is relaxing the constraints
of the current prototype to support more diverse architectures, such as migration between
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32-bit and 64-bit architectures. The final proposed work is developing a set of techniques
which reduce the time to migration using checkpointing.

This work is supported in part by ONR under grant N00014-13-1-0317 and under grant
N00014-16-1-2104, AFOSR under grant FA9550-14-1-0163, and NAVSEA/NEEC under grant
3003279297 and grant N00174-16-C-0018.
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Chapter 1

Introduction

1.1 Motivation

In recent years, there has been a shift towards increasing parallelism and heterogeneity in
processor design [96, 97]. As traditional uniprocessors hit the clock speed, power, instruction-
level parallelism and complexity walls, chip designers have been forced to rethink computer
architecture from the ground up. This has led to an explosion in new architectures such as
graphics processing units (GPUs), digital signal processors (DSP) and field-programmable
gate arrays (FPGA). Additionally, general-purpose CPUs have been re-architected in order
to meet energy and performance goals for varying form factors [50, 26]. It is clear that
emerging computer systems will be increasingly heterogeneous in order to achieve better
energy efficiency and higher performance.

Recently there has been a tremendous amount of change in CPU microarchitecture in or-
der to reach different power and performance targets. With the advent of smartphones,
CPU designers have built processors that strike a balance between low power and reasonable
performance [50, 20]. The high-performance computing (HPC) community has embraced
heterogeneity, with the top two supercomputers in the Top500 list [100] mixing symmetric
chip-multiprocessors (CMP) with general-purpose and OS-capable [70] many-core accelera-
tors. Additionally, the HPC community has begun to include energy efficiency as a primary
design goal as they realized they could not continue scaling the number of cores at current
power consumption levels [31]. Chip designers have even begun to include heterogeneous
CPU cores together on a single die in order to achieve high performance and energy effi-
ciency for a variety of workloads [46, 68].

Due to the history of how these different CPUs were created, many utilize different instruction
set architectures (ISA) [74]. The ISA defines the hardware-software interface, and provides
a fundamental definition of how software can execute on a given processor. The ISA is fixed,
and thus the job of a compiler is to map an application written in a source code language
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like C onto a processor’s ISA. It is therefore impossible for applications compiled for one ISA
to be run another ISA with today’s compilers, operating systems and runtimes.

Application migration is necessary to achieve higher performance and improved energy effi-
ciency [73, 56, 105, 102]. Application migration allows the system software to optimize how a
given workload executes in the system. Without application migration across heterogeneous-
ISA CPUs, the system has limited ability to adapt to application or workload characteristics
and may leave significant benefits on the table. Thus, it is imperative that new techniques
are developed to enable execution migration across heterogeneous-ISA CPUs as they become
increasingly interwoven into the same systems.

1.1.1 Heterogeneous Datacenters

The x86 instruction set architecture is the most widely processor in datacenters today [65,
82, 49]. Recently, however, there has been a push to introduce the ARM ISA into the
server space. Multiple chip vendors including AMD, Qualcomm, APM and Cavium are
producing ARM processors for datacenters and the cloud [2, 69, 4, 21]. Additionally, the
POWER ISA is regaining relevance, with IBM forming the OpenPOWER foundation by
partnering with companies such as Google, NVIDIA, Mellanox and others [34]. Interest in
alternative processor architectures is driven by increasing availability of ARM and POWER
cloud offerings [66, 59, 24] in addition to traditional x86 services. These new processor
architectures promise higher energy proportionality [13], meaning more performance per
watt and increased computing power per rack (i.e., compute density).

Reducing electricity costs has become one of the most important concerns for datacenter
operators today [107]. Datacenter hardware and software designers have proposed many
techniques for improving energy efficiency while maintaining acceptable computational ca-
pacity [99, 107, 105, 103]. There are several software-based approaches that are effective for
conserving energy, including load balancing and consolidation. Load balancing spreads ap-
plications evenly across nodes so that no nodes are over-saturated and each server consumes
a reduced amount of power. Consolidation instead groups tasks on the minimal number of
nodes required so that service-level agreements can be met. The remaining servers are subse-
quently placed in a low-power state. Both solutions require migrating applications between
nodes to dynamically adjust the computational capacity of the datacenter with time-varying
workloads. How can datacenter operators leverage these techniques in datacenters with
increasing ISA diversity?

1.1.2 Heterogeneous-ISA CMPs

Recent works have demonstrated significant advantages for executing migration between
tightly-coupled cores with identical ISAs but heterogeneous microarchitectures [46, 68, 95,
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50, 56]. Existing mechanisms for execution migration in symmetric multiprocessors (SMP)
work without modification for these new processors because all cores share an ISA and
are interconnected via cache-coherent shared memory. In asymmetric chip multiprocessors
(ACMP), execution migration can be used to accelerate both serial and parallel portions of
applications with higher energy efficiency [46].

More recent works by DeVuyst [29] and Venkat [102, 101] show that there are further perfor-
mance and energy benefits obtained by migrating between heterogeneous-ISA cores versus
ACMPs. Applications may exhibit ISA affinities based on characteristics of the source code,
such as register pressure, memory addressing modes, floating-point and SIMD computa-
tion, etc. Additionally, migrating execution between heterogeneous-ISA cores provides a
defense against return-oriented programming attacks [101]. However, these works simulate
a cache-coherent shared memory processor with heterogeneous-ISA cores that does not run
an operating system. How are applications built and migrated between heterogeneous-ISA
processors in real systems?

1.1.3 Challenges

These fundamental changes in processor design have forced developers to rethink how emerg-
ing heterogeneous systems are programmed. Utilizing heterogeneous-ISA processors places
a large burden on developers because they can no longer use a shared-memory programming
model [1]. Instead, developers must reason about application structure and memory layout
in order to obtain maximum performance [71, 44, 43]. Because these processors have dis-
tinct ISAs, source code compiled for one processor is not able to be run on another. This
harms programmability because developers must manually partition applications into pieces
and coordinate computation and data movement across architectures. It also hinders sys-
tem adaptability because the system software cannot freely schedule applications to meet
performance or fairness goals [73, 107].

One solution for heterogeneous-ISA execution is to use a language-level virtual machine,
e.g., a Java virtual machine [60]. In these language VMs, the application is maintained in an
architecture-independent intermediate format which the VM interprets to execute the appli-
cation. Because the VM has complete knowledge of the application’s execution, including
code and data format, it can migrate applications between architectures [36, 37, 40, 23]. How-
ever, using these approaches requires applications be rewritten in the interpreted language.
Many datacenter applications, e.g., Redis [81], are written using natively-compiled languages
in order to apply aggressive optimizations. Re-writing the application in an interpreted lan-
guage is a non-starter due to the loss of control – for example, Java applications are required
to use garbage collection for memory management. Additionally, many of these techniques
rely on language-level mechanisms, which are demonstrated to have high overheads.

Therefore, as heterogeneity becomes ubiquitous in all computing contexts it becomes increas-
ingly important to develop new techniques for seamless native application execution across
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heterogeneous-ISA processors.

1.2 Contributions

This thesis presents a full software stack for enabling execution migration across heterogeneous-
ISA architectures. The prototype, named Popcorn Linux, includes an operating system,
compiler and runtime which seamlessly migrates applications between an ARM and an x86
processor interconnected over a PCIe point-to-point connection. This work describes the de-
sign and implementation of the compiler and runtime components of Popcorn Linux, named
the Popcorn compiler toolchain and state transformation runtime. These components are
presented, which build applications and enable migration between heterogeneous-ISA CPUs
using the OS’s capabilities. This thesis makes the following contributions:

• The design and implementation of the Popcorn compiler toolchain is presented. The
Popcorn compiler toolchain builds applications suitable for migration by adjusting data
and code layout, and by automatically inserting migration points into the generated
machine code. Additionally, the compiler performs offline analysis to provide metadata
for dynamic state transformation. The toolchain builds multi-ISA binaries which the
OS uses to recreate an application’s virtual address space across heterogeneous-ISA
processors.

• The design and implementation of the state transformation runtime is presented.
The state transformation runtime efficiently transforms execution state between ISA-
specific formats so that threads of an application can migrate between architectures.
It additionally provides a mechanism for initiating migration and for bootstrapping
execution after the application has migrated to the destination architecture.

Although previous works have explored heterogeneous-ISA execution migration [29, 102],
none of these works explore it in a real system. In particular, they simulate a non-existent
processor without an OS, and thus do not integrate their approach in a full working system.
Instead, the Popcorn compiler toolchain and state transformation runtime are designed to
enable execution migration in real heterogeneous-ISA systems. This involves cooperating
with the OS to invoke the migration, and more importantly, bootstrapping execution post-
migration. Additionally, the Popcorn compiler toolchain and state transformation provide a
mechanism for attaching to individual threads for state transformation in a multi-threaded
environment.

The Popcorn compiler toolchain and state transformation runtime are co-designed with the
Popcorn Linux OS [12], a replicated-kernel operating system which provides thread migra-
tion and distributed shared virtual memory across heterogeneous-ISA processors. Unlike
previous works which implement process migration in simulation, the full Popcorn Linux
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software system is demonstrated on a datacenter-like setup. Using this setup, this thesis
demonstrates that state transformation can be performed in under a millisecond, and of-
tentimes under several hundred microseconds, for real applications from the NAS Parallel
Benchmarks suite [9]. Additionally, Popcorn Linux demonstrates up to a 66% reduction in
energy and up to an 11% reduction in energy-delay product [54] for a multiprogrammed,
datacenter-like workload.

1.2.1 Popcorn Compiler Toolchain

We present the Popcorn Compiler toolchain, which builds multi-ISA binaries suitable for
migration across heterogeneous-ISA boundaries. The toolchain natively compiles applica-
tions written in C for all ISAs in the system using a common frontend and ISA-specific
backends. The compiler automatically inserts migration points into the source code at func-
tion call sites. The compiler runs several analyses over an intermediate representation of the
application to gather live data that must be transformed between ISA-specific formats. The
compiler generates metadata (added as extra sections in the multi-ISA binary) describing
the code and live data locations emitted for each architecture. The linker aligns global data
in a common format, and a final post-processing step optimizes the application for efficient
state transformation. The compiler is built using clang and LLVM [77] for compilation and
GNU gold [39] for linking. Unlike previous works by DeVuyst [29] and Venkat [102], we
build multi-ISA binaries with minimal changes to the core data layout mechanisms of the
compiler. This allows our implementation to be more easily ported to new architectures.

1.2.2 State Transformation Runtime

This thesis presents a state transformation runtime for efficiently translating execution state
of threads between ISA-specific formats. The runtime cooperates with the operating system
scheduler to decide at which points to migrate. After the scheduler requests a migration,
the runtime attaches to a thread’s stack and begins state transformation. Using the meta-
data generated by the compiler, the state transformation runtime efficiently reconstructs the
thread’s current live function activations in the format expected by the destination ISA, in-
cluding transforming a thread’s register state, call frames and pointers to other stack objects.
After reconstructing the stack, the runtime invokes the OS’s thread migration mechanism
and bootstraps on the destination architecture to resume normal execution. Unlike previous
works by DeVuyst and Venkat, this thesis develops a methodology to invoked migration for
multi-threaded applications in a real system. This thesis describe how threads cooperate
with the OS both before and after migration for seamless migration. It describes how the
state transformation runtime attaches to and transforms an individual thread’s state. Fi-
nally, the evaluation demonstrates that it is possible to eliminate much of the complexity of
their compiler while achieving similar state transformation overheads.
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1.3 Summary of Proposed Post-Preliminary Examina-

tion Work

After the preliminary examination, this thesis proposes to optimize and extend the state
transformation runtime in order to reduce transformation costs. The runtime can be opti-
mized by removing the use of DWARF debugging information and by adding on-demand
state transformation. Reducing transformation overheads would allow migration at granu-
larity finer than function call sites, giving the scheduler more freedom to adapt the system
workload. This thesis also proposes studying an expanded set of benchmarks in order to
more fully understand which types of applications benefit from cross-ISA execution.

This thesis proposes implementing a new OpenMP runtime which uses cross-ISA execution
migration to distribute work across all available processors. In particular, it proposes im-
plementing the OpenMP runtime so that it distributes work to balance performance and
energy efficiency, allowing system administrators to adjust application execution to reduce
latency or increase energy efficiency. To further optimize cross-ISA work distribution, this
thesis proposes studying compiler and runtime techniques for enabling disjoint memory ac-
cess parallelism across architectures. This is necessary due to the fact that Popcorn Linux
provides shared memory across processors at a page-level granularity.

This thesis also proposes adding support for more diverse ISAs in the Popcorn compiler
toolchain and state transformation library. Currently, the toolchain and runtime only sup-
port ISAs which have identical data sizes and layouts. Additionally, it only supports 64-bit
architectures. This thesis proposes extending the toolchain and runtime to support architec-
tures which have different data sizes and alignments using padding. It also proposes handling
32- and 64-bit architectures, which requires adjusting the layout of an application’s virtual
address space at migration time.

Finally, this thesis proposes reducing the time to migration with a set of new techniques.
The current prototype only supports execution migration at function call sites. This thesis
proposes inserting additional migration points in loop nests. It also proposes leveraging
lightweight checkpointing to enable immediate execution migration by rolling back to a
checkpoint at a migration site. This thesis proposes studying the benefits and tradeoffs of
this technique versus the current prototype.

1.4 Thesis Organization

This thesis proposal is organized as follows. Chapter 2 summarizes related work in the
area of execution migration in heterogeneous-ISA systems. Chapter 3 describes Popcorn
Linux, the replicated kernel operating system used to provide execution migration across
ISA boundaries. It also formalizes application state and describes the requirements for
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the compiler and state transformation runtime. Chapter 4 describes the Popcorn compiler
toolchain which is used to analyze and build applications for cross-ISA migration. Chapter 5
describes the state transformation runtime and how threads migrate between architectures.
Chapter 6 evaluates overheads associated with the state transformation runtime and energy
benefits obtained when using execution migration in a datacenter context. Finally, Chapter 7
concludes and describes proposed post-preliminary examination work.



Chapter 2

Related Work

2.1 Compiler and Runtime Support for Heterogeneous

Architectures

Traditionally, developers have programmed heterogeneous architectures using a variety of
programming models and languages. NVIDIA’s CUDA [71] provides a programming lan-
guage for NVIDIA GPUs. Using CUDA, developers partition their application into host
(CPU) and device (GPU) code. Device code is offloaded to the GPU, and users must pro-
vide memory consistency by manually moving data between host and device memory spaces.
More recently, CUDA offers managed shared memory between the host and device, but
provides limited consistency guarantees. Thus, execution is offloaded to devices only at
predefined locations and cannot be adapted in the face of changing workload conditions.
OpenCL [44], OpenMP 4.0 [17] and OpenACC [72] offload computation to different target
processors, but suffer from the same limitations as CUDA. Popcorn Linux provides strong
memory consistency guarantees using distributed shared virtual memory and does not re-
quire applications to be partitioned between devices.

Saha et al. [87] describe an OS mechanism for shared memory between single-ISA hetero-
geneous cores interconnected over PCIe. Their programming model allows developers to
open shared memory windows between the interconnected processors. These windows have
a relaxed consistency, requiring developers to insert synchronization points to make memory
writes visible across the PCIe bus. However, this programming model does not enable ex-
ecution migration between interconnected processors, but rather uses a similar partitioning
approach to CUDA. Popcorn Linux provides stronger consistency guarantees and flexible
execution migration.

The Message Passing Interface (MPI) [43] provides a portable API for parallel processing
using message passing for communication between processes. Processes execute in sepa-
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rate address spaces but can share memory by manually sending and receiving data. The
OpenMPI implementation [35] of the MPI standard supports serializing and de-serializing
memory into ISA-specific formats, hiding cross-architecture data representation issues be-
hind the interface. However MPI does not support execution migration at arbitrary points
– developers manually insert data transfers and coordinate execution across processes on
different machines within the application source code. Similarly to the programming mod-
els listed above, this hinders programmability and the flexibility of the system to adapt to
changing workload conditions. PC3 [32] uses a modified C/MPI compiler to instrument MPI
applications for execution migration in a cluster and uses checkpointing to transferring state.
However developers must manually annotate checkpointing locations, and the compiler only
accepts MPI applications that have well-typed code. Furthermore, the checkpointing system
requires annotating data with descriptors as comes into and goes out of scope, adding signif-
icant runtime overhead for metadata collection in addition to checkpointing costs. Popcorn
Linux allows flexible execution migration between processors and distributed shared virtual
memory.

The Lime programming language [8] and the Liquid Metal runtime [7] together implement
a language system for seamless execution across heterogeneous architectures. Developers
build data-flow applications in a Java-based language. The runtime distributes computa-
tion nodes of the data-flow graph across architectures and uses serialization coupled with
message passing to automatically send data between architectures. The system is limited in
that developers must use a data-flow programming model (they cannot use traditional SMP
semantics) and they must manually annotate properties of data types so that the runtime
can transfer state. The Dandelion compiler [85] and PTask runtime [84] are similar in that
programmers develop data-parallel applications in a high-level language (e.g., C#) which is
decomposed into a data-flow execution model. The runtime then distributes computation
nodes to devices in a cluster, automatically managing communication between the differ-
ent contexts. Like Lime and Liquid Metal, developers must use a restrictive programming
language, and the system is designed solely for data-parallel applications. Popcorn Linux
lets programmers develop applications using a shared memory programming model across
heterogeneous-ISA architectures.

2.2 State Transformation

Various techniques have been developed to translate state between machine-specific formats.
Dubach and Shub [30] and Shub [90] describe a user-space mechanism for single-threaded
processes to migrate themselves between heterogeneous machines. They describe modifica-
tions to executables needed for migration, including multiple code sections, data padding
(using the greatest-common denominator of data sizes and alignments), and how to trans-
late data types between architecture-specific formats. However this approach is completely
user-controlled, and furthermore incurs large overheads for state transformation. Work by
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Zayas [106] shows that state transformation can also be applied as pages are migrated be-
tween machines, rather than in bulk at migration time. Theimer and Hayes [98] describe an
alternative translation approach where a program’s execution state is lifted into a machine-
independent format and recompiled to recreate the state on the target machine. All of these
approaches were designed assuming the main bottleneck in process migration was communi-
cation and not state translation. With newer high-bandwidth networking technologies such
as PCIe point-to-point connections [92] or Infiniband [5], this is no longer the case. The Pop-
corn compiler toolchain and state transformation runtime avoid most state transformation
overheads by construction – applications runs on architectures which use the same primi-
tive data sizes and alignments. Additionally, the compiler and runtime minimize overheads
through alignment and by only transforming a small portion of application state.

Attardi et al. [6] describe a number of user-space techniques for heterogeneous-ISA execu-
tion migration. They describe running the program in a machine-independent format via
interpretation, re-compiling the application on the fly for a different target ISA, and trans-
lating runtime state between machine-specific formats. The TUI system [91] implements
a combination of these approaches – it lifts the application’s state into an intermediate
format and then lowers it to the target machine’s format. Additionally, TUI implements
migration of I/O descriptors using a custom standard C library and an external remote
server. These approaches incur significant translation overheads, however. As mentioned
previously, Popcorn elides much of this overhead through careful data layout and minimal
runtime transformations. Popcorn Linux also pushes cross-ISA I/O functionality into the
kernel.

More recently, Ferrari et al. [33] propose a mechanism for state checkpointing and recovery
using introspection. They implement a source-to-source compiler which modifies applications
to periodically save stack data in an architecture-independent format. The compiler also
refactors functions to be able to restore this state after a migration. This technique is very
invasive in terms of source code modifications, and incurs significant overhead for periodic
state saving procedures which record information for all functions on the stack. The Popcorn
compiler toolchain makes minimal transformation to code, other than inserting migration
points.

Makris and Bazzi [64] present a mechanism for stack transformation to be used for in-place
software updates. A compiler performs source-to-source transformation so that threads
recursively save their stack (including all variables within call frames) before migrating. The
threads then reconstruct their stack with the new version of the application. Their approach
attempts to solve a harder problem of reconstructing state for a different version of the
application, and thus requires user-driven help. The state transformation runtime focuses
on transforming state between machine-specific versions of the same application, rather than
a modified application for the same ISA.
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2.3 Heterogeneous-ISA Execution Migration

von Bank et al. [104] formalize a model of procedural applications executing in a system.
They identify the various components of an application, including program data and machine
code, that must be equivalent in order for execution to be migrated between architectures at
points of equivalence. They define these locations as program points where a transformation
exists between different representations of an application, i.e., compilations for different
targets. The Popcorn compiler toolchain utilizes and extends their definition of points of
equivalence.

Many works use language-level virtual machines to perform heterogeneous-ISA migration.
Heterogeneous Emerald [93] implements a TUI-like heterogeneous migration system for the
Emerald language. PadMig [36] and JnJVM [37] migrate threads of execution between Java
virtual machines (JVM), using Java’s reflection capabilities to serialize/de-serialize objects
between architecture-specific formats. COMET [40] and CloneCloud [23] also use the JVM
to transparently offload portions of applications from mobile devices to the cloud over the
network. COMET additionally uses a DSM system to ship data between the device and
the cloud. Neither approach implements full execution migration, but only offloads a por-
tion of the application to the cloud. The drawbacks with all language-level approaches is
that applications must be implemented using the specified language. A significant amount
of legacy code is therefore no suitable for migration in these systems. For languages like
Java, applications may experience severe performance degradation versus being written in
a compiled language like C. Finally, language introspection mechanisms have high latency,
meaning translation costs may dominate execution migration overheads. Virtual machines
like QEMU [15] also enable heterogeneous-ISA migration, but experience unacceptably high
performance losses. Popcorn Linux provides cross-ISA execution migration for natively com-
piled applications, allowing native-execution speeds and low migration overheads.

More recent works explore process migration in heterogeneous-ISA systems for native ap-
plications. Barbalace et al. [12] describe an operating system and compiler for offloading
application computation from an x86-64 Xeon to an overlapping-ISA Xeon Phi processor.
The compiler prepares applications for execution on both architectures, but there is no
mechanism to perform state transformation – migrated threads must return to the host after
executing the offloaded computation. DeVuyst [29] and Venkat [102, 101] implement process
migration in simulated heterogeneous-ISA CMPs. All three works use a custom compiler and
runtime to migrate threads between heterogeneous-ISA cores which shared cache-coherent
shared memory. The compiler generates metadata describing a state transformation function
for individual call frames. The runtime performs dynamic binary translation (DBT) when a
migration is requested until the application reaches a location where state can be translated
and native execution can resume. Popcorn Linux, the Popcorn compiler toolchain and the
state transformation runtime differ in several ways:

1. Their prototype uses a simulated heterogeneous-ISA CMP with cache-coherent shared
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memory. Furthermore, their prototype does not incorporate an operating system.
Popcorn Linux demonstrates execution migration on real hardware using an ARM and
an x86 processor are interconnected via PCIe and using a complete software stack.

2. Their prototype does not support multi-threaded applications. Their compiler does not
support aligning thread local storage, and they do not provide a solution for performing
state transformation in a multi-threaded environment. The Popcorn compiler toolchain
includes a linker which lays out thread local storage in a common format for all ISAs
in the system, and the state transformation runtime is designed for multi-threaded
applications.

3. In order to perform stack transformation between ISA-specific formats, their compiler
modifies each function’s call frame layout to adjust the size, layout of individual sec-
tions of the call frame, and layout of objects within the call frame. Their compiler
generates a mostly-identical call frame layout across different compilations of the ap-
plication. This adds tremendous complexity to the compiler, and makes porting their
toolchain to new architectures difficult. The Popcorn compiler toolchain demonstrates
that this additional complexity is unnecessary. While the design of the Popcorn com-
piler toolchain forces the state transformation runtime to fix up pointers to the stack,
the evaluation demonstrates that our runtime provides similar performance.

4. Their work does not describe how machine code is loaded into memory, and in par-
ticular how after migrating to another ISA, a thread is able to locate its ISA-specific
code without rewriting function pointers. Popcorn Linux provides this mechanism
transparently to application threads.

5. They do not describe how a migration or state transformation is invoked, but rather
only mention that a migration is triggered through some external event. In our system,
the Popcorn compiler toolchain inserts migration points into the source code, trigger
migrations using the operating system, and use a library which lets threads transform
their own stack.

6. Their prototype allows migration at arbitrary points by performing dynamic binary
translation (DBT) up until an equivalence point. Popcorn Linux does not have this
ability, but rather the OS and application must cooperate to migrate threads. Although
this hinders the scheduler’s flexibility, it significantly reduces migration costs. Their
results show that DBT can cause up to a several millisecond delay when migrating.



Chapter 3

Background

This work presents compiler and runtime support for seamlessly running applications across
heterogeneous-ISA CPUs in emerging systems. There are many benefits to exploiting these
systems, including higher performance, better energy efficiency, increased scalability, and
stronger security mechanisms [29, 102, 101, 12]. All of these benefits require thread migra-
tion between processors in the system. Thread migration is the act of moving a thread’s
execution context (including live register state, runtime stack, page mappings, etc.) be-
tween different processor cores in a system [94]. Current monolithic kernel OSs like Linux
provide thread migration in SMP systems through hardware and OS mechanisms [73]. How-
ever, thread migration across heterogeneous-ISA processors requires additional compiler and
runtime support due to the fact that the compiler builds the application specifically for a
processor’s ISA.

This work provides several important components for Popcorn Linux, a replicated-kernel
operating system designed to provide OS support across diverse processors. This work
describes the design of the Popcorn compiler toolchain and state transformation runtime for
Popcorn Linux, all of which work together to replicate an application’s execution environment
across a tightly coupled heterogeneous-ISA system.

Section 3.1 describes the design of Popcorn Linux’s OS and the facilities it provides for
execution migration. Section 3.2 provides a formal definition of application state and how
the compiler, runtime and OS cooperate to ensure it accessible across processors of different
ISAs. Finally, Section 3.3 describes the expectations of the compiler and runtime when
constructing an application’s execution state.

13
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3.1 Replicated-Kernel Operating Systems

Traditional process-model monolithic operating systems such as Linux maintain all operating
system services and state in a single kernel instance, which operates as a single process in
the system. The kernel is responsible for managing all devices in the system, many of which
require interacting with system- or architecture-specific interfaces. The kernel provides a
series of abstractions which hide low-level hardware details from applications executing in
the system. The kernel must handle virtual memory management, disk access, networking,
etc., which require ISA-specific implementations. Because of this, the kernel is heavily tied
to and must be compiled specifically for the underlying architecture.

Recent work has begun to question traditional OS architecture due to increasing core counts
and heterogeneity. The multikernel [14] is a new OS design which treats a high core count
shared memory machine as a distributed system. The multikernel is designed to address
scalability and heterogeneity barriers by distributing pieces of the system across multiple
kernels. The multikernel boots several instances of the kernel, each of which owns a partition
of the physical memory and a subset of available devices. Kernels communicate via message
passing to share access to devices, but applications execute in a distributed fashion across
the kernel instances. Because of this, shared-memory applications must be rewritten to
take advantage of the multikernel. Unlike microkernels [57] which move kernel services
into separate processes that communicate via message passing, each kernel instance in a
multikernel is a full-fledged monolithic kernel capable of moderating all devices which it
owns.

The replicated-kernel OS [12] is an extension of the multikernel which expands shared-
memory programming support to a multiple-kernel OS. Figure 3.1 shows the architecture
of a replicated-kernel OS, including the interface presented to applications. The replicated-
kernel OS is similar to the multikernel in that multiple kernel instances run simultaneously
and system resources are distributed among them. However rather than exposing the dis-
tributed nature of the OS, the kernel instances work together to present a single system image
to applications executing in the system. Threads of an application can migrate between ker-
nels, and the application’s address space and OS state are replicated so that threads execute
in an identical operating environment. Because the OS mediates all access to devices (requir-
ing applications to use the system call interface), applications can use traditional POSIX
interfaces for disk, networking, etc. The kernels coordinate access to devices in order to
provide services regardless of where the application executes. This architecture allows appli-
cations to continue to use a shared-memory programming model, while the OS architecture
can be adapted to suit different levels of parallelism and heterogeneity.
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Figure 3.1: Replicated-kernel OS architecture and application interface

3.1.1 Thread Migration

In a replicated-kernel OS, each kernel owns and is run on a subset of the available processors
in the system. Because kernels have a number of ISA-specific components, in heterogeneous-
ISA systems a kernel instance is run on each set of same-ISA processors (called a processor
island). For example, in a heterogeneous-ISA platform containing an x86 CMP intercon-
nected to an ARM CMP, the replicated kernel OS would run one kernel instance on the
x86 processor island and another instance on the ARM processor island. The scheduler can
migrate application threads between processors of different kernels, or threads can migrate
themselves by setting their CPU affinity to a processor owned by a specific kernel.

The replicated-kernel OS enables thread migration between kernels through the use of shadow
threads. When a thread migrates from a source to a destination kernel, the destination
kernel spawns a new thread and the original thread is put to sleep on the source kernel.
In this scenario, the original thread that is put to sleep is known as a shadow thread.
The newly spawned thread is populated with the original thread’s execution context and
resumes execution on the destination kernel. The replicated-kernel OS keeps track of which
shadow threads correspond to which new threads executing on the kernels in the system.
All thread contexts are kept alive until the application exits, at which time the kernels
broadcast teardown messages that trigger a cleanup of all thread contexts associated with
the application [53].

At which program locations threads are able to migrate depends on which ISAs are available
in the system. If all processors use the same ISA, then threads can migrate between kernels
at arbitrary locations due to the fact that all threads execute using the same implementa-
tion of the application, i.e., the same data layout and machine code. From the application’s
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point of view, this is equivalent to migrating between cores in an SMP multiprocessor. If
kernels execute on processor islands of different ISAs, then threads can only migrate at
pointwise-equivalent program locations [104], known as equivalence points, in the appli-
cation. Equivalence points are matching program locations in two separate implementations
of an application (i.e., two compilations of the application for different ISAs) that satisfy
three properties:

1. At the specified program location, the set of live variables for both implementations
are equivalent. This means that there are the same number and types of live variables
at the program location.

2. All variables have been stored to memory, i.e., no variables are stored in registers. This
requirement is relaxed to allow the compiler to further optimize generated machine code
while retaining semantic equivalence with the stricter version of this property.

3. The structure of the two computations must be similar, i.e., the result of a set of
computations must be equivalent. The granularity of this sub-computation equivalence
can be adjusted from a single instruction up to the entire application’s execution. A
finer granularity reduces possible compiler optimizations, while a coarser granularity
limits the number of equivalence points.

At equivalence points, there exists a state transformation function between ISA-specific
versions of the application’s state. The compiler, OS and runtime cooperate to perform this
translation, after which the thread can resume execution post-migration.

3.1.2 Distributed Shared Virtual Memory

Although several efforts have explored shared memory for heterogeneous processors [29, 102,
47], no commercially available heterogeneous-ISA CMPs currently exist that support shared
memory. In order to sidestep this issue, the replicated-kernel OS provides distributed shared
virtual memory (DSVM). In DSVM systems, a runtime or operating system provides a single
view of addressable memory to applications executing across multiple computing nodes, each
of which has its own physical memory. The DSVM system mediates access to memory
objects which are either stored in a node’s local memory or in a remote node’s memory. The
DSVM system provides access to remote memory objects either by direct reads and writes to
remote physical memory regions, or by migrating memory objects between memory regions
to increase data access locality. The DSVM system provides the illusion of a single shared
memory region overlaid across a set of nodes, allowing applications to be developed using a
shared-memory programming model [80].

The replicated-kernel OS provides DSVM for threads of an application executing on different
kernels. As threads migrate between different kernels (and therefore, different processor
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islands) in the system, the kernels communicate to migrate pages on-demand so that threads
are able to access code and data. After a thread migrates, it resumes execution at an
equivalence point in user-space. However there are no pages mapped into the application’s
address space on the destination kernel – the thread causes a page fault as soon as it accesses
any code or data. The destination kernel sends a message to the source kernel requesting the
page and any mapping information for the faulting address. The page is transferred from the
source to the destination kernel, which maps the page into the application’s address space
and returns from the page fault. The thread continues execution as normal, most likely
causing more page faults which get resolved in a similar fashion. This mechanism allows the
kernels to reconstruct the application’s address space regardless of where threads execute.

The DSVM system provides coherency at the granularity of a page of memory. The replicated-
kernel OS uses a page coherency protocol [86] across kernels that acts like a multiple-reader,
single-writer lock on pages. When application threads executing on a single kernel access
a page, there is no coherency required. When threads executing on different kernels access
a page with read-only permissions, the page is replicated across both kernels. This allows
both scalability across kernels and data access locality. However, when the page has both
read and write permissions, only one kernel may own the page at a time. When a migrated
thread accesses the writable page, the source kernel unmaps the page from the application’s
address space (only on the source kernel) and migrates it to the destination kernel. If a
thread on the source kernel tries to access the same page, the process is reversed – the page
is unmapped from the application’s address space on destination kernel and migrated to the
source kernel. This prevents consistency issues from multiple writes to the same memory,
and supports ISA-specific locking mechanisms across architectures. However it can lead to
pathological behavior and poor performance when threads spread across multiple processor
islands access the same pages [86].

Using these mechanisms, the replicated-kernel OS allows threads to migrate between proces-
sors of different ISAs while executing in a replicated working environment. Popcorn Linux
implements thread migration and DSVM through a series of distributed kernel services be-
tween kernels on different processors.

3.2 Application State

As mentioned in Section 3.1.1, there exists a state transformation function at equivalence
points that can convert between ISA-specific formats of an application’s state. In order
to understand how application state can be transformed by the compiler and runtime in a
replicated-kernel OS, a formal model of application state is defined. A model allows us to
understand which parts of the application can be laid out in a common format across ISAs,
and which parts of the application should be transformed at runtime between ISA-specific
formats. For application state laid out in a common format, no transformation is required
and the replicated-kernel OS can simply migrate the state between kernels. Special handling
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is required for state that must be transformed, however.

3.2.1 Formalization

We consider a model in which applications execute as a single process in a replicated-kernel
operating system, and may utilize several threads of execution. We do not consider multi-
process applications, although the model can be extended to support them. Additionally we
do not support self-modifying applications, or applications which generate or modify their
machine instructions. Applications executing using a traditional von Neumann architecture
are comprised of data and code, both of which are stored in the same region of addressable
memory1. In process-model monolithic operating systems, the OS creates a virtual address
space VA for each application A. An application’s virtual address space VA is composed of
per-process state P and per-thread state Ti, where 1 ≤ i ≤ k for an application which has
k threads of execution. The compiler, linker and OS work together to construct VA so that
threads of execution are able to access required code and data.

The application’s per-process state P consists of code memory PC , statically-allocated data
memory PD, and dynamically-allocated data memory PH . Code memory PC includes all
machine code generated by the compiler for a target ISA, and is included as the .text section
in ELF binaries. Statically allocated global data memory PD is created by the compiler
and linker, and is included as .data, .rodata and .bss sections in ELF binaries (which
correspond to initialized data, read-only initialized data, and uninitialized/zero-initialized
data, respectively). Code memory PC and statically-allocated data memory PD are laid
out in the binary by the compiler and linker, which may optimize placement for cache
locality [19, 67, 38]. Dynamically-allocated global memory PH is created on-demand by
standard memory allocation routines, e.g., malloc, in the process’ heap.

The per-thread state Ti is composed of a set of registers Ri, a thread’s execution stack Si,
and a block of thread-local storage (TLS) Li. The compiler is responsible for laying out all
components of Ti. The compiler allocates storage for function-local data across Ri and Si,
aggressively optimizing the layout to take advantage of the ISA’s resources and capabilities.
The compiler also lays out Li by optimizing placement of variables declared with a thread-
local qualifier (such as thread in GCC) for cache locality, similarly to PC and PD. All
TLS variables for a single instance of Li are collected into ELF sections such as .tdata,
.trodata and .tbss to create an initialization image. Li is instantiated by creating a copy
of the initialization image for every thread in the application.

Each application also has associated kernel state maintained by the replicated-kernel OS,
e.g., open files, network sockets, IPC handles, etc. In this model we omit definitions for
kernel-specific application state – the kernels keep the state consistent via message passing,

1Popcorn Linux’s DSVM blurs the notion of a single region of memory, but it provides the abstraction
that threads executing on different kernels are able to address code and data in the same address space.
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but from the application’s point of view, the kernel reproduces a single system image. Thus,
the application does not need to know about how kernel-side state is organized.

In order to achieve seamless execution migration, an application’s virtual address space
VA = {P,< T1, T2, ..., Tk >} (where P = PC , PD, PH and Ti = {Ri, Si, Li} for 1 ≤ i ≤ k) must
be constructed so that threads executing on any ISA in the system can locate code and data.
To create VA, the compiler and linker can either align code and data in a common format
so that no transformation is required, or the compiler can extract application metadata so
that a runtime dynamically translates state between architecture-specific layouts. In this
context, translating program data refers to both changing the content of the data between
ISA-specific formats (reification) and changing the location of the data (relocation). In
practice a combination of common layout and transformation is applied in order to minimize
translation costs caused by application migration while simultaneously allowing applications
to achieve highly optimized execution [29, 102].

3.2.2 Laying Out Application State

Attardi et al. [6] and Smith and Hutchison [91] describe mechanisms that enable heterogeneous-
ISA execution migration by either maintaining program state in a target-agnostic intermedi-
ate format, such as Java bytecode, or by directly translating the application’s entire address
space VA between target-specific formats during migration. Whole-program interpretation
and translation are suitable for highly diverse targets, including targets which have differences
in primitive data type sizes and alignments, differences in pointer sizes, and differences in
endianness. However these mechanisms incur significant overheads, either due to the cost of
interpreting applications for an ISA-agnostic abstract machine or due to the cost of translat-
ing the entire address space of applications between formats. More recent work by DeVuyst
et al. [29] and Venkat and Tullsen [102] describes techniques for minimizing translation costs
by imposing stricter requirements for all target ISAs in the system, i.e., equivalent data sizes,
alignments, pointer sizes, endianness. Additionally, their modified compiler toolchain aligns
code and data in a common format across all ISAs on which threads execute, side-stepping
translation costs due to relocating data. This work is extended by the Popcorn compiler
toolchain and state transformation runtime.

Because the ISAs used for Popcorn Linux have identical data types and sizes, application
state PD and PH do not need to be reified between ISA-specific formats. Conceptually,
Li is a per-thread “global storage” meaning that it too does not need to have its content
transformed. However, code memory PC is not compatible across architectures, as the ISA
defines the machine code format. Because PC does not change at runtime, its reification
between formats is performed offline by the compiler. Specifically, the compiler generates
multiple versions of PC offline by compiling the application for each target ISA in the system.
Runtime transformation simply becomes a problem of mapping the correct version of PC

into memory depending on which architecture threads are executing. As threads migrate
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between processor islands, the kernels map the appropriate version of PC into VA, making
PC an aliased region of memory.

Relocating data to different areas of memory causes all references to that data to be inval-
idated. In order to eliminate relocation costs, the compiler and linker lay out symbols in
PC and PD at common addresses across all compilations of the application, meaning global
data and function pointers are valid for all ISAs in the system2. References to PH are also
valid across all architectures. The page coherency protocol ensures that accesses to PD and
PH are replicated and coherent between kernels, and the OS automatically maps the correct
version of PC . Thus, symbols in PC , PD and PH are aligned across all compilations.

The remaining parts of the execution state VA are dictated by the ISA (e.g., registers Ri)
or are highly tuned for each architecture (e.g., the stack Si). For these parts of the exe-
cution state, it is either impossible to lay data out in a common format or doing so would
cause severe performance degradation. Instead of using a common format and aligning data
across compilations, runtime state transformation is applied to convert Ri and Si between
architecture-specific formats. Thus, the compiler must generate metadata so that the state
transformation runtime can both reify and relocate Ri and Si.

3.2.3 ISA-specific State

A thread’s register set Ri and runtime stack Si are partially specified by the architecture-
specific application binary interface (ABI), which describes how applications represent, access
and share data in the system. One component of the ABI is the function call procedure,
which specifies how threads execute functions in an application. The function call procedure
describes how to set up per-function Ri and Si state, how to pass arguments to called
functions using Ri and Si, how to save and restore live registers (i.e., those parts of Ri which
contain live values) in Si, and how to pass return values back to the calling function. Each
instance of a called function creates a function activation that becomes part of a thread’s
execution state. According to the DWARF debugging information standard [25], there are
three pieces of information that define a function activation:

1. A program location within the function, either in a program counter register or saved
in a child function’s activation as a return address. The program location indicates the
machine instruction currently being executed, or the instruction at which execution
will resume after a returning from the child function, respectively.

2. A contiguous block of memory on the thread’s stack Si named the function’s call
frame. The call frame contains a function’s live values and information connecting a
function activation to surrounding activations, including saved registers and arguments
to child functions.

2Language semantics prevent function pointers into the body of a function, meaning that only the begin-
nings of functions must be aligned.
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3. A set of active or live registers in Ri. These registers might contain variables, control
flow information, condition codes, etc. Registers are dictated by the ISA and cannot
be changed by the compiler. The compiler does, however, have some flexibility in
specifying what values are stored in which registers.

As functions execute, they modify their register state to read and write memory, and to
perform computations on data. When calling functions, some or all of this register state
is saved onto the stack (as dictated by the ABI) – the calling function saves caller-saved
registers, while the called function saves callee-saved registers. Each invoked function
allocates space on a thread’s stack which also adheres to the architecture’s ABI. As functions
return back up the call chain, call frames are removed from the stack and register state is
restored from its saved format. A state transformation runtime must be able to observe
registers and call frames for each activation on a thread’s stack, and in particular must know
how execution state is mapped onto them for each architecture. The compiler generates
metadata describing the register and call frame state at equivalence points within functions.

The state transformation runtime needs to be able to access and understand register state
Ri for each activation. A thread’s register state is dictated by the ISA and can be grouped
into several categories [58, 48]:

• General-Purpose Registers – These registers are used for integer and boolean logic
operations, as well as addressing memory and control flow. A subset of these may be
used for special purposes, e.g., to maintain a return address.

• Floating-Point/SIMD Registers – These registers are used for floating-point arith-
metic, and are usually combined with ISA-specific SIMD extensions for data parallel
computation.

• Program Counter – The register containing the address of the next machine instruc-
tion to be executed. It usually cannot be accessed like general-purpose registers, but
must be changed using control-flow operations (branches, calls, etc.).

• Stack Pointer (SP) – The register pointing to the current top of the stack (which is
the lowest stack address for architectures that have downward-growing stacks). It can
usually be manipulated like general-purpose registers, and may have special semantics
for other operations, e.g., on x86 a call instruction decrements the stack pointer and
writes a return address to new top-of-stack.

• Frame Base Pointer (FBP) – The register pointing to the beginning of the current
call frame. It, together with the SP, identifies a function’s call frame3.

3The FBP register can be used as a general purpose register for call frames which have a statically known
size, e.g., those which do not perform operations like alloca.
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The state transformation runtime must be able to traverse call frames on the stack, and thus
must have information regarding how to adjust the stack and frame base pointer in order
to access a given function activation. Additionally, the ABI dictates which portion of the
register state is saved onto the stack (and by whom), meaning the runtime must understand
the register save and restore procedure in order to observe the correct register state for each
activation.
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Figure 3.2: Stack frame layout. The stack includes call frames for function foo(..), which
calls function bar(...).

Much of a thread’s execution state is placed in call frames on the stack, in a format created
by the compiler (but adhering to the ABI). Figure 3.2 shows a generalized view of a thread’s
stack of call frames, hereafter referred to as the stack. In this figure, a thread’s call stack
contains call frames for function foo, which has called function bar. Because the stack grows
downward, bar’s call frame is below foo’s. Each function call frame is composed of several
areas:

• Return Address – The machine instruction address at which execution will resume
after the current function has finished execution. Upon entering a function from a call
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instruction, the return address is pushed it onto the stack (or it may be pushed auto-
matically by the call instruction). In Figure 3.2, bar’s call frame saves the instruction
address at which execution will resume when returning to foo.

• Saved Frame Base Pointer – The FBP of the calling function. The old FBP is
saved so that the frame of the calling function can be restored after finishing execution
of the current function. This is usually saved after the return address on the stack. In
Figure 3.2, bar’s call frame saves foo’s FBP before setting its own FBP.

• Locals and Spilled Registers – This portion of the stack frame contains the callee-
saved registers, local variables allocated on the stack, and registers that are spilled to
the stack by the register allocator. In Figure 3.2, bar saves a subset of foo’s registers
as dictated by the ABI before allocating local variables and spill slots.

• Argument Area – Storage on the stack to be populated with arguments to be passed
to called functions. foo’s call frame has an area for arguments to bar, which in turn
has an argument area for any functions it may call.

The state transformation runtime must be able to locate call frames for each function ac-
tivation on the stack. It must also be able to find each of these areas of the call frame so
that they can be transformed between architecture-specific formats. The compiler generates
metadata describing the call frame layout for each function in the application, and how each
function can be unwound from the stack.

3.3 Expectations of the Compiler and Runtime

At equivalence points, a state transformation runtime is given the register set Ri and stack
Si of a thread. The state transformation runtime must be able to do the following:

1. Given a program location, i.e., an instruction address in a program counter register,
find the function encapsulating that address.

2. Given a stack pointer, frame base pointer and location within a function, locate each
of the call frame areas identified above.

3. Given a call frame and register set, know which portions of the call frame and register
set contain live values so that the runtime may copy them to the appropriate location
within a transformed call frame and register set.

4. Given a relocated variable in either Ri or Si, reify references to the variable in order
to reflect its relocation.
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5. Given a call frame and register set, be able to unwind the call frame from the stack in
order to access the frame of the calling function.

6. Given a return address in code compiled for one architecture, find the corresponding
return address in the code generated for another architecture.

The compiler is responsible for generating metadata providing all of this information, which
it injects into the binary for the runtime. Note that the compiler does not need to synthesize
this metadata for all instruction addresses in an application, but only at equivalence points.
Our prototype uses function call sites as equivalence points, as they satisfy all requirements
listed in Section 3.1.1. Thus, transformation metadata is only needed at function call sites –
by definition the stack is composed of function activations for functions that are paused at
a call site and will resume when the child function returns. The only activation which is not
paused at a function call site is the outermost activation, i.e., the activation of the currently
executing function. The state transformation runtime implements a special function which
carefully handles bootstrapping and initiating transformation, and thus threads only need
to call this special function to begin the process.

The compiler, described in Chapter 4, generates the state transformation metadata needed
at runtime to convert Ri and Si between ISA-specific formats. Additionally, the linker
is directed to lay out PC , PD and Li in a common format to avoid transformation costs.
Finally, a state transformation runtime (described in Chapter 5) applies the compiler-directed
transformation when threads migrate between processor islands.



Chapter 4

Popcorn Compiler Toolchain

The Popcorn compiler toolchain is responsible for preparing applications for seamless migra-
tion across heterogeneous-ISA architectures. The toolchain generates multi-ISA binaries,
binaries containing modified data and code sections along with state transformation meta-
data, built for migration on Popcorn Linux. Multi-ISA binaries lay out data and code in
a common format, which Popcorn Linux uses to replicate a shared virtual address space
across kernels (and thus, heterogeneous-ISA processors). For execution state that cannot be
laid out in a common format due to ISA or performance reasons, the toolchain generates
metadata so that a transformation runtime can switch state between ISA-specific formats.
Using information from the multi-ISA binary, Popcorn Linux migrates threads of execution
between architectures in a replicated environment so that threads see a single system image
across all kernel instances.

4.1 Building Multi-ISA Binaries

The Popcorn compiler toolchain builds multi-ISA binaries by compiling the application
source for each ISA available for execution in the system. The toolchain uses a modified
LLVM [77] as the compiler and a modified GNU gold [39] as the linker. The toolchain
also uses several custom-built tools for post-processing binaries in preparation for migration.
Figure 4.1 shows an overview of how application source flows through the toolchain to pro-
duce a multi-ISA binary. Different phases of compilation are encapsulated in boxes, with
Popcorn-specific additions listed inside.

Application binaries are built through a standard compilation procedure augmented with
several additional steps. The source is first parsed into an ISA-agnostic intermediate rep-
resentation (IR). The IR is analyzed and optimized, then is compiled once for each ISA
in the system using an ISA-specific back-end. After linking, which generates a binary per
ISA, post-processing modifies the binaries by aligning function and data symbols at identical
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Figure 4.1: Popcorn compiler toolchain

virtual addresses across all binaries. Additionally, post-processing adds state transformation
metadata. At this point the multi-ISA binary has been built and is ready for execution
migration across kernesl in Popcorn Linux.

There are many custom analyses and transformations added to the compilation process in
order to build multi-ISA binaries:

• IR Modification (LLVM middle-end) – Clang generates LLVM bitcode, an inter-
mediate representation of lowered source code in single-static assignment (SSA) form.
Popcorn’s compiler modifies the IR by inserting migration points at the beginning
and end of functions (Section 4.2). Several passes adjust data linkage in preparation
for alignment. Finally, an analysis pass and an instrumentation pass find and record
live values at various locations throughout the IR in preparation for runtime state
transformation (Section 4.3).

• Backend Analysis (LLVM back-end) – Several backend analyses are run which mark
return addresses from function calls, gather live value locations in function activations,
and generate metadata needed for state transformation (Section 4.4).

• Linking – Thread-local storage (TLS) layout is modified to conform to a single layout
across all generated binaries. The current implementation forces all TLS to be identical
to the x86-64 layout [10].
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• Alignment (post-processing) – After generating a binary per ISA, a linking tool gath-
ers symbol location and size information in order to align data and function symbols
at identical addresses across all binaries. Symbols are placed in an identical order in
all binaries (while space is added for symbols that only exist in one binary). Data
symbols do not need to be padded, because the architectures used in our prototype
have identical data sizes and alignments for primitive data types. Function symbols
do require padding, however, because the machine code implementing a function may
be different sizes for different ISAs [10].

• State Transformation Metadata (post-processing) The binaries are post-processed
to set up the state transformation metadata needed to transform execution state at
runtime (Section 4.5).

The Popcorn compiler currently supports applications written in C. The toolchain builds
multi-ISA binaries for POSIX- and Popcorn-compliant programs, meaning that all tradi-
tional POSIX interfaces supported by Popcorn Linux, such as the standard C library and
pthreads, are supported by the compiler. Additionally, the compiler has almost no restric-
tions on program optimization, meaning applications can be aggressively optimized for each
architecture in the system (see Section 4.3). There are currently a few limitations – the
current prototype only supports 64-bit architectures whose primitive data types have both
the same sizes and alignments. The toolchain does not support applications that use inline
assembly, as analyses in the middle-end do not understand machine-code level semantics.
Architecture-specific features such as SIMD extensions and setjmp/longjmp are not sup-
ported. Finally, applications cannot migrate during library code execution (e.g., during calls
to the C standard library).

Other works focus on aligning global state to replicate the same virtual address space across
kernel instances [12, 10, 63, 11]. This thesis analyzes and solves the problem of trans-
forming execution state between ISA-specific formats to enable seamless thread migration
at runtime. Section 4.3 describes analyses and transformation over the application’s IR
needed to capture state transformation metadata. Section 4.4 describes back-end changes
for converting IR-level metadata into machine code metadata. Section 4.5 describes the final
post-processing step which adds state transformation metadata to the multi-ISA binary for
a state transformation runtime.

4.2 Inserting Migration Points

Because threads cannot migrate between heterogeneous-ISA architectures at arbitrary lo-
cations, threads must check to see if the scheduler has requested a migration. Migration
points are inserted by the compiler at the beginning and end of functions, which corresponds
to the equivalence point at the call site of the function. Recall from Section 3.1.1 that there
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are three properties that must be satisfied for a program location to be an equivalence point.
Function call sites satisfy all three properties:

1. Identical number and type of live variables – this is satisfied by construc-
tion. LLVM compiles the application for each ISA using the same LLVM bitcode.
Architecture-specific back-ends are tasked with allocating storage for the live values
described by the IR. The individual back-ends can introduce new per-architecture live
values, although higher optimization levels tend to remove these1.

2. Live values must be in memory – this requirement is relaxed so that live values
may be in memory or in registers at function call sites. This is semantically equivalent
due to the function call procedure. In order for a live value in a register to be preserved
across a function call, it must be stored in a callee-saved register. This means that if
the calling function uses the register, it is required by the ABI to spill the register into
the callee-saved register section of its call frame. Otherwise, the live value remains
untouched in the register while the called function executes. Therefore, all live values
are either stored in memory or are live in the register set of the outermost function
activation.

3. Semantically-equivalent computation – this is again satisfied by construction. The
back-ends generate machine-specific code which corresponds to a single set of IR. The
back-ends may perform architecture-specific optimization, including both basic-block
level and function-level code movement. However, code movement is prevented across
function call sites as described in Section 4.3, meaning that computation completed up
until a function call site is semantically-equivalent across all versions of the machine
code.

Migration points are implemented as a call-out to a library. At application startup, the main
thread maps a shared page between the kernel and the application. When the scheduler
requests that a thread migrate, it sets a flag on this page. At migration points, threads
check to see if this flag has been set, and if so, begin the state transformation and migration
process described in Chapter 5.

4.3 Instrumenting the IR of the Application

The Popcorn compiler toolchain is responsible for capturing execution state information at
rewriting sites, i.e., function call sites at which stack transformation may occur, during
the compilation process. The toolchain must generate metadata describing the makeup of

1The current implementation of the compiler does not support architecture-specific live values. This is
planned for future work as a requirement for supporting new benchmarks.
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generated function activations, including instruction addresses and locations of live values at
rewriting sites. The toolchain collects this information while the application is in an inter-
mediate representation in order to determine program locations and liveness information in
an architecture-agnostic fashion. Additionally, recording liveness information in the middle-
end captures IR-level semantic information (such as data type, size, etc.), which is stripped
away when lowering the IR to machine code. An LLVM pass was built that implemented the
algorithm presented by Brandner et al. [18], an optimized version of the standard data-flow
analysis algorithm for SSA-form programs, for the Popcorn compiler toolchain. Another pass
was built which instruments the application IR to capture program and live value locations
using the results from this liveness analysis.

The transformation pass instruments the IR with stack map intrinsics [79]. Stack map
intrinsics appear as function calls in the application IR with a set of live values as function
arguments. As the IR is lowered to machine code, stack maps record function activation
information at the stack map instruction’s location. Stack maps are inserted into the IR
at rewriting sites – in our prototype, at function call sites. As they are lowered by the
back-end, stack maps are converted into metadata stored in an extra ELF section in the
generated object code. Each stack map intrinsic generates a record in the ELF section and
is composed of several fields:

• ID – Each stack map has a unique 64-bit ID, allowing the state transformation runtime
to find matching stack map records for each ISA-specific version of the generated
machine code.

• Program Location – The stack map record includes information about the function
which contains the stack map. It contains a machine instruction offset from the begin-
ning of the function, which denotes the stack map’s program location. This is used to
locate the return address for function calls when transforming the stack.

• Call Frame Size – In addition to encoding the instruction address, the record stores
the size of the call frame for the containing function. This allows the transformation
runtime to construct call frames for the transformed stack.

• Location Records – The record encodes the locations of live values specified in the
stack map intrinsic in the IR. Values can be stored on the stack (as an offset from the
frame base pointer), in a register (encoded using architecture-specific DWARF register
numbers), or they may be a constant not stored anywhere. The record also contains
information about the live value’s type, described in more detail in Section 4.4.

It is important to note that the stack map intrinsic does not add any overhead to the gener-
ated code – it does not cause any additional machine instructions to be generated and it does
not change where live values are allocated. Stack maps prevent the -fomit-frame-pointer
optimization because because they use offsets from the frame pointer to locate stack-allocated
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variables. This is only an implementation artifact, however, and not a design requirement.
Additionally, stack maps prevent code movement around the intrinsic’s location in the LLVM
back-end, which ensures that all three properties of equivalence points are satisfied.

Figure 4.2 shows an example of LLVM bitcode for a simple basic block:

Figure 4.2: Uninstrumented LLVM bitcode

In this basic block, integer mydata is allocated on the stack and is initialized to 5. Sometime
later in the basic block, the function do compute is called. At the end of the block, mydata
is loaded into integer res and returned as the result of the function. Figure 4.3 shows the
result of running Popcorn’s liveness analysis and instrumentation pass over the basic block:

Figure 4.3: Instrumented LLVM bitcode

The transformation pass places a stack map intrinsic directly after the call to do compute to
capture transformation metadata at the rewriting site. The stack map has an ID of 0 (the first
argument), which uniquely identifies this function call site across all per-ISA versions of the
application. Liveness analysis determines that mydata is live across the call to do compute,
so the transformation pass adds the value as an argument to the stack map. Stack map 0’s
instruction address and mydata’s storage location will be recorded after the basic block has
been lowered to machine code (after instruction scheduling and register allocation).

4.4 Augmenting Compiler Backend Analyses

The application IR is lowered to machine code for each target ISA in the system on which
Popcorn Linux runs. As the IR is transformed, special handling converts stack map intrin-
sics into records which contain concrete details about the rewriting site, such as program
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location and live value locations within function activations. Several additional analyses
were integrated into the LLVM back-end to add pieces of information not able to be cap-
tured in the middle end. LLVM implements IR lowering to machine code using a set of
target-independent analyses and transforms, meaning our modifications are available for all
targets supported by LLVM. Unlike previous works [101, 102, 29], the Popcorn compiler
toolchain does not change the size or layout of call frames to be compatible across architec-
tures. The toolchain minimizes the number of changes to the architecture-specific portions
of the back-end so that applications can take advantage of extensive architecture-specific
compiler optimizations and be easily ported to any architecture that LLVM supports.

4.4.1 Program Location

Stack maps are inserted into the IR directly after function calls to record return addresses
from those function calls. LLVM IR encapsulates the entire function call procedure into a
single IR instruction, which is expanded during instruction selection and register allocation
to adhere to the ISA’s function call procedure defined in the ABI. Because this procedure
is not visible in the middle-end, it is not possible to directly capture a call’s return address
by adding stack map intrinsics. Instead, in the back-end stack map intrinsics were matched
to the appropriate function call site. This allows the stack map machinery to encode the
return address irrespective of the architecture-specific function call procedure.

4.4.2 Live Value Locations

Stack map intrinsics were designed for online compilers, and as such were designed so that
a set of values could be captured at the intrinsic call site and execution could be transferred
to an optimized version of the function (i.e., moving from an interpreter to compiled ma-
chine code). Stack maps capture the function activation state specified as arguments to the
intrinsic – they do not capture the entire function activation itself. An artifact of this design
is that a value may be live in several locations (e.g., in a register and backed by a slot in the
call frame) but the stack map mechanism only records one of these locations. For example,
consider the AArch64 assembly in Listing 4.1:
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0x410000 : l d r x20 , [ sp ,#32] ; s tack s l o t 4
0x410004 : add x0 , xz , x20
0x410008 : mul x0 , x0 , 2
0x41000c : b l do compute

<s tack map reco rds metadata here>
0x410010 : add x20 , x0 , x21

Listing 4.1: Live values across call to do compute in AArch64 machine code. The value is
live in stack slot 4 and register x20.

In this assembly, a live value is loaded from stack slot 4 into register x20, which is a callee-
saved register for AArch64. The value is then used to compute an argument for the call to
do compute. After returning from the function call, x20 is overwritten using the return value
from do compute and another callee-saved register x21. The stack map intrinsic inserted after
the call requests that the back-end record the location of this live value at do compute’s
return address. The back-end only records that the value is stored in register x20, although
it is also stored in stack slot 4. Without additional analysis, the metadata at this rewriting
site is incomplete, meaning that the transformation runtime will not be able to fully rewrite
the activation and the application will likely fail after migration. Note that in addition to
live values being in both a register and call frame slot, values may also be live in multiple
registers depending on the types of optimizations applied. Live values stored in multiple
locations is more prevalent on RISC architectures, because live values must be loaded from
and stored to memory in order to do computation on them. However, these problems also
arise on CISC architectures, depending on the results of register allocation.

A liveness range checking was implemented for live values in stack maps to determine if
they are stored in multiple locations. This analysis uses liveness ranges for registers and
stack slots which are already calculated by LLVM for register allocation. At this point in
the compilation, the application has been lowered to another form of IR which is close to
machine code. The IR is still in SSA form, however, and values have use-def chains which
point to instructions where the value is defined and used.

After register allocation, the definitions of all live values stored in registers2 are checked.
If the register is defined by a copy (e.g., a load from a stack slot or a copy from another
register), the liveness range of the source of the copy is searched. If the source value’s live
range overlaps with the stack map, then the source is determined to be a duplicate location
for the live value and extra metadata is added to account for the duplicate.

2It is not necessary to check live values stored in stack slots, because if they are marked as stored in the
call frame by the stack map machinery then they are never also in a register. Problems only arise when
promoting values from stack slots to registers or when copying values between registers.
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4.4.3 Live Value Semantic Information

Stack maps were designed so that execution could be transferred to an optimized version of
a function on the same architecture. Because of this, the live value information needed to
jump to optimized execution is simpler than what is required by the state transformation
runtime for Popcorn Linux. Stack maps encode the following information about live values
and their locations:

• Storage Type – where the value is stored, i.e., a register, a stack slot or if it is a
constant, nowhere.

• Register Number – if the value is stored in a register, which register it is stored in.
Stack maps use DWARF register numbers as specified by each ISA’s ABI.

• Offset from frame base pointer – if the value is stored on the stack, the offset
from the frame base pointer where the value is stored. The frame base pointer is
ISA-specific, e.g., rbp on x86-64 or x29 on AArch64.

• Constant – if the value is a constant, the stack map will directly encode the value.
Note that our implementation of liveness analysis ignores constant values because they
are, in general, materialized right before use in the machine code rather than being
held in storage. The transformation runtime does not need to worry about constants,
as the machine code will create them as needed.

The following fields were added to location records using IR-level information in order to
handle several cases:

• Pointer – flag indicating if the value is a pointer. The state transformation runtime
requires special handling for pointers to the stack, although pointers to global data
and functions are valid because of symbol alignment.

• Alloca – variables allocated to the stack are instantiated using the alloca IR intrinsic
in LLVM bitcode. This flag indicates that the live value is allocated to the stack.

• Size of Stack Variables – the stack map fields described above only indicate how to
locate the beginning of a stack-allocated variable, but do not specify their size. If the
value is allocated to the stack, this field encodes how large the allocated data is in the
call frame.

• Duplicate – flag indicating if this location record is a duplicate, meaning that it
describes another location for the same live variable (as determined by the analysis
described in Section 4.4.2).



Robert F. Lyerly Chapter 4. Popcorn Compiler Toolchain 34

The application IR is converted to machine code, which is emitted into object files. Stack
maps records are added to a special section within the object file, but are not in a suitable
format for state transformation.

4.5 Generating State Transformation Metadata

At this point, the LLVM back-end has generated object code and added stack map metadata
to the binaries. Additionally, the alignment tool has aligned code and data symbols across
each of the generated versions of the binary. The final step in the toolchain is to convert the
emitted stack map records into the format the state transformation runtime uses to rewrite
the stack. There are several downsides to the default format emitted by LLVM:

• Stack map records are variable-sized – there are a variable number of live value
location records per stack map record. This means searching through stack map records
is a sequential process because it requires jumping across differing numbers of location
records per stack map.

• There are multiple stack map sections per binary – LLVM generates a stack
map section per source file. Stack map records are not combined during linking, but
are rather appended one after another into a larger ELF section. This compounds the
problem of searching for records, as searching for a stack map from a particular source
file requires first finding the beginning of the stack map records for that file and then
searching sequentially through the records.

A final post-processing step reorganizes stack map records into a format amenable for efficient
lookups of stack maps and location records of live values at the rewriting site. A post-
processing tool parses the LLVM-generated stack map sections, gathers all data into a single
monolithic format and appends three extra sections to the multi-ISA binary.

The first two sections provide stack map records which contain the following fields:

1. ID – the stack map or rewriting site ID.

2. Program location – return address of the function call defining the rewriting site.

3. Call frame size – size of the call frame.

4. Number of live values – number of live values at the rewriting site.

5. Live value records offset – offset into the live value location record section, as
described below.
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The first two sections provide stack map record tables sorted by ID and program location,
respectively, as shown in Figure 4.4. These sections provide a dictionary between stack map
IDs and program locations, which is used by the state transformation runtime to look up
and correlate call stack map records for the source and destination versions of the activation.
The transformation runtime uses a return address on the source stack to look up its stack
map record, which is tagged with a unique ID. The transformation runtime next looks up
the destination stack map record using the unique ID. The runtime then uses the source and
destination stack map records to locate live variables and to correlate return addresses found
on the source stack to the appropriate return addresses for the destination ISA. Because all
records have a constant size, the transformation runtime can use a binary search to quickly
locate records, given a program location or stack map ID.

ID Program Location Call Frame Size # Live Values Offset in Live Value Section

0 0x410126 112 19 0
1 0x41013b 32 5 19
2 0x410264 16 2 24
3 0x4104ec 32 4 26
4 0x410210 16 3 30
... ...

(a) Stack map records, sorted by ID

ID Program Location Call Frame Size # Live Values Offset in Live Value Section

0 0x410126 112 19 0
1 0x41013b 32 5 19
4 0x410210 16 3 30
2 0x410264 16 2 24
3 0x4104ec 32 4 26
... ...

(b) Stack map records, sorted by program location

Figure 4.4: Stack map record sections

The third section added to the multi-ISA binary contains live value location records for
all stack maps. The transformation runtime finds live variables in a function activation by
reading the offset and the number of location records from the stack map record and pulling
the records from this third section. Figure 4.5 shows example location records.

These records are also constant size, meaning the transformation runtime can directly jump
to a record given an offset.

At this point, the multi-ISA binary has finished compilation and is ready for execution on
Popcorn Linux.
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Type Register Offset Is Pointer? Is Alloca? Stack Size

Register 12 (n/a) No No (n/a)
Register 14 (n/a) Yes No (n/a)

Stack Variable (n/a) 16 Yes Yes 32
Stack Variable (n/a) 24 Yes No 8

...

Figure 4.5: Live value location records



Chapter 5

State Transformation Runtime

At runtime, applications compiled by the Popcorn compiler toolchain execute as normal on
a single architecture until the Popcorn Linux scheduler requests a migration. At that point,
a state transformation runtime built into the multi-ISA binary (hereafter referred to as
the runtime) co-opts execution in user-space and transforms thread state into the format
required by the destination ISA. After transformation, threads invoke a Popcorn Linux-
specific system call which migrates the threads to the destination ISA. Special handling is
required to set up for migration and to bootstrap execution on the new architecture after
migration.

The runtime is built to minimize end-to-end state transformation latency as a primary design
goal so that the scheduler can react to changing workload conditions without significant
delay. The runtime is implemented in a standalone library linked into multi-ISA binaries.
The compiler hooks applications into the library by inserting migration points, which check
for migration requests and perform state transformation. The runtime is written in C in order
to aggressively optimize its performance and so that it does not drag external dependencies
(e.g., the C++ standard library) into applications.

The runtime operates at the granularity of threads of execution, which enables the OS sched-
uler to migrate individual threads of an application. Threads execute normally, checking at
migration points to see if the scheduler has requested a migration. When the scheduler
requests a migration, the thread takes a snapshot of its register state Ri and calls into the
runtime. The runtime uses the stack pointer from Ri to attach to the thread’s stack Si

and convert all live function activations from the source ISA format to the destination ISA
format. After transformation, the thread makes a system call into the Popcorn Linux kernel
which migrates it to the new architecture using the thread migration service. One of the
arguments to the system call is the transformed register state for the outermost activation,
which the destination kernel uses to set the destination thread’s initial register state. The
kernel sets the transformed register state and the thread returns back into user-space inside
of the runtime. The runtime performs a few housekeeping steps, and the thread resumes

37
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normal application execution.

When transforming the thread’s execution state, the runtime divides the thread’s stack into
two halves – one half which the thread is currently using, and another half for transforma-
tion1. The runtime transforms the thread’s execution state in its entirety – the entire stack
is rewritten from the current ISA’s format to the destination ISA’s format. Register state,
including state for the current function activation and all state saved on the stack as part of
the register save procedure, is transformed along the way.

The runtime operates in user-space for several reasons. First, it allows the runtime to use
many interfaces that are not as well supported in kernel space, such as DWARF debugging
information. Second, it provides a cleaner separation of responsibilities. Pushing state trans-
formation into the kernel requires integrating application-specific logic into kernel space, even
though the kernel should only be an arbiter of resources. By keeping state transformation
in user-space, applications are responsible for their own state and there is less complexity in
the kernel (which ultimately makes the kernel more robust to faulty or malicious applica-
tions). The downside of transformation in user-space is that rewriting is not opaque to the
application – state transformation is visible to application threads. Nevertheless, our pro-
totype performs state transformation in user-space due to the aforementioned benefits. Our
state transformation runtime differs from that of DeVuyst [29] and Venkat [102] in that our
runtime reconstructs the destination stack from the source stack while their implementation
does in-place modification. This is an artifact of our choice not to unify call frame layout in
the compiler.

Section 5.1 describes how the runtime prepares for transformation at application startup
by loading in metadata and preparing stack pages. Section 5.2 describes the state trans-
formation process, which rewrites the thread’s registers and stack in their entirety. Finally,
Section 5.3 describes how a thread invokes and resumes execution after the OS migrates it
to another ISA.

5.1 Preparing for Transformation at Application Startup

In order to reduce state transformation latency, the runtime loads rewriting metadata into
memory when the application begins execution. At startup, the main thread creates state
transformation descriptors for all ISAs in the system. These descriptors contain the
following ISA-specific metadata needed for transformation:

• ISA ID – a numeric ID uniquely identifying the architecture, as defined by ELF.

• Pointer Size – size of pointers as defined by the ISA’s ABI. This is always 8 bytes
(64-bit) in our prototype.

1The default stack size on Linux systems is 8MB, meaning the runtime divides it into two 4MB regions.
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• Register Operations – a set of function pointers which implement register access
operations for the ISA. All register access operations in the runtime use an architecture-
agnostic interface, and architectures provide ISA-specific implementations via function
pointers2.

• ISA Properties – a set of properties which describe ISA-specific register behavior
(i.e., register size, which registers are callee-saved) and stack properties (i.e., stack
pointer alignment).

• DWARF Frame Unwinding Metadata – DWARF data structures which describe
the call frame unwinding procedure for all functions in the application.

• Stack Map/Rewriting Site Records – the metadata generated by the compiler
(described in Section 4.5) to locate rewriting sites in the machine code and to locate
live variables at those sites.

• Frame Unwinding Information for Starting Functions – frame unwinding in-
formation for thread start functions, e.g., libc start main from the C standard
library. Rather than querying this information for each state transformation, the run-
time caches it for quick use because the last activation on any thread’s stack will
correspond to one of these functions.

At startup, the application creates descriptors for all ISAs in the platform by reading the
metadata added to the multi-ISA binary by the Popcorn compiler toolchain. This informa-
tion is instantly available for threads to perform transformation when the scheduler requests
migrations. Unfortunately the current runtime prototype uses a DWARF library which is not
thread safe, meaning that threads cannot concurrently access handles. This is an implemen-
tation issue, however, and is not an inherent design issue – none of the metadata contained in
the handles is ever changed, meaning multiple threads would be able to concurrently access
the rewriting metadata in a more complete implementation.

The runtime must also prepare the main thread’s stack for transformation due to a quirk
in how Linux handles stack memory growth. In Linux, the main thread is given a system-
defined stack size on application startup (usually 8MB). However, this memory is allocated
on demand by observing page faults. When stack growth causes a page fault, Linux checks to
see if the access is on a page adjacent to a previously allocated stack page. If so, Linux maps
a new stack page into the application’s page table and returns to user-space to continue
normal execution. However, if the stack access is not on a page adjacent to a currently
allocated page Linux traps it as a segmentation fault and ends the application. Because
the runtime may be rewriting to a part of the stack not adjacent to the current stack pages
(due to splitting the stack in half), the runtime touches all pages in the main thread’s stack

2Essentially, a C version of object-oriented programming where a base class defines the register access
API and child classes implement the API for each ISA.
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area so that they are ready for rewriting. This is not a problem for threads forked by the
threading library, as the library allocates stack memory by using mmap or malloc, both of
which sidestep this issue.

Finally, the runtime maps in a shared page between the kernel and the application. The
scheduler sets flags on this page in order to request migrations, as requested in Section 4.2.

5.2 Transformation

Application threads execute normally, checking to see if the scheduler has requested a mi-
gration at compiler-inserted migration points (Section 4.2). When a thread sees that the
scheduler has requested a migration, it copies all of its register state into memory so that
the thread can continue execution (to transform its stack) while operating on a snapshot of
the thread at the migration point. The thread then calls into the runtime to begin transfor-
mation.

First, the thread determines which half of the stack it is currently using and computes the
bounds for the other half. It then passes the snapshot of the register set, the stack bounds
for the two halves of the stack, and the rewriting handles for the current and destination
ISAs to the core of the runtime. The runtime begins by allocating rewriting contexts
for the thread’s execution state on the current and destination ISA. Rewriting context store
information about the thread’s current execution, including the following:

• Stack Bounds – the beginning and end of the stack.

• Register Set – register set for the outermost activation, i.e., the current activation.
For the thread’s current execution state, this is the snapshot taken at the migration
point. Another register set will be populated for the transformed execution state,
which will be used by the kernel to initialize the thread when it resumes execution on
the destination architecture.

• Function Activations – metadata about the function activations in the execution
state, including call site information, call frame bounds, current register state and
frame unwinding information.

• Stack Pointers – a list of pointers to the stack that have yet to be resolved (Sec-
tion 5.2.3).

• Memory Pools – pools of memory needed for per-activation data (an optimization
to reduce the number of memory allocation calls in the runtime). Because the runtime
does not know for which ISA the context will be used, it does not which registers
require unwinding per activation. Rather than dynamically allocating a buffer for this
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information as activations are being discovered, the runtime allocates a single chunk
of memory and sets a pointer into it for each activation.

• State Transformation Descriptor – ISA-specific version of the state transformation
descriptor which contains transformation metadata.

After initializing contexts for the current and transformed execution state, the runtime begins
rewriting activations. There are three components in the transformation process:

1. Find activations on the current stack in order to determine the size of the
transformed stack (Section 5.2.1) – the thread’s current stack is unwound to find
which activations are currently active. This information is used to locate stack map
records for the rewritten stack, which allow the runtime to calculate the size of the
rewritten stack.

2. Transform activations from the current ISA’s format to the destination ISA
format (Section 5.2.2) – the runtime transforms a function activation at a time from
the source to the destination context, for all live activations.

3. Fix up pointers to the stack (Section 5.2.3) – pointers to the stack require special
handling, and may not be resolved within a single activation. The runtime keeps
track of and fixes up pointers as the pointed-to data is discovered. This component is
intertwined with function activation transformation, but is a separate mechanism.

5.2.1 Finding Activations on the Current Stack

Using DWARF call frame unwinding metadata contained in the current ISA’s state trans-
formation handle, the runtime unwinds all call frames from the source stack. This lets the
runtime cache metadata about the current live activations for the source and destination
execution state, but more importantly it lets the runtime calculate the size of the rewritten
stack. Algorithm 1 shows the pseudocode for the unwinding procedure.

The runtime begins by initializing the sets of live activations for both the source (i.e., current)
and destination (i.e., rewritten) execution state. The outermost activation for the source is
added to the set of live activations. The runtime checks if the current activation is the first
live activation for the thread, i.e., if it is the activation for the first function called by the
thread. If not, a matching empty activation is created for the destination. The runtime then
uses the program counter from the source activation to look up the rewriting site record in
the rewriting metadata (Section 4.5). The runtime uses the ID of the record to find the
corresponding rewriting site record for the destination. The rewriting site records are cached
in the source and destination rewriting contexts, respectively. The destination stack size
is updated using the destination record, which contains the size of the call frame for the
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Algorithm 1: Algorithm to unwind current stack and calculate size of rewritten stack

Data: Handle for source rewriting metadata HS, handle for destination rewriting
metadata HD, outermost activation for source aS

Result: Set of activations for source AS, set of empty activations for destination AD, stack
size for destination stack SD

SD = 0;
AS = {aS};
AD = {};
while !FirstActivation(aS) do

aD = CreateEmptyActivation();
AD = AD ∪ aD;

CallSiteaS = GetSiteByAddress(HS , GetPC(aS));
CallSiteaD = GetSiteByID(HD, GetID(CallSiteaS ));

SetCallSite(aS , CallSiteaS );
SetCallSite(aD, CallSiteaD);
SD = SD + GetCallFrameSize(CallSiteAD

);

aS = UnwindActivationToCaller(aS);
AS = AS ∪ aS;

end
return AS, AD, SD

function in which it is contained. Finally, the source activation is unwound from the source
stack, which sets the source activation to its caller.

This process is repeated until reaching the initial activation for the source, which is either
a starter function in the standard C library for the main thread, or a thread start function
in a threading library such as pthreads. The algorithm returns a set of activations for the
source execution state, a set of shell activations for the destination state (which will be filled
as described in Sections 5.2.2 and 5.2.3), and the stack size of the destination stack. The
runtime then moves on to transforming live function activations.

5.2.2 Transforming Activations

After discovering live activations, the runtime resets to the outermost activation and works
up the stack, transforming activations as it goes. In order to fully transform an activation,
the runtime must populate a destination activation with the following information:

• Call Frame Bounds – the runtime must determine the beginning and end bounds of
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the activation’s call frame on the stack. This consists of setting the frame base pointer
and stack pointer, which denote the beginning and end of the call frame, respectively.

• Live Values – the runtime must copy live values, as gathered by IR and back-end
analyses (Sections 4.3 and 4.4) from the source to the destination activation.

• Saved FBP – the runtime must set the saved frame base pointer from the calling
activation in the called activation’s call frame.

• Return Address – the runtime must also set the return address in the current acti-
vation’s call frame to the rewriting site in the calling function.

In addition to the above pieces of information, the runtime must adhere to the register save
procedure by forward propagating values in callee-saved registers to the activations where
they have been saved onto the stack. The runtime must only handle callee-saved registers
– the stack map mechanism automatically handles caller-saved registers as it records where
LLVM’s register allocator spills them around call sites.

The runtime begins with the outermost activations and works inwards. It steps through all
live value location records in the stack map record to find where live values are stored in
both the source and destination activations. Figure 5.1 shows an example of the runtime
copying live values from the AArch64 to the x86-64 version of a function activation.

The runtime uses stack map records to locate live value location records in the transformation
metadata for each binary. The runtime parses a live value’s location record for both the
source and destination format to find its location, e.g., an offset into the call frame or a
particular register. The location record also provides the size of the data, which the runtime
uses to copy the value from the source to the destination activation. The runtime also applies
the same procedure for any duplicate location records that may exist. The runtime repeats
this process for all live values at the rewriting site.

The runtime must take special care to adhere to the ISA-specific register save procedure.
Because of this, the runtime keeps track of which callee-saved registers are stored as call
frames are unwound from the stack. When the runtime finds a live value in a callee-saved
register, it searches down the call chain (i.e., towards the most recently called function) to
find the nearest activation which saves the register. If the runtime finds an activation that
saves the register, it duplicates the value in the appropriate call frame slot. If none of the
called functions save the register, then the value is still live in the outermost activation and
the runtime duplicates the value in that activation’s register set.

It is important to note that it does not matter that each ISA defines a different number
of registers (and different numbers of different classes of registers, e.g., general-purpose or
floating-point). The Popcorn compiler determines the live values at a given rewriting site in
the architecture-agnostic IR. Each architecture-specific back-end is handed the same version
of the IR, and therefore the register allocator is responsible for allocating storage for the same
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Figure 5.1: An example of the state transformation runtime copying live values between
source (AArch64) and destination (x86-64) activations.

set of live values regardless of the ISA. The register allocator is handed a set of parameters
describing the numbers and types of registers for each target, and makes allocation decisions
for each live value. Therefore it is only necessary for the runtime to copy data between
these different storage locations in order to rewrite the live values for a function activation.
The runtime may copy values between call frames, between registers, from a call frame to
a register, or from a register to a call frame. Where values are stored only depends on the
register allocator.

After rewriting the live values, the runtime must set the saved frame base pointer and return
address before it can move to the caller’s activation. However in order to set this information
it must unwind to the caller’s frame to read its call frame size and program location. The
runtime applies the DWARF call frame unwinding procedure to the destination activation
(it has already been applied to the source as described in Section 5.2.1) to access the caller’s
activation. It then sets the saved frame base pointer and return address from the caller’s
stack map record, and sets the current activation to the caller activation.

The runtime repeatedly transforms activations until it gets to the thread’s starting func-
tion. At this point transformation has finished and the runtime copies out the transformed
execution state (including register state and stack pointer) in preparation for migration.
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5.2.3 Handling Pointers to the Stack

While transforming activations, the runtime must also take care to transform pointers to
stack-allocated data. Pointers to global data do not need to be transformed – symbol align-
ment and a replicated virtual address space ensure that pointers to global data and heap
memory remain valid before and after migration. However, pointers to the stack require
special handling. Note that in DeVuyst’s [29] and Venkat’s [102] work, because they align
pointed-to data in call frames across all ISAs, they do not have to reify pointers to the stack.
However, our runtime is able to efficiently handle fixing up pointers.

The runtime does not have a-priori knowledge about pointers to stack memory, and must
discover where these pointers exist during transformation. When copying live values between
the source and destination activations, the runtime checks the rewriting metadata to see if
the live value is a pointer (which is encoded by the back-end as described in Section 4.4).
If the live value is a pointer, the runtime checks to see if it points to stack memory. The
runtime then records a fix-up memo which is resolved when it finds the pointed-to data.

Figure 5.2 shows an example of the runtime transforming pointers to the stack from a source
activation to a destination activation. As the runtime copies live values from call frame 3 on
the source to the destination stack, it finds live value mydata ptr which points to mydata

in call frame 1. Because the rewriting metadata indicates that mydata ptr is of pointer
type, the runtime does a stack bounds check to see if it points to the stack. It concludes
that the pointed-to address is within the stack bounds, and because it has not yet begun
transforming call frame 1, adds a pointer fix-up memo to the rewriting context. The memo
saves metadata about mydata ptr’s location in destination activation 3 and the address to
which it points in call frame 1 on the source stack.

The runtime continues transforming activations until it reaches activation 1. When copying
mydata from the source to destination activation, the runtime observes that mydata ptr

points to mydata. The runtime first copies mydata to the destination activation. It then
writes mydata’s new address on the transformed stack into the location record stored in the
fix-up memo (e.g., call frame 3, slot 6). The fix-up has been handled, so the runtime deletes
the fix-up memo and continues transforming activation 1.

The runtime must also handle the case where the pointed-to data is not a scalar, e.g., if
mydata were an array of integers and mydata ptr pointed to the middle of the array. In this
case, the runtime would calculate the offset from the beginning of the stack storage location
(mydata ptr− mydata) using the saved source stack address and update mydata ptr on the
destination stack with the appropriate offset into mydata.
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Figure 5.2: Example of the runtime observing and transforming a pointer for the destination
activation.

5.3 Migration and Resuming Execution

After the state transformation runtime has finished converting execution state to the desti-
nation ISA format, it copies out the transformed register set for the outermost function. The
thread returns to the migration point and initiates migration. The thread saves a pointer to
the transformed register set, then invokes a Popcorn Linux-specific system call to migrate to
another kernel. The thread passes to the kernel a CPU set describing the destination CPUs,
the program counter at which to resume execution, and a pointer to the transformed set
of CPUs. The source kernel passes the register set and PC value to the destination kernel,
which switches the thread’s stack pointer, frame base pointer, PC, and any architecture-
specific registers (e.g., on AArch64 the kernel must handle setting up the link register). The
destination kernel sets the thread’s register state and returns from the system call to the
specified PC, resuming execution at a known-good location on the destination architecture.
Before the thread resumes application execution, it initializes any registers that were not
able to be set by the kernel (e.g., floating point registers) and cleans up the migration data.
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The thread then returns to application code.



Chapter 6

Evaluation

In this chapter the costs associated with runtime state transformation and Popcorn Linux’s
ability to utilize execution migration for different scheduling goals are evaluated. State
transformation costs are analyzed using microbenchmarks and real applications from the
NAS Parallel Benchmark suite [9]. Additionally, Popcorn Linux’s thread migration costs
are compared against a Java-based implementation. Finally, Popcorn Linux’s ability to
use migration execution to achieve higher energy efficiency and energy-delay product is
analyzed using different scheduling policies for a datacenter-like workload. In Section 6.1
the experimental setup used in our evaluation is described. In Section 6.2 the cost of the
state transformation process is analyzed using a set of microbenchmarks. In Section 6.3 state
transformation latencies are analyzed for real applications. In Section 6.4 Popcorn Linux’s
state transformation and execution migration efficiency is compared versus a Java-based
implementation. Finally, in Section 6.5 Popcorn Linux’s efficiency is evaluated using several
different scheduling policies in a datacenter-like environment.

6.1 Experimental Setup

Table 6.1 shows specifications for the processors used in our evaluation. Our experimental
setup consists of an ARM64 machine interconnected to an x86-64 machine via a PCIe bridge.
Our setup used an APM883208 X-Gene 1 processor (referred to as ”X-Gene”) which imple-
ments the ARMv8 ISA. The X-Gene was connected to an Intel Xeon E5-1650v2 processor
(referred to as ”Xeon”), which implements the x86-64 ISA. Because there are no single-chip
or single-node heterogeneous-ISA system, our setup approximated a cache-coherent shared
memory system by interconnecting the X-Gene and Xeon systems over PCIe. A pair of Dol-
phin PXH810 PCIe adapters were used, which provide a point-to-point connection between
the two machines at 64Gbps bandwidth. Although these adapters do provide transparent
shared memory windows across systems, Popcorn Linux instead uses them for communica-

48
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tion between kernels. Popcorn Linux was implemented using Linux kernel version 3.12 for
both ARM64 and x86-64. The Popcorn compiler was built using LLVM 3.7.1 and GNU gold
version 1.11.

APM X-Gene 1 Intel Xeon E5-1650 v2
Clock Speed 2.4GHz 3.5GHz (3.9GHz boost)

Number of Cores 8 61

Last-level Cache 8MB 12MB
Process Node 40nm 22nm

Thermal Design Power (TDP) 50W 130W
RAM 32GB 16GB

Table 6.1: Specification of Processors in Experimental Setup
1There are two hardware threads per core, but hyperthreading was disabled for our

experiments.

The on-board sensors and an external system were used to measure instantaneous power
consumption for the two machines. The X-Gene has an on-board power monitor which can
be queried via I2C. This sensor provides instantaneous power for the motherboard’s power
regulator chips. The Xeon implements Intel’s Running Average Power Limit (RAPL) [27],
which exposes a machine-specific register that keeps a running count of energy consumed.
RAPL can be used to measure power for both the core (ALU, FPU, L1 and L2 caches) and
the uncore (L3 cache, cache-coherent interconnect, memory controller). An external power-
monitoring system was built using a National Instruments 6251 PCIe data-acquisition device
(DAQ), which was used to validate the measurements obtained via on-board sensors.

6.2 State Transformation Microbenchmarks

The state transformation runtime described in Chapter 5 is designed to transform a thread’s
register state Ri and stack Si with as low latency as possible. Minimizing state transfor-
mation latency enables more frequent migrations, allowing the system to adapt application
execution to changing system workloads at a finer granularity. The costs associated with
state transformation for a thread’s registers Ri and stack Si were evaluated using a set of
microbenchmarks.

The two main factors on which state transformation latency depends are the number of live
activations for a thread and the number of live values in each of those activations. For each
live activation, the runtime must both unwind it from the source stack and reconstruct it
on the destination stack. For each live value, the runtime must find its storage location in
both the source and destination activation and copy the value between those location. A
microbenchmark was designed which varies both of these dimensions to see how they affect
the transformation cost.



Robert F. Lyerly Chapter 6. Evaluation 50

The microbenchmark recurses to a user-specified depth and then invokes the runtime to
transform the thread’s state Ri and Si. There are three versions of the microbenchmark,
each of which varies the number of live values per activation. The three versions have no live
values per activation, 8 live values per activation, and 32 live values per activation that must
be transformed between source and destination stacks. Each of these live values is a integer
that must be copied between the two versions of the activation. In real applications live
values can range in type from booleans to complex structures. The live value type is limited
to integers in the microbenchmark in order to understand the costs associated with finding
and applying the metadata to copy the live value between locations rather than the costs of
memory copies. We observed that in real applications there were rarely more than 32 live
variables at a call site. Similarly, the number of activations is varied from 1 to 20 in order
to understand how costs increase with the number of open function calls. Although some
applications may recurse into a deeper function call chain, analysis is limited to a maximum
of 20 activations as it illustrates overhead trends associated with increasing stack depth. As
shown in Section 6.3, however, applications in the NPB benchmark suite do not have deep
recursion.

Figure 6.1 shows how state transformation latency rises with increasing numbers of activa-
tions for the three versions of the microbenchmark. The runtime is able to transform thread
state on the Xeon with very low latencies. In all versions of the microbenchmark, threads
are able to completely rewrite their state in under 400µs. As expected, the number of ac-
tivations is directly proportional to the transformation latency, although costs rise slowly.
The number of live variables per activation has a slight impact on performance, meaning
that most of the cost comes from discovering live activations and unwinding frames.

The X-Gene, as expected, has a higher latency versus the Xeon. This is due to both the
lower clock speed, the smaller amount of cache and the relative immaturity of the X-Gene
processor. Because it was built using a 40nm process, it has fewer transistors per chip and
thus has fewer performance optimizations compared to the Xeon. Nevertheless, the runtime
is still able to transform state on the X-Gene with low latency – all except one configuration
of the microbenchmark has a transformation cost of less than 1ms. The effects of increasing
numbers of activations are more exaggerated on the X-Gene, as are the costs for rewriting
more live values.

The runtime was instrumented with fine-grained timing information in order to get a clearer
understanding of which phases of transformation dominate execution time. Figure 6.2 shows
the breakdown of execution time into four phases:

1. Initialization – time required to allocate and initialize rewriting contexts for both the
source and destination thread state.

2. Unwind and size – time required to unwind the source’s stack and allocate space for
the destination stack as described in Section 5.2.1.

3. Rewrite – time required to rewrite the state, as described in Section 5.2.2.
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4. Cleanup – time required to tear-down and free the rewriting contexts for both the
source and destination contexts.

Figure 6.2 shows the timing breakdown into the four phases for each of the three versions
of the microbenchmark with 10 live activations. As shown in the figure, initialization and
cleanup take only about a third of the total transformation time. Unwinding and sizing the
destination stack takes about a third of the time and rewriting state takes up the remaining
third. Note that as the number of live variables increases, the amount of time spent rewriting
activations takes up a larger proportion of the time. With larger numbers of variables, theres
a larger metadata lookup and copying cost between frames. This is more evident for the
X-Gene, but is also present on the Xeon.

The transformation timing was broken into different actions required per activation. Fig-
ure 6.3 shows the percentage of the total transformation latency spent performing the fol-
lowing actions:

• Get call site information – given a program location for the thread, how long it
takes the runtime to do a dictionary look up to find the call site record, and then use
the ID from that record to do another dictionary lookup to find the corresponding
program location for the destination.

• Get function information – given a program location obtained from the call site
record, how long it takes the runtime to find DWARF debugging information for the
surrounding function.

• Read unwind rules – given a program location and surrounding function, how long
it takes the runtime to read the call frame unwinding information from the DWARF
metadata.

• Rewrite frames – given a call site record, how long it takes the runtime to parse the
location records for live values in both the source and destination activation, and the
time required to copy the data between them.

• Pop frame – after a frame has been rewritten, how long it takes the runtime to apply
the DWARF frame unwinding procedure to return to the caller frame.

• Other – the time to perform other miscellaneous actions.

Figure 6.3 shows the timing breakdown in percentage of total transformation time for the
aforementioned actions. The breakdowns for both the X-Gene and Xeon are virtually iden-
tical, demonstrating that although the total time required is different between the two pro-
cessors, the costs of the different actions are proportionally similar. The majority of time
required for transformation is spent performing DWARF-related actions. The DWARF li-
brary incurs significant overhead when searching for function information both because it



Robert F. Lyerly Chapter 6. Evaluation 52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

200

400

600

800

1,000

Number of Activations

M
ic
ro
se
co
n
d
s,

µ
s X-Gene

Xeon

(a) Transformation latency, no variables in each activation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

200

400

600

800

1,000

Number of Activations

M
ic
ro
se
co
n
d
s,

µ
s X-Gene

Xeon

(b) Transformation latency, 8 variables per activation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

200

400

600

800

1,000

1,200

Number of Activations

M
ic
ro
se
co
n
d
s,

µ
s

X-Gene
Xeon

(c) Transformation latency, 32 variables per activation

Figure 6.1: State transformation latency
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Figure 6.3: Percentage of time spent executing different actions during state transformation

dynamically allocates function descriptors and it performs a linear search over address ranges
to find the function descriptor for a given program location. Additionally, reading frame un-
winding metadata does significant memory copies between internal DWARF data structures
and buffers allocated by the state transformation runtime. Both of these sources of overhead



Robert F. Lyerly Chapter 6. Evaluation 54

could be reduced by encoding frame unwinding metadata in a different format.

As expected, Figure 6.3 shows that rewriting frames becomes a larger source of overhead
as the number of live values per activation increases. There is still a slight overhead for
rewriting even when there are no variables per activation. This is because the runtime must
still populate the saved frame base pointer and the return address in each call frame on the
stack.

These results demonstrate that dynamic state transformation is feasible for both register
state Ri and stack state Si. Furthermore, because the latencies are in the sub-millisecond
range, Popcorn Linux can migrate threads between architectures at a fine granularity with
minimal performance impact.

6.3 Single-Application Costs

In this section the state transformation latencies associated with real applications are ana-
lyzed. Four benchmarks from the NAS Parallel Benchmark (NPB) Suite [9, 89] were run,
which represent computational fluid dynamics problems used by NASA. NPB applications
are compute- and memory-intensive, with a focus on floating-point computation (except for
the Integer Sort benchmark). NPB applications can be compiled with different class sizes,
which scale the amount of computation from single-server workloads to cluster-size com-
putation. The applications are written in C and are parallelized using OpenMP. For this
evaluation, the benchmarks were run on both the X-Gene and the Xeon processors in single-
threaded mode. They were run without any external workload in order to understand the
performance characteristics of each application. The class A versions of the benchmarks, one
of the smaller computation sizes, was used for state transformation analysis. This is because
larger class sizes do not affect the transformation costs for thread state Ri and Si, but only
affect the amount of global computation to be performed (i.e., the number of loop iterations
performed during computation).

Figure 6.4 shows the average and maximum stack depth for each of the applications. For
these benchmarks, threads do not recurse into deep call stacks – the average and max stack
depths are never larger than five call frames. Most the computation is nested in a for-loop
in the main function of each application, which call a few helper routines to do the heavy
computation.

Figure 6.5 shows the distributions of state transformation latencies across all migration
points, added to the binaries as discussed in Section 4.2, in each of the applications. The
plot contains a box-and-whisker plot for each benchmark on each processor, which shows
the minimum, 1st quartile, median, 3rd quartile and maximum latencies observed across
all migration sites. Once again, the Xeon exhibits smaller state transformation latencies
compared to the X-Gene. However, the majority of transformation costs for both processors
is well under one millisecond.
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Figure 6.5: State transformation latency distribution for all migration points in real appli-
cations. Box-and-whisker plots show the minimum, 1st quartile, median, 3rd quartile, and
maximum observed transformation latencies.

Interestingly, these benchmarks exhibit higher transformation costs than what would be
expected based on the microbenchmark analyzed in Section 6.2. This is due to a larger
amount of machine code being generated for real benchmarks, which leads to increased
DWARF debugging metadata for function address ranges and a larger number of call site
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records. Finding a call site record and enclosing function for a given program location
takes longer with more metadata, because the runtime must search through more call site
records and more address ranges. Table 6.2 summarizes the difference in time required for
executing individual actions for the microbenchmark versus FT on the Xeon processor. For
each activation, the runtime must do two call site lookup queries (one to locate the call site
ID on for the source, another to locate the call site record for the destination). It must also
get the function information and read the unwind rules for both the source and destination
activation. A 393% increase in finding function information and a 228% increase in reading
call frame unwinding rules accounts for the significant increase in per-activation latency.
Other benchmarks experience similar behavior to FT.

Get call site information Get function information Read unwind rules
Microbenchark 0.127 µs 5.584 µs 3.384 µs

FT 0.888 µs 21.957 µs 7.701 µs

Table 6.2: Time required for executing individual actions on the Xeon

Even with this increased per-activation latency, state transformation costs are still small
enough to enable fine-grained application migration.

6.4 Alternative Migration Approaches

In this section Popcorn Linux’s state transformation and migration efficiency is compared
to a Java-based approach. The Paderborn Thread Migration and Checkpointing Library
(PadMig) [36] provides a compiler and runtime for migrating threads between Java vir-
tual machines (JVM) running on separate machines. The library provides communication
between JVMs over the network, and can automatically serialize a running application’s ob-
ject state for migrating with a thread. PadMig does source-to-source transformation to insert
migration points into the source Java source, similarly to the Popcorn compiler. At runtime,
the library uses Java’s reflection to automatically serialize and de-serialize application data,
eliminating the need manually send and receive data like an MPI program.

Figure 6.6 shows a comparison between Popcorn Linux and PadMig in terms of power con-
sumption and execution migration efficiency. IS class B was run on the Xeon and migrated
the verification phase of the benchmark (full verify) to the X-Gene. The x-axis shows the
total execution time for the benchmark on both systems. The left y-axis shows instantaneous
power consumption, and the right y-axis shows CPU load. The top row of graphs shows the
power consumption of the X-Gene CPU over the course of execution, while the bottom row
shows the same for the Xeon. System power represents the whole-system power as measured
by the external power monitoring setup, while CPU power represents the power measured
by on-board sensors. The load represents the total amount of CPU time spent executing the
application.
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Figure 6.6: Comparison of Popcorn Linux and PadMig execution time and power consump-
tion for IS class B. The x-axis shows the total execution time for each system. The left
y-axis shows instantaneous power consumption in Watts and the right y-axis shows CPU
load. The top row shows power consumption and CPU load for the X-Gene, while the
bottom row shows the same for the Xeon.

Figure 6.6 clearly shows the advantages of Popcorn Linux’s state transformation and exe-
cution design versus a language-level based approach. Popcorn Linux takes approximately
half as much time to execute IS, which translates into significant overall energy savings.
PadMig spends a significant amount of time serializing (seconds 5-7 in Figure 6.6a) and
de-serializing (seconds 9-13) data. Popcorn Linux, instead, benefits from laying out the ma-
jority of application state (PC , PD, PH and Li) in a common format, and only performing
state transformation for a small portion of a thread’s execution state. In general, the power
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consumption is roughly equal across the two executions of IS. However, Popcorn Linux incurs
a significant load and power spike between seconds 8-12, as seen in Figure 6.6b. This is due
to significant numbers of page transfers between the two kernels, as the Xeon transfers pages
to the X-Gene so that calculations can be verified. Popcorn Linux’s DSVM service (which
implements the page coherency protocol) is multithreaded, meaning it can support a large
number of in-flight page transfers.

These results clearly show that Popcorn Linux’s design has significant power and performance
advantages over virtual machine-based migration approaches.

6.5 Optimizing Multiprogrammed Workloads

Popcorn Linux’s ability to migrate applications efficiently makes it possible to take advantage
of different ISAs in a datacenter-like system, unlike current heterogeneous-ISA datacenters
which must be partitioned into per-ISA zones. Using Popcorn Linux, applications are able
to migrate at function boundaries between architectures that vary in terms of performance
and power. In this section Popcorn Linux’s ability to adapt changing workloads is evalu-
ated. Previous work by Mars and Tang [65] and DeVuyst et al. [28] examine scheduling
in homogeneous-ISA processors with heterogeneous microarchitectures at the cluster level
and the chip-multiprocessor level, respectively. However to the best of our knowledge, no
previous works have studied scheduling in heterogeneous-ISA datacenters.

Because vanilla Linux (referred to hereafter simply as Linux) cannot migrate applications
between architectures at runtime, the scheduler can only provide an initial placement of
applications across the X-Gene and Xeon processors. After the application has begun ex-
ecuting on one of the processors it cannot be migrated across ISA boundaries. Several
baseline scheduling policies were developed for Linux, on both a homogeneous-ISA and a
heterogeneous-ISA test setup:

• Homogeneous Balanced (homogeneous) – a two-x86 setup is considered where the
scheduler places applications across two identical Xeon E5-1650v2 processors. The
scheduler keeps the number of threads balanced across both processors. Note that
even though the processors are identical, there is no mechanism in Linux to migrate
applications between kernels.

• Static Balanced (heterogeneous-ISA) – the scheduler balances the number of threads
across X-Gene and Xeon processors. After an application (and its threads) have been
assigned to an architecture, they cannot migrate to another architecture.

• Static Unbalanced (heterogeneous-ISA) – the scheduler assigns threads to the X-
Gene and the Xeon according to some ratio. Because the Xeon has a much higher
computational capacity than the X-Gene, the scheduler assigns twice or three times as
many threads (a 2:1 or 3:1 ratio) to the Xeon.
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Popcorn Linux provides unique execution capabilities versus vanilla Linux. Without Popcorn
Linux’s thread migration and DSM support coupled with runtime state transformation,
applications cannot migrate between heterogeneous-ISA architectures. This means that jobs
can be scheduled onto the X-Gene or the Xeon machine, but cannot switch between them
as the system load varies. Popcorn Linux can instead take advantage of execution migration
to adjust the workload of each processor in the system. Several scheduling policies were
developed based on system workload that balance load across the machines:

• Dynamic Balanced – this heuristic keeps the number of threads balanced across
both the X-Gene and the Xeon processor. This is similar to the Static Balanced policy
mentioned above, except that the scheduler can migrate jobs after they have begun
execution.

• Dynamic Unbalanced – this heuristic keeps the number of threads assigned to each
processor equal to a ratio. This is similar to the Static Unbalanced policy mentioned
above, except that the scheduler can migrate jobs after they have begun execution.

The instantaneous power consumption for both the X-Gene and Xeon processors was mea-
sured using the on-board sensors, as the external power monitoring setup also measures
power consumption of hard disks, peripherals (e.g., USB devices), etc., which is not directly
correlated to the computation. Additionally, because the X-Gene is a first-generation pro-
cessor, an optimized version is estimated would consume 1/10th the reported instantaneous
power using McPAT [55]. A shrink in process node to a 22nm FinFET (similar to the Xeon)
was estimated to not only allow the X-Gene to have significantly reduced power consump-
tion, but to allow for aggressive power gating, dynamic voltage frequency scaling, and low
power CPU states.

Figure 6.7 shows the first multiprogrammed workload run using the scheduling policies men-
tioned above. Sets of jobs were generated using the NPB benchmarks at class sizes A, B and
C in a uniform distribution. The Static Balanced and Static Unbalanced policies were first
evaluated against the Dynamic Balanced and Dynamic Unbalanced policies. There were also
two baselines used where the jobs were either all scheduled onto the X-Gene (All on ARM)
or all onto the Xeon (All on x86).

As seen in Figure 6.7, execution migration using the dynamic policies provides enhanced
flexibility which leads to half the energy consumption and half the runtime. With the static
policies, the scheduler is not able to adjust decisions, meaning oftentimes the jobs on the
X-Gene take significantly longer to execute while the Xeon becomes idle. With the dynamic
policies, the scheduler pulls more workload onto the Xeon as it completes jobs while a smaller
fraction continue execution on the X-Gene. This demonstrates that execution migration is
a valuable mechanism for adapting workloads to changing conditions. Because of this, only
the dynamic heterogeneous policies are evaluated in the remaining experiments.
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Figure 6.7: Static vs. Dynamic scheduling policies in heterogeneous setup

Figure 6.8 shows the total energy consumption and the makespan ratio (i.e., the total time
to completion for all benchmarks in the set) for each of the scheduling policies on each
of the workload sets. Each of the sets consists of 40 jobs that arrive sequentially without
overloading the machines, i.e., there is one application per core in the system. Once a job
finishes, another is scheduled immediately in its place. This continues until all 40 jobs have
finished.

As seen in Figure 6.8, execution migration allows the system to trade off performance versus
energy savings. On average, both the Dynamic Balanced and Dynamic Unbalanced policies
have a 22% reduction in energy consumed. The Dynamic Balanced policy has a 49% increase
and the Dynamic Unbalanced policy has a 41% increase in makespan ratio, however.

The X-Gene processor has much less computational capacity versus the Xeon, and therefore
applications scheduled to the X-Gene take a longer time to execute. However, the X-Gene
consumes significantly less power and thus effectively trades off performance for reduced en-
ergy consumption. This experiment shows that Popcorn Linux allows system administrators
to trade off performance for increased energy efficiency. Administrators can tune the system
according to how much energy they want to consume. If, for example a datacenter operator
wanted to reduce the amount of computational capacity in the datacenter in order to con-
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Figure 6.8: Energy consumption and makespan ratio for several single-application arrival
patterns

serve energy, the administrator could migrate applications to the lower-performing energy-
efficient X-Gene servers. Alternatively, they could migrate applications to Xeon servers when
increased computational capacity is needed.

Figure 6.9 shows the total energy consumption and the energy-delay product (EDP) for a
clustered workload. In this experiment, workload sets are once again generated as described
above. However rather than a single application arriving at a time, 5 waves of 14 applications
arrive every 60 to 240 seconds. Thus, the scheduler must schedule all 14 jobs as the cluster
arrives. Results for the Dynamic Unbalanced Policy are omitted as the results differ from
the Dynamic Balanced policy by less than 1%.

Figure 6.9 shows significant benefits for using execution migration in this workload scenario.
For all workload sets, using a dynamic policy with a heterogeneous-ISA system saves a
significant amount of energy – the Dynamic Balanced policy saves 30% energy on average,
and up to 66% for set-3. Additionally, there is on average an 11% reduction in EDP versus
a Homogeneous Balanced scheduler.

The reasons for lowered energy consumption and increased EDP are somewhat nuanced. As
clusters of jobs arrive, all jobs are scheduled across the processors in the system. Because
the waves arrive at 60-240 intervals, some applications from a previous wave are still running
when the new wave arrives. Eventually both processors are over-saturated which leads to
frequent context swaps, TLB flushing and cache thrashing. In the homogeneous setup, both
Xeon processors are overloaded, meaning they are executing at full power while applications
are competing for processing resources. In the X-Gene/Xeon setup, the same phenomena
occurs but is handled more gracefully. The X-Gene consumes significantly less power while
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Figure 6.9: Energy consumption and makespan ratio for several clustered-application arrival
patterns. Results for Dynamic Unbalanced policy are not shown as they differ by less than
1% from the Dynamic Balanced policy.

still making progress on application execution. The Xeon CPU completes job execution
more quickly, and pulls jobs from the X-Gene when it has spare capacity. In this way the
X-Gene gets computation started and the Xeon pulls jobs over to finish them more quickly.
In essence, the degraded performance is less of an issue because the X-Gene consumes much
less power.

These experiments validate the usefulness of heterogeneous-ISA execution migration in a
datacenter. As datacenters become more heterogeneous, it becomes increasingly important
for system software to be able to adapt workload execution across a pool of machines in
order to meet power and performance goals. Popcorn Linux provides execution migration
across ISA boundaries, enabling enhanced flexibility which leads to better server utilization
and energy efficiency.



Chapter 7

Conclusion

In this thesis proposal, a full software stack was presented for execution migration across
heterogeneous-ISA processors in real systems. This thesis presented a compiler which builds
multi-ISA binaries capable of execution migration across ISA boundaries. It additionally pre-
sented a runtime which dynamically translates thread execution state between ISA-specific
formats in under a millisecond.

The Popcorn compiler toolchain builds multi-ISA binaries containing a code section for every
ISA in the system. The front-end automatically inserts migration points into the source code
at function call sites. The middle-end performs a liveness analysis to gather the sets of live
values at each call site, and the back-end generates metadata describing where those live
values are placed in each ISA-specific version function activations. The linker aligns code
and data symbols across all binaries, and a final post-processing tool optimizes the multi-ISA
binary for efficient state transformation.

The state transformation runtime works with the operating system to transform a thread’s
register set and stack between ISA-specific formats. When the OS requests a migration, the
runtime attaches to the thread’s stack and reconstructs it in the destination ISA’s format in a
separate region of stack memory. After transformation, the runtime invokes the OS’s thread
migration service and passes it the reconstructed destination register set. After migration,
the runtime bootstraps the thread on the destination architecture, and then resumes normal
execution.

The system software was evaluated on an APM X-Gene 1 processor interconnected to an In-
tel Xeon E5-1650v2 processor using a Dolphin PXH810 point-to-point connection over PCIe.
State transformation costs were evaluated for a microbenchmark and several real applica-
tions from the NAS Parallel Benchmark suite and showed that sub-millisecond translation
overheads are achievable on both processors. Additionally, the evaluation showed that for a
datacenter-like workload, Popcorn Linux is able to achieve up to a 66% reduction in energy
and up to an 11% reduction in energy-delay product.

63



Robert F. Lyerly Chapter 7. Conclusion 64

This thesis described the design and implementation of a full software system for migrating
threads of execution between heterogeneous-ISA architectures on real hardware. This thesis
has shown that not only is it possible to migrate threads between these architectures, but that
migration between architectures can be achieved with low overheads. Additionally, Popcorn
Linux can achieve higher energy efficiency versus a system without execution migration.

7.1 Post-Preliminary Exam Proposed Work

In this this chapter, several possible post-preliminary exam research directions are presented.
Section 7.1.1 describes several optimizations to the state transformation runtime and further
evaluation on a wider variety of benchmarks. Section 7.1.2 proposes applying execution
migration to scale applications across heterogeneous-ISA nodes rather than running only on
one at a time. Section 7.1.3 proposes extending the current state transformation runtime to
more diverse architectures, including applying state transformation to migrate applications
between 32-bit and 64-bit architectures. Finally, Section 7.1.4 proposes studying alternative
techniques to reduce the time between when the scheduler requests a thread migrate and
when the thread can migrate.

7.1.1 Extended Study and Optimization of the State Transforma-

tion Runtime

There are several straightforward optimizations for the runtime that can be implemented
in order to reduce state transformation costs. Additionally, there are many computational
behaviors not captured by NPB which should be studied.

Reducing Per-Activation Lookup Costs

As Figure 6.3 in Section 6.2 showed, there are significant costs associated with finding enclos-
ing function information and call frame unwinding rules for each activation. Both of these
actions require accessing DWARF debugging information through libDWARF. This library
is not optimized for performance:

• Finding function information for a given program location is implemented as a linear
search through a list of address ranges generated by the compiler. This overhead rises
as the size of the application grows, as described in Section 6.3.

• The libDWARF library dynamically allocates memory for each function descriptor
returned by the library. This descriptor must later be freed, increasing cleanup costs.
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This dynamic memory allocation is the sole reason that state transformation requires
mutually exclusion between threads.

• The libDWARF library copies out call frame unwinding information to a user-provided
buffer rather than returning a pointer to metadata describing the procedure.

All of these operations are inefficient and lead to a much higher state transformation latency
than is required. No state transformation metadata changes at run-time, and thus there is
no need to do any memory allocation or copying of metadata – all metadata is generated
by the compiler offline and simply read by the runtime to direct the transformation process.
Using libDWARF also has a secondary impact on performance due to the page coherency
protocol. By using writable memory for these data structures, the page coherency protocol
must lock and transfer libDWARF data pages between kernels. If the call frame unwinding
information was implemented using read-only memory, the page coherency protocol could
replicate the pages rather than ping-ponging them between kernels.

We propose extending the Popcorn compiler toolchain to completely remove the use of libD-
WARF for call frame unwinding information. This would greatly reduce state transformation
latency because querying DWARF debugging metadata accounts for a large portion of state
transformation costs (see Figure 6.3). An alternative compiler mechanism would encode
the call frame unwind procedure, which describes how to restore callee-saved registers and
unwind to the previous call frame, in an additional read-only section for each ISA in the
multi-ISA binary. Call site records would be augmented to include an offset into this section.
Therefore, finding all transformation metadata for a given call site would only require a sin-
gle binary search through call site records. The runtime would query this information rather
than the DWARF metadata, which would eliminate the need for the compiler to generate
DWARF debugging information.

On-Demand State Transformation

Another possible optimization to the state transformation runtime is to transform func-
tion activations on-demand. Currently, the runtime eagerly transforms all live function
activations to the destination ISA’s format. Rather than transforming all activations, the
runtime would prepare the rewriting context to only transform frames as needed. When an
on-demand transformation is requested, the runtime would unwind the source stack to cal-
culate the size of the destination stack as normal. Then, the runtime would only transform
the outermost activation, which is all that would be required to resume execution after a
migration. The runtime would make one minor modification to the activation – rather than
populating the stack frame with a return address into the calling function, the runtime would
insert the address of a special handler in the runtime which would transform frames as the
thread returns back through the call chain. After transforming the outermost frame, the
thread would be migrated and execute as normal to the destination architecture. When the
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thread returned from the outermost function, the handler in the runtime would be invoked
to transform the next frame on the stack and return to the calling function. This process
would continue until either the thread exits or another migration occurs.

Using on-demand state transformation, rewriting costs would be amortized during normal
execution. A secondary benefit is that some frames would never need to be transformed
between formats at all. If a thread migrates to a new architecture, then migrates back to
the original architecture before returning to the innermost activation, some of the frames on
the stack will remain in the original ISA’s format throughout execution. One downside of
on-demand state transformation is that the runtime repeatedly intercepts execution as the
thread returns back through the call chain, which may lead to churn in the instruction and
data caches. We propose studying the benefits of such an approach, and for what types of
application behavior it proves beneficial.

Evaluation with More Benchmarks

Currently, state transformation and migration are evaluated using the NPB benchmark suite
which focuses on HPC applications. We propose studying other benchmarks which focus on
other areas of computation:

• SPEC CPU 2006 [45] – the SPEC benchmark suite is the standard benchmark set for
computer architecture research. SPEC focuses on a variety of real-world computations,
including scripting, compression, compilation, numerical modeling, AI, etc. SPEC
CPU 2006 includes both integer and floating-point computations.

• PARSEC [16] – the PARSEC benchmark suite focuses on emerging workloads for chip
multiprocessors. PARSEC includes multithreaded applications which exhibit a variety
of runtime behaviors. It includes applications from computer vision, media processing,
computational finance, animation physics, etc.

These benchmark suites are widely used in system software and computer architecture re-
search. However, many of these applications are written in either C++ or Fortran, meaning
the Popcorn compiler toolchain must be extended to support those languages. Because
LLVM was designed with modularity in mind, supporting new languages ultimately requires
having a front-end which generates LLVM bitcode from source code. Because the majority of
our compiler modifications occur in the middle-end and back-end, supporting new languages
should require minimal compiler effort. We only need to understand how to insert migration
points using each of the new front-ends.

Supporting C++ applications should be straightforward, as clang is a production-quality C
and C++ compiler. We will study the impact of C++ language features, such as exceptions,
on the ability to transform state and migrate applications between architectures. Fortran is
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a procedural language similar to C that is popular for high-performance computing. Cur-
rently, there is no LLVM-supported front-end for Fortran. Instead, Fortran developers use
DragonEgg [76] to compile Fortran programs using LLVM. DragonEgg uses GCC’s front-
ends to generate LLVM bitcode, which can then be optimized and used to generate machine
code using any of LLVM’s back-ends. Thus we will use the DragonEgg project to generate
LLVM bitcode from Fortran applications.

7.1.2 Scaling Applications Across Heterogeneous-ISA Processors

Currently, Popcorn Linux’s scheduler migrates application threads en masse between ar-
chitectures. All of an application’s threads are migrated when the scheduler requests a
migration. However, this approach limits the scalability of the application and the ability of
the application to take advantage of architecture heterogeneity.

We propose implementing a new OpenMP runtime which can be used to distribute com-
putation across multiple processors in a system to take advantage of unique architectural
characteristics. The runtime would distribute threads across processors in the system based
on system-tuned performance metrics. For example, in the ARM64/x86-64 setup described
in Section 6.1 the runtime would tune the numbers of threads executing on each architec-
ture to reach a certain power and performance ratio. If an application seeks higher per-
formance, the runtime could migrate threads to the Xeon; alternatively, the runtime could
migrate threads to the X-Gene to conserve energy. The runtime would automatically load
balance threads to meet some metric, e.g., a service-level agreement or a power threshold.
This is similar in nature to NRG-Loops [52], although it applies to splitting multithreaded
work across heterogeneous-ISA processors rather than migrating a single thread between
single-ISA heterogeneous cores. Work-splitting is a well-studied problem for CPU-GPU sys-
tems [62, 42, 88, 41], although we are aware of no works that split work based on power and
performance.

The page coherency protocol provides a unique obstacle when distributing threads across
heterogeneous-ISA processors. Unlike true shared memory systems, the page coherency
protocol acts as a multiple-reader/single writer lock for pages (see Section 3.1.2). This poses
a problem for threads of an application executing on different kernels but writing to the same
page. For application code PC , read-only parts of static global data PD and thread-local state
Ti = Ri, Si, Li, threads will never write to shared pages and thus there is no performance
issue. However for writable static global state PD and heap data PH , threads executing
on separate kernels experience false sharing of pages similarly to how threads executing on
different cores of a CMP may experience false sharing of cache lines [51]. We therefore propose
studying compiler and memory allocation techniques for laying out PD and PH to enable
disjoint access parallelism on writable pages. There exists a large body of work describing
compiler transformations to reduce false sharing of cache lines [75, 19, 22, 67, 51, 61], and
we propose applying the lessons learned to optimize for Popcorn Linux’s page coherency
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protocol.

7.1.3 Migrating Between Highly Diverse Architectures

One of the current limitations for the Popcorn compiler toolchain and state transformation
runtime is that it only supports architectures which have identical primitive data types. In
other words, the Popcorn compiler toolchain and state transformation runtime currently
only supports architectures whose primitive data types have the same sizes and alignments,
whose pointers are of the same size, and whose data representation is of the same endianness.
We propose relaxing several of these constraints in order to support state transformation and
execution migration between a wider variety of architectures.

There is a significant body of work in dealing with state transformation between ISA-specific
formats of primitive data types [6, 91, 98, 30, 90]. Several works describe mechanisms
for transforming between representations [6, 91, 98], while others use padding to ensure
compatibility across architectures without incurring state transformation costs [30, 90]. We
propose using the latter approach in order to minimize transformation costs. Developers
can specify primitive data type sizes and alignments using LLVM’s target data layout [78].
This may be sub-optimal for architectures which do not natively support the specified data
layouts, as the compiler must emulate operations on those data types in software. Instead,
we propose modifying the back-ends to add padding to ensure a correct alignment across all
ISAs. Note that it is the developer’s responsibility to ensure that using primitives of different
sizes does not interfere with correct functioning of the application.

The more important issue is in regards to transforming pointers between 32-bit and 64-bit
architectures. Applications executing on a 32-bit architecture have a 4GB limit on their
virtual address space. This limit is obviously much higher for 64-bit architectures. Thus,
the problem becomes how to dynamically modify the layout of an application’s address space
when moving between architectures with different address space sizes. We propose studying
techniques for implementing the following capabilities:

1. Detect when an application’s total address space size is greater than 4GB. If so, disallow
migration to a 32-bit architecture. This can be implemented in cooperation with the
OS, which exposes the memory maps of processes using the proc filesystem.

2. If an application’s total address space size is less than 4GB but the application has data
laid out above the 4GB limit, the runtime must compact it to fit within 4GB, similarly
to a compacting garbage collector [3]. For example, if an application migrates to a 64-
bit architecture the memory allocator may allocate data above the 4GB threshold, or
the application may map data into the address space above the 4GB limit. The runtime
must be able to translate (i.e., relocate) all data in a process’s virtual memory space.
Additionally, the runtime must be able to transform all pointers in the application to
point to the data’s new location.



Robert F. Lyerly Chapter 7. Conclusion 69

Similarly to other primitive data types, pointers must be padded to a common size across
all architectures.

7.1.4 Techniques for Reducing Migration Response Time

As described in Section 4.2, the Popcorn compiler inserts migration points at function call
sites. However as shown in Figure 7.1, for several NPB applications this can lead to an
extended migration response time, or the time between when the scheduler requests a
migration and when a thread reaches a migration point. Figure 7.1 shows the instruction
distance between function calls, i.e., migration points. There are multiple instances where
there are hundreds of millions to billions of instructions between migration points. This
behavior is often manifested in applications where nested loops perform a large amount
of computation without calling a function. We propose several mechanisms to reduce the
migration response time. Because there is a tradeoff in performance impact and the number
of migration points inserted (each migration point incurs a function call and a memory read),
these mechanisms must balance overhead and responsiveness.
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Figure 7.1: Distribution of number of instructions between migration points

The first step is to study the effect of inserting migration points at more equivalence points
in the application. In particular, we propose modifying the front-end to insert migration
points at the beginning of loops, another program location that satisfies the requirements
of equivalence points. This includes studying the migration response time and performance
impact of inserting migration points at varying levels in a loop-nest.

We also propose implementing immediate migration via checkpointing [83]. DeVuyst [29] and
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Venkat [102] enable immediate migration using dynamic binary translation. When a thread
migrates, a DBT framework emulates execution up until the next equivalence point, at which
time state transformation is performed and the thread resumes native execution. However,
they demonstrate that in some cases this leads to overheads of multiple milliseconds. We
instead propose adding checkpointing mechanisms into the application to take snapshots of
the program’s execution (i.e., registers Ri and call frames in Si) at migration points. When
the scheduler triggers a migration, the thread rolls back to the checkpoint, transforms its
state, and migrates to the new architecture. Thus, the thread loses some progress on its
computation but can be immediately migrated to a new architecture. Checkpointing at
migration points increases the per-migration point overhead, meaning further analysis is
needed to understand where they should be inserted.

Thus, we propose implementing low-latency checkpointing at migration points and a new
mechanism for attaching to a thread’s execution state for asynchronous migration. We also
propose a hybrid mechanism where the thread can choose to either roll back to a checkpoint
and immediately migrate or delay migration and continue to the next equivalence point
based on distance to the surrounding equivalence points.
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Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The mul-
tikernel: a new os architecture for scalable multicore systems. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, pages 29–44. ACM,
2009.

[15] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, pages 41–46, 2005.

[16] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec bench-
mark suite: Characterization and architectural implications. In Proceedings of the
17th International Conference on Parallel Architectures and Compilation Techniques,
October 2008.

[17] The OpenMP Architecture Review Board. OpenMP application program interface,
November 2015. http://openmp.org/wp/openmp-specifications/.

[18] Florian Brandner, Benoit Boissinot, Alain Darte, Benôıt Dupont De Dinechin, and
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