
DynaCut: A Framework for Dynamic Code Customization

Abhijit Mahurkar

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Binoy Ravindran, Chair

Haining Wang

Xiaoguang Wang

August 12, 2021

Blacksburg, Virginia

Keywords: Software Debloating, Attack-Surface reduction, Return-Oriented-Programming,

Process Snapshot, Dynamic Customization, Checkpoint Restore in Userspace

Copyright 2021, Abhijit Mahurkar

DynaCut: A Framework for Dynamic Code Customization

Abhijit Mahurkar

(ABSTRACT)

Software systems are becoming increasingly bloated to accommodate a wide array of features,

platforms and users. This results not only in wastage of memory but also in an increase

in their attack surface. Existing works broadly use binary-rewriting techniques to remove

unused code, but this results in a binary that is highly customized for a given usage context.

If the usage scenario of the binary changes, the binary has to be regenerated. We present

DYNACUT– a framework for Dynamic and Adaptive Code Customization. DYNACUT provides

the user with the capability to customize the application to changing usage scenarios at

runtime without the need for the source code. DYNACUT achieves this customization by

leveraging two techniques: 1) identifying the code to be removed by using execution traces

of the application and 2) by rewriting the process dynamically. The first technique uses

traces of the wanted features and the unwanted features of the application and generates

their diffs to identify the features to be removed. The second technique modifies the process

image to add traps and fault-handling code to remove vulnerable but unused code. DYNACUT

can also disable temporally unused code – code that is used only during the initialization

phase of the application. To demonstrate its effectiveness, we built a prototype of DYNACUT

and evaluated it on 9 real-world applications including NGINX, Lighttpd and 7 applications

of the SPEC Intspeed benchmark suite. DYNACUT removes upto 56% of executed basic blocks

and upto 10% of the application code when used to remove initialization code. The total

overhead is in the range of 1.63 seconds for Lighttpd, 4.83 seconds for NGINX and about 39

seconds for perlbench in the SPEC suite.

DynaCut: A Framework for Dynamic Code Customization

Abhijit Mahurkar

(GENERAL AUDIENCE ABSTRACT)

Software systems are becoming increasingly bloated to accommodate a wide array of users,

features and platforms. This results in the software not only occupying extra space on com-

puting platforms but also in an increase in the ways that the applications can be exploited

by hackers. Current works broadly use a variety of techniques to identify and remove this

type of vulnerable and unused code. But, these approaches result in a software that has

to be modified with the changing usage scenarios of the application. We present DYNACUT,

a dynamic code customization tool that can customize the application at its runtime with

a minimal overhead. We use the execution traces of the application to customize the ap-

plication according to user specifications. DYNACUT can identify code that is only used in

the initial stages of the application execution (initialization code) and remove them. DYNA-

CUT can also disable features of the application. To demonstrate its effectiveness, we built

a prototype of DYNACUT and evaluated it on 9 real-world applications including NGINX,

Lighttpd and 7 applications of the SPEC Intspeed benchmark suite. DYNACUT removes upto

56% of executed basic blocks and upto 10% of the application code when used to remove

initialization code. The total overhead is in the range of 1.63 seconds for Lighttpd, 4.83

seconds for NGINX and about 39 seconds for perlbench in the SPEC suite.

Dedication

This is dedicated to my Parents, and my Sister

iv

Acknowledgments

I would like to thank the following people for the all the help, guidance and learning they

have provided me during my degree at Virginia Tech:

Dr. Binoy Ravindran for giving me the opportunity to be a part of SSRG, for his constant

guidance and support throughout my stay at SSRG. Being a part of SSRG and working with

you has been an enriching experience.

Dr. Xiaoguang Wang, for his constant help and advice, patience in explaining concepts

and always being there to answer any question. Thank you for introducing me to proper

research and helping me conclude this work.

Dr. Haining Wang for agreeing to be a part of my committee and providing guidance

and assistance in completing this thesis.

I would also like to thank my friends Sidhaarth and Naarayanan for their understanding

and support during difficult times.

This work is supported in part by ONR under grants N00014-18-1-2022 and N00014-19-

1-2493.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Threat Model . 3

1.3 Thesis Contribution . 3

1.4 Thesis Organization . 4

2 Background 5

2.1 Software Debloating and Dynamic Customization 5

2.2 Checkpoint Restore in Userspace . 7

2.3 Signal Handling in Linux . 9

2.4 ELF Basics . 10

2.4.1 Program Loading and Dynamic Linking 10

2.5 DynamoRIO . 12

2.6 ROP attacks . 12

vi

3 Related Work 14

3.1 Binary Debloating and Customization . 14

3.2 Dynamic Attack Surface Reduction . 16

3.3 Dynamic Software Updating . 17

3.4 Fault Isolation and Domain based Isolation 18

3.5 The Principle of Least Privilege . 20

3.6 Summary of Related Works . 20

4 Design 22

4.1 Overview . 23

4.2 Design . 24

4.2.1 Undesired Code Block Identification 25

4.2.2 Dynamic Code Customization . 26

5 Implementation 32

5.1 Modifications to CRIU . 33

5.2 Adding Signal Handler into the Process Image 35

5.3 Trace collection and SIGTRAP handling . 37

5.4 Putting them together . 39

6 Security Evaluation 40

6.1 Reducing the Viability of Code Reuse Attacks 40

vii

6.2 Blind ROP (BROP) and NGINX . 41

6.3 Number and Size of Basic Blocks Removed 42

6.3.1 Number of Basic Blocks Removed . 42

6.3.2 Number of Bytes Removed . 44

7 Performance Evaluation 45

7.1 Experimental Setup . 45

7.2 Overhead Analysis . 47

7.2.1 Overhead for Feature Removal Customization 47

7.2.2 Overhead of Removal of Initialization Basic Blocks Customization . . 48

7.3 Evaluation Summary . 52

8 Conclusions, Limitations and Future Work 53

8.1 Conclusion . 53

8.2 Limitations . 54

8.3 Future Work . 54

Bibliography 56

viii

List of Figures

2.1 Illustration of the Linking View and the Execution View of an ELF file. . . . 10

4.1 Overview of DYNACUT. 22

4.2 Illustration of multiple code features disabling and control flow redirection in

DYNACUT. 28

4.3 Illustration of steps in removal of initialization code 30

5.1 Illustration of resolving libc symbol addresses 37

5.2 Illustration of configure init step of DYNACUT. 38

5.3 Illustration of remove init step of DYNACUT. 39

6.1 Comparison of Basic blocks removed by DYNACUT 43

6.2 Number of bytes removed vs .text size of the application 44

7.1 Overhead of modifying images for feature removal 47

7.2 Overhead to configure images for init removal 49

7.3 Overhead to remove initialization basic blocks 51

7.4 Total overhead to remove initialization basic blocks 52

ix

List of Tables

3.1 Comparison of DYNACUT with existing debloating works 21

x

List of Abbreviations

CRIT CRiU Image Tool

CRiU Checkpoint Restore in Userspace

ELF Executable and Linkable Format

GOT Global Offset Table

PLT Procedural Linkage Table

ROP Return Oriented Programming

VMA Virtual Memory Area

xi

Chapter 1

Introduction

Existing commodity software systems are designed to support multiple features, platforms,

and various users [37]. In actuality, the end-users use only a small subset of these features –

leading to software bloat or accumulation of unwanted features not required for the use cases

of the end-user. A simple example of software bloat is the increase in the size of the true and

false commands in Unix and Unix-based systems. From 0 bytes and 7 bytes respectively,

these commands have gone up in size to 8377 bytes each [20]. This is also true for other

commodity software like the Firefox web browser which executes less than 30% of its code

[38]. Software bloat not only results in more system memory being consumed but also in

an increase in the attack surface of the application. An example of this is the Heartbleed

bug [45] in the OpenSSL cryptographic library. Heartbleed resulted from a programming

mistake in a popular OpenSSL library making up to 66% of the websites on the Internet

that used Apache and NGINX web servers vulnerable. Apart from code bloat, applications

tend to use some parts of the code only during startup and never again in the lifetime of the

application [16].

1.1 Motivation

Code coverage techniques can be used to find unreachable or dead-code to identify and remove

unused code in the application. Dead code elimination is a compiler optimization that can be

1

2 CHAPTER 1. INTRODUCTION

performed using static code analysis and data-flow analysis [12]. However, this approach to

remove unused code would need to be performed during the software development lifecycle

and would be unsuitable for situations where only the application binary is available.

Recent works to remove unused code from the program binary use control flow information

[37], [41], [14] to identify the unused basic blocks. Some approaches also use user-defined in-

puts to customize the binaries to retain only the user-desired features in the binary [37], [19],

[22]. To remove the unused basic blocks, some techniques synthesize a new binary from the

constructed control flow graph (CFG) [37] and others replace the code instructions with use-

less instructions [41]. Temporal Syscall Specialization [16], achieves dynamic attack surface

reduction by disabling system calls that are used temporally i.e., only in the initialization

phase and not in the serving phase of the application. It identifies a transition point be-

tween the initialization phase and the serving phase of the application. Next, static analysis

techniques are used to identify syscalls used only in the initialization phase. These syscalls

are eventually disabled using seccomp filters. This technique results in the elimination of

dangerous syscalls like execve – which can be used to launch dangerous shellcodes.

The overall motivation of our work is that existing works do not target removing unused code

at application runtime or dynamically customize it according to user defined specifications.

Existing debloating techniques [37] [19] [14] [41] can remove unused code but do not take into

account the temporal nature of code execution in an application. Our work also provides a

novel approach to disable application features and also re-enable them as and when the user

desires.

1.2. THREAT MODEL 3

1.2 Threat Model

Our threat model assumes that the attacker has access to the application binary and can

send requests to the server through a remote connection. Our work does not provide any

exploit mitigations and only reduces the attack surface of an application. We also assume a

trustworthy TCB, OS kernel, and ELF loader. Side-channel attacks and kernel vulnerabilities

and mitigations are out of the scope of our work. DYNACUT can reduce the viability of code-

reuse attacks e.g. ROP attacks [57]. ROP attacks can be defeated with existing OS security

techniques like ASLR [57]. But, there exists a more powerful variant of ROP attacks called

Return-to-PLT(ret2plt) attacks, which can defeat ASLR. DYNACUT can be used to reduce

the viability of ret2plt attacks.

1.3 Thesis Contribution

We present DYNACUT– Dynamic and Adaptive Code Customization, a framework for Dynam-

ically customizing an application at runtime. DYNACUT can disable features of the application

that the user deems unnecessary in a particular usage context of the application. DYNACUT

can identify and remove application code that is being used only during the startup of the

application. DYNACUT can also re-enable application features that were disabled, providing

flexibility to the user. DYNACUT does not need the source code of the application to perform

these customizations, however, it relies on the execution traces of the application, which can

be generated using an off-the-shelf trace generation tool e.g., DynamoRIO [4], Intel PT [40]

and Intel PIN [28]. We use the code-coverage tool drcov of DynamoRIO [10].

To dynamically customize a process, DYNACUT uses a process-rewriting method that modifies

the process address space to add code pages, insert fault handlers into the address space and

4 CHAPTER 1. INTRODUCTION

insert traps in the application binary – providing a rich set of capabilities to the end-user to

customize a process.

DYNACUT is built upon the Linux Checkpoint Restore in Userspace (CRiU) project [7]. CRiU

provides an infrastructure to stop a process, checkpoint its state to disk, and then restore it.

We extended the capabilities of CRiU to update the memory contents of the process.

Our contributions are summarized as follows:

• We present the Design and Implementation of DYNACUT;

• We describe how the code-coverage traces generated using DynamoRIO is processed

to identify feature-related and initialization basic blocks;

• We built a prototype of DYNACUT and evaluated it on 9 real-world applications; The

results show DYNACUT can remove up to 56% of the executed code of server applica-

tions.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 discusses the necessary background

of our work and also justifies its motivation. Chapter 3 describes the past and related

works, Chapters 4 and 5 describe the design and implementation of DYNACUT respectively.

Chapter 6 describes the security benefits of DYNACUT. Chapter 7 discusses the performance

evaluation of DYNACUT. Finally, Chapter 8 concludes the thesis, discusses the limitations of

DYNACUT and identifies future work.

Chapter 2

Background

This chapter aims to provide the necessary background in the context of this thesis.

In Section 2.1, we describe what is software debloating and some existing works in this

direction. Next, in Section 2.2, we briefly describe CRiU – upon which DYNACUT is built.

In Section 2.3, we give a basic overview of signals in linux and describe the SIGTRAP signal.

In Section 2.4, we briefly review some basic ELF concepts used by DYNACUT and finally

in Section 2.5, we briefly provide the necessary background of the binary instrumentation

framework DynamoRIO [10].

2.1 Software Debloating and Dynamic Customization

To support a wide range of use cases and platforms, applications tend to add on func-

tionalities that may not be required by the end-user of the software. These unnecessary

functionalities lead to a waste of memory but more importantly can increase the attack sur-

face of an application [37]. Software Debloating is a technique in which unused code or code

bloat is removed from the application.

Some techniques also allow for the code to be customized according to the user specifica-

tions. Razor [37] is a debloating framework that customizes the binary based on the users’

specifications. Razor relies on user-specified test cases to identify the code necessary/un-

5

6 CHAPTER 2. BACKGROUND

necessary for execution. Only the code necessary for the execution will be triggered by the

test cases and by tracing the execution, such code can be identified. However, since it is

almost impossible to generate test cases to cover all related functionalities, razor also takes

into account control flow based heuristics to identify complementary code which cannot be

identified using just user-specified test cases. To collect the execution traces, Razor uses

both software-based binary instrumentation tools (DynamoRIO [10]) and hardware-based

logging tools like Intel PT [40]. Once the traces are collected, Razor disassembles the bi-

nary and constructs a partial control flow graph (CFG). To add more related code into the

CFG, Razor uses a set of control flow-based heuristics to construct a complete CFG. Once

a complete CFG for a set of specified test cases is constructed, Razor then disassembles the

original binary and synthesizes the new debloated binary by including the machine code of

the necessary instructions. Razor generates a debloated binary customized to the specific

needs of the user but is not dynamically customizable – if the user-specified test cases change,

a new binary has to be generated.

There have also been machine learning based approaches to identify a minimal binary. Chisel

[19] and Control-flow trimming [14] are two such examples. Chisel [19] is similar to Razor

but uses a Reinforcement Learning-based approach to identify and remove all unwanted

functionalities of the application given a high-level specification of the desired functionality.

Control-flow trimming [14] generates a contextual CFG by using machine learning based

techniques to decide if a branch should be taken/not-taken.

Recent research efforts have been aimed at dynamically customizing the behavior of the

application. Temporal syscall specialization [16], dynamically customizes the syscalls that are

allowed to be executed by the process. Depending on the execution phase of the application,

temporal syscall specialization disables system calls that are no longer required in the current

execution phase. They identify a transition point between the initialization and the serving

2.2. CHECKPOINT RESTORE IN USERSPACE 7

phase for popular server applications and then disable all the system calls that are not

required for the normal execution of the application in its serving phase. They achieve this

by using static analysis to extract the application’s call graph, identifying all the syscalls

used in each phase of the application, and then deploying a seccomp filter to disable all

unused syscalls. This results in the blocking of dangerous syscalls like fork() and execve()

which are used only in the initialization phase of the application. These syscalls can be used

to launch dangerous shellcodes. By blocking them, the attack surface of the application is

reduced.

DamGate [5] is another work that dynamically customizes application features. Application

features that cannot be completely removed using existing debloating techniques can be

blocked by inserting gates or checker functions in the binary of the application. DamGate

performs both a static call graph analysis and a dynamic call graph analysis to generate

a complete call graph. Once this complete call graph is generated, execution paths for

allowed features are identified and gates are inserted in these execution paths to prevent the

execution of unwanted features. If the execution of the function goes beyond the permitted

boundary, DamGate terminates the execution of the program. DamGate bears the closest

resemblance to DYNACUT. But, DYNACUT can disable the unwanted code completely and it

also allows the user to customize the fault handling when an undesired feature is executed –

unlike DamGate which terminates the execution.

2.2 Checkpoint Restore in Userspace

Checkpoint Restore in Userspace (CRiU) is a tool that checkpoints an application in userspace.

It freezes a running process, saves all its data into a set of images, and when the user wants

to restart the process from the point it was checkpointed, it restores the process. CRiU can

8 CHAPTER 2. BACKGROUND

be used for live container migration, snapshots and remote debugging [7].

CRiU can also be used to reduce the start time of the application. If the application is

checkpointed once it finishes starting up, this image can be used to restart the application

without waiting for the application to start up again. DYNACUT makes use of this usage

scenario – we checkpoint the application once its initialization phase is complete and then

since these initialization functions are no longer needed, we can disable them by modifying

the CRiU images.

CRiU dumps the process by collecting the process and freezing it. If given the PID of

the process through the command line, CRiU dumper walks through /proc/$pid/task/ to

collect threads. The children are gathered by reading the /proc/$pid/task/$tid/children.

The tasks are stopped using the PTRACE_SEIZE command while the CRiU dumper collects

the process information. Once the process is frozen, CRiU collects all the information of the

process and writes them to dump files. The VMA areas are parsed from /proc/$pid/smaps,

the mapped files are read from /proc/$pid/map_files, the file descriptors are read via

/proc/$pid/fd and core parameters of a task like registers, signal handlers etc. are read

from the ptrace interface and from parsing the /proc/$pid/stat entry. CRiU also injects

parasite code into the process address space via the ptrace interface. The parasite code

collects more information from the process such as the credentials and more importantly,

the contents of the memory of the process.

CRiU restores the process by morphing itself into the tasks it restores. The process tree is

forked, the basic task resources are restored and the restorer blob restores the memory map

of the process – by replacing the memory contents of CRiU with that of the dumped process.

2.3. SIGNAL HANDLING IN LINUX 9

2.3 Signal Handling in Linux

Signals in a Linux process are software interrupts that are sent to the process to indicate

some event. Our work makes extensive use of the SIGTRAP signal. This signal is issued

whenever the program execution hits a trap instruction. The trap instruction is a one-byte

instruction (0xCC) generally used by debuggers to insert a breakpoint. For DYNACUT, we

use the trap instruction to customize the process. DYNACUT aims to dynamically customize

the fault handling behavior of the application. To allow the user to define the fault handling

behavior, the default behavior has to be replaced with the customized behavior. We do this

by inserting the trap instruction at our points of interest and updating the default action of

a signal handler. This is achieved by updating its sigaction. A sigaction defines how the

signal will be handled. sigactions can also call specified functions to handle the signal.

1 struct sigaction {

2 void (*sa_handler)(int);

3 void (*sa_sigaction)(int, siginfo_t *, void *);

4 sigset_t sa_mask;

5 int sa_flags;

6 void (*sa_restorer)(void);

7 };

Listing 2.1: sigaction struct definition [24]

Listing 2.1 shows the sigaction structure. DYNACUT updates the fault handling behavior

by updating the sa_sigaction field with the pointer to the signal handler function instead

of the default signal handling action. The sa_restorer field needs to be replaced with the

pointer to the function that makes the rt_sigreturn1 syscall.

1The rt_sigreturn syscall returns from the signal handler and cleans up the stack frame [25].

10 CHAPTER 2. BACKGROUND

2.4 ELF Basics

ELF (Executable and Linking Format) is a standard file format used for executable files,

shared libraries, object code, and core dumps [13]. DYNACUT loads a position independent

shared library into a process’ address space by loading the executable segments of the ELF

file into a newly created virtual address space. DYNACUT accomplishes this by simulating

the Linux dynamic loader (ld.so) [23]. Next, we describe the execution view of an ELF file

– also known as segments, and how they are loaded into the virtual memory for execution.

Linking View Execution View

.rela.dyn
.rela.plt

.init
.plt

.plt.got
.plt

.text

.rodata
.eh_frame

...

.init_array

.fini_array
.dynamic

.got
.got.plt
.data

...

Segment 1

Segment 2

Segment 3

Segment 4

...
ELF header ELF header

...

Figure 2.1: Illustration of the Linking View and the Execution View of an ELF file.

2.4.1 Program Loading and Dynamic Linking

ELF files have two kinds of formats depending on whether the ELF is being used for program

linking or program execution. ELF sections come into picture when an ELF file is used

2.4. ELF BASICS 11

for program linking and ELF segments come into picture when the ELF file is being used

for program execution. Figure 2.1 illustrates the Linking View and the Execution View of

an ELF file.

Various sections in the ELF hold program and control information. Some of these sections

are: The .plt section holds the procedure linkage table, the .init section of the ELF holds

the executable instructions that contribute to the process initialization code, the .got holds

the global offset table, the .text section holds the executable instructions of a program, the

.rodata section holds read-only data that typically contribute to a non-writable segment

in the process image. The image represents how the ELF sections are mapped to the ELF

segments. In this section, we focus on the execution view of the ELF, i.e., the segment view.

There are nine types of segments in a ELF file. Segments of type PT_LOAD specify loadable

ELF segments which is described by p_filesz and p_memsz [48]. These two values describe

the size of the PT_LOAD segment in-file and in-memory respectively. The value p_memsz can

be greater than the value p_filesz if the PT_LOAD segment contains the uninitialized data

section (.bss). Every one of the PT_LOAD segments from the ELF file needs to be loaded

into the virtual memory. When the PT_LOAD segments are loaded into memory, their relative

offsets must be preserved. The difference between any two virtual addresses in memory must

match the differences in the ELF file [48]. The difference between any virtual address in

memory and any address in the file is the base address of the shared library in the virtual

address space. The first PT_LOAD segment is loaded at the base address. The second PT_LOAD

segment is loaded at the end address of the first segment truncated to the nearest multiple

of the maximum page size. All the PT_LOAD segments are similarly loaded into memory.

12 CHAPTER 2. BACKGROUND

2.5 DynamoRIO

DYNACUT uses execution code traces of an application in the first stage to determine which

basic blocks need to be removed and also to identify basic blocks that are not required in the

current execution phase of the application. DynamoRIO is a framework that provides the

capability to dynamically analyze and optimize the application at runtime [4]. The drcov

client [9] is a tool that is built upon the DynamoRIO framework. drcov collects information

about which basic blocks have been executed and writes the results to a per-process logfile.

drcov is generally used to analyse the code coverage of a particular application. We use the

drcov tool and the generated execution traces of the application to identify all the basic

blocks that have been executed and the order of their execution. DynamoRIO also provides

the user the capability to write a custom tool that uses the DynamoRIO framework. We

used this capability to develop a tool that prints the first and last execution timestamp of

every basic block. We describe how these execution traces were used in section 4.2.

2.6 ROP attacks

Buffer overflow attacks use the buffer overflow vulnerability to overwrite parts of application

memory. Buffer overflow attacks work by overwriting a fixed-length buffer with more data

than it can handle – leading to overwriting of adjacent areas of memory [53]. Buffer overflow

attacks are generally used to execute shellcode leading to arbitrary execution of the applica-

tion or the attacker gaining root privileges. Some of the defenses against these attacks are:

1. non-executable stack, 2. stack canaries, and 3. Address Space Layout Randomization

(ASLR).

Return-to-libc attacks are a type of attack that uses a buffer overflow vulnerability in the

2.6. ROP ATTACKS 13

application to overwrite the memory with calls to the C standard library libc. Libc is

targeted because it is almost always linked to a program. One example of a return-to-libc

attack uses the system()2 libc call. If the address of system() and the string ”\bin\sh” is

identified in the process address space, and these addresses are placed in the buffer that is

being overflowed, the attacker can open a shell [59]. ROP attacks are a more expressive form

of ret2libc attacks and use machine instructions already present in the application memory

– called gadgets, to enable arbitrary execution [59]. Gadgets are chained together to create

code sequences that perform arbitrary execution.

Return-to-PLT (ret2plt) attacks are similar to ret2libc attacks where the attacker uses PLT

entries of the application to jump into the libc functions. But, ret2plt attacks are more

powerful as they can bypass both the non-executable stack defense and ASLR [8].

2The system() libc call forks a new child process and executes the shell command specified [26].

Chapter 3

Related Work

This chapter provides an overview of several related works that can have been carried out

in the research areas that DYNACUT targets. The related works have been split into five

categories. First, section 3.1 describes research efforts in the area of software debloating.

Section 3.2 discusses some techniques that aim to achieve dynamic attack surface reduction.

Section 3.3 discusses approaches to dynamically update software. Finally, sections 3.4 and

3.5 discuss techniques that enforce fault isolation and principle of least privilege.

3.1 Binary Debloating and Customization

There have been several works that introduce different types of software debloating frame-

works. The main challenge that is common to all these works is the ability to identify

code that needs to be removed. Some of the works that we identified that perform a varia-

tion of debloating are Razor [37], Chisel [19], Piece-wise compilation [39], BinTrimmer [41],

Feature-based customization [22] and Control-flow trimming [14].

Razor [37] performs debloating post-deployment. Razor achieves debloating with the use

of binary instrumentation tools and by generating a precise CFG using a heuristic-based

approach. Once a precise CFG is constructed, a new binary is synthesized for the user-

defined features with only the necessary instructions. DYNACUT is also a Post-deployment

tool like Razor and customizes application binaries. However, DYNACUT can remove unused

14

3.1. BINARY DEBLOATING AND CUSTOMIZATION 15

code at application runtime.

Another work that attempts to generate a precise CFG is BinTrimmer [41]. BinTrimmer

uses a Iterative CFG refinement technique to generate a precise CFG – one that identifies

all the basic blocks that can be safely removed from the application without affecting its

correctness. Once all the basic blocks needed are identified, BinTrimmer removes all the

unwanted basic blocks by rewriting them with useless instructions. Even though it does not

reduce the application size, it provides a security advantage by reducing the attack surface

of the application. DYNACUT removes unwanted basic blocks by replacing them with useless

instructions (int3). Although DYNACUT does not use any CFG creation technique to identify

unwanted basic blocks, BinTrimmer’s CFG refinement technique can be used orthogonally

to DYNACUT’s technique of identifying unwanted code.

Control-flow trimming [14] is another approach that focuses on generating accurate CFGs

for debloating the application. Control-flow trimming generates a contextual CFG that

uses decision trees to decide whether the branch should be executed or not. The machine

learning model is first trained using user-defined execution traces generated by unit testing

of the application. To enforce the contextual control-flow integrity, a hash table with key

as the context and the value as the yes/no decision is created. Every jump instruction

is instrumented to check the hash-table to make the decision to take/not-take the branch.

DYNACUT also needs the user-defined test cases to generate application traces to identify

unwanted basic blocks.

Piece-wise compilation [39] is another approach to include only code that is necessary for

the execution of particular user-defined features. DYNACUT also tries to identify the minimal

code that is necessary for the execution of the application – although we do not customize

the libc binary.

16 CHAPTER 3. RELATED WORK

Chisel [19] is a Reinforcement-Learning based approach to software debloating where the

wanted features of the application are identified by using a property test. Through several

iterations, a reduced program is identified. DYNACUT also tries to identify the minimal code

necessary for the execution of the application but without the use of reinforcement learning.

Feature-based customization [22] provides an approach to debloating where unwanted code

is input as seeds to the debloating framework. The functions corresponding to these seeds

are removed by using static dataflow analysis and by removing the call-sites to the identified

functions. DYNACUT also tries to remove the unwanted code using the user-defined tests

cases as input.

Although DYNACUT does not perform any CFG construction or optimization, we consider

all the above works to be orthogonal to the method of basic block identification used by

DYNACUT. These methods can be used in conjunction with our simple method – a transi-

tion point-based approach to identify unwanted basic blocks, incurring minimal overhead

or remove an even larger number of basic blocks – even those that are used at application

runtime.

3.2 Dynamic Attack Surface Reduction

In this section, we discuss some related works that aim to achieve attack surface reduction

dynamically.

Confine [15] uses static code analysis techniques to analyze a containerized application and

identify all the system calls needed by it. Once all the system calls are identified, the

remaining syscalls are blocked using seccomp filters. DYNACUT tries to identify the minimal

set of basic blocks necessary for the application execution and removes all the unnecessary

3.3. DYNAMIC SOFTWARE UPDATING 17

basic blocks – at runtime.

BinRec [1] aims to use the execution traces to lift the binary to IR and apply a rich set

of transformations to it. Once the transformations have been applied, they can then be

lowered back again into binary code. BinRec can be used to reduce the attack surface by

using transformations like AddressSanitizer [46] and SafeStack [47]. While DYNACUT does

not lift the binary to IR, similar attack surface reduction can be achieved using DYNACUT. In

the case of BinTrimmer, if the code-usage scenario changes, the binary has to be recompiled,

which is not the case with DYNACUT. DYNACUT can simply re-enable the code required by

the user.

Attack surface reduction has also been demonstrated for OS kernels in trimming [27]. Trim-

ming uses kprobes to reduce the attack surface of the kernel. First, analysis kprobes are

inserted into the kernel and all the kernel functions that are being used under a policy scope

are identified. Next, all the unwanted kernel functions are hooked with enforcement kprobes

that kill an application if unwanted access is made to these functions.

DYNACUT also achieves a dynamic attack surface reduction – by disabling basic blocks that

are not required for the subsequent execution of the application at runtime. Hence, DYNACUT

can also be used for dynamic attack surface reduction.

3.3 Dynamic Software Updating

Dynamic Software Updating (DSU) as the name suggests is updating of applications while

they are running [56]. There have been several efforts in this direction. We highlight some

of them here.

Kitsune [18] is a DSU system for the C language. Kitsune works by inserting update points

18 CHAPTER 3. RELATED WORK

at program locations that need to be updated. Once the update points are inserted, the

update execution phase unwinds the stack of the old threads, loads the entire new program,

and resumes execution of the application from the point at which the update took place in

the old version.

Ginseng [34] is a system that dynamically patches applications. The applications are specially

compiled so that they can be dynamically patched. Then, ginseng compares the old code from

the new code, generates the patch, and applies this patch dynamically while the application

is running.

Ksplice [21] is a system that allows system administrators to apply patches to the kernel

without rebooting. KSplice works by first linking the replacement code into the kernel and

then placing a jump instruction in the kernel at the start of the obsolete function – thus

directing the execution from the obsolete function to the new function.

Upstare [32] is another work that dynamically updates a running process. UpStare loads the

new patch into memory using dlopen and also performs datatype updates by unwinding the

stack up to the thread-entry point function.

DYNACUT can be used to assist Dynamic Software Update methods by inserting update points

(trap instructions) at points where the application needs to be updated and by replacing

them with the new code in the patch.

3.4 Fault Isolation and Domain based Isolation

Fault isolation is a mechanism of isolating untrusted modules to protect their host application

[61]. There have been several works in this direction including ARMlock [61], Donky [43],

ERIM [52], libmpk [36], Intra-Unikernel Isolation [44] and MonGuard [55].

3.4. FAULT ISOLATION AND DOMAIN BASED ISOLATION 19

ERIM [52] is a technique to isolate memory domains that uses the intel MPK extension

[33]. With MPK, each virtual memory page of a process can be isolated with one of 16

protection keys – partitioning the process address space into up to 16 isolated domains [52].

ERIM reserves a portion of the address space and makes it accessible only from the trusted

part of the application. ERIM ensures isolation by mapping the reserved memory and the

general memory of the application to two different MPK domains. The reserved trusted

memory is accessible only by the trusted code. Execution flows from the untrusted code to

the trusted code and back via call gates. The call gates enable access to the reserved memory

by updating a register and when the trusted code is done executing, the call gates disable

access to the reserved memory and transfer control back to the untrusted code. DYNACUT

provides a software-based fault isolation mechanism – instead of isolating the fault, DYNACUT

eliminates the potentially vulnerable code entirely.

Other works that use Intel MPK to achieve domain-based isolation are: libmpk [35], Intra-

Unikernel isolation [44] and MonGuard [55]. libmpk provides a software abstraction for the

MPK hardware extension, MonGuard presents an in-process monitor that is isolated from

the rest of the application. Intra-unikernel isolation brings memory isolation inside the single

address space of the unikernel using Intel MPK.

ARMlock [61], uses the memory domain support in ARM processors to create isolated mem-

ory domains for a process.

Donky [43] provides a software-hardware co-design for in-process isolation that implements

domain switching entirely in userspace – reducing the switching overhead and the kernel

complexity.

20 CHAPTER 3. RELATED WORK

3.5 The Principle of Least Privilege

Privilege separation is a technique where the application is divided into several different

modules based on the privilege each of them requires [30]. Privilege separation prevents the

program from being compromised completely in the event of an attack because each of these

modules are executed in their own domains and cannot access parts of the program executing

in other domains. Program-mandering (PM) [30] is a technique that implements privilege

separation. It achieves this by first constructing a Program Dependence Graph (PDG) by

using user-defined specifications. Then the PM performs program analysis to determine the

sensitive and insensitive information. The Program is then split by PM into sensitive and

insensitive domains. DYNACUT can be used to achieve similar privilege isolation by allowing

only certain features of the application to execute in a particular usage context – for example

PUT and DELETE requests to a server can be disabled when the client does not need these

requests to be sent to the server.

3.6 Summary of Related Works

We summarize some of the works discussed in the previous sections here. Table 3.1 compares

DYNACUT with existing debloating techniques.

3.6. SUMMARY OF RELATED WORKS 21

Summary of Related Works
Related Work No Source Code

Required
Consider Pro-
cess’ phase of
execution

No binary regen-
eration required

Disable initial-
ization code

Chisel [19] 7 7 7 7

Piece-wise [39] 7 7 7 7

Razor [37] 3 7 7 7

BinTrimmer [41] 3 7 7 7

DamGate [5] 3 7 3 7

Control-flow
trimming [14]

3 7 7 7

Temporal syscall
specialization
[16]

3 3 N.A. 7

DYNACUT 3 3 3 3

Table 3.1: Comparison of DYNACUT with existing debloating works

Chapter 4

Design

As described earlier, the motivation of our work is to dynamically customize a process. By

customization, we explore how to edit the memory of a process – add or delete certain

components of the process’ memory. We aim to achieve this with minimal overhead and

eliminating as many security vulnerabilities as possible; all while making the tool user-

friendly and compatible with a wide range of applications.

This chapter discusses the design and implementation aspects of DYNACUT. First, we describe

the 10000 feet overview of DYNACUT, next, in Section 4.2, we describe the design of the

components that make up DYNACUT.

Application

Code Profiling Tool

Wanted
Execution

Traces

Unwanted
Execution

Traces

Temporally
unused BBs

Feature
related BBs

User Defined
Test Cases

Customized
Policy User

Unwanted
BBs Identifier

Process
Rewriter

Customized
Application

DynaCut

Vanilla Proc

Figure 4.1: Overview of DYNACUT.

22

4.1. OVERVIEW 23

4.1 Overview

To achieve dynamic process customization, we identified two functionalities that DYNACUT

must support. First, DYNACUT needs to process the user input – this input describes how

the end-user wants to customize a process. DYNACUT can remove unwanted features, remove

initialization basic blocks , and also add/remove new VMA regions. The second functionality

of DYNACUT would be to edit the process – perform all the necessary steps that are required

to satisfy the user specifications. We provide an overview of these two functionalities of

DYNACUT in this Section.

We term the first functionality of DYNACUT as Undesired basic blocks identification and

the second functionality as Process Rewriter. We term the first functionality so because

two of the features that DYNACUT supports – feature removal and removal of initialization

functions require the identification of basic blocks that are undesired by the user and need to

be removed/disabled from the process image. We name the second functionality so because

DYNACUT needs to rewrite the process image according to the user specification. We go

deeper into these two functionalities of DYNACUT next.

An overview of DYNACUT and its major components : an undesired code block identifier and a

process rewriter is illustrated in Fig. 4.1. The undesired code blocks identifier takes as input

the execution traces of the application – generated using the DynamoRIO binary analysis

tool [10]. The method to identify undesired basic blocks that DYNACUT uses is very simple –

generate a diff of the wanted and unwanted feature logs and identify either the temporally

unused basic blocks or the point of transition for the feature to be removed and send it to

the next component of DYNACUT– the process rewriter.

The process rewriter is the component of DYNACUT that modifies the memory images of

the process to customize it. As described earlier, DYNACUT supports three kinds of pro-

24 CHAPTER 4. DESIGN

cess customizations – removal of initialization functions, undesired feature removal, and

adding/removing a new VMA region. We describe what the process rewriter does in each of

these cases next.

In case of the undesired feature removal, once the point of transition is identified, the process

rewriter modifies the process so that once this piece of code is executed, the application either

exits using exit() or if the user wants it – redirect the execution to another location in the

code to handle the exception gracefully.

For removal of initialization functions, DYNACUT identifies all the basic blocks that are used

only during the initialization phase of the application and removes them from the process

image. By disabling initialization basic blocks, DYNACUT aims to reduce the attack surface

available to an attacker to mount code-reuse attacks such as ROP attacks. We describe how

DYNACUT can thwart such attacks in the Security Evaluation Section. 6.

The third functionality of the process-rewriter – adding/removing a new VMA region in the

process address space and adding any user-specified shared libraries, can be used to handle

the exception generated by the above two cases gracefully or to reduce the code even further

by unmapping unused VMA regions.

In the rest of this Section, we will describe the design of these two major components in

detail and also discuss their low-level implementation details.

4.2 Design

As described earlier, DYNACUT has two major components – the undesired basic blocks

identifier and the process rewriter. We describe the design aspects of these two components

of DYNACUT in this Section.

4.2. DESIGN 25

4.2.1 Undesired Code Block Identification

DYNACUT’s undesired code block identification component mainly uses the execution traces

provided by the code coverage client (drcov) of DynamoRIO [9]. This component of DYNA-

CUT has to identify the undesired basic blocks for feature removal as well as identify the list

of initialization basic blocks. Next, we describe the design of each of these approaches and

the differences between them.

Undesired Feature Related Basic Block Identification

To identify the basic block that is responsible for the undesired feature that is to be blocked,

DYNACUT uses a simple diff based approach. The user first needs to generate a trace with

all the desired features and also another trace for all the unwanted features. DYNACUT then

compares the two traces and identifies the basic block that is responsible for the execution

of the undesired feature as shown in Figure 4.1.

Removal of Initialization Basic Blocks

To identify basic blocks that are used only during the initialization phase of the server

application, we need to first identify a transition point. The transition point is where the

server transitions from the initialization phase to the serving phase and the main operations

of the server application begin [16].

The transition point allows us to determine which blocks are initialization basic blocks –

if a basic block has been executed before the transition point, it can be considered an

initialization basic block. All other basic blocks executed after the transition point can be

considered as essential for the main operations of the server and hence cannot be removed.

26 CHAPTER 4. DESIGN

The transition point needs to be manually identified for every application that is to be tested

with DYNACUT. We used a similar approach to identify the transition point as described in

[16]. Ghavamnia et al. also use a manual approach in identifying the transition point. For

server applications like Nginx, the transition point that we considered is similar to the one

used by Ghavamnia et al. [16] i.e., the transition from the serving phase to the initialization

phase takes place once the server’s main process forks. We identified the address where the

fork() code is executed and used it as the transition point for NGINX. Another transition

point for NGINX was also identified – the ngx_worker_process_cycle() function. For

Lighttpd, the server_main_loop() function was chosen as the transition point. The basic

block at the transition point was identified and all the basic blocks executed before it were

identified as initialization basic blocks.

Once the initialization basic blocks are identified, the list of basic blocks to be removed is

sent to the process rewriter.

4.2.2 Dynamic Code Customization

DYNACUT can customize a process according to the user’s specifications. The user can disable

an undesired feature, remove initialization code from the application and also update the

VMA region of the application either by adding a new VMA region or by deleting existing

VMA regions. We elaborate DYNACUT’s customization capability in this Section.

Process Rewriting

DYNACUT’s process rewriter works on static images created by the Checkpoint Restore in

Userspace (CRiU) tool. CRiU freezes a process and stores all the data of the stopped process

in a set of image files. DYNACUT processes these image files and modifies them to dynamically

4.2. DESIGN 27

customize the process. CRiU was developed to allow for container migration but we only

use it to stop a running process and obtain all the process data. Transforming a static

process image can prevent potential race–conditions in a dynamic process transformation

system [3, 31, 58].

The current capabilities of DYNACUT’s process-rewriter include: adding/deleting the VMA

regions of the process memory, updating the memory contents of the process memory, and

adding position independent shared libraries into the process address space. The user can

update the memory contents of the process by adding a trap (int3) into any basic block

that is deemed undesired. Whenever this basic block is executed, the application exits. To

handle the SIGTRAP gracefully, DYNACUT can insert a position independent signal handler

library into the process address space. This signal handling library can be customized to

handle the exception according to the user’s specification. DYNACUT’s process rewriter can

also disable entire basic blocks or unmap an entire page to reduce the attack surface for

code reuse attacks. DYNACUT can also rewrite the process to update its signal handlers.

DYNACUT can add position-independent libraries into the process’ address space that include

a signal handler function and then modify the process CRiU images to handle any exceptions

raised by the inserted int3 instructions. Whenever an undesired basic block is executed, the

application execution can be redirected or exited.

Undesired Feature Removal

DYNACUT can disable a particular feature if the user deems it unnecessary for the usage

context of the application. Once the basic block of the unwated feature is identified in the

first phase of DYNACUT, a trap is inserted in the first byte of this basic block. A signal

handler is also inserted into the process address space in this step. The signal handler is

designed to handle SIGTRAP. The signal handler can deal with the SIGTRAP in several different

28 CHAPTER 4. DESIGN

ways. One action can be to simply call exit() to quit the program execution. Users can

also program the behavior of the application when there is unintended access to the blocked

code. Whenever the blocked code is executed, the fault handler captures the exception and

obtains the faulting context. It then updates the instruction pointer by adding an offset

value to the fault address so that on signal return, the instruction pointer points to a new

location where the application handles the wrong request. For example, when the user wants

to disable features in a web server, they can program the fault handler to jump to the code

that sends a 403 Forbidden response.

SIGTRAP handler

int [][2] = {{address1,offset1},
{address2, offset2}}

0xCC

Undesired Feature 1

0xCC

 Undesired Feature 2

http_status_set_error(r, 403);

address1

address2

address3

Figure 4.2: Illustration of multiple code features disabling and control flow redirection in
DYNACUT.

The feature blocking capability of DYNACUT is illustrated in Fig. 4.2. The image shows the

layout of the process image that has been modified by DYNACUT. As shown in the image, the

signal handler library has been added into the process image at a user-defined address. It

allows multiple code features to be blocked (by replacing the first byte to an int3 instruction

or 0xCC). When any of the basic blocks of undesired code blocks are accessed, a SIGTRAP

4.2. DESIGN 29

is raised, as shown by the red and black arrows. The inserted signal handler then obtains

the faulting context and modifies the RIP so that the execution is re-directed to the code

block at address3 which makes the server respond with a 403 Forbidden when the blocked

feature is accessed, as shown by the blue arrow in 4.2.

To block code features in different locations, the customized SIGTRAP handler updates the

instruction pointer based on its original value. To be specific, we store the starting addresses

of each unwanted code block – this would be address1 and address2 and the corresponding

offsets - this would be (address3 - address1) and (address3 - address2) into the key-value

store in the signal handler as shown in Figure 4.2. The offset values are pre-obtained from

binary analysis and are embedded into the signal handler through a script.

1 int trap_map[][2] = {

2 #include "removal.h"

3 };

4 size_t map_len = sizeof(trap_map) / (2*sizeof(int));

5

6 void sig_handler(int sig, siginfo_t *si, void* arg)

7 {

8 ucontext_t *ctx = (ucontext_t *)arg;

9 uint64_t rip = ctx->uc_mcontext.gregs[REG_RIP];

10

11 for (int i = 0; i < map_len; i++) {

12 if ((rip & MASK) == (trap_map[i][0] + 1)) {

13 rip += (trap_map[i][1] - 1);

14 }

15 }

16 ctx->uc_mcontext.gregs[REG_RIP] = rip;

17 }

Listing 4.1: Example of a SIGTRAP handler for different trap locations.

30 CHAPTER 4. DESIGN

An example of the signal handler code that can be used to achieve the feature removal is

listed in Listing 4.1. The listing also shows how the faulting context is obtained (using

ucontext) and how the RIP is updated.

Removal of Initialization Functions

For most long-running server applications, the initialization code will not be used after a

certain point in the program execution. Using the execution log with timestamps cannot

provide us an accurate location in the code of this transition. To solve this issue, we ex-

tended DYNACUT’s ability to insert traps and add signal handlers into the process image to

dynamically locate the transition point.

b1 b2 b3 b4

b1 b2 b3 b4

b1 b2 b3 b4

Transition Point

Step 2

Step 3

Step 4

Step 1 b1 b2 b3 b4

Figure 4.3: Illustration of steps in removal of initialization code

To discover initialization basic blocks, we first use the execution log to find an approximate

transition point that never appears in the main execution loop of the server application

(step 1 in figure 4.3). Next, we add an int3 instruction at the beginning of each of the basic

blocks executed before this chosen initialization point (step 2 in figure 4.3). We then restore

4.2. DESIGN 31

the process. If the basic block with the int3 instruction is executed, the execution will be

trapped by the customized signal handler. The signal handler saves the executed basic block

locations to a configuration file to that can be used to finalize the initialization code blocks

to be removed – illustrated in step 3 of figure 4.3. Finally, all the identified basic blocks

which did not execute in step 3 are removed (step 4 in figure 4.3).

Initially, we tried to find an exact list of initialization basic blocks using only the execution

traces. However, there were a few exceptional cases of basic blocks that are never executed

after the initialization phase in the execution traces, but are executed when we restore the

process (e.g., ngx_signal_handler() in Nginx). We suspect that these code blocks are

invoked by the CRIU restoration process. Using the dynamic initialization code discovery

mechanism described above, any similar corner cases can be avoided.

Chapter 5

Implementation

In this chapter, we discuss how DYNACUT was implemented.

DYNACUT builds upon CRIU [7] and DynamoRIO [10]. Checkpoint Restore in Userspace

(CRiU) is a project that provides the capability to checkpoint/restore in userspace and

forms the backbone of DYNACUT. CRIU provides DYNACUT the capability to stop a running

process and save its memory pages, registers, opened files and network connections to a set

of process images. This set of images are modified in the later stages of DYNACUT. It can also

be used to restore the process exactly as it was at the time of the freeze. CRIU is especially

useful for transforming stateful programs with live connections – which includes most web

servers and key-value stores, as it provides TCP_REPAIR support which can re-establish the

saved TCP connection.

Once the server starts, it can be checkpointed at a point where the user can assume that

the initialization phase is complete. Once the server starts accepting requests, it can safely

be assumed that the initialization phase of the server is complete and the server can be

checkpointed. At this point, DYNACUT can be used to remove initialization code –producing

a customized process image of the server without any initialization code (Section 4.2.2).

The checkpointing, customization, and restoration is a one-shot process that can be per-

formed by running a script provided by DYNACUT. If the end-user does not want the modified

process anymore, the vanilla images created when checkpointing the process can be used to

32

5.1. MODIFICATIONS TO CRIU 33

restart the process in the state it was when the checkpointing was applied.

Subsequent parts of this Chapter describe how this was implemented. First, Section 5.1 de-

scribes the modifications made to CRiU to implement DYNACUT. Next, Section 5.2 describes

the modifications made to set of image files to add a signal handler into the process address

space. Section 5.3 describes how execution traces are generated and how the SIGTRAP signal

can be handled. Finally, Section 5.4 provides an overall picture of the implementation.

5.1 Modifications to CRIU

To implement DYNACUT, several changes were made to CRIU. For example, CRIU only

dumps the pages of the process that are marked anonymous to save bandwidth when trans-

mitting these image files for process migration. Pages that are marked ANONYMOUS are not

backed by a file. One of the uses of these kinds of pages is to use it as a shared memory

region. Pages that are marked PRIVATE are file-backed pages but any modifications to the

in-memory copy are not written back to the file. The code pages of a process are usually

marked FILE PRIVATE, which means that these pages are file backed in-memory copies and

any changes to the in-memory copy are not written back to the file. Code pages need not be

saved by CRiU because file-backed memory can be reconstructed by the page fault handler

when a restored process tries to access the virtual memory again. In DYNACUT’s imple-

mentation, we added an option in the criu/mem.c file to dump the private and executable

pages marked PROT_EXEC and FILE_PRIVATE. This was done because we add traps in the

executable section of the application – to customize these regions of memory, we need to

modify their in-memory copies.

Extensions were also made to the CRIU image tool (CRIT) to support process rewriting.

CRIT provides a user-friendly interface to examine the process images which are encoded

34 CHAPTER 5. IMPLEMENTATION

in the protocol buffer format [17] – by providing APIs to decode these images to human-

readable JSON files. CRIT can also read the saved images and: print all VMA memory

regions of the application(x and mems), print all the dumped memory regions (x and rss)

and encode the JSON files back to the protobuf format (encode).

Extensive changes were made to the current capabilities of CRIT to provide user-friendly

APIs to customize the process – some of these APIs add support to: update memory contents,

add new regions, unmap existing VMAs and insert position-independent shared libraries into

the virtual address space. These features can be used by the end user to customize the code.

As mentioned in Section 4.2.2, these extended features support inserting the signal handler

into the process address space, configuring the images for removing initialization basic blocks,

removing initialization basic blocks, printing shared library information etc. Our extension

to CRIT also includes support to remove a single basic block/function if given its VMA base

address, its size, and its file offset.

We also add options to CRIT to configure the images for feature removal and removal of

initialization basic blocks. To configure the images for feature removal, DYNACUT creates a

removal.h file that contains the file offsets of the features to be removed and the relative

offsets of these locations in the code where the execution should jump, as described in Sec-

tion 4.2.2. For removing initialization basic blocks, the configure option creates a removal.h

file that contains the addresses of the locations where the trap is added and the data bytes

at each of these locations that are replaced with int3. The signal handler is compiled using

these .h files and the data in these .h files is loaded into a key-value pair list for run-time

reference (code listing 4.1).

5.2. ADDING SIGNAL HANDLER INTO THE PROCESS IMAGE 35

5.2 Adding Signal Handler into the Process Image

For both the functionalities of DYNACUT, a signal handler needs to be added into the process

address space that can handle SIGTRAP. Our extension to CRIT accomplishes this by modi-

fying the CRIU images and adding the signal handler which is compiled as a shared library,

into the process address space. DYNACUT decodes the vanilla images using existing CRIT

APIs, transforms the process images as required and encodes them back into the protobuf

format, again using the existing CRIT APIs. When decoded, all the CRiU images can be

referenced as a dictionary of lists in Python [11]. Any modifications to the images would

involve adding a new entry in the dictionary of lists. In particular, DYNACUT rewrites the

following images:

The core image file: This file contains saved process information including signal handlers

for the process, signal masks, register values at the point of freeze etc. DYNACUT modifies

the core.img file and adds the signal handler address, the restorer address and the signal

mask into the SIGTRAP sigaction entry in this file. For the signal restorer address, we add

the restorer code in the code pages of the signal handler library and add its address to the

sigaction entry. The restorer code is a 9 byte code that makes a rt_sigreturn syscall 1.

The signal handler address entered into the sigaction entry is calculated by adding the file

offset of the signal handling function with the VMA base address given by the user.

The pages and pagemap image files: The raw data contained in the pages of the process

address space are stored in the pages.img binary file. The pagemap.img file contains infor-

mation about the virtual memory regions populated with the raw data. Each of the entries in

the pagemap.img file contains the address of the VMA, the number of pages populated with

data and the VMA flags. The pagemap.img is used by CRiU to index the raw pages.img

1The rt_sigreturn syscall returns from the signal handler and cleans up the stack frame [25]

36 CHAPTER 5. IMPLEMENTATION

content. To load a shared library into the target address space, new VMA entries need to

be created in the pagemap.img file and new memory pages containing the library code and

data need to be inserted in the pages.img file. We use an open-source library pyelftools [51]

to parse the shared library ELF. DYNACUT’s process rewriter parses the shared library ELF,

locates segments marked PT_LOAD, calculates the size of each of the PT_LOAD segments, and

obtains the offset at which each of these need to be loaded. The process rewriter also reads

the raw data from each of the PT_LOAD segments in the shared library ELF using pyelftools.

This data is then added into the CRIU pages.img file by creating new raw-data pages and

ordering them according to the pagemap.img file. Then, DYNACUT loads the ELF at any

user-specified 64-bit user-space address that is not already used by the process. Upon restore,

this new region of memory will contain the shared library code.

The mm image file: This file provides information about the virtual memory regions of the

application. The information includes the start address, end address, file offset, shared mem-

ory id, permission flags, and status flags of the VMA regions of the application. This file

differs from the pagemap image file in the manner that the pagemap image file only contains

details about pages that are populated with data; whereas the mm image file contains infor-

mation about all the VMA regions of the application. DYNACUT modifies the mm image file

and adds the VMA information (start address, end address, file offset and the corresponding

permissions) for the shared library added into the process address space.

DYNACUT also performs global data relocations and procedure linkage table (PLT) relocations

[29] with respect to the user-specified VMA address for the library to resolve the addresses of

symbols used by it. Global data relocations are performed by adding the VMA base address

of the library to the st_value field of the symbol. As illustrated in Figure 5.1, for PLT

relocations, DYNACUT first finds the external libc function symbol offsets from the libc

binary. Next, the runtime VMA base address of libc is added to these symbol offsets and

5.3. TRACE COLLECTION AND SIGTRAP HANDLING 37

call write ()
...

call write ()

...
call write ()

...

Write:
...

Strcmp:
...

Open:
...

.text PLT GOT libc

jmp [write]
push 0

jmp dlresolve

jmp [strcmp]
push 1

jmp dlresolve

jmp [open]
push 2

jmp dlresolve

symbol_address

symbol_address =
hash_section.get_symbol(symbol.name).entry['st_value']
+ library_vma_base_address

Figure 5.1: Illustration of resolving libc symbol addresses

then, these addresses are written to the global offsets table (GOT) [29] of the signal handler

library. It is to be noted that these relocations only need to be performed for the global data

and libc functions used by the signal handler in the shared library.

5.3 Trace collection and SIGTRAP handling

To generate the traces used by DYNACUT, the user should pre-run all the test cases required

for the normal execution of the application with the DynamoRIO drcov client. drcov then

records all the executed basic blocks and their addresses. DYNACUT also requires the end-

user to generate as many use cases as possible for both wanted and unwanted features and

generate traces for both of them. Existing fuzzing techniques can also be used to achieve

higher code coverage and ensure that all the required basic blocks for a particular use case

have been executed. [60]. We also developed a custom DynamoRIO tool to print the

execution trace (basic blocks) with timestamps. The traces generated using this tool can be

used for identifying the initialization code and by extension, the transition point between

38 CHAPTER 5. IMPLEMENTATION

the initialization and the serving phase.

After all the feature-related and initialization code blocks have been identified, DYNACUT

writes the file offsets for each of the identified basic blocks into a configuration file (i.e.,

removal.h in code listing 4.1). End-users need to compile the fault handler using this file

and the fault handler skeleton code. The contents of the removal.h file are added as a

global array in the shared library ELF when the signal handler is compiled. This generates a

shared library for the DYNACUT process rewriter to load. End-users can also specify a policy

for the cases in which the undesired code blocks are accessed. Server applications typically

have an event-loop that dispatches the request to the corresponding handler, and usually

there is a code that is executed to send a negative response to a request. By identifying

such a location manually, the end-user can redirect the blocked code accesses to the handler

that sends a negative response. For example, we redirected the control flow to the wrong

request handler that sends a 403 forbidden response for the Lighttpd web server. In the

case of NGINX, we redirected control to a location that sends a 405 not allowed when a

unwanted request is received. These locations can be customized by the end user and can

vary for different applications.

Vanilla
Proc

cc 0f1e fa55
4889
e553 4881
ec28
...

Modified
CRiU

images

Restore

drcov
traces

DynaCut/
CRiU App

SIGTRAP
handler

locations

Init basic
block info

Figure 5.2: Illustration of configure init step of DYNACUT.

5.4. PUTTING THEM TOGETHER 39

locations

CriU
image files

DynaCut

Modified
CRiU

images

Restore

App

Init
basic
block
info

cc cccc cccc
cccc
cccc cccc
cccc
...

Figure 5.3: Illustration of remove init step of DYNACUT.

5.4 Putting them together

This section summarizes the steps that the end-user needs to take to customize the process.

DYNACUT’s removal of initialization basic blocks capability is summarized in Figures 5.2 and

5.3. In figure 5.2, DYNACUT uses the drcov traces to modify the CRiU images by adding a

trap in the first byte of all the identified initialization basic blocks. This modified process is

then restored to find all locations of code being used after CRiU restore.

The second step is illustrated in Figure 5.3. DYNACUT uses the locations file, and a list of

all the initialization basic blocks to permanently remove the initialization basic blocks. This

modified process can then be restored with the initialization basic blocks removed. Most of

these steps can be automated using scripts from DYNACUT. DYNACUT can also re-enable the

removed features. All the end-user needs to do is save the removed code blocks (and their

addresses) to external storage. The process snapshot enables DYNACUT to support multi-

process applications and multi-threaded applications without having to deal with the race

conditions. To avoid the cost of saving the process image to a hard disk, we save the process

images into an in-memory filesystem – tmpfs [42].

Chapter 6

Security Evaluation

In this chapter, we discuss the security benefits that DYNACUT can provide to server appli-

cations from code-reuse attacks.

Section 6.1 discusses how DYNACUT reduces the attack surface of the application. Section 6.2

discusses a variation of the ROP attack that makes NGINX vulnerable and we also discuss

how DYNACUT can be used to thwart it.

6.1 Reducing the Viability of Code Reuse Attacks

In this section, we discuss how DYNACUT can reduce the viability of code-reuse attacks

like ROP attacks. DYNACUT can remove unused basic blocks at runtime – by identifying a

transition point between the serving and the initialization phase. This results in the reduction

of the code in the application that can be used for code-reuse attacks. By disabling basic

blocks that are no longer needed by the application, we reduce the viability of code-reuse

attacks.

DYNACUT can also remove PLT entries of the application. Since DYNACUT can remove most

initialization code in a checkpointed application, we also evaluated whether it can remove

PLT entries in the application. DYNACUT can disable up to 43 out of 56 executed PLT

entries in NGINX – which are no longer needed after the initialization phase of NGINX is

40

6.2. BLIND ROP (BROP) AND NGINX 41

executed. If the transition point ngx_worker_process_cycle, is used for NGINX, it also

disables the fork basic block as the worker process has already been created. Even the PLT

entry to fork was disabled – thwarting any attacks that could use the fork libc call.

A similar evaluation was carried out for Lighttpd and we removed about 33 of the 57 executed

PLT entries. Some of the PLT entries that were disabled in Lighttpd are the PLT entries

for strcmp, dlopen and socket.

The disabling of PLT entries sets DYNACUT apart from other works in this direction. While

other works can remove unused basic blocks and by extension, unused PLT entries, DYNACUT

can remove executed PLT entries that have been used only in the initialization phase of the

application.

6.2 Blind ROP (BROP) and NGINX

Blind ROP (BROP) is a variation of the ROP attack that remotely locates ROP gadgets in

an application [50]. It is an attack that can be used to even hack binaries that are not in

possession of the attacker. The two requirements for a BROP attack are a stack vulnerability

and a server application that restarts worker processes after a crash – like NGINX. NGINX

presents a stack-based buffer overflow vulnerability (CVE-2013-2028). This CVE allowed

remote attackers to either cause a Denial-of-Service (DoS) by crashing the server or execute

arbitrary code using a chunked Transfer-Encoding request with a large chunk size, triggering

an integer signedness error and a stack-based buffer overflow [54] [6]. Thus satisfying both

the requirements to mount the attack.

To mount a BROP attack, the attacker first needs to find gadgets to perform a write syscall

– after which the attacker can transfer the binary via the network and find even more gadgets

42 CHAPTER 6. SECURITY EVALUATION

to mount other ROP attacks. The BROP attack uses the write PLT entry and a entry for

a libc function that uses the rdx register to set the length of the write. The authors of

the BROP attack use strcmp() as the function that uses the rdx register. In summary, to

mount a BROP like attack, the application binary needs to be scanned for gadgets and also

the required PLT entries need to be available.

DYNACUT thwarts such attacks in two ways – 1. It removes about 56% of the executed

basic blocks in NGINX, reducing the amount of code available for code-reuse attacks and

hence making it difficult to find ROP gadgets to mount an attack. Second, since NGINX

also disables about 76% of the executed PLT entries for NGINX, it becomes difficult for the

attacker to find PLT entries to mount the attack.

If the attacker circumvents both these defenses, DYNACUT makes it difficult to mount a

BROP attack on NGINX by disabling the fork() basic block. The first attempt to crash a

worker process will result in the server crashing, thus preventing its exploitation.

6.3 Number and Size of Basic Blocks Removed

As one of the use cases of DYNACUT is to reduce the code available for code-reuse attacks

in the application by removing unused basic blocks, we measure the number of basic blocks

removed by DYNACUT and the amount of code removed by DYNACUT in this section.

6.3.1 Number of Basic Blocks Removed

We compare the number of executed basic blocks removed by DYNACUT for each of the

test applications in this section. Figure 6.1 illustrates the basic blocks removed with three

different metrics – 1. The number of basic blocks executed for a given user input, 2. The

6.3. NUMBER AND SIZE OF BASIC BLOCKS REMOVED 43

N
um

be
r o

f B
as

ic
 B

lo
ck

s

0

10000

20000

30000

60
5.m

cf_
s

60
0.p

erl
be

nc
h_

s

62
0.o

mne
tpp

_s

62
3.x

ala
nc

bm
k_

s

63
1.d

ee
ps

jen
g_

s

64
1.l

ee
la_

s

62
5.x

26
4_

s

Lig
htt

pd

NGIN
X

BBs Executed Init BBs identified Init BBs removed

Figure 6.1: Comparison of Basic blocks removed by DYNACUT

number of initialization basic blocks identified and 3. The number of basic blocks finally

removed. The number of initialization basic blocks identified differs from the number of

initialization basic blocks removed because some basic blocks may be present in the whitelist

created in the configuration step of initialization basic blocks removal or they could be

overlapping basic blocks – in which case we do not remove any of the two overlapping basic

blocks.

As illustrated in the graph, for NGINX, DYNACUT removes upto 56% of the executed basic

blocks and about 46% of the executed basic blocks for Lighttpd. In the case of the intspeed

benchmarks, we remove the highest percentage of the basic blocks for perlbench – with

about 41.4% of the executed basic blocks removed.

44 CHAPTER 6. SECURITY EVALUATION

N
um

be
r o

f B
yt

es

0

1000000

2000000

3000000

4000000

5000000

60
5.m

cf_
s

60
0.p

erl
be

nc
h_

s

62
0.o

mne
tpp

_s

62
3.x

ala
nc

bm
k_

s

63
1.d

ee
ps

jen
g_

s

64
1.l

ee
la_

s

62
5.x

26
4_

s

Lig
htt

pd

NGIN
X

Size of .text of application binary (bytes) Total bytes removed

Figure 6.2: Number of bytes removed vs .text size of the application

6.3.2 Number of Bytes Removed

Apart from the number of basic blocks removed, we also measured the amount of code

removed by DYNACUT relative to the .text section of the application. This is necessary

because while the number of basic blocks removed measures the basic blocks removed w.r.t.

the number of executed basic blocks, measuring the amount of code removed gives us a

measure of how much code is actually removed by DYNACUT.

As illustrated in Figure 6.2, for NGINX, we remove about 11% of the .text section of the

application and for Lighttpd, we remove about 9% of the .text section of the application.

Chapter 7

Performance Evaluation

In this chapter we describe the evaluation of DYNACUT. Particularly, we answer the following

three questions:

• What is the performance overhead DYNACUT incurs to modify images for the feature

removal customization?

• What is the performance overhead DYNACUT incurs to modify images for the initial-

ization functions removal customization?

• How effective is DYNACUT in removing initialization basic blocks – more specifically,

what is the number of basic blocks removed and their size in the .text section of the

application?

This chapter is organized as follows: Section 7.1 describes the experimental setup we used to

evaluate DYNACUT. Section 7.2 describes the overhead incurred by DYNACUT to modify the

images for different features of DYNACUT. Section 7.3 provides a Summary of our evaluation.

7.1 Experimental Setup

All of our evaluation was performed on a 64-bit system with an Intel i5-10210U CPU clocked

at 1.60GHz and 16GB of RAM. The system runs Ubuntu 20.04 with the Linux kernel version

45

46 CHAPTER 7. PERFORMANCE EVALUATION

at 5.8.0. We evaluated DYNACUT with two server applications, an in-memory key-value

store (Redis), and 7 out of 10 SPEC2017 intspeed benchmarks. The server applications

we use are Lighttpd and NGINX. Lighttpd is a lightweight web server, has an event-driven

architecture, and is a single process application. NGINX is a high-performance web server

whose architecture allows for a single master process and multiple worker processes. For the

evaluation of DYNACUT, we configure NGINX to use a master process and a single worker

process. The SPEC2017 intspeed suite of benchmarks was chosen to evaluate DYNACUT with

CPU/Memory-intensive applications and C++ applications. Redis was used for the evaluation

of the feature-removal capability of DYNACUT.

To evaluate DYNACUT on web server applications, we set up the WebDAV (Web Distributed

Authoring and Versioning) extension for both the server applications. We sent the GET,

PUT and DELETE requests to the server applications using curl commands. The GET request

is used to retrieve resource representation/information from the server, the PUT request is

used to update an existing resource and the DELETE request, as the name suggests, is used to

delete a resource [49]. We considered the PUT and DELETE commands as ”undesirable” for the

feature blocking capability of DYNACUT for the server applications. For Redis, we considered

the set command as undesirable. Since the SPEC 2017 suite of benchmarks does not have a

command-line interface to ”features”, we evaluated them only for the initialization functions

removal capability of DYNACUT.

DYNACUT relies on the end-user to generate the execution traces for both feature blocking

and initialization functions removal. Therefore, the user should execute all the test cases for

the desired functionality when generating the traces. For our evaluation, we executed the

server application with GET, PUT and DELETE requests and also executed 100,000 requests

with apachebench [2]. This was done to ensure that the traces generated covered the basic

functionality of these applications completely. For Redis, we used redis-benchmark to

7.2. OVERHEAD ANALYSIS 47

send 1000 set and get requests to generate the traces. For the SPEC intspeed suite of

benchmarks, the traces were generated by executing the benchmarks until completion. All

the traces were generated using the drcov tool of DynamoRIO.

7.2 Overhead Analysis

The overhead analysis of DYNACUT involves measuring the time DYNACUT takes to modify

images according to the user specification. We evaluated DYNACUT for two types of overheads:

1. The overhead to modify images for the feature removal customization and 2. The overhead

incurred to modify the images for the removal of initialization functions customization.

7.2.1 Overhead for Feature Removal Customization

A
ve

ra
ge

 ti
m

e
ta

ke
n

to
 m

od
ify

 im
ag

es
 fo

r f
ea

tu
re

 re
m

ov
al

 (S
)

0.0

0.1

0.2

0.3

0.4

0.5

Lighttpd (327.5KB) Nginx (833KB) Redis (1.33MB)

Figure 7.1: Overhead of modifying images for feature removal

For the feature removal optimization, as described in Section 4.2, we identify the basic block

for a particular feature and then insert a trap to disable it. This section discusses the

48 CHAPTER 7. PERFORMANCE EVALUATION

overhead incurred to modify the images to insert the trap in the executable and add the

signal handler into the process address space. We perform this evaluation for the server

applications – Lighttpd and NGINX and the in-memory key-value store Redis.

As shown in Figure 7.1, the overhead incurred for Lighttpd is about 0.4 seconds with a

standard deviation of 0.012 seconds and for NGINX, it is about 0.45 seconds with a standard

deviation of 0.028 seconds. For Redis, the overhead incurred for the same customization is

about 0.465 seconds with a standard deviation of 0.004 seconds. The size of the .text

section of these applications is also shown in the graph. The overhead also includes the time

taken to compile the removal.h file created by DYNACUT with the signal handler and also

the time taken by CRiU to dump these applications.

7.2.2 Overhead of Removal of Initialization Basic Blocks Cus-

tomization

The Feature-removal customization has two parts: 1. We configure the initialization func-

tions removal, which gives us the final list of initialization basic blocks to be removed, and

2. The actual removal of the identified basic blocks. We discuss both of these overheads in

the subsequent subsections.

Overhead of Configuring the Images for Removal of Initialization Basic Blocks

The first part of initialization code removal involves adding a signal handler into the process

address space and adding traps into the first byte of all identified basic blocks. Figure

7.2 shows the time taken by DYNACUT to modify the images for 8 different applications.

The size of the .text section of the application is also included in the plots. As shown in

the plot – the time taken to modify the images for Lighttpd and NGINX is 0.747 seconds

7.2. OVERHEAD ANALYSIS 49

A
ve

ra
ge

 ti
m

e
ta

ke
n

fo
r m

od
ify

in
g

im
ag

es
 fo

r c
on

fig
ur

e
in

it
st

ep
 (S

)

0

5

10

15

20

25

Lig
htt

pd
 (3

27
.5K

B)

Ngin
x (

83
3K

B)

60
0.p

erl
be

nc
h_

s (
1.8

69
MB)

60
5.m

cf_
s (

18
.36

KB)

62
0.o

mne
tpp

_s
 (1

.56
4M

B)

64
1.l

ee
la_

s (
18

4.9
8K

B)

62
3.x

ala
nc

bm
k_

s(4
.39

MB)

62
5.x

26
4_

s(5
57

 K
B)

Figure 7.2: Overhead to configure images for init removal

and 1.22 seconds respectively. The evaluation of the SPEC suite of benchmarks differed

slightly from the evaluation of the server applications. Since the applications in the SPEC

suite of benchmarks do not have a initialization point, we chose an arbitrary initialization

point for these applications. The 605.mcf_s and 641.leela_s SPEC applications were small

when compared to other SPEC applications – leading to low overhead. The overhead to

modify the images depends on various different factors – the initialization point chosen, the

length of the drcov trace of the applications, and the size of the CRiU dumped images.

This is illustrated in the plots of 600.perlbench_s and 623.xalancbmk_s. Even though

both the applications have a similar .text section size and a similar CRiU dump folder size

(184MB vs 191MB), the time taken to modify 600.perlbench_s is about 9 seconds more

than the time taken to modify 623.xalancbmk_s. This is because, we chose an initialization

point that is much deeper for 600.perlbench_s than for 623.xalancbmk_s, causing the

extra overhead. Choosing an initialization point at a similar depth for both the applications

reduces the time taken for 600.perlbench_s to 16.7 seconds. This brings to light the fact

50 CHAPTER 7. PERFORMANCE EVALUATION

that the end-user can choose a low initialization point to reduce the overhead incurred,

but would have to make sure that all the targeted initialization basic blocks are removed.

The 631.deepsjeng_s benchmark was not evaluated for the overheads of initialization basic

blocks removal because the all the image dumps were modified on a tempfs folder and the

CRiU image dump of 631.deepsjeng_s is about 6GB. When DYNACUT was run on this

image, it resulted in out of memory error on our system.

The standard deviation of each of these measurements are as follows: 1. Lighttpd – 0.0268

seconds, 2. Nginx – 0.020 seconds, 3. 600.perlbench_s – 1.02 seconds, 4. 605.mcf_s –

0.0087 seconds, 5. 620.omnetpp_s – 0.003 seconds, 6. 623.xalancbmk_s – 0.022 seconds,

7. 625.x264_s – 0.05 seconds, 8. 641.leela_s – 0.0188 seconds.

Overhead of Removing Initialization Basic Blocks

Once the final list of initialization basic blocks is identified, DYNACUT modifies the CRiU

images by replacing the basic blocks with int3 instructions. We describe the overhead

incurred by DYNACUT to remove the initialization basic blocks in this section.

As shown in Figure 7.3, the overhead to remove the basic blocks for Lighttpd and NGINX is

about 0.89 seconds and 3.6183 seconds respectively. The overhead incurred in this case would

depend on the number of basic blocks that need to be removed, which implies that it would

indirectly depend on the initialization point chosen. For 600.perlbench_s, we identified

about 10808 basic that can be removed and for 623.xalancbmk_s, we identified about 6497

basic blocks that can be removed. The overhead incurred is directly proportional to the num-

ber of basic blocks that have been identified, as is evident in the graphs of 600.perlbench_s

and 623.xalancbmk_s. DYNACUT takes about 4 seconds more for perlbench than xalancbmk

to remove the initialization basic blocks – which can be attributed to the larger number of

7.2. OVERHEAD ANALYSIS 51

A
ve

ra
ge

 ti
m

e
ta

ke
n

fo
r r

em
ov

in
g

in
itl

ia
za

tio
n

B
B

s
(S

)

0

5

10

15

20

Lig
htt

pd
 (3

27
.5K

B)

Ngin
x (

83
3K

B)

60
0.p

erl
be

nc
h_

s (
1.8

69
MB)

60
5.m

cf_
s (

18
.36

KB)

62
0.o

mne
tpp

_s
 (1

.56
4M

B)

64
1.l

ee
la_

s (
18

4.9
8K

B)

62
3.x

ala
nc

bm
k_

s (
4.3

9M
B)

62
5.x

26
4_

s (
55

7 K
B)

Figure 7.3: Overhead to remove initialization basic blocks

basic blocks identified in the case of perlbench.

Again, 631.deepsjeng_s was not evaluated on this parameter due to the out of memory

error.

The standard deviation of each of these measurements are as follows: 1. Lighttpd – 0.0065

seconds, 2. Nginx – 0.112 seconds, 3. 600.perlbench_s – 1.559 seconds, 4. 605.mcf_s –

0.00839 seconds, 5. 620.omnetpp_s – 0.0155 seconds, 6. 623.xalancbmk_s – 0.370 seconds,

7. 625.x264_s – 0.0387 seconds, 8. 641.leela_s – 0.00152 seconds.

Total Overhead

The total overhead to modify the images for removing initialization basic blocks is described

in this section.

As illustrated in figure 7.4, the total overhead to modify Lighttpd is about 1.63 seconds and

the overhead incurred to modify NGINX is about 4.83 seconds. DYNACUT incurs the highest

52 CHAPTER 7. PERFORMANCE EVALUATION

overhead for the 600.perlbench_s images, which take about 39 seconds to modify.

Ti
m

e
(S

)

0

10

20

30

40

Lig
htt

pd
 (3

27
.5K

B)

Ngin
x (

83
3K

B)

60
0.p

erl
be

nc
h_

s (
1.8

69
MB)

60
5.m

cf_
s (

18
.36

KB)

62
0.o

mne
tpp

_s
 (1

.56
4M

B)

64
1.l

ee
la_

s (
18

4.9
8K

B)

62
3.x

ala
nc

bm
k_

s (
4.3

9M
B)

62
5.x

26
4_

s (
55

7 K
B)

Average time taken for removing initialization BB (S) Average time taken for modifying images for configure init step (s)

Figure 7.4: Total overhead to remove initialization basic blocks

7.3 Evaluation Summary

In summary, DYNACUT can provide a low-overhead method to dynamically reduce the code

available to mount code-reuse attacks for an application. Other attack surface reduction

methods – [37], [16] provide effective methods but incur a relatively high overhead when

compared to DYNACUT. DYNACUT can be used orthogonally with these methods to provide

a robust and practical framework to reduce the vulnerabilities of an application.

Chapter 8

Conclusions, Limitations and Future

Work

8.1 Conclusion

Existing Debloating and Software Customization Techniques provide frameworks to remove

unused code from an application but do not support removing code dynamically or at ap-

plication runtime.

We present DYNACUT– A framework to dynamically customize a process. DYNACUT uses

execution traces of the application to identify the unused code in the application. At the

application runtime, DYNACUT uses a process-rewriting method to customize the process – by

adding fault handlers, traps, and removing initialization code. We presented the Design and

Implementation of a prototype of DYNACUT and evaluated it using 9 real-world applications.

The evaluation shows that DYNACUT can remove up to 56% of the executed code the case

of server applications and up to 10% of the application code size is removed with minimal

overhead.

DYNACUT is a novel approach to edit a process Dynamically with minimal overhead. We

presented a prototype of an application that can adapt a process to changing usage contexts

with a tolerable overhead.

53

54 CHAPTER 8. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

DYNACUT can also provide security benefits to the application by removing unused code –

reducing the viability of code-reuse attacks. Apart from removing unused code, DYNACUT

allows the end-user to customize the features of the application based on the usage context.

Vulnerable features can be blocked and then if the need arises, they can be re-enabled.

8.2 Limitations

DYNACUT uses code traces generated using the user-defined test cases and identifies the

unused code. But, it does not go beyond these traces to identify code that is wanted by the

test case but is not identified in the traces. For this, a heuristics-based approach like Razor

[37] can be used to identify the basic blocks used for application initialization accurately.

DYNACUT currently targets removing code in the application binary only. We did not consider

removing unwanted code in the in-memory copy of libc for our prototype. Removing

unwanted and initialization code in libc could reduce the attack surface of the application

even further.

Our modifications to CRiU increases the CRiU dump size. This is because we dump all the

code pages of the application and not only those that we modify. For some applications, the

dump folder size was up to 6GB, making the CRiU dump unmanageable.

8.3 Future Work

The Future work that can be carried out to improve the current capabilities of DYNACUT

is highlighted in this section. We also discuss how DYNACUT can be used to augment the

capabilities of existing debloating and code customization frameworks.

8.3. FUTURE WORK 55

One work can be to optimize the set of CRiU dump images to reduce its size by including

only the code pages that need to be modified for the customization in the dump.

Customizing Libc and retaining only the functions in Libc that are required after the ini-

tialization phase of the application can be another direction in which the current prototype

can be improved.

Our work can be combined with several existing debloating and customization techniques

to provide a robust framework to reduce the attack surface of an application. For example,

DYNACUT can be combined with existing Dynamic Software Update techniques to patch

vulnerable code or also with existing debloating techniques to remove code used at runtime

on top of removing the unused code blocks.

A robust security evaluation of DYNACUT can also be carried out. Binaries customized using

DYNACUT can be attacked and evaluations detailing the viability of these attacks can be

performed.

Bibliography

[1] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou, Adrian

Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida, Herbert Bos,

and Michael Franz. BinRec: Dynamic Binary Lifting and Recompilation. In Proceedings

of the Fifteenth European Conference on Computer Systems, EuroSys ’20, New York,

NY, USA, 2020. Association for Computing Machinery. ISBN 9781450368827. doi:

10.1145/3342195.3387550. URL https://doi.org/10.1145/3342195.3387550.

[2] APACHEBENCH. ApacheBench - Apache HTTP Server Benchmarking Tool.

http://httpd.apache.org/docs/2.2/programs/ab.html.

[3] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed Okhravi.

Timely rerandomization for mitigating memory disclosures. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security, pages 268–279.

ACM, 2015.

[4] Derek Bruening. Efficient, Transparent, and Comprehensive Runtime Code Manipula-

tion. PhD thesis, Massachusetts Institute of Technology, Sept 2004.

[5] Yurong Chen, Tian Lan, and Guru Venkataramani. DamGate: Dynamic Adaptive

Multi-feature Gating in Program Binaries. In Taesoo Kim, Cliff Wang, and Dinghao Wu,

editors, Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software

Transformation, FEAST@CCS 2017, Dallas, TX, USA, November 3, 2017, pages 23–

29. ACM, 2017. doi: 10.1145/3141235.3141243. URL https://doi.org/10.1145/

3141235.3141243.

56

https://doi.org/10.1145/3342195.3387550
https://doi.org/10.1145/3141235.3141243
https://doi.org/10.1145/3141235.3141243

BIBLIOGRAPHY 57

[6] The MITRE Corporation. CVE-2013-2028. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=cve-2013-2028, 2013.

[7] CRIU. Checkpoint Restore in Userspace. https://criu.org/Main_Page, 2021.

[8] Mick de Peinder. x64 Return-to-plt attack. https://mickdepeinder.nl/Posts/

x64-return-to-plt, 2020.

[9] DynamoRIO. DynamoRIO: Code Coverage Tool . https://dynamorio.org/page_

drcov.html, 2021.

[10] DynamoRIO. DynamoRIO: Dynamic Instrumentation Tool Platform. https://

dynamorio.org/, 2021.

[11] Python Software Foundation. Python. https://www.python.org/, 2021.

[12] Wikimedia Foundation. Dead code. https://en.wikipedia.org/wiki/Dead_code,

2021.

[13] WikiMedia Foundation. Executable and Linkable Format. https://en.wikipedia.

org/wiki/Executable_and_Linkable_Format, 2021.

[14] Masoud Ghaffarinia and Kevin W. Hamlen. Binary control-flow trimming. In Lorenzo

Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings

of the 2019 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2019, London, UK, November 11-15, 2019, pages 1009–1022. ACM, 2019. doi:

10.1145/3319535.3345665. URL https://doi.org/10.1145/3319535.3345665.

[15] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Polychron-

akis. Confine: Automated system call policy generation for container attack sur-

face reduction. In Manuel Egele and Leyla Bilge, editors, 23rd International Sym-

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-2028
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-2028
https://criu.org/Main_Page
https://mickdepeinder.nl/Posts/x64-return-to-plt
https://mickdepeinder.nl/Posts/x64-return-to-plt
https://dynamorio.org/page_drcov.html
https://dynamorio.org/page_drcov.html
https://dynamorio.org/
https://dynamorio.org/
https://www.python.org/
https://en.wikipedia.org/wiki/Dead_code
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://doi.org/10.1145/3319535.3345665

58 BIBLIOGRAPHY

posium on Research in Attacks, Intrusions and Defenses, RAID 2020, San Sebas-

tian, Spain, October 14-15, 2020, pages 443–458. USENIX Association, 2020. URL

https://www.usenix.org/conference/raid2020/presentation/ghavanmnia.

[16] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychronakis.

Temporal system call specialization for attack surface reduction. In Srdjan Capkun

and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX Security

2020, August 12-14, 2020, pages 1749–1766. USENIX Association, 2020. URL https:

//www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia.

[17] Google. Protocol Buffers. https://developers.google.com/protocol-buffers,

2021.

[18] Christopher M. Hayden, Edward K. Smith, Michail Denchev, Michael Hicks, and Jef-

frey S. Foster. Kitsune: Efficient, general-purpose dynamic software updating for c.

In Proceedings of the ACM International Conference on Object Oriented Program-

ming Systems Languages and Applications, OOPSLA ’12, page 249–264, New York,

NY, USA, 2012. Association for Computing Machinery. ISBN 9781450315616. doi:

10.1145/2384616.2384635. URL https://doi.org/10.1145/2384616.2384635.

[19] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. Effective program

debloating via reinforcement learning. In David Lie, Mohammad Mannan, Michael

Backes, and XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October

15-19, 2018, pages 380–394. ACM, 2018. doi: 10.1145/3243734.3243838. URL https:

//doi.org/10.1145/3243734.3243838.

[20] Gerard J. Holzmann. Code inflation. IEEE Software, 32(2):10–13, 2015. doi: 10.1109/

MS.2015.40.

https://www.usenix.org/conference/raid2020/presentation/ghavanmnia
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://developers.google.com/protocol-buffers
https://doi.org/10.1145/2384616.2384635
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/3243734.3243838

BIBLIOGRAPHY 59

[21] M. Frans Kaashoek Jeff Arnold. Ksplice: Automatic Rebootless Kernel Updates. https:

//www.ksplice.com/doc/ksplice.pdf, 2021.

[22] Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu. Feature-based software cus-

tomization: Preliminary analysis, formalization, and methods. In Radu F. Babiceanu,

Hélène Waeselynck, Raymond A. Paul, Bojan Cukic, and Jie Xu, editors, 17th IEEE

International Symposium on High Assurance Systems Engineering, HASE 2016, Or-

lando, FL, USA, January 7-9, 2016, pages 122–131. IEEE Computer Society, 2016.

doi: 10.1109/HASE.2016.27. URL https://doi.org/10.1109/HASE.2016.27.

[23] Michael Kerrisk. ld.so(8) — Linux manual page. https://man7.org/linux/

man-pages/man8/ld.so.8.html, 2021.

[24] Michael Kerrisk. sigaction(2) — Linux manual page. https://man7.org/linux/

man-pages/man2/sigaction.2.html, 2021.

[25] Michael Kerrisk. sigreturn(2) — Linux manual page. https://man7.org/linux/

man-pages/man2/sigreturn.2.html, 2021.

[26] Michael Kerrisk. system(3) — Linux manual page. https://man7.org/linux/

man-pages/man3/system.3.html, 2021.

[27] Anil Kurmus, Alessandro Sorniotti, and Rüdiger Kapitza. Attack surface reduction for

commodity OS kernels: trimmed garden plants may attract less bugs. In Engin Kirda

and Steven Hand, editors, Proceedings of the Fourth European Workshop on System

Security, EUROSEC’11, April 10, 2011, Salzburg, Austria, page 6. ACM, 2011. doi:

10.1145/1972551.1972557. URL https://doi.org/10.1145/1972551.1972557.

[28] Osnat Levi. Pin - A Dynamic Binary Instrumentation Tool .

https://www.ksplice.com/doc/ksplice.pdf
https://www.ksplice.com/doc/ksplice.pdf
https://doi.org/10.1109/HASE.2016.27
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man2/sigaction.2.html
https://man7.org/linux/man-pages/man2/sigaction.2.html
https://man7.org/linux/man-pages/man2/sigreturn.2.html
https://man7.org/linux/man-pages/man2/sigreturn.2.html
https://man7.org/linux/man-pages/man3/system.3.html
https://man7.org/linux/man-pages/man3/system.3.html
https://doi.org/10.1145/1972551.1972557

60 BIBLIOGRAPHY

https://software.intel.com/content/www/us/en/develop/articles/

pin-a-dynamic-binary-instrumentation-tool.html, 2021.

[29] John R. Levine. Linkers and Loaders. Morgan Kaufmann, San Francisco, CA, 1999.

[30] Shen Liu, Dongrui Zeng, Yongzhe Huang, Frank Capobianco, Stephen McCamant,

Trent Jaeger, and Gang Tan. Program-mandering: Quantitative privilege separation.

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-

tions Security, CCS ’19, page 1023–1040, New York, NY, USA, 2019. Association for

Computing Machinery. ISBN 9781450367479. doi: 10.1145/3319535.3354218. URL

https://doi.org/10.1145/3319535.3354218.

[31] Robert Lyerly, Xiaoguang Wang, and Binoy Ravindran. Dynamic and secure memory

transformation in userspace. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A.

Schneider, editors, Computer Security - ESORICS 2020 - 25th European Symposium

on Research in Computer Security, ESORICS 2020, Guildford, UK, September 14-

18, 2020, Proceedings, Part I, volume 12308 of Lecture Notes in Computer Science,

pages 237–256. Springer, 2020. doi: 10.1007/978-3-030-58951-6_12. URL https:

//doi.org/10.1007/978-3-030-58951-6_12.

[32] Kristis Makris and Rida A. Bazzi. Immediate multi-threaded dynamic soft-

ware updates using stack reconstruction. In 2009 USENIX Annual Tech-

nical Conference (USENIX ATC 09), San Diego, CA, June 2009. USENIX

Association. URL https://www.usenix.org/conference/usenix-09/

immediate-multi-threaded-dynamic-software-updates-using-stack-reconstruction.

[33] David L Mulnix. Intel MPK. https://software.intel.com/content/www/us/en/

develop/articles/intel-xeon-processor-scalable-family-technical-overview.

html, 2019.

https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://doi.org/10.1145/3319535.3354218
https://doi.org/10.1007/978-3-030-58951-6_12
https://doi.org/10.1007/978-3-030-58951-6_12
https://www.usenix.org/conference/usenix-09/immediate-multi-threaded-dynamic-software-updates-using-stack-reconstruction
https://www.usenix.org/conference/usenix-09/immediate-multi-threaded-dynamic-software-updates-using-stack-reconstruction
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-technical-overview.html

BIBLIOGRAPHY 61

[34] Iulian Neamtiu, Michael Hicks, Gareth Stoyle, and Manuel Oriol. Practical dynamic

software updating for c. In Proceedings of the 27th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’06, page 72–83, New York,

NY, USA, 2006. Association for Computing Machinery. ISBN 1595933204. doi: 10.

1145/1133981.1133991. URL https://doi.org/10.1145/1133981.1133991.

[35] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. libmpk: Software

abstraction for intel memory protection keys (intel {MPK}). In 2019 {USENIX} Annual

Technical Conference ({USENIX}{ATC} 19), pages 241–254, 2019.

[36] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. libmpk: Soft-

ware abstraction for intel memory protection keys (intel MPK). In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), pages 241–254, Renton, WA, July

2019. USENIX Association. ISBN 978-1-939133-03-8. URL https://www.usenix.org/

conference/atc19/presentation/park-soyeon.

[37] Chenxiong Qian, Hong Hu, Mansour Alharthi, Simon Pak Ho Chung, Taesoo Kim, and

Wenke Lee. RAZOR: A framework for post-deployment software debloating. In Nadia

Heninger and Patrick Traynor, editors, 28th USENIX Security Symposium, USENIX

Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages 1733–1750. USENIX

Association, 2019. URL https://www.usenix.org/conference/usenixsecurity19/

presentation/qian.

[38] Anh Quach, Rukayat Erinfolami, David Demicco, and Aravind Prakash. A multi-os

cross-layer study of bloating in user programs, kernel and managed execution environ-

ments. In Proceedings of the 2017 Workshop on Forming an Ecosystem Around Software

Transformation, FEAST ’17, page 65–70, New York, NY, USA, 2017. Association for

https://doi.org/10.1145/1133981.1133991
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/usenixsecurity19/presentation/qian
https://www.usenix.org/conference/usenixsecurity19/presentation/qian

62 BIBLIOGRAPHY

Computing Machinery. ISBN 9781450353953. doi: 10.1145/3141235.3141242. URL

https://doi.org/10.1145/3141235.3141242.

[39] Anh Quach, Aravind Prakash, and Lok-Kwong Yan. Debloating software through piece-

wise compilation and loading. In William Enck and Adrienne Porter Felt, editors, 27th

USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August

15-17, 2018, pages 869–886. USENIX Association, 2018. URL https://www.usenix.

org/conference/usenixsecurity18/presentation/quach.

[40] James R. Processor Tracing. https://software.intel.com/content/www/us/en/

develop/blogs/processor-tracing.html, 2013.

[41] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,

and Christopher Kruegel. Bintrimmer: Towards static binary debloating through

abstract interpretation. In Roberto Perdisci, Clémentine Maurice, Giorgio Giacinto,

and Magnus Almgren, editors, Detection of Intrusions and Malware, and Vulnera-

bility Assessment - 16th International Conference, DIMVA 2019, Gothenburg, Swe-

den, June 19-20, 2019, Proceedings, volume 11543 of Lecture Notes in Computer

Science, pages 482–501. Springer, 2019. doi: 10.1007/978-3-030-22038-9_23. URL

https://doi.org/10.1007/978-3-030-22038-9_23.

[42] Christoph Rohland. Tmpfs. https://www.kernel.org/doc/html/latest/

filesystems/tmpfs.html.

[43] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael

Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain keys – efficient in-process

isolation for risc-v and x86. In 29th USENIX Security Symposium (USENIX Secu-

rity 20), pages 1677–1694. USENIX Association, August 2020. ISBN 978-1-939133-17-

https://doi.org/10.1145/3141235.3141242
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://www.usenix.org/conference/usenixsecurity18/presentation/quach
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html
https://doi.org/10.1007/978-3-030-22038-9_23
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html
https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html

BIBLIOGRAPHY 63

5. URL https://www.usenix.org/conference/usenixsecurity20/presentation/

schrammel.

[44] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. Intra-unikernel

isolation with intel memory protection keys. In Proceedings of the 16th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, VEE

’20, page 143–156, New York, NY, USA, 2020. Association for Computing Machin-

ery. ISBN 9781450375542. doi: 10.1145/3381052.3381326. URL https://doi.org/10.

1145/3381052.3381326.

[45] Inc. Synopsys. The Heartbleed Bug. https://heartbleed.com/, 2020.

[46] The Clang Team. AddressSanitizer. https://clang.llvm.org/docs/

AddressSanitizer.html, 2021.

[47] The Clang Team. SafeStack. https://clang.llvm.org/docs/SafeStack.html, 2021.

[48] Executable and Linkable Format (ELF). Tool Interface Standards (TIS), May 1995.

[49] REST API Tutorial. HTTP Methods. https://restfulapi.net/http-methods/,

2021.

[50] url:hackingblind. Hacking Blind. http://www.scs.stanford.edu/brop/

bittau-brop.pdf.

[51] url:pyelf. pyelftools github. https://github.com/eliben/pyelftools.

[52] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Peter

Druschel, and Deepak Garg. ERIM: Secure, efficient in-process isolation with protection

keys (MPK). In 28th USENIX Security Symposium (USENIX Security 19), pages 1221–

1238, Santa Clara, CA, August 2019. USENIX Association. ISBN 978-1-939133-06-

https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel
https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel
https://doi.org/10.1145/3381052.3381326
https://doi.org/10.1145/3381052.3381326
https://heartbleed.com/
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/SafeStack.html
https://restfulapi.net/http-methods/
http://www.scs.stanford.edu/brop/bittau-brop.pdf
http://www.scs.stanford.edu/brop/bittau-brop.pdf
https://github.com/eliben/pyelftools

64 BIBLIOGRAPHY

9. URL https://www.usenix.org/conference/usenixsecurity19/presentation/

vahldiek-oberwagner.

[53] Veracode. What Is a Buffer Overflow? Learn About Buffer Overrun Vulnerabilities,

Exploits & Attacks. https://www.veracode.com/security/buffer-overflow, 2021.

[54] w00d. Analysis of nginx 1.3.9/1.4.0 stack buffer overflow and x64 exploita-

tion (CVE-2013-2028)). https://www.vnsecurity.net/research/2013/05/21/

analysis-of-nginx-cve-2013-2028.html.

[55] Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. Secure and

efficient in-process monitor (and library) protection with intel mpk. In Proceedings of

the 13th European Workshop on Systems Security, EuroSec ’20, page 7–12, New York,

NY, USA, 2020. Association for Computing Machinery. ISBN 9781450375238. doi:

10.1145/3380786.3391398. URL https://doi.org/10.1145/3380786.3391398.

[56] Wikimedia. Dynamic software updating. https://en.wikipedia.org/wiki/Dynamic_

software_updating, 2020.

[57] Wikimedia. Return-oriented programming. https://en.wikipedia.org/wiki/

Return-oriented_programming, 2021.

[58] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake, Xinhao

Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang, and William

Aiello. Shuffler: Fast and Deployable Continuous Code Re-Randomization. In OSDI,

pages 367–382, 2016.

[59] SengMing Yeoh. Secure and Efficient In-Process Monitor and Multi-Variant Execu-

tion. https://vtechworks.lib.vt.edu/bitstream/handle/10919/102158/Yeoh_S_

T_2021.pdf?sequence=1&isAllowed=y, 2020.

https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.veracode.com/security/buffer-overflow
https://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html
https://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html
https://doi.org/10.1145/3380786.3391398
https://en.wikipedia.org/wiki/Dynamic_software_updating
https://en.wikipedia.org/wiki/Dynamic_software_updating
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://vtechworks.lib.vt.edu/bitstream/handle/10919/102158/Yeoh_S_T_2021.pdf?sequence=1&isAllowed=y
https://vtechworks.lib.vt.edu/bitstream/handle/10919/102158/Yeoh_S_T_2021.pdf?sequence=1&isAllowed=y

BIBLIOGRAPHY 65

[60] Michał Zalewski. american fuzzy lop (2.52b). https://lcamtuf.coredump.cx/afl/,

2021.

[61] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. Armlock: Hardware-based

fault isolation for arm. In Proceedings of the 2014 ACM SIGSAC Conference on Com-

puter and Communications Security, CCS ’14, 2014.

https://lcamtuf.coredump.cx/afl/

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Threat Model
	Thesis Contribution
	Thesis Organization

	Background
	Software Debloating and Dynamic Customization
	Checkpoint Restore in Userspace
	Signal Handling in Linux
	ELF Basics
	Program Loading and Dynamic Linking

	DynamoRIO
	ROP attacks

	Related Work
	Binary Debloating and Customization
	Dynamic Attack Surface Reduction
	Dynamic Software Updating
	Fault Isolation and Domain based Isolation
	The Principle of Least Privilege
	Summary of Related Works

	Design
	Overview
	Design
	Undesired Code Block Identification
	Dynamic Code Customization

	Implementation
	Modifications to CRIU
	Adding Signal Handler into the Process Image
	Trace collection and SIGTRAP handling
	Putting them together

	Security Evaluation
	Reducing the Viability of Code Reuse Attacks
	Blind ROP (BROP) and NGINX
	Number and Size of Basic Blocks Removed
	Number of Basic Blocks Removed
	Number of Bytes Removed

	Performance Evaluation
	Experimental Setup
	Overhead Analysis
	Overhead for Feature Removal Customization
	Overhead of Removal of Initialization Basic Blocks Customization

	Evaluation Summary

	Conclusions, Limitations and Future Work
	Conclusion
	Limitations
	Future Work

	Bibliography

