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Popcorn Linux: Cross Kernel Process and Thread Migration in a
Linux-Based Multikernel

David G. Katz

(ABSTRACT)

Proliferation of new computing hardware platforms that support increasing numbers of cores,
as well as increasing instruction set architecture (ISA) heterogeneity, is creating opportunity
for systems software developers to question existing software architecture.

One promising emerging systems architecture is the multikernel, pioneered in Barrelfish OS.
The multikernel directly addresses the challenges of high core counts and increased het-
erogeneity by partitioning the system into multiple independently running kernel instances
which cooperate to form a single operating system. Popcorn Linux is an adaptation of the
multikernel concept to a Linux environment, melding the multikernel concept with the power
and ubiquity of the Linux platform. The goal of the Popcorn Linux project is to provide a
Linux-based single-system image environment for heterogeneous hardware. In constructing
this environment, Linux must be extended to distribute the plethora of operating system
services that it provides across kernel instances.

This thesis presents the newly developed Popcorn Linux mechanism for migrating tasks and
their address spaces between kernel instances at arbitrary points in their execution. Both
process and thread migration is supported, and distributed address spaces are maintained
and guaranteed to remain consistent between distributed thread group members running
on different kernel instances. Tasks can migrate through an unlimited number of kernel
instances, as well as back to previously visited kernel instances. Additionally, the full task
life-cycle is supported, allowing migrated tasks to exit and create new children on whichever
kernel instance happens to be hosting them.

The mechanisms developed were vetted through unit testing, review, and a number of
compute-bound benchmarks in a homogeneous x86 64bit environment. Correctness was
demonstrated, and performance metrics were acquired. Popcorn Linux performance was
shown to be reasonable when compared to SMP Linux. The mechanisms developed are
therefore deemed feasible. Scalability was determined to be a function of workload charac-
teristics, where in some cases Popcorn Linux out-scales SMP Linux and in other cases SMP
Linux out-scales Popcorn Linux. Optimizations are recommended to reduce the maturity
gap between Popcorn Linux and SMP Linux, improving Popcorn Linux performance.
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Chapter 1

Introduction

As core count increases in hardware platforms, researchers are questioning the scalability of
the traditional and ubiquitous shared memory symmetric multiprocessing (SMP) operating
system design. Some researchers have found that SMP systems can continue to scale[6].
Others argue that extending scalability optimizations made for a given architecture to dif-
ferent architectures often involves prohibitive amounts of work[3]. Yet others point out that
an iterative process must be applied to eliminate bottlenecks in SMP systems, where each
new advance reveals a new bottleneck[8]. Lock contention in SMP Linux was measured
in this effort under various workloads, and shown to add significant amounts of overhead,
specifically in the memory management sub system. Contention over memory management
resources is expected in SMP systems due to the presence of multiple concurrently running
CPUs experiencing faults on the same memory map, and as a result needing to modify page
tables and other highly shared data structures. Figure 1.1 shows SMP overhead as seen on
the main thread of a cpu-bound workload. As the number of kernel instances increases, lock
contention seen in handle pte fault and pagevec lru move fn increasingly dominates over-
head. These functions are both part of the memory management sub system that handle
fault events. In addition to these types of scalability issues, SMP systems suffer from high
failure rates due to poor isolation between cores[8]. In response to these observations, new
systems software strategies that stray from SMP tradition are emerging to efficiently harness
the computing power that hardware platforms provide.

1
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Figure 1.1: Perf Measurement for IS-POMP Workload on SMP Linux

Not only is core count increasing, ISA heterogeneity is also being introduced at an increas-
ing rate in shared memory systems. The traditional shared memory SMP paradigm breaks
down once ISA heterogeneity is introduced. Cores with different instruction sets cannot
share code, and therefore sharing a monolithic kernel image is not possible. A solution to
this problem that is seen in many current technologies is to run separate operating systems
on cores of dissimilar types, as found in the Qualcomm MSM family of SoCs[13]. Multicore
chipsets hosting cores of similar ISA but of varied types and capabilities are also emerging.
These chipsets are seen in the mobile devices space (smart phones and tablets), where power
concerns are significant. ARM big.LITTLE is one such emerging heterogeneous architecture
characterized by some number of powerful ARM processors coexisting with a number of
relatively less powerful ARM processors on the same die, sharing a common and coherent
cache. The high power chips are used for CPU intensive tasks, while background processing
is handled on the more power-frugal CPUs. This architecture has been used in a num-
ber of Samsung, Renesas Mobile, MediaTek, and Qualcomm ARM chips for use in mobile
devices[14]. Heterogeneity is also found in current workstations. Intel integrates a Xeon
processor with a Xeon Phi coprocessor cluster over a PCIe interconnect. The instruction
sets of the Xeon and Xeon Phi devices are overlapping but not equal.

Many of the emerging systems concepts focus on identifying new methods of pairing com-
putation with computing resources. One such concept is the multikernel. The concept of
a multikernel, introduced by Bauman et al., of the Systems Group at ETH Zurich and Mi-
crosoft Research, is embodied in the Barrelfish project and is a design strategy that departs
from the traditional SMP notion of how to structure an operating system in a multi/many-
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core potentially heterogeneous architecture. This solution directly addresses scalability issues
arising from increased core count, as well as the coupling issue that is inherent to hetero-
geneous architectures. The multikernel is a replicated-kernel operating system where each
hardware resource, e.g. core, group of cores sharing a common ISA, non-uniform memory
access (NUMA) node, or cluster thereof, runs an independent kernel instance out of its own
private portion of the memory space. Each kernel instance acts as a peer, cooperating with
the others to form a cohesive, single system image environment. In contrast to a traditional
SMP operating system, kernel data structures are not shared between kernel instances. In-
stead, all kernel layer communication is done explicitly through message passing between
kernel instances. This facilitates cooperation, while maintaining separation to allow kernel
instances to run independently. This independence removes lock contention between kernel
instances, as kernel data structures are replicated rather than being shared and therefore
require no synchronization. This independence also facilitates heterogeneity within the mul-
tikernel by allowing kernel instances running on dissimilar ISAs to cooperate by using an
agreed upon messaging interface.

The Popcorn Linux project is a research effort aimed at building scalable systems software
for future generations of heterogeneous and homogeneous multi/many-core architectures.
Popcorn Linux is a self-hosting multikernel operating system where each kernel instance is a
modified Linux kernel. Many Popcorn Linux kernel instances co-exist on the same hardware
and can be allocated to hardware resources one per core, one per ISA, one per NUMA node,
or clustered in some combination thereof. Hardware resources, such as disks and network
interfaces, can be assigned (and dynamically re-assigned) kernel instance affinity to give
exclusive access to that resource to a given kernel instance.

All kernel instances in the multikernel must cooperate in order to stitch together a single
logically consistent user space to host user layer software. In order to host legacy Linux
applications, the system must handle this cooperation at the kernel layer, allowing the user
layer software to implement business logic. This is a sizable task in a multikernel environ-
ment, as all resources and functionality that the user software relies upon must be carefully
managed in a distributed fashion.

One requirement for creating this unified user space is effective task migration across kernel
instances. This capability allows for workload distribution and balancing within the mul-
tikernel. This thesis is focused on task migration in a homogeneous x86 64bit multikernel
environment, with attention given to both process and thread migration. The ability to mi-
grate a task at any arbitrary point in its execution between kernel instances was developed,
tested, and characterized.

Address space consistency across distributed thread group members is a significant prob-
lem in an environment where members of the thread group may be executing on different
kernel instances. This thesis breaks that problem into components and presents viable so-
lutions to each aspect of address space consistency, each of which has been vetted through
implementation and testing.
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While this thesis concentrates exclusively on task migration and address space consistency in
a homogeneous x86 64bit environment, it can be used as a stepping stone to task migration
in other homogeneous environments and eventually heterogeneous environments. The chal-
lenges identified in the area of task migration and address space consistency will continue
to be problems in other architectures. As Popcorn Linux is developed into a heterogeneous
systems environment, the solutions presented in this thesis can be extended to include the
additional logic that is necessary to support cross architecture migrations.

1.1 Research Contributions

This thesis contributes the following to the development of the Popcorn Linux platform:

1. A mechanism is designed and implemented to migrate tasks between kernel instances
in a homogeneous x86 64bit multikernel environment.

2. A mechanism is designed and implemented to migrate address space components as
needed to support migrated tasks.

3. A mechanism is designed and implemented to ensure that distributed address spaces
remain consistent across kernel instances.

4. The implementation of the components listed above are tested against five benchmark
workloads, and the results that were collected are analyzed. Recommendations for
refining the design are made based on insights gained from the analysis. The resulting
system is shown to perform reasonably when compared to SMP Linux and is therefore
a feasible approach. Specific improvements can be made to Popcorn Linux to realize
further gains relative to SMP Linux.

1.2 Scope

This thesis does not touch upon resource migration, such as the migration of open file
descriptors, locks, drivers, and name spaces including process identifier (PID) name space.
Other students are working on those aspects of the single system image development. A
mechanism for migrating file descriptors is also currently under development by SSRG, but
is not part of this thesis. This thesis focuses exclusively on task and address space migration
and consistency.
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1.3 Thesis Organization

Chapter 2 provides information about related work. Special attention is given to task mi-
gration, address space migration, and address space indexing mechanisms when applicable.

Chapter 3 presents Linux concepts that are necessary to an understanding of Popcorn Linux.

Chapter 4 presents Popcorn Linux concepts including the overall system architecture.

Chapter 5 is an in-depth description of task migration in Popcorn Linux. This chapter also
describes the methods used to achieve the distributed address spaces necessary to support
distributed thread groups.

Chapter 6 presents the results achieved. This section profiles benchmark workloads to de-
termine the types of operations the kernel is performing. Specific benchmarks that vary a
number of kernel configuration items are then presented. Results are analyzed to identify
trends.

Chapter 7 provides general concluding remarks.

Chapter 8 provides some suggestions for areas to further research.



Chapter 2

Related Work

This chapter provides a survey of existing projects that are related to multi-core systems
software. To provide a backdrop for this thesis, this section focuses on task migration and
address space indexing mechanisms.

2.1 Multikernels

2.1.1 Barrelfish Operating System

Systems Group at ETH Zurich, Microsoft Research, and ENS Cachan Bretagne introduce
the notion of a multikernel [3]. Barrelfish, their implementation of the multikernel concept,
is predicated on strict separation between operating system (OS) nodes. An OS node is
mapped in a one to one relationship to a central processing unit (CPU) core. OS nodes do
not communicate through shared OS internal data structures. Rather message passing is used
explicitly for all communications between OS nodes using pages designated exclusively for
messaging. This model uses state replication to create a unified user space via asynchronous
message passing between OS nodes. The creators of Barrelfish suggest that the multikernel
system can be architecture agnostic to support the increasingly heterogeneous nature of
multi-core systems. The data structures used in the multikernel are hardware-neutral and
can therefore be migrated between CPUs of disparate type. However, Barrelfish does not
yet implement this functionality.

Processes in the Barrelfish environment are structured and migrated differently when com-
pared to an SMP Linux environment. In Barrelfish, a process is represented in an OS node
by a component called a dispatcher . There is one dispatcher per process on each OS node.
When a task is migrated to a new OS node, the dispatcher for that process on the original
OS node makes an up-call into a user- space thread scheduler which handles the migration.
In contrast, the Linux SMP migration mechanic uses shared OS data structures in kernel

6
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space to stop the user space task and restart it where it left off on the next CPU core.
This division of labor between the kernel-space dispatcher and the user-space scheduler is
a pattern used commonly within Barrelfish, with more core functionality being handled in
user space than would normally be found in a Linux system.

Like thread scheduling, address space migration is also handled in user space. A user space
process called a monitor is responsible for accessing remote state and maintaining replicated
data. A process’s virtual address space is one example of the data maintained by the monitor.
Barrelfish supports shared address spaces between threads within a process. Sharing is
accomplished by replicating hardware page tables across OS nodes.

2.1.2 Factored Operating System (FOS)

Factored Operating System (FOS) is an operating system designed for multi-core systems
with thousands of cores [23]. It factors operating system functionality into a number of
services and runs instances of each of those services on dedicated CPU cores. Services can
be replicated on multiple CPU cores, enabling the system to exploit the spatial layout of
cores in silicon to route an application request to the nearest core that provides the needed
service. FOS also divides operating system services from applications, running them on
separate CPU cores. Each core runs a microkernel, which hosts either a service or application
code. A service provided by a core can be consumed by software on any other core over a
networked interconnect. Applications interact with the remote system services through a
local proxy that tunnels requests through the microkernel, which in turn handles the inter-
core communication that is required to service the request.

There are a number of advantages to organizing a computer system in this fashion. Because
the application code and the OS code execute on separate cores, there is no potential for
the two to interfere with one another. Additionally, because the number of cores providing
a specific service can increase with increased core count, OS scalability is inherent.

Applications in FOS execute on one or more cores and are scheduled by a dedicated schedul-
ing/placement service. Applications running across multiple cores share pages, and therefore
a virtual address space. Page sharing is facilitated by the OS layer, but the OS layer itself
does not utilize shared pages. It exclusively uses explicit microkernel messaging.

2.2 Cluster Operating Systems

2.2.1 Disco

Disco [7] is a scalable virtualization-based environment used to host client virtual machines
on hardware the virtual machine was not initially built for. It seeks to solve the problem that
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hardware vendors often encounter when introducing new architectures, namely the hesitance
of system software vendors to exert the effort necessary to produce a port. Disco introduces
a layer of software on top of multiprocessor hardware which virtualizes the hardware. On
top of that layer, one or more virtual machine monitors host commodity operating systems.
Those client operating systems interact in a networked fashion to form a cluster. Because
Disco controls hardware access, it can transparently force exploitation of hardware features
while removing the need for software modifications in the client system software to support
those hardware features.

One example of the type of optimization work done by Disco is processor virtualization.
Disco structures virtual processors to present common processor architecture interfaces to
client operating systems. As CPU usage changes across client operating systems, Disco
shuffles virtual processors between those clients in order to more efficiently match processing
load to processing hardware.

Another type of optimization performed by Disco involves shuffling memory between virtual
machines to satisfy a client’s memory requirements when another virtual machine is not
using all of its available memory. The monitor is also able to present a uniform memory
access (UMA) like view of memory on NUMA machines by strategically allocating memory
to virtual machine clients and dynamically migrating and replicating pages. This feature
extends its portability support to client operating systems that expect to run on UMA
machines.

2.2.2 Hive

Hive is an OS designed for shared memory multiprocessors and is implemented on a Stanford
FLASH multiprocessor[8]. It is comprised of numerous interconnected kernels. Each kernel
is referred to as a cell and contains a set of CPUs, a designated region of memory, and I/O
devices. Hive aims to create a fault tolerant environment in which faults are restricted to
single cells and do not affect the operation of other cells. It is also focused on providing a
single system image similar to those provided by SMP systems. Cells cooperate in order to
form this unified user environment.

Communication between cells is necessary to provide user functionality. Hive prohibits direct
write operations by a cell into a target cell’s OS internal memory region and uses hardware
memory firewall capabilities to guard cells from writes by errant cells. Rather than using
direct writes, Hive uses remote procedure call (RPC)s for most inter-cell communication.
However, Hive does allow direct reads from other cell’s memory regions. When doing direct
reads from another cell’s memory, the reading cell is responsible for sanity checking the data
that it read, doing deadlock detection and avoidance, and otherwise protecting itself against
inconsistent, broken data that may be present in the target cell.

While inter-cell write operations to OS internal memory is prohibited, Hive allows inter-cell
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writes to user pages. This is necessary in order to exploit the performance advantages of
shared memory. User pages that are used only by processes local to a cell are protected
against writes. The remaining pages are dynamically write protected. Negotiation between
cells result in decisions about whether to protection these areas. Hive also protects against
faulty user page writes by other cells by assuming that any writable user page has been
corrupted when a cell is detected to have faulted. Potentially corrupt pages are unloaded to
protect the system from damage.

Hive supports multi-threading. A process with threads on multiple cells at the same time is
referred to as a spanning task. Hive keeps processes address space coherent across a thread
group, and supports thread migration for the purpose of load balancing. Interestingly, the
authors note that there are complex trade-offs involving spanning tasks and fault contain-
ment. For example, tasks borrow pages from cells as the tasks migrate between those cells,
thus increasing the number of cells on which the task depends. If a cell were to fail, all of
the pages borrowed from that cell would no longer be trusted.

2.3 Linux Approaches to Multikernel Design

2.3.1 NoHype

NoHype is a cloud computing solution that focuses on virtual machine (VM) security [20].
Cloud service providers sell a VM execution environment. Multiple cloud service customers’
VMs often coexist on servers maintained by the service provider. Research has demonstrated
that it is possible for software running in a VM to break out of its virtual environment and
into the host machine. Using these techniques, a malicious user can gain access to VMs owned
by other customers of the cloud service, thereby compromising sensitive data and services.
NoHype is focused on providing assurance that one VM cannot affect the availability of
another VM, access data or software on another VM, or use side-effects of another VM’s
operation to deduce anything about what that VM is doing.

NoHype is a virtualization solution without an active virtualization software layer. NoHype
accomplishes this by taking steps to partition server hardware resources between VMs and
allowing VMs to run native on those resources. NoHype establishes a one VM per CPU
core model. In a multi-core environment, this allows multiple customer VMs to co-exist on a
given server. However, NoHype removes communication between VMs because the number
of shared resources is reduced. Hardware-enforced memory partitioning sandboxes a given
VM to its designated physical memory regions. Hardware memory separation is performed
by the multi-core memory controller (MMC)’s extended page tables (EPT) feature, which
adds another logical layer to the virtual to physical address resolution process. This removes
the ability of a compromised VM to read from or write to another VMs memory or affect
its operation. Additionally, hardware enabled virtual I/O devices supply I/O capabilities to
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VMs, while segregating their use of those resources and assuring access to them based on
time slotting.

VM management and operation are decoupled in NoHype. The NoHype system manager
executes on a dedicated core and is responsible for starting and stopping VMs. Per CPU
core management software runs on a core before and after the client VM, but never during.
Additionally, many of the hardware separation features support fault delivery. When a VM
attempts to access resources outside its own resource partition, a fault is delivered to the
NoHype system manager, e.g. if a VM attempts to access a physical address that is outside
the address range allocated to it, the system manager will be alerted. This allows the cloud
service provider to detect attempted system exploitation.

2.3.2 coLinux

cooperative Linux (coLinux) is a virtualization solution that breaks the normal VM to host
virtual machine monitor (VMM) power relationship in which the VM is unprivileged relative
to the host [1]. Rather in a coLinux system the VM is as privileged as the host, running in
ring 0, and context switches between VM and host are explicit. In this arrangement, the VM
and host are cooperative. This approach trades increased performance and sustainability for
decreased security and stability. The VM executes directly on the CPU, so no overhead
penalty is paid for hardware virtualization. Sustainability increases come from the minimal
nature of the modifications necessary to commodity operating systems to add support for
cooperation, making modifications to the kernel proper and adding a kernel module. The
security penalty comes from the fact that the VM has privileged access, and can therefore
access arbitrary host resources. Stability of the host system can be adversely affected due
to the cooperative nature of a system like this. If the VM were to fail to yield control back
to the host due to a failure, the host system would starve of CPU access.

coLinux accomplishes RAM division between host and VM in an interesting way. The host
allocates memory for use by the VM, and holds that memory never releasing it. That memory
is used exclusively by the VM, and is never touched by the host. Because the host does not
free it for the duration of the lifetime of the VM, the VM is guaranteed to always maintain
control over that specific region of memory.

coLinux also handles context switches very elegantly. A context switch is comprised of
instruction pointer modification and a page table swap. However, there is no instruction
to do both tasks at the same time. The two operations must be split into two steps. This
is problematic because the virtual address space in the two contexts is not likely to align,
causing memory access faults. The solution employed by coLinux introduces an intermediate
address space which maps the context switch code into two memory regions. It is mapped
into the virtual address range it is expected to be in for both the host and the VM. When the
context switch occurs, the starting context switches out its address space for the intermediate
address space. It is then able to proceed to the next instruction, because the memory out
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of which it is executing is still valid due to the fact that the context switch code is mapped
into the intermediate memory map. The instruction pointer can then be changed so that
the other context is actively controlling the last part of the context switch. The new context
then swaps its address space in, replacing the intermediate address space and completing
the context switch.

Context switching in coLinux also involves substituting the interrupt vector table. The
interrupt vector table for the VM is constructed such that the interrupts that it needs to
operate are routed to the VM, while the remaining are forwarded to the host through a
proxy ISR. The proxy ISR conducts a context switch and invokes the host ISR.

2.4 Software Partitioning of Hardware

2.4.1 Twin Linux

Joshi et al. observe that there are three distinct types of computing - those tailored for user
interaction, for servers, and for real-time applications [19]. Twin Linux seeks to create an
environment in which all three computing can be done at once by running distinct kernels
on each CPU core in a multi-core system simultaneously. Each kernel can be optimized for
one of the three types of computing.

In Twin Linux, there is a single bootstrap processor (BSP) and all other processors are con-
sidered application processor (AP)s. The BSP is brought up first and hosts the GRUB boot-
loader while all of the APs are held in a halted state. All AP local advanced programmable
interrupt controller (LAPIC)s are configured to ignore all inter processor interrupt (IPI)
vectors except the INIT and STARTUP IPIs. In order to boot the APs, the BSP follows the
Universal Start-up Algorithm as specified in the Intel MultiProcessor Specification [17]:

BSP sends AP an INIT IPI
BSP DELAYs10mSec
if APIC VERSION is not an 82489DX then

BSP sends AP a STARTUP IPI
BSP DELAYs 200uSec
BSP sends AP a STARTUP IPI
BSP DELAYs 200uSec

end if
BSP verifies synchronization with executing AP

Some work must be done in order to facilitate the co-existence of two distinct operating
systems in a dual core system. First, RAM must be divided between the operating systems.
In Twin Linux RAM is divided evenly between resident operating systems. Second, SMP
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support must be disabled. Disabling SMP support ensures that the kernel does not attempt
to wake up other CPU cores as it boots. Third, hardware sharing is set up - one kernel masks
all PCI devices, while the other masks all PCI-X devices. This allows for the installation
of two different network adapters, each of a different type - PCI and PCI-E - ensuring that
each kernel will have access to one of the network adapters. Lastly, video RAM is divided
between the two operating systems, allowing one to display on the upper half of the monitor,
and the other to display on the bottom half of the monitor.

2.4.2 SHIMOS

Single Hardware with Independent Multiple Operating Systems (SHIMOS) is a solution
for hosting multiple operating systems on a single multi-core hardware platform [22]. In
SHIMOS, hardware resources that are typically shared in a strict SMP environment such
as memory, and CPUs, are instead partitioned among operating system instances. Each
resident OS instance is allocated a subset of the available CPUs, and its own portion of
memory. Additionally, each resident OS gets its own network interface card (NIC), hard
drive, and hard drive controller. This solution results in the ability to host multiple OSs
directly on hardware without the aid of a VMM.

SHIMOS is implemented as a modified Linux kernel and a kernel module that is used to
start additional kernels. When the BSP boots, the number of CPUs subsumed by that OS
is limited by the maxcpus command line input. The CPUs awoken during its boot process
behave as an SMP grouping. That OS can then proceed to boot other OSs by invoking
the Kernel Loader Module which is responsible for bringing up new OSs. The CPU that is
woken by the Kernel Loader Module then acts as a virtual BSP, which in turn proceeds to
subsume a number of additional CPUs into its kernel limited by its own maxcpus argument.
In that fashion, a number of OSs, each running with a custom number of CPUs, are booted.

Kernel mode changes were made to support resource division among resident OSs. Memory
usage changes were made in the kernel proper to keep kernel instances from interfering with
one another. Changes were necessary to support shared interrupts so that devices, such as
timers, which needed to be shared between OSs could work for all OSs. No modifications
to Linux were necessary to support multiple NICs and hard disk drive (HDD)s, as each OS
can be configured to use specific peripheral component interconnect (PCI) devices.

2.5 Compute-Node Kernels

Compute-Node Kernels is part of a systems architecture in which separation of concerns plays
a significant role [21]. Blue Gene/L is an IBM server comprised of a number of different types
of nodes - compute nodes, I/O nodes, service nodes, front-end nodes, and file servers. Front-
end nodes allow users to interact with the system. File servers house the files that are used
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by the system. I/O nodes behave as gateways to file server and front-end services. Compute
nodes are responsible for running application processes.

Each compute node is built around a Blue Gene/L ASIC which integrates two PPC440
processors with dual FPUs. Each PPC440 has its own L2 cache; each of which shares
SRAM. They also share an L3 cache which interposes 4MB of eDRAM. Blue Gene/L is
divided into partitions, which are 8x8x8 collections of compute nodes. Each partition is
capable of running exactly one job at a time, each of which may have some number of
processes within. Processes within a job are bound to a single compute node. Each compute
node runs a compute node kernel (CNK). A CNK is a small operating system which is
responsible for four things. For each job it creates an address space for the process that it
is about to host. Address spaces are fully constructed at this time to give the new process
access to its code and the shared data set - no paging is done once the application gains
execution. It then loads executable and data contents into that address space. Finally, it
transfers execution control to that process, switching from supervisor mode into user mode.
Once this happens, its only remaining responsibility is to service system calls as they are
made by the application.

Some system calls that Blue Gene/L support are very simple, such as getting the time. Those
simple system calls are serviced directly by the CNK. Others are more complex and must
be delegated to the I/O nodes. An I/O node, after receiving a system call to do something,
proceeds to acquire data from a file server or interact with the front-end nodes. The results
of that interaction are then returned to the CNK, and finally reported up to the application
as necessary. While this happens, the process pends.

Processes in Blue Gene/L run in parallel and operate on shared data. Early implementations
supported running the same code in each process against shared data sets. This allowed a
user to process large amounts of data using parallel processing algorithms. Later iterations
allowed concurrent processes to execute different code, broadening the systems processing
capabilities.

This design has numerous advantages. The division of labor that is present in this archi-
tecture is conducive to simple component design, since each component is responsible for a
small number of tasks. It is also extremely scalable, as the software design is so closely tied
to the hardware design.
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2.6 Operating Systems for Emerging Exascale Multi-

core

2.6.1 Tessellation

Tessellation, developed by Colmenares et al., applies adaptive resource-centric computing
(ARCC) at the system level to dynamically evolve the OS to application requirements [12].
In Tessellation, software components are compartmentalized into performance isolated and
security protected cells. A cell contains either an application or a system service. Services
provide quality of service (QOS) contracts to service clients. For example, a network service
provides networking capabilities to an application or another service. A QOS contract exists
between that network service and each of its clients, and the service works to honor each of
contracts. Cells communicate through the use of a channel abstraction.

Tessellation implements gang-scheduling, a scheduling paradigm in which one or more sepa-
rate software components that are working together are scheduled to execute simultaneously
for execution on different CPU cores. Scheduling is done in two stages. The first stage of
scheduling matches resources to cells. When a resource is given to a cell, it can be used ex-
clusively by that cell. This eliminates resource competition. The second stage of scheduling
happens within a cell to match specific work to a time slot.

The systems ability to adapt resource allocation to service resource needs is implemented
by a system service called a resource allocation broker (RAB). A RAB matches resources
to services with the goal of maximizing system wide metrics such as the number of QOS
requirements met. While a service is responsible for meeting its QOS contract, its ability
to do so is affected by the resources that it has been allocated by the RAB at a given time.
When a cell starts, it communicates its performance metric goals to the RAB. The RAB
then continually compares actual performance to those goals, as well as to global metrics to
maximize system performance, and adjusts resources as needed.

2.6.2 Tornado

Tornado is a shared memory multi-core OS that seeks to reduce resource contention by in-
creasing locality of system services. [16]. Tornado is an object-oriented OS and is designed
to exploit the locality inherent to objects to reduce contention. The object model is de-
signed to directly reflect what an application is interacting with, e.g. processes, files, caches,
hardware address translator (memory management unit (MMU)). Each of these items have
corresponding object representations within the system software. Locks are used within ob-
jects. So when an application uses a system call to interact with a file, for example, only
that files internal locks will be used for serialization, as opposed to using more global locks
as is common in other shared memory OSs. As a result, if two processes interact with two
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different files, there will be no contention. This, however, does not solve the problem of lock-
ing in shared objects such as shared files. To address this, the author introduces the notion
of a clustered object. A clustered object is one that may be accessed by multiple threads
and CPUs. A clustered object can be represented in different ways. Some clustered objects
are represented by a single representative object that is shared across all CPUs. In this case,
the shared object behaves a lot like a normal shared memory object with respect to locking
and use patterns. Other clustered objects are represented by multiple representative objects
- one per CPU, or one for each grouping of CPUs. For these types of clustered objects,
different strategies are employed to ensure consistency.

Because there are often multiple threads in a process, and threads may execute on different
CPUs, the Process object is a clustered object. The Process object is replicated per CPU.
However, one Process object is dominant, and operations against a Process object are di-
rected to the dominant object for handling. The non-dominant Process objects behave as
proxies to the dominant Process representative. Other types of clustered objects, like the list
of virtual memory areas, are loaded on demand on a CPU. Those objects are migrated with
threads when they are migrated to other CPUs to maintain the benefits of locality. This
results in multiple replicated clustered virtual memory area objects in use when threads in
the same thread group exist on different CPUs. By replicating the virtual memory objects,
page faults can be handled locally without use of heavy cross-CPU locking. However, adding
and removing virtual memory area contents becomes heavier in this case, as coordination
between replicated objects must occur.

2.6.3 Corey

The authors of the operating system Corey[5] argue that performance bottlenecks may be
caused by the operating system’s lack of knowledge about what is best for a given applica-
tion. They propose inverting the relationship between application and certain OS resources,
allowing the application to control how the system software shares resources. They introduce
three operating system abstractions in the Corey operating system. Each of these abstrac-
tions are controlled by applications that are hosted by Corey, since it is presumed that they
know best how to optimize themselves.

The address range abstraction allows an application to control which parts of its address
space are shared between tasks, and which are private to a given task. An address range
represents a set of virtual to physical address mappings, and has data associated with it
specifying how it is to be shared. The data stored in an address range is reflected in the
hardware page tables.

The kernel core abstraction allows applications to control which cores are dedicated to which
system functionality. For example, hardware drivers can be given affinity with a specific CPU
core. This removes lock contention between CPU cores that are running driver code. The
driver that runs on that single core can be interacted with via shared-memory IPC, but the
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driver executes only on the selected core.

The share abstraction allows applications to share references to kernel objects, such as file
descriptors. Each application has a set of shares, and it has the power to decide which other
applications it shares each share with. This is an interesting abstraction, as it allows for
dynamic scoping of kernel-hosted objects that are typically process-local.

Corey is a research operating system, and has not had the opportunity to mature to the
point where it is reasonable to compare it with a commodity operating system such as
Linux. However, many of the concepts that were introduced by the Corey team could be
used within those commodity operating systems.

2.6.4 Sprite

Sprite is an operating system designed to identify idle machines on a network, and migrate
processes to those machines[15]. When a process migration occurs, the process that was
moved still has access to the same files, virtual memory, and devices that were present on
its home machine. It also keeps its pid. The only observable difference is in machine load,
where the source machine’s load decreases, and the destination machine’s load increases.

The authors of Sprite identify four trade-offs when implementing process migration: trans-
parency, residual dependencies, performance, and complexity. Transparency is a measure
of how differently a process must act after a migration. If a migration is very transparent,
it acts no differently. Residual dependencies are dependencies that are created between a
process and a specific host. If a host-specific resource must be exposed to remote processes,
it has residual dependencies. Performance is how efficient the migration mechanism is. A
very high performance migration mechanism creates no overhead during the migration, and
the process appears to perform exactly the same as if it were never migrated. Complexity
is a measure of how much of the operating system must be aware of migrations in order to
operate. The authors note that these factors are in conflict, and therefore not all can be
optimized at the same time. In Sprite, transparency and performance were optimized at the
expense of residual dependencies and complexity.

When a migration occurs, the process control block (PCB) for the migrated process is par-
tially replicated from the source to the destination, including register states. However, the
PCB is not discarded on the source machine. Instead, it remains and stores state. The PCB
for the migrated process on the destination machine is abbreviated, and is used mostly for
look-ups and scheduling.

Sprite’s solution to address space migration makes use of a network file system. When a
process is migrated, it flushes its address space to a file on the network drive. When the
process resumes execution at its destination, it loads pages from that network file on-demand.
This system uses the file server’s memory to cache address space information. In many cases
this completely eliminates file operations, as the file server’s memory can be used exclusively
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except if cache space is exhausted. The drawback to this mechanism is that more network
traffic is created than would be necessary if a direct transfer was made from the source
machine to destination machine. Another optimization made by Sprite is to prefer exec time
to do process migrations. When this happens, there is no address space to migrate. Because
of the complexity associated with migrating shared pages and keeping them coherent across
workstations, migrations that would create this situation are disallowed.

2.7 Scalable Virtual Memory Subsystems

2.7.1 Bonsai

Bonsai is a scalable virtual memory subsystem that seeks to reduce address space mainte-
nance overhead within an operating system[10]. Most operating systems in wide use protect
their virtual memory map data structures with heavy per-memory map locks that must be
acquired before making modifications. They must also be acquired before reading the con-
tents of the memory map. In Bonsai, the notion of read-copy-update (RCU) was applied to
virtual memory indexing to reduce contention and allow modifications to occur concurrently
with read operations. The data structure used to implement this indexing mechanism is
called the Bonsai tree, which is an RCU-based tree structure containing memory mappings.
Read operations can occur without lock. A write operation constructs a new tree, then
atomically swaps out the pointer to the tree root, leaving the new tree in place of the old.
A number of optimizations are implemented in Bonsai on top of this basic concept that in
certain cases allow it to forgo the entire re-building of the tree, and instead allow for the use
of pointer redirection. For example, a node that has the same children before and after an
operation, can be reused. This eliminates the allocation of the new version of that node, as
well as the deallocation of the old node.

This method of virtual memory indexing was implemented in a Linux environment, and
evaluated against a number of benchmark workloads. Benchmark results showed between
70% and 240% performance increase in an 80 core machine over an unmodified Linux kernel.

2.7.2 RadixVM

RadixVM is a virtual memory subsystem built by Clements et al. at MIT, that achieves per-
fect scalability of memory manipulations for operations that involve non-overlapping memory
regions[11]. RadixVM uses novel scalable reference counting data structures to track page
usage for determining when pages are free for reuse. For indexing virtual to physical page
mapping information, a fixed-depth radix tree is used. The use of a radix tree allows for the
compression of large regions of unused virtual address space. Within the radix tree, there
is a single object representing each used virtual page, which holds a pointer to the physical
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page that is allocated to it. The reference counting data structures are used to track which
nodes are and which are not in use so that the node can be removed from the radix tree
when a page is no longer in use.

Because of the structure of the data, each node, which represents a virtual page, can be
locked independently. During mmap operations, some of the leaf nodes may not exist yet.
When this is the case, RadixVM acquires a lock on the farthest inner node that does exist,
and propagates the lock to new leaf nodes as it unfolds the tree. Each time it pushes the lock
out to a new leaf, it unlocks the parent lock in order to allow that node to now be reclaimed
by another task. When the mmap operation is complete, it unlocks the only remaining lock
that it holds.

During page faults, a lock is acquired on the corresponding leaf node, and a physical page is
allocated to it. The lock is then released.

2.8 Limitations of Previous Work

2.8.1 Single system image

Some systems, such as Twin Linux, SHIMOS, and coLinux segregate kernels within multi-
core environments, allowing them to execute simultaneously and independently. However,
they do not make the next step towards a multikernel - stitching together a single system
image to create a unified user space running across those independent kernels.

2.8.2 Address space consistency

Some operating systems, such as the current version of Barrelfish (change set 1298:12e657e0ed48)
do not currently maintain a consistent address space across OS nodes for distributed thread
groups. Rather, in Barrelfish, when a thread is migrated, its address space is migrated in
bulk with it. However, threads might modify their address space subsequent to a migration
and when they do the modifications are not made visible on remote OS nodes. This is not
a problem for workloads that do not create, destroy, or modify mappings after they begin
execution. This does not suffice, however, for general purpose computing environments in
which a consistent address space across all threads of execution within a process is required
for correctness.



Chapter 3

Linux Concepts

3.1 Linux Execution Contexts

Linux is a multiprogrammed environment in which multiple execution contexts coexist. Each
context is scheduled for execution by the scheduler according to some scheduling policy, and
allocated time slices during which it has the CPU. In Linux, every execution context is
described by a structure called a task struct . All information about an execution context
can be found in that structure. When an execution context is restored for execution, it is
restored from the state information that is accessible through its task struct. When its time
slice is over, its state is saved to that task struct. A tasks state includes register contents,
memory mapping information, file descriptor entries, locks owned, a signal handler list, task
hierarchy information, state flags, etc.

An execution context can be logically categorized as either a process or a thread . A process
is an instance of a program that is currently executing [4]. A thread is an execution context
that is a logical component of a process, where all threads within a process share a common
address space and other common resources. User-space libraries (pthread) exist to help
programmers create multi-threaded programs that make use of multi-threading capabilities
that are supported by the kernel. Within the Linux kernel, each process or thread is tracked
as an independent execution context that has its own corresponding task struct. User-space
threading libraries make use of a feature in the Linux kernel that allows multiple execution
contexts to share resources. When a new thread is created, the threading library specifies
to the kernel that the new execution context must share its memory map, signals, and open
file descriptor list with its parent process. Execution contexts that are created in this way
are said to be in the same thread group.

A task can exist in one of five distinct states: TASK RUNNING, TASK INTERRUPTIBLE,
TASK UNINTERRUPTIBLE, TASK STOPPED, TASK TRACED. A task in the TASK RUNNING
state is one that is eligible for execution. It is either executing, or waiting to be scheduled for
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execution. A task in the TASK INTERRUPTIBLE state is not eligible for execution. It can
be placed back in the TASK RUNNING when certain interrupt or signaling conditions are
met. A task in the TASK UNINTERRUPTIBLE state is subject to the same execution rules
as one in the TASK INTERRUPTIBLE state except that the kernel will not place it in a
runnable state in response to any interrupts or signals. A task in the TASK STOPPED state
has been stopped. A task in the TASK TRACED state has been stopped by a debugger.

When a tasks time slice is over or the task voluntarily yields its time slice, the kernel preempts
its execution. Its state must be saved to its task struct so that the task can later be resumed
where it left off. There are always two current stacks, a user-mode stack for use while in user
mode and a kernel-mode stack for use while in kernel mode. When the user-mode code is
preempted and the kernel takes execution, the register values of the previously executing user
code are placed on the kernel stack. A reference to that saved register state can be acquired
through the task struct by passing the task struct into the macro task pt regs. When it is
time to restore that user mode task, those register values are restored from the kernel stack.

Each task state consists of not only a user-space state, but also a kernel-space state. During
a context switch the kernel mode state is swapped out as well as the user mode state. During
the call to schedule(), two major changes are made: the memory map of the next task is
activated, and the kernel stack and hardware context are swapped out for that of the new
task. When the next kernel stack is swapped in, the user mode context is also swapped
in by virtue of the fact that its state is stored on the kernel mode stack. When the kernel
subsequently restores user mode execution, the appropriate register values are therefore used.

3.2 Task Creation

All tasks in Linux belong to a hierarchy. All tasks are children of some other task except
two. The init task is the parent of all user-space tasks. The kthreadd task is the parent of
all kernel-space tasks. When a process decides to create a new task, it undergoes a process
called forking. A fork operation consists of creating a duplicate of the calling task, and
ensuring that it is schedulable. The calling task is then the parent of its newly created copy,
and the copy is the child of the calling task. Once the new task is created, it can execute
independently of the parent task. In many cases, in user-space, the new task invokes the
exec syscall when it resumes execution to change into a completely different program. The
kernel then selects a binary format handler to pull the contents of the specified executable
file from the file system, and construct the new programs virtual address space according to
the contents of that executable file.

Forking is initiated by a user-space task by calling the fork syscall. Once in kernel space, a
function called do fork is invoked, which implements the fork operation. A kernel-mode task
instead calls the kernel thread function to create a new kernel task. One of the parameters
of the do fork function is the register set of the process that is to be forked. That state
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information is used when creating the duplicate task. The newly created task will be resumed
from the exact same place in the program as the parent task left off, which is captured in
the register values. In order to provide a starting point for the newly created kernel task,
kernel thread creates a temporary register set, and initializes the member variables. The
function that makes up the kernel task’s body is passed into the kernel thread function.
The address of that function is assigned to the si register of the newly created register set.
The instruction pointer in the newly created register set is set to the address of function
kernel thread helper. When the task is created, it will begin execution at the beginning of
the kernel thread helper function. That function, in turn calls the function at the address
stored in its si register. Once all the register values are set, kernel thread directly invokes
do fork, passing in the newly created register contents. When do fork executes, it creates a
task with the register contents as they were provided.

do fork performs the work necessary to create the new task and add it to the scheduler’s
run queue. The first thing it does is it allocates a new task struct. That task struct will
eventually be placed in the task list, and scheduled for execution. But before that happens,
it must be properly populated. do fork takes as a parameter a set of flags that define which
parts of the parent task should be shared with the child task. Items that are not shared,
are copied to the child so that the child starts as an exact copy of the parent at the time of
the fork operation. As fork constructs the child task, it consults those flags and switches its
behavior based on which flags are set. The items that are optionally copied from the parent
task include locks held, file descriptors, signal handlers, its memory map, the name-spaces it
belongs to, and its I/O. Each of these items is represented by a data structure that is either
copied to the child, or assigned to the child by reference. Items that are shared between
the parent and the child are assigned by reference. In that case, a reference count specific
to the shared data structure is incremented by one to indicate the number of users that
data structure serves. Reference counting is done so that shared data structures are not
deallocated when one of its users exits, only when all of them have exited. Once the child
task has been constructed, it is placed on the runqueue and activated. The task is now
eligible for scheduling.

3.3 Task Exiting

A task exits when it receives a signal to exit, experiences an error such as a segmentation
fault, or when the task invokes the exit system call. When one of those events occur, the
kernel responds by invoking function do exit from the exiting task’s context. This function
is responsible for terminating the task and removing it from the system.

In order to accomplish this, it first sets flags indicating that the task is exiting. It then
proceeds to systematically release the tasks hold on any resources it may have claim to,
including its signal handler data struct, its memory map, any semaphores it holds, and file
descriptors it is maintaining. Once this procedure is complete, it sets a flag indicating that
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the task is dead, and invokes the scheduler. The scheduler will never again schedule the
dead task, and the task struct itself will be removed from the task list and garbage collected
during the task switch process.

3.4 Scheduling

Linux is a time-sharing system. The Linux Scheduler divides time into timeslices per some
scheduling policy, and gives execution to a task that it selects for the duration of each
timeslice[4].

The scheduler is invoked when the function schedule is called from in kernel mode. This
function selects the next task to execute, then does a task switch to activate it. When the
task that invoked the schedule function is given the CPU again, it resumes execution after
the call to schedule. Often a task invokes the scheduler when it is blocked, or needs to wait
for some reason.

An alternate way of invoking the scheduler is by setting the need resched flag in the current
task’s task struct. That flag is always checked before returning to user space, and the
scheduler is invoked if it is set.

3.5 Linux Memory Management

Paging is a system used in multiprogramming environments that allows each process to
reference a complete address space without conflicting with the memory allocated to other
processes [4]. A process never references physical memory directly by its address. Instead,
a logical address is assigned to the physical address called a virtual address. Each process
has its own virtual address space that covers the entire address range (without the kernel
address range). A process always references memory by that memory’s virtual address. A
CPU hardware component called a Memory Management Unit (MMU) then transparently
does a virtual to physical address look up. If a physical address is found to correspond to
the accessed virtual address, then the operation that was going to be done on that address
(whether that operation is a read, write, or execution), is done on the correct corresponding
physical address. If no physical address is mapped to the virtual address being addressed,
then a fault occurs.

The mappings between physical and virtual addresses are stored in a series of hierarchical
page tables. There is one set of page tables for every unique thread group that has its own
memory map. Only one set of page tables can be active at a time. The page tables that are
currently active are the page tables corresponding to the currently active process. A page
table is activated by writing the physical address of its PGD into register cr3. When a task
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switch occurs, the newly selected task’s page tables are installed in the MMU, and therefore
activated in hardware.

Each page table entry, which indexes a single virtual page, contains information about how
that memory can be used. This is how caching behavior and access permissions are specified
for a given virtual page. Flags are set for read, write, and execute permission, as well as the
type (if any) of caching to be performed. If a program attempts to use memory in ways that
are not allowed by the permissions specified in the page table entry for a given address, a
fault occurs. This is enforced by the MMU hardware.

In Linux, each task struct contains a reference to a mm struct . A mm struct contains all of
the information about an address space. This includes information about where the stack,
heap, environment information, process arguments, and code live in the virtual address
space. It also contains a reference to the PGD. When the kernel does a context switch, it
swaps out the currently active PGD for the one stored in the next task’s mm struct, thereby
changing the active virtual address space.

When Linux constructs an address space for a new process, it does not create all of the
entries in its page table that the process may need. Instead, Linux creates a record of the
fact that it owes memory to that process. Each of these records is held in a structure called
a vm area struct or a virtual memory area (VMA). Every valid region of memory will have
a corresponding VMA. Each VMA describes one contiguous region of virtual memory, as
well as information about that region such as whether it is file backed (contents loaded from
file) or anonymous (contents are not loaded from a file), permissions associated with that
region, etc. No two VMAs for a given thread group describe overlapping regions of the
virtual address space. A linked list of VMA structures can be found through the mm struct
for a given task. When a new region of memory is memory mapped into a processes address
space, a new VMA is created for that region, and placed in that linked list. However, the
page tables are not updated at that time. Instead, the kernel waits for the process to access
that virtual area. When that happens, a page fault occurs. In response to a page fault, the
kernel looks through all of the VMA’s that exist for the faulting process. If one is found that
encompasses the faulting address, the kernel then assigns physical memory to that virtual
page, and adds an entry into the page table for it. If the mapping is file-backed, it loads the
contents of the file into the newly assigned physical page. It then restores execution to user
space where it left off, allowing it to try to access that address again. If a VMA is not found
for the faulting address, a segmentation fault has occurred, and the process is killed.

When a process forks a child process, a new copy of the parent address space is created for
the child. This is an expensive operation, as the contents of writable pages must be copied
to new physical pages for the child process so that writes to the child’s copy do not affect
the contents of the parent’s copy. To optimize this process, the concept of copy-on-write
(COW) pages were introduced. When forking a child process, Linux marks writable pages
as read only in both the parent and child page tables, flags those pages as COW, so that
now the parent and child processes both reference the same read only memory in their page
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tables. The first of those processes to attempt to write to a COW page will cause a fault
and must break the COW page. Breaking a COW page involves copying the contents of the
COW page to a new page and mapping that new page to the corresponding virtual page in
the page tables. The page is then marked as read/write in both the parent’s and the child’s
memory maps.

3.6 Linux User Mode Helper API

The Linux kernel is able to set up, execute, and interact with user-mode software through
the use of its User Mode Helper API. The user-space processes that are created by this API
exist outside of the family tree of init, and are instead children of kthreadd. The kernel
uses this capability to accomplish many common tasks, including system shutdown, kernel
module loading, and device hot-plugging [18]. In each of these examples, the kernel delegates
work to user-space programs.



Chapter 4

Popcorn Concepts

4.1 Popcorn System Architecture

Figure 4.1: Popcorn System Overview

4.2 Hardware Partitioning

Hardware is partitioned into independently running Popcorn kernel instances. Computing
resources can be assigned to a kernel instances in a number of ways.
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Division by CPU Core In a homogeneous environment, it may be desirable to divide
the system into kernel instances on a per-CPU basis. There can exist, at a maximum, one
kernel instance per CPU in Popcorn. Clustering can be done to combine arbitrary CPUs
into groupings, each of which shares a single kernel instance in SMP fashion.

Division by ISA In a heterogeneous environment, kernel instances can be assigned one to
each ISA. This partitioning scheme places all cores that share a common ISA within the same
Popcorn kernel instance cluster, each core acting as an SMP node within its kernel instance.
This is a natural way to divide a heterogeneous system, allowing each kernel instance to
have its own kernel compiled specifically for the ISA on which it runs. Further partitioning
can also be done in this division scheme to divide the population of CPUs of a similar ISA
into subgroups of arbitrary size.

4.3 Global Accessible Memory

Each kernel instance is assigned its own region of memory at boot time. This is the memory
that it will use as it executes. It will not attempt to use another kernel instances allotted
memory region. This is necessary in order to keep kernel instances from interfering with one
another. There are exceptions to this division, however. When tasks are migrated between
kernel instances, pages are often migrated as well. This is done in such a way that it is
safe, as shall be explained in Chapter 5, and is strictly a user-space phenomenon. Another
situation in which memory is shared is for creating a shared notion of time. This is also
explained in Chapter 5. Lastly, a shared memory region is used for message passing between
kernels.

4.4 Message Passing

Kernel instances, regardless of which subset of cores and ISAs they are running on, do not
share internal data structures. Rather all communication is explicit via message passing.
This is an absolutely critical component of Popcorn, as all communication and synchroniza-
tion occurs through it. The task migration and address space migration and consistency
algorithms developed for this thesis heavily leverage Popcorn’s message passing capability.

4.5 Device Drivers

Device drivers are given affinity with a single kernel instance by design. The kernel instance
that owns the device driver performs all driver operations. In the future, when a distributed
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file-system is created for Popcorn, code on any kernel instance will be able to open a device
node and manipulate it, but the work will be marshaled to the kernel instance that owns
the driver for processing.

4.6 Single System Image

On top of kernel space, lives a single system image user-space. At the time of this writing,
this single system image is not yet fully constructed. Its current state shall be described
below. Once Popcorn is complete, all of the separate kernel instances shall work together
to stitch this user-space together via message passing to present an interface that behaves
exactly like the Linux user-space. Applications will not be able to tell the difference between
an SMP Linux and Popcorn Linux system. Because of this, Popcorn will be able to host the
wealth of Linux applications.

4.7 Applications Spanning Kernel Instances

Due to the single system image that is constructed by the cooperation of kernel instances,
all applications that execute within user-space run seamlessly, regardless of which kernel
instance is hosting the actual execution or even whether or not its tasks remain on a single
kernel instance. Currently, only homogeneous x86 64bit environments are supported, but
other architectures as well as homogeneous ones are being developed against.

4.8 Basic Building Blocks

In this section, the components that were built prior to the task migration mechanism that
is the focus of this thesis, and upon which it is built, are described.

Individual kernel instances booted Hardware partitioning is supported. A kernel in-
stance can be assigned to a single x86 64bit core, or to a cluster of x86 64bit cores. When
the Popcorn environment boots, only the primary single kernel instance is booted. Once
that kernel instance is booted, the secondary kernel instances can be booted at the user’s
discretion. Secondary kernel instances can be booted in any order, and it is not necessary
to boot all kernel instances that the hardware supports.

Messaging Layer The messaging layer is a fundamental component of the Popcorn kernel.
It is the only mechanism for interaction between kernel instances, except for a few exceptions.
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The messaging layer, designed and implemented by Ben Shelton, and supported by the
Popcorn team, exposes an API to the rest of the kernel components. This API allows
Popcorn kernel instances to send messages to other Popcorn kernel instances. Each message
has a type. In the context of this thesis, there are message types for mapping requests,
mapping responses, task migration requests, etc. A Popcorn kernel instance can register
associations between message types and a single function to handle incoming messages of
that type.

The messaging API supports short messages, and long messages. Long messages are broken
into chunks, where each chunk is the size of a short message. The larger a long message is,
the more chunks are required to send that message. On the receiving side, a short message
can be delivered to the handling function immediately. Long messages are reconstructed
prior to delivery to the handling function, as they are must be delivered in their original
form.

The sending and receiving kernel instances share memory in order to accomplish message
transfer and signaling.

Message sending is accomplished by first atomically claiming a ticket, which signifies access
to the transfer slot. A ticket is active when the assigned transfer slot is marked free for
use. Once a ticket is active, the holder of that ticket places its message in the slot, marks
it indicating that it is full, then generates an IPI to signal to the receiver that a message is
waiting for it.

Message receiving is broken into two phases. A lightweight handler initially receives the
message when the CPUs IPI handler is entered. This code executes in a bottom-half softirq
context and is very minimal. This bottom-half code notifies the top-half that messages are
ready for processing. The top-half, which executes within a workqueue context, is then
invoked. In the top-half, the handler function that is registered for the specific message type
is called, and the message is passed into that function as a parameter. Once that function
has been invoked, and the message is freed, the message slot can be marked as empty and
subsequently reused.



Chapter 5

Task Migration

5.1 Architectural Overview

A task migration involves the coordination of two kernel instances to transfer a task and its
state from one kernel instance to the other. When that happens, the task that is migrated
ceases to execute on the originating kernel instance, and resumes execution on the receiving
kernel instance. The actions taken by the originating kernel instance are shown graphically
in 5.1, and the actions taken by the receiving kernel instance are shown in 5.2. Tasks can be
migrated any number of times between kernel instances.

In migrating a task, the originating kernel instance first transfers all of the tasks state
information to the receiving kernel instance. The migrated task still exists on the originating
kernel instance, however. That task is now placed in a sleep state and is considered a shadow
task . It remains on the originating kernel instance as a shadow task until its return disposition
is set. A task’s return disposition specifies an action to be taken against a shadow task prior
to waking it back up. A shadow task’s return disposition is set in response to an event that
has occurred remotely to the task on the kernel instance that it is currently executing on.
That event can either be an exit event, or a return migration event. When an exit occurs, the
return disposition is set to exit on shadow tasks associated with the exiting task on all kernel
instances. When a migration is initiated that would cause it to execute on a kernel instance
on which it has already executed, the return disposition is set to migrate. Once the return
disposition is set for a shadow task, the shadow task is woken back up. When the scheduler
schedules it for execution again it starts its execution by handling the return disposition.
For exit dispositions, the task calls do exit, killing the task. For migrate dispositions, the
new task state is installed into the shadow task data structures, and it resumes execution
in its new state when it is returned to user space. This is how a task is migrated back to a
kernel instance on which it has previously executed. This migration process and the process
used to migrate a task to a kernel instance on which it has not yet executed are covered in
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Figure 5.1: Migration - originating kernel instance

detail later.

5.2 Shadow Tasks

When a task migrates away from a kernel instance, the data structures that represent it on
the originating kernel instance are not destroyed. Rather, they are left behind, and the task
on that kernel instance remains dormant and is considered a shadow task. Shadow tasks
serve multiple purposes.

As processes and threads execute they acquire resources such as file descriptors and locks.
They may also spawn child processes or create sibling threads. When a task exits, work must
be done to release resources and re-parent child processes. By turning a migrated task into a
shadow task on the originating kernel instance instead of destroying it once the migration is
complete, the release of its local data structures and resources is deferred. The shadow task
then becomes the custodian of those resources, maintaining them on behalf of the migrated
task. Those resources can then be migrated or otherwise used at some later point.

Additionally, the use of shadow tasks removes the overhead of destroying kernel data struc-
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Figure 5.2: Migration - receiving kernel instance

tures when a task is migrated away from a kernel instance, and then recreating those same
kernel data structures when that task is migrated back. When a task migrates back to a
kernel instance on which it has previously executed, its current execution state is installed
into the shadow task’s data structures, and then that shadow task is awoken.

5.3 Distributed Task and Thread Group Identification

In Popcorn Linux, the task struct data structure has been modified to track task identity
across kernel instance by adding four fields. Those fields include the tasks kernel instance of
origin, its PID on its kernel instance of origin, the kernel instance of origin of its thread group,
and its task group identifier (TGID) on its kernel instance of origin. When a task is initially
created, that information is stored in its task struct. When that task is then migrated, this
identification information is migrated with it. This information is used for addressing, and
is included in all communications between kernel instances, as it is guaranteed to be unique
for each task across kernel instances.

5.4 Forking Children

Propagating distributed thread group membership to children that are spawned to dis-
tributed parents is a simple matter of copying the parents distributed thread group identi-
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fication, detailed above. This is done at fork time, when the child task is initially created.
Distributed thread group identification information is only copied to the child if the child
will be in the same thread group as the parent. Otherwise, new distributed thread group
identification information is generated for the child based on which kernel instance the child
was created on.

Figure 5.3: Task duplication hook
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5.5 Task Exit Procedure

Figure 5.4: Task exit procedure

When a distributed task exits, not only does the currently executing task exit, but all shadow
tasks associated with that task must also exit. The exit handler in the Popcorn Linux kernel
has been modified to send a message to all kernel instances indicating which distributed
task is exiting. Each recipient of that message then looks for any shadow tasks associated
with the exiting task. For each shadow task that is found, a flag is set indicating that the
return disposition of that shadow task is to exit, and the task is then woken back up. When
the task resumes execution, it will be in kernel mode still. While there, it checks its return
disposition. During this check it will find that it was resumed due to an exit event, it calls
do exit. This exits the task.

In addition to exiting the task, the kernel instance initiating the exit process described above
checks to see if the exiting task is the last member of its local thread group. If so, it also
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Figure 5.5: Response to thread group exiting notification

checks to see if it is the last distributed thread group member. If it is the last local thread
group member, but not the last distributed thread group member, it saves its mm struct.
This is necessary to save any changes that were made to the address space locally that were
never replicated remotely. This way, remote thread group members can still resolve new
mappings that were created in the exiting tasks address space. If it is not the last local
thread group member, this process need not be done since its address space will not be
destroyed - as all members of a thread group share all address space data structures. If
the exiting task is both the last local thread group member and the last distributed thread
group member, the mm struct is not saved. In this case it also sends out a notification to
all remote kernel instances indicating that the thread group is closing. The remote kernel
instances then use this opportunity to remove all saved address space information that they
may have saved, as that information no longer needed.

5.6 Task Migration Mechanism

All task migrations are initiated by the originating kernel instance in response to either a
scheduling decision or a syscall invoked from user space. When the migration is initiated,
the steps described above are followed to change the current task into a shadow task. The
task state is then communicated to the receiving kernel instance. The following information
is sent to the receiving kernel instance.

1. Memory layout information

(a) User space stack start and end addresses

(b) Heap start and end addresses
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(c) Environment start and end addresses

(d) Arguments start and end addresses

(e) Data start and end addresses

2. Task information

(a) General purpose and floating point register values

(b) PID of shadow task

(c) Kernel instance of Origin

(d) PID on kernel instance of Origin

(e) Kernel instance of Origin of Thread Group

(f) TGID on kernel instance of Origin

(g) Priority and Real time Priority

(h) Scheduling policy

The task migration procedure performed on the receiving kernel instance is slightly different
when the received task has previously executed on that kernel instance. Much of the work
that must done to import a task’s state is already done in that case. As tasks migrate, a
record is migrated and maintained that keeps track of which kernel instances this task has
ever executed on. This record is consulted to select the correct migration procedure.

5.6.1 Migrating A Task To A New Kernel Instance

Kernel instances on which a task has never executed do not have an existing shadow task
to host the received task. A new task must be created to host the migrated task’s state. In
order to create the new task, a new kernel thread is first created. Within that new kernel
thread, a user-space stack is forged. Now that the new task has been created and capable
of moving into user-space, the migrated task’s state is transplanted into it.

All of the task information that was communicated to the receiving kernel instance from the
originating kernel instance is now installed. This updates the task’s task struct, as well as
the kernel stack, which contains the user space registers.

If the receiving kernel instance hosts other tasks in the migrating task’s distributed thread
group, the newly migrated task must be placed in the same local thread group as those
other tasks. To accomplish this, first one of those other tasks is found. That task’s grouping
information is copied to the new task including its group leader, TGID, and parent. The
new task is also removed from any sibling lists it may be included in.

Additionally, thread group members share many resources including their signals, signal
handlers, memory map, file descriptors, and file system interfaces. The newly migrated task
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must be set up to share those resources. Each of those resources is represented by a data
structure, and the task struct has a pointer to each of them. Those resource pointers are
copied to the newly migrated task, and reference counts are increased as appropriate.

If there are no existing thread group members on the receiving kernel instance, one of two
possibilities is true. Either there has never been a member of this distributed thread group
on this kernel instance, or there has. In the case that there has previously been a member of
this thread group on the receiving kernel instance, but all members of that thread group have
already exited, that thread group’s mm struct will have been saved. That mm struct will
be installed as the newly migrated task’s memory map. Otherwise, all of the memory layout
information that was communicated by the originating kernel instance must be installed in
the newly migrated task’s mm struct.

5.6.2 Migrating A Task To A Previous Kernel Instance

When a task is migrated back to a kernel instance on which it has previously executed, the
hosting task already exists in the form of a shadow task. That shadow task is also already
part of the correct thread group, and shares signals, signal handlers, file system interfaces,
and open file descriptors with the rest of its thread group. These objects do not need to
be altered to in this case. All that needs to happen in this case is the task’s current state
information, which was sent from the originating kernel instance, needs to be installed into
the shadow task, setting the appropriate user space register values.

Once the state has been installed, the return disposition is set to migrate, and the shadow
task is awoken. Once awoken, the task returns to user space and resumes execution where
it left off on the last kernel instance.

5.7 Address Space Migration and Consistency Main-

tenance

Unlike register values and state flags, a tasks address space is contained in a series of large
data structures. It is not possible to migrate an address space by simply migrating its
pointer to the PGD, since that would omit many important pieces of information contained
in the virtual memory area (VMA) from the migration, force memory sharing between kernel
instances, reintroduce shared locks, and remove much of the benefit of the multikernel.
Instead, the contents of the address space must be partially or fully replicated across kernel
instances.

Each kernel instance owns a portion of the physical memory present in the system. A
task that originates on a given kernel instance is initially given memory from that kernel
instance to execute out of and use. When a task migrates, all of its data and code live
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in pages that are associated with a kernel instance on which it is no longer executing. In
order to allow it to continue using those pages, two address space migration mechanisms
have been implemented: up-front address space migration, and on-demand address space
migration. Both mechanisms operate on the idea that pages from other kernel instances
can be borrowed safely as long as they remain reserved on the kernel instance that owns
them for exclusive use by the migrated task and its fellow thread group members. When
a task migrates away from a kernel instance, a shadow task remains behind. That shadow
task is the anchor that reserves the memory that that kernel instance has contributed to
the migrated task and its distributed thread group. As that task continues to migrate to
other kernel instances, shadow tasks are created on each visited kernel instance to reserve
pages that were mapped while executing on that kernel instance. Mappings are migrated by
communicating all pertinent information about the target mapping to the destination kernel
instance, where it the mapping is then replicated - creating identical VMA entries and page
table entry (PTE)s in the target task’s memory map. When the task exits, all of its shadow
tasks also exit. When that happens, all of the pages that were borrowed for the task and its
thread group, and were held reserved by the shadow tasks, are released to their respective
kernel instances for deallocation. This section provides a detailed description of how this
mechanism works within Popcorn.

5.7.1 Address Space Consistency

Throughout the lifetime of a process, its address space can grow, shrink, and change based on
its memory requirements. It was important to address this in Popcorn in order to create an
environment that is consistent with Linux. As this address space change happens, Popcorn
must take action to ensure that local changes are reflected in some way globally to keep
the replicated address space consistent across kernel instances. This does not imply that it
is necessary that all replicated memory maps associated with the same distributed thread
group on all involved kernel instances be exactly the same. They do not need to be exactly
the same, because not all thread group members need the entire address space at all times.
Rather each kernel instance needs to provide enough of the address space to the threads that
it is hosting to support their execution, while also ensuring that invalid memory mappings
are never available. For example, Figure 5.6 shows an example of how VMAs might be
distributed across kernel instances. This example depicts two distributed VMAs, shown
in light color. There are three kernel instances, each with a VMA that covers a slightly
different area of the address space. This is a consistent state because if part of the local
VMA is missing, but needed, it can be acquired from another kernel instance. Additionally,
the type of all of the VMAs present on each kernel instance is consistent. There are, however,
a number of inconsistent state that must be avoided. In the following we discuss the different
types of inconsistency that must be avoided.
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Figure 5.6: Two consistent distributed VMAs in a distributed address space. In light color
the full VMA address range, in solid color the VMA mappings known by each kernel instance.

One type of inconsistency that must be avoided is one in which memory maps for the
same distributed thread group on different kernel instances contain different physical address
mappings for the same virtual page. In this case, tasks using those local memory maps refer to
different physical pages of memory when addressing the same virtual address. This situation
will break the applications ability to yield correct results, and sometimes cause segmentation
faults or other runtime failures.

Protection mode inconsistency is a subtle but potentially dangerous problem. A page that is
erroneously marked as write only, when it is writable on other kernel instances could cause
segmentation faults that break the workload. This problem could be very difficult to find
and debug and must never happen.

Another type of inconsistency is present when two corresponding mappings for the same
distributed thread group on different kernel instances have different backing. A VMA can
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be file backed or it can be anonymous. Two mappings with different backing types are
inconsistent with one another. Two mappings backed by two different files are inconsistent
with one another. Additionally, two mappings backed by the same file with different file
offsets are inconsistent with one another.

Figure 5.7: An inconsistent distributed VMA in a distributed address space. In light color
the full VMA address range, in solid color the VMA mappings known by each kernel instance.

Finally, two mappings cannot be consistent with one another if one is a special mapping, and
the other is not. COW pages and the zero page are examples of special pages. This type of
inconsistency causes particularly difficult errors to identify. To illustrate this inconsistency,
consider the case where a mapping on one kernel instance is COW and the corresponding
mapping on another kernel instance is not COW. Assume then that the COW page is accessed
and the COW page must now be broken. When this occurs, the kernel instance hosting the
COW page will break the COW page, selecting a new physical page to map to that virtual
address and copying the contents of the COW page to it. Now, the two kernel instances
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are hosting two corresponding mappings that are supposed to be consistent, but instead
map different physical addresses to the same virtual address. This creates the first type of
inconsistency identified above.

In summary, for two mappings for the same distributed thread group on two different kernel
instances to be consistent with one another, the following must be true:

• Either one kernel instance is missing the mapping entirely, or

• All of the following aspects of both mappings must be the same -

– Virtual address

– Physical address (Has to be the same or not present on one kernel instance)

– Protection bits

– Backing source

∗ Backing file (path, and file offset must match), or

∗ Anonymous

– Special page status (COW, zero page, normal page)

5.7.2 Up-Front Address Space Migration

This section describes an early and naive mechanism that was built for migrating a task’s
address space. It was subsequently obsoleted in favor of the on-demand address space mi-
gration mechanism described below. For completeness, the up-front address space migration
is described here.

Using this methodology, when a task migrates, its entire address space is migrated at the
same time - prior to giving it execution on the remote kernel instance. This procedure
involves a page table walk through every page mapping associated with every entry in the
VMA list. For each VMA, a message is sent completely describing it. The VMA is then
walked, and a message is sent describing every PTE associated with that VMA. The kernel
instance receiving these messages stores them, and when it creates the new task, it imports
the stored mappings. For every VMA message received, it installs an identical VMA by
invoking the do mmap function. For every PTE message received, it installs an identical PTE
by invoking the remap pfn range function. Once all VMAs and PTEs have been installed,
the address space has been reconstructed and the migrated task is allowed to begin execution.

The up-front address space migration mechanism is not suitable for deployment due to severe
performance issues. Some tasks have very large address spaces. Migrating those large address
spaces is costly. In many cases, the entire address space is not used after migration, so much
of the time spent migrating that address space was wasted. Additionally, this address space
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migration mechanism does not support the execution of threads on different kernel instances
with evolving address spaces, because it does not consider changes that threads may make
to the distributed address space.

5.7.3 On-Demand Address Space Migration

In contrast with up-front address space migration, on-demand address space migration does
not migrate mappings during initial task migration. Instead, mappings are migrated as
they are needed - as the migrated task executes. This reduces initial migration overhead.
Depending on the workload, it can yield significant performance benefits when migrating
tasks, especially those with large address spaces. This benefit comes from the fact that
the cost of mapping migration is paid only when absolutely necessary, and will be most
pronounced in workloads in which migrated threads access only small portions of the address
space.

While up-front address space migration is useful for process migration, on-demand address
space migration is suitable for use with both distributed processes and threads. The case of
threads within the same thread group executing concurrently on different kernel instances
introduces interesting problems with respect to maintaining a consistent address space. Any
thread group member can at any time remove, change, or add mappings. On-demand address
space migration addresses the issue of resolving mappings that are added by remote thread
group members after task migration. Mapping removal and modification are also handled in
Popcorn Linux, and are described in subsequent sections.

As a user-space program executes, it routinely attempts to access memory for which no
virtual to physical address mapping exists. In that case, the MMU will not be able to
resolve the mapping, and a fault will occur. In SMP Linux, the kernels fault handler looks
up the VMA that corresponds to the faulting address, reserves a page of physical memory
for use, and adds a PTE into the tasks page table, mapping the newly reserved page to
the faulting virtual page. In the case that a VMA cannot be found, a segmentation fault is
reported and the process is killed. This mechanism has been altered in Popcorn Linux to
add a step at the beginning of the fault handler that attempts to retrieve existing mappings
from remote thread group members.

When a page fault occurs, a query is sent to all booted kernel instances specifying 1) the
distributed thread group identity, and 2) the faulting virtual address. The remote kernel
instances receive this query, and search for any tasks that they may be currently hosting that
are members of the faulting task’s distributed thread group. If one is found, its mm struct
is used to resolve the mapping. If a distributed thread group member is not found, it is
possible that there was at one time thread group members running there, but they have all
since exited. When the last thread group member on a kernel instance exits, but remote
thread group members are still executing, the exiting task’s mm struct data structure is
saved. That saved mm struct is preserved until the kernel instance receives notification
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Figure 5.8: On-demand address space migration procedure
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that all members of that distributed thread group have exited. When a mapping query is
received, and no existing thread group members are found, the list of saved mm struct’s is
searched for a mm struct for that distributed thread group. If one is found, that mm struct
is used to resolve the mapping query. If, after searching existing tasks and saved memory
maps, no mm struct is found, a response is sent that indicates that no mapping was found
on that kernel instance. Otherwise, all information about the found mapping is sent as a
response. In some cases, a VMA will be found, but no corresponding PTE will be mapped.
In that case, a response is sent that fully describes the VMA, but no physical address is
communicated.

Special treatment is applied in cases where the resolved mapping is COW. When a mapping
request results in a mapping that is a COW page, the responding kernel instance first breaks
the COW, then retries the mapping search before responding to the requesting kernel in-
stance. This is necessary in order to ensure address space consistency. If the COW mapping
was instead retrieved without first breaking the COW page, the newly installed mapping on
the requesting kernel instance would also be mapped COW. If code on both kernel instances
then breaks the COW, two different physical addresses would be assigned to the same vir-
tual address. This breaks consistency. It was decided to avoid this situation and pay the
performance penalty associated with breaking the COW before the mapping is migrated.

Every running kernel instance responds to mapping requests. The requesting kernel instance,
on which the fault occurred, receives responses from every kernel instance and must apply
a set of rules to correctly select the best of those responses for use. Some kernel instances
will respond with messages that indicate that no mapping exists. Other kernel instances will
respond with messages indicating that a valid VMA exists, but no physical page has been
allocated to the faulting virtual address. This might be the case if a thread group member
on the responding kernel instance invoked the mmap syscall to add to its address space,
but has not yet accessed that space. Yet other kernel instances will respond with messages
indicating a complete and specific virtual to physical page mapping. If a message is received
with a complete virtual to physical page mapping, it is given precedence. If no such message
is received, messages indicating that the virtual memory area is valid are given precedence.
If no such messages arrive, then it must be the case that no remote mapping exists for the
faulting address.

If no remote mapping is found, the normal SMP Linux fault handling mechanism is invoked.
If instead, it was found that the VMA exists, but no physical page has been allocated to it,
then an identical VMA is installed in the faulting tasks memory map. Once that is done,
the normal SMP Linux fault handler is invoked. The normal SMP Linux fault handler will
map physical memory to the faulting address. If instead, both a VMA and a physical page
mapping are reported to exist, an identical mapping is installed in the faulting tasks memory
map. This involves first installing a corresponding VMA if one does not already exist. The
physical to virtual address mapping is then installed in the tasks page tables. Unlike the
other cases, both a VMA and PTE are assured to now exist, so the normal SMP Linux fault
mechanism does not need to be invoked.
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Now that the modified fault handler has completed, either the faulting virtual address has
a valid corresponding physical address, or a segmentation fault has occurred. If a valid
physical address has been mapped, execution is restored to user-space where it left off.
When it resumes execution, it will immediately attempt to access the faulting address and
succeed.

5.7.4 Concurrent Mapping Retrieval

On-demand address space migration creates a number of concurrency challenges due to
mapping retrieval interleavings between kernel instances. Suppose two tasks in the same
distributed thread group running in two kernel instances fault on the same virtual address
at the same time. Suppose further that no distributed task group members in the system
have mappings for that virtual address. In that case, both kernel instances will query all
other kernel instances for a mapping. Because the mapping does not yet exist, neither will
receive any positive responses. Each will then default to the normal Linux fault-handling
mechanism, wherein a new physical page is assigned to the faulting virtual page. Each
kernel instance will select a physical page from its own range of the address space. This
results in a distributed address space in which there are two physical pages mapped to the
same virtual page. This is an inconsistent state. In order to remove this failure mode, some
notion of atomicity must be introduced. Care must be taken when introducing mechanisms
for atomicity in performance critical distributed systems. In order to provide relatively
fast critical regions for fault mapping, Lamport’s distributed mutual exclusion algorithm
(LDMEA) is used.

LDMEA calls for each party (P) to have a queue (Q) for each resource that is being guarded.
When Px needs access to Ri, it creates a time-stamp, Ta, and sends a request to all other
parties containing the time-stamp, and the resource required REQUEST(Ta,Ri). It also
places REQUEST(Ta,Ri) on its request queue corresponding to the resource, Q(x)Ri

. When
remote parties (Py) receive message REQUEST(Ta,Ri), they place those requests on their
queue for that resource, Q(y)Ri

ordered by time-stamp. Once Px sends its REQUEST mes-
sage, it waits for REQUEST(Ta,Ri) to get to the front of Q(x)Ri

. A party has gained critical
access to resource Ri once its request is at the front of the queue. When a party is finished
with its critical region, it sends a message to all other parties to signify the resource release,
containing the original time-stamp and resource RELEASE(Ta,Ri). When a party receives
a release message, it removes the queue entry corresponding to REQUEST(Ta,Ri) from its
resource queue Q(y)Ri

.

To reduce lock contention, a Lamport queue is created for every (distributed thread group/-
faulting virtual) page pair. This ensures that Popcorn can concurrently resolve mappings for
tasks in different thread groups, or tasks that are in the same distributed thread group but
are faulting on different virtual pages. In order to minimize the memory requirements for
this part of Popcorn, queues are created dynamically as they are needed, and are destroyed
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when they are no longer needed. Each queue is specific to a distributed thread group / vir-
tual page tuple (TGa, VPage1). A new queue is created if either the faulting kernel instance
does not have a queue for a given (TGa, VPage1) and a queue does not already exist, or if it
receives a REQUEST for a virtual page’s lock and a queue does not already exist. A queue
continues to exist as long as it contains REQUEST entries. Once the last REQUEST entry
is evicted from a queue, that queue is garbage collected.

LDMEA requires that all nodes share a common notion of time. Unfortunately, the time
stamp counter (TSC) that is integrated into the x86 fabric is not guarantee to be synchronized
across cores. In order to provide synchronized time, a memory counter that is shared between
kernel instances was created to serve as a logical time-stamp. A single shared page is used
to host a counter which is fetched and incremented each time a time-stamp is required. The
fetch and add instruction is an atomic memory operation, and therefore thread safe across
kernel instances.

5.7.5 Virtual Memory Area Modification

Concurrency During Modifications

The following sections describe methods of maintaining a consistent address space through
address space write, modification, and removal operations. Those operations have the po-
tential to create errors during concurrent execution, unless mitigations are implemented. In
order to provide strong assurances that concurrent virtual memory area modifications do not
create address space inconsistencies, each of the operations described below are wrapped in
distributed locks. The locks are implemented with Lamport’s distributed mutual exclusion
algorithm, also described above. When a munmap, mremap, mprotect, or mmap operation
is executed against a region of memory, a lock is secured. During these operations, a lock is
acquired on the entire virtual address space. The overhead associated with creating Lamport
queues for every virtual page in the address space, as is done during mapping retrieval, is
prohibitive. To remove this performance hit, an alternate method was built which still locks
the entire address space, but without creating queues for every virtual page. We call this
lock a heavy lock. A single heavy Lamport queue exists on every kernel instance for every
distributed process. This heavy lock represents the Lamport locks for all virtual pages in
a distributed address space for which a fine-grained per page Lamport queue does not al-
ready exist. A heavy lock behaves exactly the same as one of the fine-grained per page locks
that are used for page retrieval, with a slight variation. When an entry is added into the
heavy queue, the same entry is also added into every existing fine-grained per page queue,
in order of time-stamp, as well. Also, when an entry is removed from the heavy queue, the
corresponding heavy entry is removed from every fine-grained per page queue. Additionally,
when a new per page queue is created, one entry is added into that new queue for every
entry in the heavy queue, also ordered by time-stamp. A heavy lock is not acquired until
its corresponding entry is at the front of every queue for the process, including the heavy
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queue and all per page queues. This is conceptually equivalent to creating a queue for every
page in the 64 bit address space, only the per virtual page queue creation is deferred. This
eliminates the overhead that would be necessary to create queues for every virtual page in
the address space. This mechanism coexists with and interacts appropriately with the per
page LDMEA implementation for mapping retrieval.

The Lamport lock name-space used to guard virtual memory area modification is shared with
the Lamport lock name-space that is used to guard against concurrent mapping retrieval,
as described above. Because of that, it is assured that not only will concurrent operations
that modify the address space be prohibited, but also those operations will never occur
as a mapping is being migrated. This covers the corner case where a mapping migration
occurs in a kernel instance while that same mapping is removed or modified in another
kernel instance, which would constitute a race condition. By adding heavy lock entries into
all per page queues, it is assured that no task attempting to acquire a lock on a per page
queue is successful until all heavy atomic operations that have higher time precedence have
completed.

Each of the operations that effects the address space has been modified as follows:

// Modif ied procedure f o r munmap, mprotect , mremap ,
// mmap
memory map modifying function ( address , l ength ) :

// Acquire a lock aga in s t the
// e n t i r e v i r t u a l address range .
a cqu i r e l ampor t l o ck heavy ( ) ;

// I t i s now s a f e to modify the r eg i on o f i n t e r e s t ,
// as i t i s now guaranteed that no ke rne l i n s t ance
// ( even another task on t h i s k e rne l i n s t anc e ) can
// operate on the address space .

// In most cases , t h i s e f f e c t s both l o c a l and
// remote memory map in fo rmat ion in order to
// maintain co n s i s t en cy .
do memory map modifying function ( address , l ength )

// Release the l ock taken aga in s t
// the e n t i r e v i r t u a l address range .
r e l e a s e l a m p o r t l o c k h e a v y ( ) ;
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Handling Page Mapping Removal

Figure 5.9: Munmap procedure

The munmap syscall allows a program to remove all or part of a VMA from its address space.
In Popcorn Linux, to maintain address space consistency, this action must be performed
on all members of the distributed thread group. The munmap implementation has been
augmented to perform a synchronous distributed munmap. A message is sent to all remote
kernel instances indicating that they must perform a munmap on the specified distributed
thread group for the specified portion of its address space. After each remote kernel instance
performs the munmap action, it responds acknowledging the request. The requesting task
waits in kernel mode for all responses to arrive before continuing execution. While it waits,
the kernel schedules other tasks to execute. By waiting for all munmap acknowledgments
to come in, it is ensured that the task that called munmap will not resume until the entire
distributed address space reflects the changes that it requested. Once all remote kernel
instances have completed the required unmap operation, the local unmap is done, and control
is returned to user space. See Figure 5.9 for a flow chart of the Popcorn unmap procedure.
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Handling Page Mapping Modification

Figure 5.10: Mprotect procedure

The mprotect syscall allows a program to modify the protection applied to existing VMAs
in its address space. The user-space program must specify the address at which to start the
modification, and the size of the memory region, as well as the new protection mode for the
region. When an mprotect syscall is invoked, Popcorn distributes the mprotect call across
all kernel instances. It sends a message to all remote kernel instances specifying the address
range, new protection mode, and the distributed thread group identification information for
the thread group that should undergo the mprotect action. When a remote kernel instance
receives this message, it looks up any mm struct’s associated with the specified distributed
thread group, then applies the mprotect action to that memory map. Once the remote kernel
instance has completed the mprotect operation, it acknowledges the mprotect request. The
kernel instance that requested the mprotect action waits to receive acknowledgments from
all available kernel instances. Once it has received responses from all kernel instances, it
performs the local mprotect then resumes execution in the syscall and returns to user space.
This mechanism ensures that execution is not given to a task that has called mprotect until



David G. Katz Chapter 4. Task Migration 49

the mprotect action has been applied to the entire distributed address space. See Figure 5.10
for a flow chart of the Popcorn mprotect procedure.

Figure 5.11: Mremap procedure

The mremap syscall is another mechanism through which the address space may change.
This system call allows for a mapped virtual memory range to be expanded, shrunk, or
moved to another range of virtual addresses. The mremap syscall takes as parameters a
description of the source range, including a source address and the ranges size, the desired
new size, and a set of flags that tell the kernel how to treat this remap call. There is a
flag to tell the kernel whether or not it may move the region to another virtual address if
necessary, and another to tell the kernel that it must move the address range to a specific new
address. In the case that a specific destination virtual address is supplied, a fifth argument is
taken which holds that destination address. When the destination address range is already
occupied, those conflicting mappings are unmapped prior to moving the old mappings into
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that new region. Popcorn modifies this procedure. Popcorn must take special action to
ensure address space consistency when the changes resulting from mremap calls occur. The
first thing that Popcorn does is pull in all of the remote mappings for the region that is about
to be remapped. This action preserves the contents of those mappings, as soon the local
kernel instance will be the only kernel instance maintaining those mappings. Popcorn then
issues a message to all remote kernel instances indicating that they must unmap both the old
region and the new region from any memory maps that they are hosting for the thread group.
Once the remote unmap operation is complete, the kernel instance that initiated the remap
is the only remaining kernel instance that still has the VMA and PTE entries associated with
the affected memory regions. This maintains consistency by preventing remote mappings
from conflicting with the ones that will soon exist locally. Once all remote actions have
completed, the local mremap is carried out. See Figure 5.11 for a flow chart of the Popcorn
mremap procedure.

Safe Memory Mapping Support

Figure 5.12: Mmap procedure
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A process can ask the kernel to create new virtual memory areas by invoking the mmap
syscall. The process passes arguments to that syscall to configure how the kernel will map
the new memory. For example, it can specify a path to a file, and the kernel will memory map
the contents of that file to the new virtual memory area. The program can also specify no
file, in which case the kernel will map anonymous physical pages to the new virtual address
range. A program has the option of specifying a virtual address at which to place the new
virtual memory area. In this case, any pre-existing virtual memory areas in that region
will be unmapped to make room for the new one. A program might, in some cases specify
a virtual address to map to, or it might let the kernel decide. Some of these capabilities
represent corner cases from a distributed address space consistency perspective.

When a program specifies a virtual address range to map, and that address range overlaps
an existing virtual address range, the old overlapping areas will be unmapped. However,
a given Popcorn kernel instance might not know about all valid remote virtual address
ranges. Because it does not know about all mappings, it cannot be trusted to do distributed
munmap operations on the conflicting address ranges since it could miss virtual memory
areas that reside only on remote kernel instances. Popcorn deals with this case by carrying
out a distributed munmap operation on the entire target address range whenever a new
address range is created. This ensures that no remote kernel instances will contain conflicting
mappings.

An interesting corner case occurs when two or more kernel instances receive instruction from
a program to memory map a new virtual memory area without a specific address supplied.
In this case, each kernel instance must select a virtual address range to memory map to. It
is possible in this case that both kernel instances will select the same address range. This
creates an inconsistent state, since two local VMAs will now exist in the same region of the
distributed address space. In order to deal with this corner case, Popcorn takes special action
when a memory map operation is invoked and an address is not specified. After selecting the
address to mmap, the kernel instances fetches all remote mappings for the selected address
range. If any are found to conflict, a new address is selected. This process is repeated
until an unused address range is selected. This operation is done atomically using the same
Lamport’s distributed mutual exclusion algorithm described above. This ensures that these
fetch actions do not conflict with fetches triggered by either local or remote page faults. See
Figure 5.12 for a flow chart of the Popcorn mmap procedure.

5.7.6 Mapping Prefetch

There is non-trivial overhead associated with mapping retrieval. Because of this, mapping
prefetch was implemented in an attempt to reduce the number of mapping retrievals that
must be done to satisfy a workload. The message that carries mapping responses was ex-
tended to include a configurable number of prefetch slots. Each prefetch slot contains:
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• Starting virtual address (vaddr start)

• Starting physical address (paddr start)

• Size of contiguously mapped region (sz)

Each prefetch slot describes sz / PAGE SIZE pages of memory in which the virtual addresses,
starting at vaddr start, are mapped to physical pages that start at paddr start, and both
increase contiguously. By describing mappings in this way, large quantities of mappings can
be described in a compressed format.

When the mapping retrieval request comes in, the receiving kernel instances searches for
a mapping for the faulting address. If a VMA is present for the mapping, the contiguous
mapping regions including and surrounding the faulting address in the same VMA are ex-
tracted from the memory map and placed in prefetch slots. Popcorn tries to fit as many
mappings into each response as there are slots in the prefetch message. If there are not
enough mappings in the VMA to fill the slots, the remaining slots are left empty.

When mapping responses are received on the kernel instance that initiated the mapping
retrieval, it installs the prefetched mappings. The mapping that was originally asked for is
included in a prefetch slot.

This work is done while the Lamport lock is held for the faulting address. It is not necessary
to lock the prefetched pages because those pages are guaranteed not to change during this
operation. This guarantee comes from the fact that mmap, mprotect, munmap, and mremap
operations can never occur during a mapping retrieval.



Chapter 6

Results

Five macro benchmarks were used to demonstrate the correctness of the Popcorn task mi-
gration and address space consistency algorithms, as well as to show performance under
different types of workloads. The results are used to draw conclusions about which aspects
of Popcorn task migration and address space consistency perform well, and which can be im-
proved. For each of the macro benchmarks that were measured, the results are preceded by
a detailed description of how the workload functions: what types of page fetches it performs,
how many task migrations it performs, etc. This information is critical to the analysis, as
different types of workload behaviors result in different overheads.

Results for some of the benchmarks are also presented for Barrelfish. The Barrelfish source
which was taken from the Barrelfish repository. The change set that was used was 1298:12e657e0ed48
from hg.barrelfish.org, which was committed on March 22, 2013. The Barrelfish team was
consulted to understand the overhead, but there was not enough time to analyze the source
and fully understand the overheads before this material was due for presentation.

All Popcorn Linux, SMP Linux, and Barrelfish results were collected on a homogeneous x86
64bit, 64 core, 4x AMD Opteron 6274 running at 1.4GHz with 128 GB RAM.

In order to understand the cause of the differences between Popcorn and SMP Linux per-
formance, measurements from the perf tool are provided for each workload which show the
overhead contributions from the most significant sources of overhead. Because a distributed
perf tool does not exist to provide this kind of measurement in Popcorn across kernel in-
stances, only the main thread was measured for both Popcorn and SMP Linux. This ensures
that fair comparisons are made between the two platforms. Note that this does not reduce
the trustworthiness of the analysis because the applications are structured such that the
main thread acts as a master and incurs most of the costs, as is typical of OpenMP appli-
cations. The perf tool is configured to sample at a rate of 4KHz. These measurements are
not intended to be used to predict benchmark results, because they capture only the main
thread. Rather, these measurements provide insight into which overhead components are

53
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removed by Popcorn from SMP, and which are added by Popcorn on top of SMP.

All benchmark measurements are provided in Time Stamp Counter (TSC) units except where
otherwise noted. A TSC corresponds to a single clock cycle. Results are presented in this
unit of time to remove CPU frequency from the measurements.

Each of the benchmark workloads was adapted to Popcorn to make use of the custom thread-
ing library that is used in the Popcorn user space, cthread. Cthread was developed by Anto-
nio Barbalace to replace the pthread library. Pthread is not currently supported in Popcorn
due to the lack of distributed futex functionality.

6.1 Microbenchmarks

6.1.1 Mechanism Costs

A microbenchmark application was written to measure the amount of time needed to do task
migration, address space migration, and task life cycle maintenance. The amount of time for
each operation was measured in kernel mode, then averaged. The measurements are provided
below. This microbenchmark application was designed to be lightweight. The numbers are
likely to change under heavier load. One operation that will experience significant perfor-
mance variability as load changes is Lamport lock acquisition. Lamport lock acquisition time
will vary from application to application, and execution to execution, since lock acquisition
interleavings and contention will vary. Regardless, the microbenchmark numbers, presented
in Table 6.1, are useful for providing an understanding of the magnitude of work associated
with each operation, and that understanding can then be applied when analyzing the macro
benchmark results that are provided in later sections.

Table 6.1: Microbenchmark results

Procedure Measured Average Time (TSC)
Importing a migrated task,
including first mapping re-
trieval

188902

Distributed task exit 134859
Distributed group exit 6223
Distributed mprotect 40598
Break COW page 18836
Counting remote thread
group members

237263

Waiting for Lamport Lock 27777
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6.1.2 Task Migration Measurement

To measure task migration times, a microbenchmark application was written which performs
two migrations. During each migration, it reads the TSC immediately before, and immedi-
ately after the migration, subtracting the two to arrive at the total migration time. The first
migration moves the process to a remote kernel instance. The second migration moves the
process back to its original kernel instance. The Popcorn migration mechanism is different
for moves to new kernel instances than it is for moves to kernel instances on which a task
has already executed. The number of active kernel instances was varied to see the effect of
added messaging associated with page retrievals that occur prior to the TSC read operation
immediately after the migration. The results of these measurements are shown in Figure 6.1,
and are compared to similar measurements taken on SMP Linux.

Figure 6.1: Migration time measurements comparing SMP to Popcorn Linux

These measurements show that it takes significantly longer to migrate to a new kernel in-
stance than it does to migrate back to a previous kernel instance. This is due to the optimiza-
tions that were discussed in 5.6.2. SMP Linux clearly outperforms Popcorn task migrations.
This is due to the fact that it does not need to use any messaging to communicate the task’s
state, or migrate any pages.
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6.2 IS-POMP

The is-pomp workload is a parallel integer sorting benchmark designed to test random mem-
ory access. Is-pomp is a Popcorn adaptation of the is-omp workload designed by NASA in
the NAS Parallel Benchmark suite[2]. The following section describes the is-pomp workload
in order to give the reader an understanding of what aspects of Popcorn this benchmark
exercises most. Once the workload profile is explained, the is-pomp Popcorn results are pre-
sented. Popcorn performance is also contrasted with the performance of the same workload
on both SMP Linux, and Barrelfish OS.

6.2.1 IS-POMP Workload Profile

The is-pomp workload can be run across as many kernel instances as are present. When
the is-pomp program is invoked, the number of kernel instances to use are specified as a
command-line argument. The is-pomp workload performs two task migrations for every
kernel instances that is used beyond the first kernel instance. If only one kernel instance is
used, no task migrations occur, and all processing is done in the kernel instance on which
the program was invoked. The number of migrations for an invocation of is-pomp involving
N kernel instances is therefore 2(N-1).

Figure 6.2 shows the frequency of various significant events as the workload is executed
on a varying number of kernel instances. The event types were chosen to show overhead
specific to features added to the Linux kernel by Popcorn for task migration and address
space maintenance. To better understand the events shown in Figure 6.2 and the others in
this section, please see 5.7. The is-pomp workload Popcorn overhead is dominated by fault-
triggered page fetches which resulted in the retrieval of pages that are file-backed with no
PTEs already mapped. This event type is a result of a large file-back memory map operation
taking place in user space. The frequency of this event type increases linearly as the number
of kernel instances involved in the program’s execution increases.



David G. Katz Chapter 6. Results 57

Figure 6.2: IS Workload Event Totals With 1 Prefetch Slot

Figure 6.3 shows details on how the totals shown above break down per kernel instance for
the specific case where 16 kernel instances are involved. 16 kernel instances was picked be-
cause there are enough kernel instances to show trends. This graph shows that the number
of mapping retrievals resulting in file backed mappings with no mapped PTE are distributed
evenly across all kernel instances except kernel instance 0, on which the program was initi-
ated. This even distribution is the reason why the number of fetches of that type increase
linearly as the number of kernel instances increase, as shown above.
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Figure 6.3: IS Workload profile with 16 kernel instances with 1 prefetch slot

Table 6.2: IS-POMP fault processing times by kernel instance with 1 prefetch slot

CPU Count Max Min Average
0 1366 25559213 62987 437269
1 1653 25625055 77537 433763
2 1631 25626566 79990 527377
3 1628 25580568 78731 572261
4 1596 25545524 79659 573213
5 1599 25550431 79642 600962
6 1607 25614348 69762 546000
7 1598 25583859 93462 535940
8 1591 25610945 75730 539804
9 1589 25587815 89118 590323
10 1582 26388953 100556 571942
11 1576 21782294 68154 569573
12 1575 26367835 98208 566079
13 1572 25614954 95966 539351
14 1573 25622960 92131 555915
15 1570 22835949 79840 534643

The following figures show how this workload responds to increasing the amount of prefetch
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that is performed during each mapping retrieval. 4 prefetch slot and 8 prefetch slot profiles
are shown in these graphs, as opposed to the single prefetch slot that is shown above. Because
the is-pomp workload is dominated by mapping retrievals that do not result in successfully
matching virtual address to physical addresses, no noticeable workload profile changes are
seen between prefetch amounts.

Figure 6.4: IS Workload Event Totals With 4 Prefetch Slots
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Figure 6.5: IS Workload profile with 16 kernel instances with 4 prefetch slots

While the number of fetches is not affected by increasing amounts of prefetch in this workload,
the amount of time needed to do a fetch does increase as the degree of prefetch increases.
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Table 6.3: IS-POMP fault processing times by kernel instance with 4 prefetch slots

CPU Count Max Min Average
0 1154 26624037 61875 618130
1 1589 15476044 90038 500245
2 1590 21908451 82225 640926
3 1582 21790102 107693 553513
4 1576 21738265 80272 552982
5 1574 21787306 106370 543577
6 1575 23985382 77397 555094
7 1567 23973831 93388 573548
8 1567 23976857 74239 591407
9 1565 22158828 91458 593803
10 1563 21886493 95292 543085
11 1567 24505192 83729 592357
12 1561 21979086 98417 591262
13 1560 21796833 86316 503128
14 1561 21840309 105135 522660
15 1560 21847817 75730 556105

Figure 6.6: IS Workload Event Totals With 8 Prefetch Slots
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Figure 6.7: IS Workload profile with 16 kernel instances with 8 prefetch slots

Table 6.4: IS-POMP fault processing times by kernel instance with 8 prefetch slots

CPU Count Max Min Average
0 1124 33653767 62386 639072
1 1566 26737716 96095 532637
2 1564 27018274 105415 628215
3 1564 27169978 84919 611558
4 1562 21847199 93059 646780
5 1560 21926538 101758 592536
6 1560 26794655 81768 593831
7 1561 27126825 104038 615748
8 1563 28965564 74164 701775
9 1558 27109819 73808 751314
10 1557 27201521 83367 633790
11 1559 26670385 85449 660100
12 1558 26732041 90229 620883
13 1557 26739241 101290 540090
14 1557 26722496 76161 705805
15 1554 21923298 80811 568412

In order to understand how much of the Popcorn overhead was due to the Popcorn message
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passing layer, the total time spent messaging during a mapping retrieval was measured. This
measurement does not include the Lamport lock acquisition and release since that time is
variable based on whether or not the lock is already held by another kernel instance, and
could drastically skew the result. The message transit times were arrived at by measuring
the time before a message was sent, and then again after it arrived. This was done in both
directions, once for the request, and once again for the response. By measuring twice, once
in each direction, any TSC drift is eliminated from the total. The transit measurement is
compared to the total time needed to carry out a mapping fetch to arrive at a messaging
overhead. For the average is-pomp execution involving 2 kernels, the messaging overhead is
40%, 38%, and 40% for 1 prefetch slot, 4 prefetch slots, and 8 prefetch slots respectively.
This percentage decreases slightly due to the increased overhead associated with looking up
mappings, and then installing them at their destination.

Table 6.5: IS-POMP 2 Mapping Retrieval Message Transport Times

1 Prefetch Slot 4 Prefetch Slots 8 Prefetch Slots
Avg Mapping Fetch Processing
(TSC)

42011 43432 42872

Total Message Transit (TSC) 17184 16841 17504
Amount Of Mapping Fetch Pro-
cessing Waiting For Msg Transit
(%)

40.90 38.77 40.82

The perf tool was used to understand which overhead components were most significant in
both SMP Linux and Popcorn, and see which ones increased and decreased between the two
platforms. These measurements were taken on the main thread of the workload. The greatest
kernel-mode overhead contributors are shown graphed below, as well as the remaining kernel-
mode overhead, and the breakdown of time spent in user-mode versus kernel-mode.
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Figure 6.8: Perf Measurement for IS-POMP Workload on SMP Linux

Figure 6.9: Perf Measurement for IS-POMP Workload on SMP Linux - User vs Kernel
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Figure 6.10: Perf Measurement for IS-POMP Workload on Popcorn

Figure 6.11: Perf Measurement for IS-POMP Workload on Popcorn - User vs Kernel

SMP Kernel overhead is increasingly dominated by time spent in pagevec lru move fn. This
function is called during the page mapping process. That function creates significant over-
head due to contention for a spin lock. As the number of cores contending for that spin
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lock increase, contention also increases. The other significant source of overhead is the
clear page c function, which zeros out the contents of a page. This function is also part of
the memory management subsystem. Its overhead remains relatively constant and signifi-
cant as the number of CPUS in use increase. While these sources of overhead are still present
in the Popcorn overhead, they are hugely reduced in magnitude due to memory subsystem
decoupling and are not nearly as significant. The Popcorn overhead is instead dominated
by pcn kmsg send. This function handles sending messages in Popcorn, and has already
been flagged as a primary source of overhead.

6.2.2 IS-POMP Results

Popcorn Linux outperforms competing projects on the is-pomp workload. The removal of
the necessity to access shared memory resources for scheduling and other purposes allows
Popcorn to realize performance gains on this workload that outweigh the overhead introduced
by Popcorn’s task and address space migration and consistency algorithms.

Figure 6.12: is-pomp results varying involved kernel instances with 1 prefetch slot

Prefetch has negligible effect on the is-pomp workload due to the fact that the Popcorn
overhead is hugely dominated by mapping retrieval attempts that fail to return existing
physical to virtual address mappings. This is to be expected in workloads that have many
tasks that do not share many pages such as the is-pomp workload. Prefetch is more useful
in cases where there are virtual to physical mappings to retrieve, and those mappings will
subsequently be used therefore removing faults from the workloads execution. While the
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average time necessary to retrieve a mapping increases with greater amounts of prefetch, the
overall results do not show significant degradation since the duration of the is-pomp process
is many orders of magnitude greater than the total mapping fetch overhead.

Figure 6.13: is-pomp results varying involved kernel instances with 4 prefetch slots

Figure 6.14: is-pomp results varying involved kernel instances with 8 prefetch slot
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Figure 6.15: is-pomp results varying kernel instances involved

The Popcorn results indicate improved scaling over both SMP Linux and Barrelfish OS for
the IS-POMP workload over the first 32 kernel instances. This indicates that the overhead
that was removed from SMP Linux in the form of spin lock contention exceeds the overhead
that was added to implement mapping replication and other Popcorn features.

6.3 FT-POMP

The ft-pomp workload is a parallel discrete 3D fast Fourier Transform benchmark designed to
test all to all communications between computing nodes. Ft-pomp is a Popcorn adaptation
of the ft-omp workload designed by NASA. The following section describes the ft-pomp
workload in order to give the reader an understanding of what aspects of Popcorn this
benchmark exercises most. Once the workload profile is explained, the ft-pomp Popcorn
results are presented and are then explained. Popcorn performance is also contrasted with
the performance of the same workload on SMP Linux.

6.3.1 FT-POMP Workload Profile

The ft-pomp workload can be run across as many kernel instances as are present. When
the ft-pomp program is invoked, the number of kernel instances to use are specified as a
command-line argument. The ft-pomp workload performs two task migrations for every
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kernel instance that is used beyond the first kernel instance. If only one kernel instance is
used, no task migrations occur, and all processing is done in the kernel instance on which
the program was invoked. The number of migrations for an invocation of ft-pomp involving
N kernel instances is therefore 2(N-1).

Figure 6.16 shows the frequency of various significant events as the workload is executed on
a varying number of kernel instances. The event types were chosen to show overhead specific
to features introduced to the Linux kernel by Popcorn for task migration and address space
maintenance. At low numbers of involved kernels, the Popcorn overhead is dominated by
mapping fetches that result in the retrieval of pages that are file-backed with no PTEs already
mapped. This is the result of a large file-backed memory map operation that takes place
in user space. The frequency of this type of event reduces slightly as more kernel instances
are introduced. As the number of kernel instances involved increases, increasing amounts
of Popcorn overhead is introduced involving retrieval of file-backed mappings that already
have PTEs. At approximately 8 kernel instances, the number of retrievals of mappings with
PTEs outnumber the number of mappings without PTEs.

Figure 6.16: FT Workload Event Totals With 1 Prefetch Slot

Figure 6.17 shows details on how the totals shown above break down per kernel instance
for the specific case where 16 kernel instances are involved. This graph shows that the
vast majority of mapping retrievals for which no PTE was found are concentrated on the
originating kernel instance, kernel instance 0. A small but constant number are found on
all other kernel instances involved. It also shows that the number of file-backed mappings
with PTEs are constant across all kernel instances except the originating kernel instance.
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The constant number of retrievals of this type explains its increasing dominance in seen in
Figure 6.16.

Figure 6.17: FT Workload profile with 16 kernel instances with 1 prefetch slot
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Table 6.6: FT-POMP fault processing times by kernel instance with 1 prefetch slot

CPU Count Max Min Average
0 45362 37035267 61783 215503
1 14509 24067468 50823 211946
2 14510 26124144 63208 238298
3 14517 22030107 63357 234813
4 14512 21720829 66053 236779
5 14509 26096374 62088 230393
6 14511 21861133 64916 235760
7 14518 26133684 68246 240183
8 14509 26201378 69235 239949
9 14508 22387097 70389 341393
10 14512 23900163 70386 235812
11 14511 23913635 70194 244110
12 14513 23896782 66617 237022
13 14510 24002677 68510 233996
14 14513 24009707 69174 229707
15 14511 21902086 61259 224929

The following figures show how this workload responds to increasing the amount of prefetch
that is performed during each mapping retrieval. 4 prefetch slot and 8 prefetch slot profiles
are shown in these graphs, as opposed to the single prefetch slot that is shown above. Because
the ft-pomp workload requires the retrieval of already existing file-backed mappings with
mapped PTEs, this workload profile does change visibly. Comparing the 4 and 8 prefetch
slot graphs with the 1 prefetch slot, it is clear that the number of fetches for mapping with
PTEs decreases drastically with increased prefetch. This is consistent with the observation
that many prefetch operations will retrieve mappings that will subsequently be used by
the retrieving kernel instance. When this happens, it is saved the effort of faulting and
performing another mapping retrieval operation.



David G. Katz Chapter 6. Results 72

Figure 6.18: FT Workload Event Totals With 4 Prefetch Slots

Figure 6.19: FT Workload profile with 16 kernel instances with 4 prefetch slots

As the amount of prefetch increases, the number of fetches decreases. This is because many
of the mapping retrievals that are done result in those with PTEs. So the prefetched PTEs
reduces the quantity of faults that occur. However, while the number of fetches decreases,
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the amount of time required to perform the fetch increases.

Table 6.7: FT-POMP fault processing times by kernel instance with 4 prefetch slots

CPU Count Max Min Average
0 44146 242362499 62593 312592
1 11176 119324934 59473 487471
2 11146 121340628 62505 449252
3 11145 156467668 62101 494811
4 11178 243830341 70759 629325
5 11174 236680246 71869 666358
6 11176 120573366 58972 481549
7 11302 277380376 75708 1147431
8 11176 117630478 68216 512174
9 11148 52094917 58356 465855
10 11180 165076351 66035 522691
11 11151 157490307 65333 490592
12 11149 156527804 63694 468820
13 11148 71723982 70327 457169
14 11145 41434740 67006 445696
15 11143 40331105 70866 445610

Figure 6.20: FT Workload Event Totals With 8 Prefetch Slots
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Figure 6.21: FT Workload profile with 16 kernel instances with 8 prefetch slots

Table 6.8: FT-POMP fault processing times by kernel instance with 8 prefetch slots

CPU Count Max Min Average
0 45297 241161885 62222 370667
1 11932 592186802 61734 544270
2 12035 156764226 67403 514542
3 12028 242229984 73296 597751
4 11905 152836356 71318 490511
5 11897 107426744 62665 482112
6 11900 104845746 66263 502926
7 11897 202402926 64300 556359
8 11900 159180796 61150 508056
9 12034 362408620 75870 1031641
10 12154 283801594 69753 1156403
11 11902 67254063 71068 477047
12 11902 117274695 75021 515296
13 11904 88057942 66813 494977
14 11897 76603845 77661 485151
15 12025 321979307 74999 628735

For the average ft-pomp execution involving 2 kernels, the messaging overhead is 45%, 30%,
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and 31% for 1 prefetch slot, 4 prefetch slots, and 8 prefetch slots respectively. This percentage
decreases due to the increased overhead associated with looking up mappings, and then
installing them at their destination.

Table 6.9: FT-POMP 2 Mapping Retrieval Message Transport Times

1 Prefetch Slot 4 Prefetch Slots 8 Prefetch Slots
Avg Mapping Fetch Processing
(TSC)

40690 73068 64785

Total Message Transit (TSC) 18529 22056 20185
Amount Of Mapping Fetch Pro-
cessing Waiting For Msg Transit
(%)

45.53 30.18 31.15

The perf tool was used to understand which overhead components were most significant in
both SMP Linux and Popcorn, and see which ones increased and decreased between the two
platforms. These measurements were taken on the main thread of the workload. The greatest
kernel-mode overhead contributors are shown graphed below, as well as the remaining kernel-
mode overhead, and the breakdown of time spent in user-mode versus kernel-mode.

Figure 6.22: Perf Measurement for FT-POMP Workload on SMP Linux
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Figure 6.23: Perf Measurement for FT-POMP Workload on SMP Linux - User vs Kernel

Figure 6.24: Perf Measurement for FT-POMP Workload on Popcorn
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Figure 6.25: Perf Measurement for FT-POMP Workload on Popcorn - User vs Kernel

SMP Kernel overhead is increasingly dominated by time spent in handle pte fault. This
function is called during the page mapping process. That function creates significant over-
head due to contention for a spin lock. As the number of cores contending for that spin lock
increase, contention also increases. Like IS, the other source of contention is the clear page c
function. These functions are still sources of overhead in Popcorn, but they fall out of the list
of most significant overhead contributors, being replaced by pcn kmsg send, and schedule.
The send function, is part of Popcorn’s transport layer. Schedule becomes significant due to
the fact that while a kernel instance is waiting for a response from a remote kernel instance,
it waits by scheduling. If there are other tasks to process during that time, they will execute.
If not, control will be returned back to the waiting task where another scheduler invocation
may occur. In Popcorn, so much time is spent waiting on responses and sending requests,
that eventually that time overtakes the time spent in user space on the main thread.

6.3.2 FT-POMP Results

Of all the workloads, ft-pomp has both the highest fault retrieval requirements, and the
longest duration in time. Popcorn Linux is able to keep up with SMP Linux. When prefetch
is increased from 1 slot to 4 and 8 slots, Popcorn performance surpasses SMP Linux between
the times where 10 and 18 kernel instances are involved in the workload processing. Before
that time and after, SMP Linux outperforms Popcorn Linux.
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Figure 6.26: ft-pomp results varying involved kernel instances with 1 prefetch slot

Figure 6.27: ft-pomp results varying involved kernel instances with 4 prefetch slots
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Figure 6.28: ft-pomp results varying involved kernel instances with 8 prefetch slot

Figure 6.29: ft-pomp results varying kernel instances involved

SMP Linux scales better than Popcorn as the number of kernel instances increase to 32 for
the FT-POMP workload, except a period between 10 kernel instances and 18 kernel instances
when higher prefetch is used. This indicates that Popcorn’s high messaging and message
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processing costs ware too significant to be overcome by the removal of the SMP memory
subsystem spin lock contention such as the one found in handle pte fault.

6.4 CG-POMP

The cg-pomp workload is a parallel conjugate gradient benchmark designed to test irregular
memory access. Cg-pomp is a Popcorn adaptation of the cg-omp workload designed by
NASA. The following section describes the cg-pomp workload in order to give the reader an
understanding of what aspects of Popcorn this benchmark exercises most. Once the workload
profile is explained, the cg-pomp Popcorn results are presented and are then explained.
Popcorn performance is also contrasted with the performance of the same workload on SMP
Linux, and Barrelfish OS.

6.4.1 CG-POMP Workload Profile

The cg-pomp workload can be run across as many kernel instances as are present. When
the cg-pomp program is invoked, the number of kernel instances to use are specified as a
command-line argument. The cg-pomp workload performs five task migrations for every
kernel instance that is used beyond the first kernel instance. If only one kernel instance is
used, no task migrations occur, and all processing is done in the kernel instance on which
the program was invoked. The number of migrations for an invocation of cg-pomp involving
N kernel instances is therefore 5(N-1).

Figure 6.30 shows the frequency of various significant events as the workload is executed on
a varying number of kernel instances. The event types were chosen to show overhead spe-
cific to features introduced to the Linux kernel by Popcorn for task migration and address
space maintenance. The Popcorn overhead is again dominated by the retrieval of file-backed
mappings without assigned PTEs. Retrievals of file-backed mappings with PTEs are fewer,
though still sizable, and become more predominant as the number of kernels involved in-
crease.
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Figure 6.30: CG Workload Event Totals With 1 Prefetch Slot

Figure 6.31 shows details on how the totals shown above break down per kernel instance for
the specific case where 16 kernel instances are involved. This graph shows that all file-backed
mapping retrievals resulting in no PTEs are concentrated on same kernel instance, where
the program was invoked - kernel instance 0. The mapping retrievals that result in PTEs
are few and spread evenly across the remaining kernel instances.
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Figure 6.31: CG Workload profile with 16 kernel instances with 1 prefetch slot

Table 6.10: CG-POMP fault processing times by kernel instance with 1 prefetch slot

CPU Count Max Min Average
0 14198 20693485 61217 72295
1 455 15709167 64430 622207
2 452 22071285 79570 943404
3 454 21825769 67607 885948
4 448 21706031 77262 795119
5 444 21838690 76625 861511
6 453 21917321 72825 773319
7 449 35763869 80860 1068730
8 453 21831829 67679 720923
9 455 21914191 81722 936710
10 451 22342296 77688 761581
11 456 21792512 66393 806685
12 453 21760444 71150 634628
13 451 21906196 62413 786522
14 450 21793997 79600 681191
15 445 21850220 76877 730262

The following figures show how this workload responds to increasing the amount of prefetch
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that is performed during each mapping retrieval. 4 prefetch slot and 8 prefetch slot profiles
are shown in these graphs, as opposed to the single prefetch slot that is shown above. As the
amount of prefetch is increased, the number of faults that result in the migration of existing
PTEs decreases, as expected. Also as expected, the number of faults resulting in responses
indicating no PTE is not affected as prefetch increases.

Figure 6.32: CG Workload Event Totals With 4 Prefetch Slots
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Figure 6.33: CG Workload profile with 16 kernel instances with 4 prefetch slots

As seen in previous workloads, as the number of fetches decreases, the amount of time
required to perform the fetch increases.
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Table 6.11: CG-POMP fault processing times by kernel instance with 4 prefetch slots

CPU Count Max Min Average
0 14157 11909728 61698 75076
1 164 22419820 76808 802292
2 164 31230796 83175 1009647
3 161 22693753 98780 928712
4 162 22317714 87423 964857
5 158 16022599 90936 682330
6 160 22363001 88248 1012737
7 159 22334320 101406 1151013
8 170 20266322 75444 829762
9 157 22318944 89587 1355735
10 166 23170570 81430 1393219
11 159 23128337 76181 1095501
12 159 20115246 64675 1243417
13 155 28435287 100816 1387345
14 159 12583480 104096 759596
15 159 28354020 78326 1166056

Figure 6.34: CG Workload Event Totals With 8 Prefetch Slots
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Figure 6.35: CG Workload profile with 16 kernel instances with 8 prefetch slots

Table 6.12: CG-POMP fault processing times by kernel instance with 8 prefetch slots

CPU Count Max Min Average
0 14151 13470976 61442 81150
1 110 18166532 87343 963320
2 111 21722208 101956 1198140
3 108 21864295 109687 1360902
4 109 21853583 100993 1497228
5 103 21738681 94278 1170927
6 111 21893953 95621 1747774
7 109 33172637 91359 2035906
8 110 24667779 91913 1734664
9 111 23223111 103707 1951710
10 112 22609703 75427 1605889
11 112 22171975 126986 1908350
12 105 21904695 106484 1564267
13 104 25131773 113929 2348502
14 108 22169115 90320 1641559
15 107 21847412 96262 1790908

For the average cg-pomp execution involving 2 kernels, the messaging overhead is 59%,
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47%, and 40% for 1 prefetch slot, 4 prefetch slots, and 8 prefetch slots respectively. This
percentage decreases due to the increased overhead associated with looking up mappings,
and then installing them at their destination.

Table 6.13: CG-POMP 2 Mapping Retrieval Message Transport Times

1 Prefetch Slot 4 Prefetch Slots 8 Prefetch Slots
Avg Mapping Fetch Processing
(TSC)

34269 46800 56051

Total Message Transit (TSC) 20477 22299 22673
Amount Of Mapping Fetch Pro-
cessing Waiting For Msg Transit
(%)

59.75 47.64 40.45

The perf tool was used to understand which overhead components were most significant in
both SMP Linux and Popcorn, and see which ones increased and decreased between the two
platforms. These measurements were taken on the main thread of the workload. The greatest
kernel-mode overhead contributors are shown graphed below, as well as the remaining kernel-
mode overhead, and the breakdown of time spent in user-mode versus kernel-mode.

Figure 6.36: Perf Measurement for CG-POMP Workload on SMP Linux
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Figure 6.37: Perf Measurement for CG-POMP Workload on SMP Linux - User vs Kernel

Figure 6.38: Perf Measurement for CG-POMP Workload on Popcorn
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Figure 6.39: Perf Measurement for CG-POMP Workload on Popcorn - User vs Kernel

SMP Kernel overhead is very modest when running the CG workload, being dominated
by clear page c. The Popcorn overhead is an order of magnitude higher, and like the pre-
vious Popcorn workloads is dominated by the transport. Both pcn kmsg send and de-
fault send IPI single phys are parts of the transport.

6.4.2 CG-POMP Results

Popcorn significantly under-performs both SMP Linux and Barrelfish OS when processing
the cg-pomp workload. While the Popcorn curve follows the SMP Linux and Barrelfish OS
curves, it has a positive offset and never catches up to the other operating systems. When
two kernel instances are involved, a large performance hit is taken as kernel instance 0 works
to allocate PTEs to its address space, since it so rarely receives any already mapped from
other kernel instances. As the number of kernel instances increases, the quantity of mapping
requests that result in no migrated PTEs made by kernel instance 0 stays constant, and so
the performance improves. The more kernel instances are introduced, the more compensation
there is for the large performance overhead that kernel instance 0 experiences, and the better
the performance becomes.
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Figure 6.40: cg-pomp results varying involved kernel instances with 1 prefetch slot

As more prefetch is introduced, no significant performance gain is made due to the fact that
the overhead is dominated by mapping retrievals that do not return a PTE, rather than
those that do.

Figure 6.41: cg-pomp results varying involved kernel instances with 4 prefetch slots
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Figure 6.42: cg-pomp results varying involved kernel instances with 8 prefetch slot

Figure 6.43: cg-pomp results varying kernel instances involved

SMP Linux scales significantly better than Popcorn as the number of kernel instances in-
creases to 32 for the CG-POMP workload. The messaging and message processing overhead
in Popcorn, when added to the other kernel overhead, exceeds that seen by the SMP Linux
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kernel by a significant amount. This is driven by the high number of mapping requests made
by kernel instance 0 that go unfulfilled by other kernel instances. The overhead of carrying
out mapping requests is not balanced in this case by any gain associated with prefetch, as
the number of remote mappings that can be used by kernel instance 0 is low. This is due
to a mapping that is created on kernel instance 0, and used there before any remote kernel
instances attempt to use them. When no remote kernel instances have any useful mapping
information, the process of asking for mappings is wasted overhead.

6.5 BFS-POMP

The bfs-pomp workload is a parallel breadth-first search benchmark which is a graph traversal
algorithm. Bfs-pomp is a Popcorn adaptation of the bfs benchmark, which is part of the
Rodinia benchmark suite created by UVA[9]. The following section describes the bfs-pomp
workload in order to give the reader an understanding of what aspects of Popcorn this
benchmark exercises most. Once the workload profile is explained, the bfs-pomp Popcorn
results are presented and are then explained. Popcorn performance is also contrasted with
the performance of the same workload on SMP Linux.

6.5.1 BFS-POMP Workload Profile

The bfs-pomp workload can be run across as many kernel instances as are present. When
the bfs-pomp program is invoked, the number of kernel instances to use are specified as a
command-line argument. The bfs-pomp workload performs twelve task migrations for every
kernel instance that is used beyond the first kernel instance. If only one kernel instance is
used, no task migrations occur, and all processing is done in the kernel instance on which
the program was invoked. The number of migrations for an invocation of bfs-pomp involving
N kernel instances is therefore 12(N-1).

Figure 6.44 shows the frequency of various significant events as the workload is executed
on a varying number of kernel instances. The event types were chosen to show overhead
specific to features introduced to the Linux kernel by Popcorn for task migration and address
space maintenance. Unlike the previously discussed workloads, the bfs-pomp workload is
dominated by mapping requests which result in PTE migrations. As the number of kernel
instances involved increases, the number of PTE migrations increase linearly.
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Figure 6.44: BFS Workload Event Totals With 1 Prefetch Slot

Figure 6.45 shows details on how the totals shown above break down per kernel instance for
the specific case where 16 kernel instances are involved. This graph shows that the kernel
instance 0 carries out many mapping retrievals that result in no PTEs. All other kernel
instances carry out mapping retrievals that result in PTEs. The mapping retrievals that
result in PTEs are evenly distributed among all kernel instances except kernel instance 0.
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Figure 6.45: BFS Workload profile with 16 kernel instances with 1 prefetch slot

Table 6.14: BFS-POMP fault processing times by kernel instance with 1 prefetch slot

CPU Count Max Min Average
0 555 1430116 62174 72500
1 637 15315540 67887 285273
2 645 22501263 67904 303022
3 644 21757580 73404 407314
4 622 21798227 74452 360564
5 620 21762228 67071 311614
6 622 22084614 66160 369392
7 646 21779514 72548 297099
8 618 21813152 74138 358634
9 614 21744817 79233 321122
10 621 21952181 75100 331833
11 610 21787420 74215 348708
12 605 21709240 73445 337438
13 605 21898420 65573 296301
14 604 21681258 63776 317591
15 594 21737072 73808 289928

The following figures show how this workload responds to increasing the amount of prefetch
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that is performed during each mapping retrieval. 4 prefetch slot and 8 prefetch slot profiles
are shown in these graphs, as opposed to the single prefetch slot that is shown above. As the
amount of prefetch is increased, the number of faults that result in the migration of existing
PTEs decreases, as expected.

Figure 6.46: BFS Workload Event Totals With 4 Prefetch Slots

Figure 6.47: BFS Workload profile with 16 kernel instances with 4 prefetch slots
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As seen in previous workloads, as the number of fetches decreases, the amount of time
required to perform the fetch increases.

Table 6.15: BFS-POMP fault processing times by kernel instance with 4 prefetch slots

CPU Count Max Min Average
0 585 1358963 61149 69216
1 286 3225015 75266 282655
2 283 21772173 59794 507529
3 290 21777983 59773 524717
4 283 21881838 72838 531752
5 275 21780315 72137 404212
6 277 21849965 65423 449015
7 276 23617408 72688 593903
8 283 21907721 63313 468906
9 282 21883568 68014 454746
10 294 21741568 87389 508279
11 286 21852833 72905 497617
12 265 21944816 96801 532710
13 272 22004636 70959 463033
14 250 22331895 68167 601189
15 264 21968214 70228 496077
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Figure 6.48: BFS Workload Event Totals With 8 Prefetch Slots

Figure 6.49: BFS Workload profile with 16 kernel instances with 8 prefetch slots
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Table 6.16: BFS-POMP fault processing times by kernel instance with 8 prefetch slots

CPU Count Max Min Average
0 589 18662535 62305 217223
1 187 15839354 83899 546764
2 189 21796486 74381 721281
3 194 22560140 79586 822958
4 185 21789739 82152 614287
5 180 22640701 79991 622517
6 198 21816329 75189 803328
7 191 23187410 100408 812674
8 191 22441040 85864 775074
9 189 34913270 86439 933293
10 195 21755263 87158 681693
11 193 22006642 71898 757791
12 179 22244748 84723 789394
13 196 22370964 84495 641291
14 176 21849980 71111 724050
15 175 22981367 87565 732787

For the average bfs-pomp execution involving 2 kernels, the messaging overhead is 48%,
30%, and 23% for 1 prefetch slot, 4 prefetch slots, and 8 prefetch slots respectively. This
percentage decreases due to the increased overhead associated with looking up mappings,
and then installing them at their destination.

Table 6.17: BFS-POMP 2 Mapping Retrieval Message Transport Times

1 Prefetch Slot 4 Prefetch Slots 8 Prefetch Slots
Avg Mapping Fetch Processing
(TSC)

41140 73191 96065

Total Message Transit (TSC) 19946 22207 22860
Amount Of Mapping Fetch Pro-
cessing Waiting For Msg Transit
(%)

48.48 30.34 23.79

The perf tool was used to understand which overhead components were most significant in
both SMP Linux and Popcorn, and see which ones increased and decreased between the two
platforms. These measurements were taken on the main thread of the workload. The greatest
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kernel-mode overhead contributors are shown graphed below, as well as the remaining kernel-
mode overhead, and the breakdown of time spent in user-mode versus kernel-mode.

Figure 6.50: Perf Measurement for BFS-POMP Workload on SMP Linux

Figure 6.51: Perf Measurement for BFS-POMP Workload on SMP Linux - User vs Kernel
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Figure 6.52: Perf Measurement for BFS-POMP Workload on Popcorn

Figure 6.53: Perf Measurement for BFS-POMP Workload on Popcorn - User vs Kernel

The most significant overhead component for SMP Linux is in the function copy user generic string,
which is a file I/O method. This shows up in the perf reading because the measurement is
taken on the main thread, and the main thread is responsible for reading the contents of
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the file that the BFS workload is processing. The next most significant overhead compo-
nent is in the function clear page c, as seen in the previous workloads. These functions are
still present in Popcorn, but are replaced in significance by pcn kmsg send. This, again, is
transport overhead becoming significant at higher kernel instance counts. This overhead is
very impactful, given the extremely short duration of the BFS workload.

6.5.2 BFS-POMP Results

Bfs-pomp is extremely interesting for a number of reasons. First, it takes nearly an order
of magnitude less time to complete on SMP Linux than any of the other benchmarks. Bfs-
pomp takes two orders of magnitude less time to complete on SMP Linux than ft-pomp
takes. Because of this, the Popcorn overhead is much more significant, and impacts the
workload much greater.

Figure 6.54: bfs-pomp results varying involved kernel instances with 1 prefetch slot

The second reason why bfs-pomp is very interesting is that it sees sizable performance
increase when using 4 prefetch slots. However, when using 8 prefetch slots, the performance
decreases again. This is due to the fact that Popcorn does not have time to make up for
the increase in fetch times because of the workloads short duration. This is an area where
further research can be invested. A few suggestions for potential ways to improve this type
of workload’s performance are in Chapter 8.
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Figure 6.55: bfs-pomp results varying involved kernel instances with 4 prefetch slots

Figure 6.56: bfs-pomp results varying involved kernel instances with 8 prefetch slot
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Figure 6.57: bfs-pomp results varying kernel instances involved

SMP Linux scales better than popcorn as the number of kernel instances increase to 32 for the
BFS-POMP workload. This is due to the fact that the BFS-POMP workload is so extremely
short in duration. Because of this fact, there is no time to make up the gains of the Popcorn
overhead in the form of reduced lock contention. However, prefetch is highly effective for
this workload, indicating a high degree of shared address space utilization between tasks in
the BFS-POMP workload.

6.6 LUD-POMP

The lud-pomp workload is a parallel algorithm for finding the solution to sets of linear
equations[9]. Lud-pomp is a Popcorn adaptation of the lud benchmark, which is part of
the Rodinia benchmark suite created by UVA. The following section describes the lud-pomp
workload in order to give the reader an understanding of what aspects of Popcorn this
benchmark exercises most. Once the workload profile is explained, the lud-pomp Popcorn
results are presented and are then explained. Popcorn performance is also contrasted with
the performance of the same workload on SMP Linux.
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6.6.1 LUD-POMP Workload Profile

The lud-pomp workload can be run across as many kernel instances as are present. When
the lud-pomp program is invoked, the number of kernel instances to use are specified as a
command-line argument. The lud-pomp workload performs one task migration for every
kernel instance that is used beyond the first kernel instance. If only one kernel instance is
used, no task migrations occur, and all processing is done in the kernel instance on which the
program was invoked. The number of migrations for an invocation of lud-pomp involving N
kernel instances is therefor N-1.

Figure 6.58 shows the frequency of various significant events as the workload is executed
on a varying number of kernel instances. The event types were chosen to show overhead
specific to features introduced to the Linux kernel by Popcorn for task migration and address
space maintenance. The lud-pomp workload is dominated by mapping fetch operations
that successfully result in PTE migrations for file-backed mappings. This type of mapping
increases linearly as the number of kernel instances involved increases. Unlike the bfs-pomp
workload, the number of file-backed mapping retrieval requests that do not result in PTEs
is very low.

Figure 6.58: LUD Workload Event Totals With 1 Prefetch Slot

Figure 6.59 shows details on how the totals shown above break down per kernel instance
for the specific case where 16 kernel instances are involved. This graph shows that every
kernel instance except kernel instance zero carries out roughly the same number of mapping
retrievals.
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Figure 6.59: LUD Workload profile with 16 kernel instances with 1 prefetch slot

Table 6.18: LUD-POMP fault processing times by kernel instance with 1 prefetch slot

CPU Count Max Min Average
0 5 83537 69006 73226
1 510 271248 87569 164164
2 511 22963559 85059 256236
3 512 21876390 86479 250133
4 510 23340779 82311 258211
5 510 22052418 81114 266245
6 518 22087033 69796 298354
7 510 25360665 84109 656402
8 515 21879733 79146 339143
9 510 21881530 84489 256790
10 511 21920684 78516 254421
11 509 21787193 81755 520815
12 510 21811266 70942 265816
13 509 22027128 70864 305288
14 512 21813274 66476 276120
15 511 21867902 69981 266958

The following figures show how this workload responds to increasing the amount of prefetch
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that is performed during each mapping retrieval. 4 prefetch slot and 8 prefetch slot profiles
are shown in these graphs, as opposed to the single prefetch slot that is shown above. The
lud-pomp workload is able to reduce its Popcorn overhead incredibly through the use of
prefetch. From 1 prefetch slot to 8 prefetch slots, the number of mapping retrievals is
reduced by two orders of magnitude.

Figure 6.60: LUD Workload Event Totals With 4 Prefetch Slots
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Figure 6.61: LUD Workload profile with 16 kernel instances with 4 prefetch slots

As seen in previous workloads, as the number of fetches decreases, the amount of time
required to perform the fetch increases.
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Table 6.19: LUD-POMP fault processing times by kernel instance with 4 prefetch slots

CPU Count Max Min Average
0 5 81462 68436 72479
1 197 11665721 100800 429260
2 199 22530198 83569 386719
3 199 23354606 78869 349165
4 200 22080164 88267 378972
5 199 21908814 89000 320799
6 199 21878606 92923 358102
7 200 23610670 93400 442670
8 202 21810233 102224 460314
9 199 22310014 77038 492384
10 199 21759317 98002 344797
11 198 21848277 89348 419660
12 199 22204938 92977 427373
13 198 21914290 77539 383379
14 198 21798637 82779 486387
15 200 21854477 96961 441179

Figure 6.62: LUD Workload Event Totals With 8 Prefetch Slots
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Figure 6.63: LUD Workload profile with 16 kernel instances with 8 prefetch slots

Table 6.20: LUD-POMP fault processing times by kernel instance with 8 prefetch slots

CPU Count Max Min Average
0 5 81284 67962 72879
1 78 9864214 129440 718704
2 82 21781131 125979 970687
3 81 21946207 121243 944141
4 82 22059629 119035 832517
5 81 21815207 110772 898268
6 81 21987477 98886 908398
7 82 24412068 134514 1188549
8 81 22261237 121301 918439
9 83 21775727 102335 1078789
10 80 22428139 124203 921261
11 81 21873153 143405 903863
12 81 22177350 119112 933536
13 80 22253744 135080 1204257
14 84 22884140 130555 1260517
15 81 22951512 124432 1094660

For the average lud-pomp execution involving 2 kernels, the messaging overhead is 51%,
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39%, and 28% for 1 prefetch slot, 4 prefetch slots, and 8 prefetch slots respectively. This
percentage decreases due to the increased overhead associated with looking up mappings,
and then installing them at their destination.

Table 6.21: LUD-POMP 2 Mapping Retrieval Message Transport Times

1 Prefetch Slot 4 Prefetch Slots 8 Prefetch Slots
Avg Mapping Fetch Processing
(TSC)

45266 58428 86505

Total Message Transit (TSC) 23280 23193 24476
Amount Of Mapping Fetch Pro-
cessing Waiting For Msg Transit
(%)

51.42 39.69 28.29

The perf tool was used to understand which overhead components were most significant in
both SMP Linux and Popcorn, and see which ones increased and decreased between the two
platforms. These measurements were taken on the main thread of the workload. The greatest
kernel-mode overhead contributors are shown graphed below, as well as the remaining kernel-
mode overhead, and the breakdown of time spent in user-mode versus kernel-mode.

Figure 6.64: Perf Measurement for LUD-POMP Workload on SMP Linux
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Figure 6.65: Perf Measurement for LUD-POMP Workload on SMP Linux - User vs Kernel

Figure 6.66: Perf Measurement for LUD-POMP Workload on Popcorn
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Figure 6.67: Perf Measurement for LUD-POMP Workload on Popcorn - User vs Kernel

The SMP LUD workload is increasingly dominated by time spent in a spin lock in han-
dle level irq, and apic timer interrupt, due to timer related APIC interrupt coupling between
SMP nodes. These types of overhead are not seen in significant amounts in Popcorn, but are
instead replaced in significance by messaging overhead that increases with kernel instance
count.

6.6.2 LUD-POMP Results

The Popcorn lud-pomp results track very closely with SMP Linux. The Popcorn overheads
are lost in the noise of this extremely long duration workload. Little appreciable performance
degradation or gain is apparent as a result of the sizable decrease in mapping retrieval
operations as prefetch is increased. This also is attributable to the very long duration of the
lud-pomp workload, which allows the decrease in scheduling overhead to compensate for the
task migration and address space consistency maintenance overhead. However, the trend
noted above with respect to increases in prefetch not always yielding performance gain is
visible in this workload. Figure 6.71 shows a direct comparison between all of the Popcorn
lud-pomp data. It indicates that when 4 prefetch slots are used, some gain is made over the
cases where 1 and 8 prefetch slots are used.
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Figure 6.68: lud-pomp results varying involved kernel instances with 1 prefetch slot

Figure 6.69: lud-pomp results varying involved kernel instances with 4 prefetch slots
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Figure 6.70: lud-pomp results varying involved kernel instances with 8 prefetch slot

Figure 6.71: lud-pomp results varying kernel instances involved

Popcorn scales better than SMP Linux for the first 22 kernel instances, but is then slightly
outpaced by SMP Linux through 32 kernel instances. The LUD-POMP workload is unique
in that it has relatively low mapping migration requirements, and yet the workload is of
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very long duration. Because of that, it is able to realize sizable gains as lock contention is
reduced relative to SMP Linux. However, the Popcorn messaging system scales poorly, and
as a result the high messaging cost exceeds the gains at higher kernel instance counts.

6.7 Benchmark Discussion

The benchmarks that were chosen for workloads demonstrated many aspects of this project,
and while performance is not the primary objective of this work, a number of interesting
performance related characteristics have emerged from their execution that will now be
discussed.

6.7.1 SMP Linux versus Popcorn Linux

Popcorn Linux is fundamentally different than SMP Linux in its processing profile. Popcorn
Linux has decoupled kernel instances, and therefore removes most of the contention for locks
within the memory management subsystem. SMP Linux, on the other hand must pay for
the lock contention since every CPU it uses must synchronize. In Popcorn, the effect of the
lack of contention in the memory subsystem battles the effect of the performance overhead
increase due to messaging, which is discussed in the following section.

6.7.2 Mapping Retrieval Overhead and Symmetry

The is-pomp, ft-pomp, and lud-pomp on Popcorn all performed very similarly to SMP Linux.
The bfs-pomp and cg-pomp workloads appear to display higher sensitivity to the Popcorn
overhead.

The cg-pomp workload is limited by the huge asymmetry in its mapping fetch overhead.
In that workload, kernel instance 0 is a processing bottleneck. It is responsible for loading
the vast majority of pages from disk, where all other kernel instances load only a few.
The pages that the other kernel instances work on are migrated from kernel instance 0.
Kernel instance 0 spends much of its time asking other kernel instances if they have pages
for file backed mappings, receiving negative responses, and then loading those pages from
disk. Additionally, because cg-pomp is overwhelmingly dominated by mapping requests
that receive negative responses, much of the work that is done by popcorn to acquire locks
and carry out queries is wasted. Removing this unnecessary overhead is difficult because
no mechanism exists for determining whether other kernel instances have mapped regions
without querying them each time.

The bfs-pomp workload suffers from the same problem seen in cg-pomp in that many map-
ping queries result in negative results. This problem is greatly exacerbated by the fact
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that its execution has an extremely short duration in time. It makes sense to compare the
bfs-pomp workload with the lud-pomp workload, since its fetch profile is very similar, be-
ing dominated by file-backed page migrations accompanied by PTEs. What sets those two
benchmark workloads apart is that it takes nearly 3 orders of magnitude less time to execute
bfs-pomp on SMP Linux than it does to execute lud-pomp on SMP Linux. While the dura-
tion of the workload is decreased by orders of magnitude, the number of total faults observed
in Popcorn is decreased by only half between lud-pomp and bfs-pomp. This means that the
Popcorn overhead is significantly more pronounced, and that is seen in the bfs-pomp result
graphs. This implies a link between execution time of a workload, the number of mapping
fetches that are required to support it, and performance.

6.7.3 Prefetch

It was assumed at the beginning of this effort that prefetch would have a profound effect on
workload performance for workloads that share many pages among thread group members.
This was true to an extent. All workloads that shared many pages among thread group
members did experience drastic reductions in the number of page retrievals as the amount
of prefetch increased. This is due to the fact that increased prefetch obviated the need
to perform many future retrievals, since faults for the prefetched memory areas no longer
occurred. However, this only had very significant effects on the overall performance of
benchmark workloads, such as bfs-pomp, that are short in duration. Workloads that are
longer in duration did not show great variation due to prefetch, as in those other workloads,
the Popcorn overhead did not dominate over the nominal benchmark processing as it did in
bfs-pomp.

Another very interesting characteristic of the prefetch results is that a linear increase in
prefetch amounts does not yield a linear improvement in workload performance. This is
attributable to a number of effects. As prefetch increases, the number of faults that must
be serviced decreases. This is a gain for the system, since there is work associated with the
mapping retrievals that are triggered by faults. However, there are forces that work counter
to this positive effect at the same time. As prefetch increases, the amount of time spent by
a kernel instance responding to a mapping retrieval request to fill prefetch slots increases as
well. This takes time. Additionally, as more prefetch information is provided to a querying
kernel instance, the amount of time that is needs to install the prefetched mappings increases
as well. Lastly, as the amount of prefetch increases, the size of the messages increases as
well. Due to the method that the Popcorn messaging layer uses to chunk large messages,
this increases the amount of time necessary to transport the mapping response messages,
which carry the prefetch data.
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6.7.4 Transport Speed

A lot of work must be done by Popcorn in order to maintain a consistent address space
across a distributed thread group. Most of the overhead introduced by this is in the form
of performing mapping fetches. These fetch actions are comprised of first acquiring the
Lamport lock, performing the fetch, then releasing the lock. This requires 5(N-1) messages,
where N is the number of kernel instances involved in the workload. The measurements
that were made above reveal that if only the fetch operation is considered, up to 60% of
the overhead may be spent waiting for the transport to deliver messages from one kernel
instance to another. This is highly significant. If Lamport lock acquisition and release were
included, and assuming the lock were acquired without contention, that percentage would
likely rise, as the work associated the Lamport locks involves significantly less processing
than the mapping fetch and installation process, and therefore the ratio of time spent in the
transport relative to other processing would increase.



Chapter 7

Conclusions

In this thesis Popcorn Linux was extended to support task and address space migration
across kernel instances in a homogeneous x86 64bit environment, supporting both process and
thread migration. Address space consistency for distributed thread groups was implemented
and shown to be correct. These mechanisms were proven to work through design review, and
extensive testing. Though performance was not the driving goal of this project, performance
measurements were taken, and evaluated under five different workload profiles.

It was found that Popcorn reduces its overhead by removing lock contention within the
memory subsystem and interrupt management subsystem. At the same time, it increases its
overhead by messaging between kernel instances. These two forces act against one another,
and depending on the workload and number of active kernel instances, Popcorn may or may
not perform well when compared to SMP Linux.

It was found that most of the overhead associated with task and address space migration is
attributed to address space migration. Much of that time was spent in the transport layer,
moving requests and responses between kernel instances. This could be reduced in the future
by 1) implementing a more efficient transport, and 2) reducing demand for messaging in the
protocols that use messaging. Suggestions for how to accomplish the latter are presented in
Chapter 8.

Another significant observation related to performance is that the duration of the process
relative to the mapping retrieval overhead matters. Workloads that are extremely short in
duration do not benefit much from migration in cases where large parts of the address space
must be utilized by the migrated task. This is due to the fact that mapping retrievals must
occur in order to provide access to the utilized regions of the address space. Each of these
retrieval operations incurs an overhead cost. So the fewer fetches that are necessary, the
higher the migration utility.

Additionally, it was found that prefetch has significant benefit for workloads that do mapping
retrievals that result in successfully finding existing virtual to physical mappings. However,
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for workloads that perform mapping retrievals that do not successfully find existing virtual to
physical mappings, increased prefetch unnecessarily results in increased overhead. Chapter 8
recommends methods of dynamically adapting Popcorn’s mapping retrieval protocols to
workload needs in order to utilize prefetch only in situations where it helps.



Chapter 8

Future Work

8.1 Identify and Resolve Performance Bottlenecks

Performance optimization should be continued in order to find and eliminate performance
bottlenecks. Many optimizations have already been made in the course of this thesis work,
but there are undoubtedly remaining bottlenecks.

One ripe area for investigation is the distributed locking mechanism. Alternatives to Lam-
port’s distributed mutual exclusion algorithm can be explored, potentially reducing the mes-
saging requirements for address space consistency.

The above recommendation aims to reduce the messaging overhead by reducing demand
for messaging. It is also recommended that the messaging layer be re-visited to explore
alternative implementations with the goal of reducing the overhead of all messaging-heavy
components within Popcorn. It was found during this work that the messaging layer incurs
a significant overhead, accounting for up to 60% of the mapping retrieval overhead. This
overhead will likely continue to increase as Popcorn approaches its goal of providing a single
system image, as an increasing number of kernel components will utilize the messaging layer.
Effort aimed at reducing all messaging overhead would benefit all current and future users
of the messaging layer.

8.2 Alternative Mapping Retrieval Protocols

The protocol for distributed address space consistency and availability that was adopted in
this work involves the migration of mappings as those mappings are needed. When a fault
occurs, the faulting kernel instance asks all other kernel instances for a mapping for the
virtual page that caused the fault. Each of the kernel instances that receives this request
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inspects its memory map for the faulting thread group for a mapping that would satisfy the
request, and responds accordingly. The faulting kernel instance is responsible for assembling
the responses to arrive at a final determination of which response to use. This is not the
only possible way to orchestrate mapping migration. Because the vast majority of the
overhead associated with task migration is due to maintaining a consistent address space,
investigation into alternative and more performance optimized mechanisms for mapping
migration is advised.

It is not necessary to select one specific a mapping retrieval protocol for exclusive use by all
distributed tasks. A protocol may instead be selected from the implemented protocols at
run-time adaptively to select the optimal mapping retrieval protocol for the workload at the
current time. If that mapping retrieval fails to perform, based on actively maintained metrics
such as fault rate, the mechanism can be abandoned in favor of another one. Additionally,
the mapping retrieval protocol employed for a given task at a given time need not be the same
between tasks and processes. The mapping retrieval protocol could be selected each time
a retrieval is initiated to optimize the workloads performance and the systems performance
based on metrics maintained on a per task, per process, per kernel instance, or per cluster
basis. A set of recommended metrics to maintain and use in making a determination about
which mode of mapping retrieval to use includes:

• The rate of faults each task is experiencing

• The type and quantity of mappings that are being retrieved when a retrieval is made

• The number of pages that are prefetched each time a retrieval is done

8.2.1 Single Query Single Response Mapping Query

One alternate mechanism for acquiring mappings involves sending the request to only one
other kernel instance. That kernel instance would look for a mapping in its local memory
map for the faulting distributed thread group. If a complete mapping is found that includes
both a VMA and a PTE for the faulting address, it responds directly to the faulting kernel
instance. If no mapping is found, or only a VMA is found, it bundles up its findings, and
forwards that information along with the original request to the next kernel instance. The
next kernel instance then repeats that process, and makes a decision about whether its
findings represent a more complete response than what was previously found. If it finds a
complete mapping, it responds directly to the faulting kernel. If not, it again forwards the
current mapping response to the next kernel instance. This pattern repeats until either a
complete mapping response has been arrived at, or all kernel instances have been asked for
a mapping and none have found one. At the end of this process the faulting kernel instance
receives a single, complete response. That response needs no further vetting and can be used
as is.
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A subtle twist on this algorithm includes intelligently selecting the order in which the request
is routed through kernel instances. One possible routing protocol might involve prioritizing
kernel instances that have previously yielded good mapping responses. Another might involve
routing first to kernel instances that are known to host tasks that are in the same distributed
thread group.

A variation of this algorithm forces the query to make its way through all active kernel
instance regardless of whether or not the query has been satisfied before the response is
sent back to the faulting kernel instance. This allows the mapping to be imported into
all kernel instances as its being forwarded through all kernel instances. This is effectively a
prefetch mechanism, and would benefit distributed workloads that share many pages. In this
variations, optimizations could be made to avoid doing resource intensive computing when
the system is under high load. For example, when a kernel instance receives a mapping
request and that kernel instance is not the requesting kernel instance, it could first look to
see if that request has already been satisfied by another kernel instance. If it has, and the
current kernel instance is under high load, it might choose to skip installing the mappings
locally, and instead forward the request to the next kernel instance. Whether or not this
is an optimization depends on whether or not the mapping that has been resolved will be
needed by the kernel instance that chose not to install the mapping.

This alternate mapping retrieval protocol might be useful in systems with high messaging
latency. This is due to the fact that the number of messages that must be sent in this
algorithm have an upper bound of the number of kernel instances, whereas the currently
implemented algorithm involves sending two times that number. This alternate protocol
might also be useful in high load scenarios where taking all kernel instances off-line for the
time necessary to perform the mapping lookup is constraining. There are, however, also
potential down sides to utilizing this alternate protocol. The amount of time necessary
to perform a mapping lookup would increase due to the serialized nature of the lookup
message forwarding process. It is unclear whether the benefits outweigh the drawbacks to
this alternate algorithm. Further research into these trade offs would be useful to determine
which types of workloads would benefit from employing which mapping acquisition methods.

8.2.2 Distributed Thread Grouping Based Mapping Query

Another potential protocol for acquiring mappings involves exploiting knowledge of which
other kernel instances have in the past or are currently hosting tasks in the faulting task’s
distributed thread group. Given this knowledge, a kernel instance could poll only those
remote kernel instances. This minimizes overhead imposed on kernel instances that have
never hosted members of this distributed thread group. This method requires a solid mecha-
nism for tracking which kernel instances have hosted members of a given distributed thread
group. This can be accomplished in a number of different ways. For example, perhaps when
a task migration occurs, the receiving kernel instance broadcasts a notification to all other
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kernel instances to signal its participation in the task’s distributed thread group. When
other kernel instances receive this broadcast, they make a note of this fact and then respond
with an acknowledgment message. Once all acknowledgments have been received, the newly
hosting kernel instance can resume the execution of the migrated task. This ensures that
all kernel instances always have complete knowledge of which kernel instances participate in
which distributed thread groups, forming the basis of a more streamlined mapping request
mechanism.

This approach reduces processing overhead for kernel instances that are not involved in
processing on behalf of a given distributed thread group. It also removes messaging overhead
associated with communicating with those uninvolved kernel instances.

8.3 Shared File System

Currently, each kernel instance has its own independent file system. This greatly limits the
types of meaningful workloads that can be executed on the Popcorn platform, as threads
running on different kernel instances cannot read to or write from shared files. Introducing
support for a single cross kernel instance file system would drastically improve the usability
of the Popcorn system.

8.4 User-Space Locking Abstractions

Many common user-space libraries depend on locking abstractions, including futex, semaphore,
and mutex, for execution ordering and data guarding purposes. While these abstractions are
supported within a kernel instance, they are currently not supported across kernel instances.
Work must be done to provide this functionality to maintain POSIX compliance and extend
support to the huge body applications that require that compliance.

8.5 Scheduling Support

Support for load balancing across kernel instances is not currently integrated into the Pop-
corn scheduling mechanism. A kernel instance will currently only initiate a task migration
upon receiving explicit instructions from user space to do so. This is a very interesting area
for further research, as the decision to do a migration would optimally take into account the
benefit of moving the workload, balanced with the overhead associated with not only moving
the task itself, but also with moving mappings and maintaining address space consistency. In
the case where the system has no knowledge of which virtual pages a given task will access,
this could be done stochastically using the task’s address space migration history as data.
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In contrast, given knowledge of which virtual pages a task will use in the next scheduling
cycle, this calculus could be made more precise. This would be possible with linker support
where the linker embeds address space usage information into binaries as metadata that the
scheduler could consult to make intelligent migration decisions.
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