
rave: A Framework for Code and Memory Randomization of Linux
Containers

Christopher N. Blackburn

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Binoy Ravindran, Chair

Ruslan Nikolaev

Haining Wang

July 9, 2021

Blacksburg, Virginia

Keywords: Migration, Binary Rewriting, Memory Corruption, Code-Reuse, Randomization

Copyright 2021, Christopher N. Blackburn

rave: A Framework for Code and Memory Randomization of Linux
Containers

Christopher N. Blackburn

(ABSTRACT)

Memory corruption continues to plague modern software systems, as it has for decades. With

the emergence of code-reuse attacks which take advantage of these vulnerabilities like Return-

Oriented Programming (ROP) or non-control data attacks like Data-Oriented programming

(DOP), defenses against these are growing thin. These attacks, and more advanced varia-

tions of them, are becoming more difficult to detect and to mitigate. In this arms race, it

is critical to not only develop mitigation techniques, but also ways we can effectively deploy

those techniques. In this work, we present rave - a framework which takes common design

features of defenses against memory corruption and code-reuse and puts them in a real-world

setting. Rave consists of two components: librave, the library responsible for static binary

analysis and instrumentation, and CRIU-rave, an extended version of the battle-tested pro-

cess migration tool available for Linux. In our prototype of this framework, we have shown

that these tools can be used to rewrite live applications, like NGINX, with enough random-

ization to disrupt memory corruption attacks.

This work is supported in part by ONR under grant N00014-18-1-2022 and NAVSEA/NEEC/N-

SWC Dahlgren under grant N00174-20-1-0009.

rave: A Framework for Code and Memory Randomization of Linux
Containers

Christopher N. Blackburn

(GENERAL AUDIENCE ABSTRACT)

Memory corruption attacks continue to be a concrete threat against modern computer sys-

tems. Malicious actors can take advantage of related vulnerabilities to carry out more

advance, hard-to-detect attacks which give them control of the target or leak critical infor-

mation. Many works have been developed to defend against these sophisticated attacks and

their triggers (memory corruption), but many struggle to be adopted into the real-world for

reasons such as instability or difficulty in deployment. In this work, we introduce rave, a

framework which seeks to address issues of stability and deployment by designing a way for

defenders to coordinate and apply mitigation techniques in a real-world setting.

Dedication

This is dedicated to my parents.

iv

Acknowledgments

I would like to thank my parents for always offering their unconditional support throughout

all events of my life. They have always encouraged and enabled me to do the things I love

to do. I could not have asked for better guides in life.

I would also like to thank my advisor, Dr. Ravindran. He has worked with and sup-

ported me throughout this venture. I could not have done any of this without his support

and guidance. He provided me with so many opportunities to be successful and has worked

closely with me as I progressed this work. I have learned a lot and developed myself as an

engineer under his wing.

I also am grateful for Dr. Ruslan Nikolaev and Dr. Haining Wang as they offered their

time and agreed to be on my examination committee, helping me achieve my goals.

v

Contents

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.1.1 Code-Reuse Attacks . 2

1.1.2 Cloud Security . 3

1.2 Thesis Contributions . 4

1.2.1 Improving Container Security . 5

1.3 Thesis Organization . 6

2 Background 7

2.1 Memory Corruption . 7

2.1.1 Buffer Overflows . 7

2.1.2 Code-Reuse Attacks . 10

2.1.3 Non-Control Data Attacks . 11

2.2 AMD64 System V Stack Layout . 12

2.3 ELF Binaries . 13

2.3.1 DWARF Metadata . 15

vi

2.4 Linux Process Migration with CRIU . 16

3 Related Works 19

3.1 Control-Flow Integrity . 19

3.1.1 Works Using Control-Flow Integrity 20

3.2 Randomization . 21

3.2.1 Works Using Randomization . 22

4 Design and Implementation 26

4.1 Librave . 27

4.1.1 Analysis Phase . 27

4.1.2 Transformation Phase . 30

4.2 CRIU-rave . 31

5 Evaluation 35

5.1 Experimental Environment . 35

5.2 Performance Analysis . 36

5.3 Security Analysis . 37

6 Conclusions 40

6.1 Limitations . 41

6.1.1 Cross-Platform Support . 42

vii

6.1.2 Stack Unwinding . 42

6.1.3 Towards Multi-Threaded Support . 43

7 Future Work 45

7.1 Trampolining . 45

7.2 Compiler Assisted Randomization . 46

7.3 Cross-ISA Migration and Randomization . 47

Bibliography 48

viii

List of Figures

2.1 Overview of the Layout of an ELF Executable 14

4.1 Rave Analysis Phase Visulaized. The binary is loaded into librave’s address

space and analyzed. Librave searches for transformable functions and records

metadata about those functions (e.g. locations of prologues and epilogues). . 29

4.2 Overview of CRIU-rave Runtime. CRIU-rave runs the restore process and the

lazy-pages process in parallel. Relevant pages are dropped or left unloaded

by the restoree. Librave intercepts code and stack pages in the lazy-pages

process to serve them out via userfaultfd whenever the restoree triggers a

page fault by touching an unmapped page. 33

5.1 Number of Functions for Tested Binaries . 36

5.2 Average time taken to analyze and transform various binaries (seconds) . . . 37

5.3 Quality of Randomization for Various Applications 38

ix

Chapter 1

Introduction

1.1 Motivation

As we continue to dive head first into a digital age, growing portions of our lives are submitted

to the many software services available to us. As the amount of information guarded by these

services increases (and as more services emerge), the security of these resources becomes more

and more prevalent. The attack surface available to malicious actors has become almost

incomprehensible.

Of the many types of attacks used to hijack applications or meddle with information, memory

corruption continues to plague computer systems as it has for decades. Burow et al. [13]

claim that around 70% of bugs at Microsoft are memory corruptions.

One of the most fundamental techniques in memory corruption exploitation is the buffer

overflow (or underflow). This technique takes advantage of logic errors (e.g. lack of bounds

checking) to read/write data outside an intended scope. For example, in stack-based buffer

overflows (dubbed stack smashing [40]), attackers can take advantage of stack-allocated vari-

ables to execute malicious code. With an in-properly bounded stack buffer, an attacker could

overwrite memory on the stack, causing a vulnerable program to unknowingly load malicious

code and jump to that code (by replacing a stack-saved return address with the address of

that code). Because the data-plane and control-plane of applications are interleaved [13],

1

2 CHAPTER 1. INTRODUCTION

applications are often vulnerable to more advanced types of attacks which prey on memory

corruption. Some attacks [14, 28], even today, are largely undetectable.

With the addition of defenses like Data Execution Prevention (DEP) [16], which prevents

the execution of data regions, and Address Layout Randomization (ASLR) [22], which ran-

domizes the base address of loaded memory regions, these types of code injection attacks

have thinned out. However, even with these staples of security, memory corruptions attacks

persist as a major threat: in the the CWE’s 2020 report of the top 25 most dangerous

software weaknesses, several entries involve memory corruption [23].

1.1.1 Code-Reuse Attacks

Since code injection techniques have become increasingly difficult to execute, exploiters have

begun to leverage existing application code, which brings us to the code-reuse class of attacks

(still rooted in and usually preceded by some type of memory corruption). In this class, an

attacker can reuse fragments of code to alter the execution of a program or to corrupt/leak

memory. One type of attack that has gained significant traction and advancement in re-

cent years is Return-Oriented Programming (ROP) [43]. In ROP, attackers string together

fragments of code called gadgets, which are snippets of instructions containing no control

transfer instructions. These gadget chains can be linked together in arbitrary ways and has

been shown to be Turing-complete. There are several other attacks that have branched from

ROP’s ideology, like PIROP which circumvents ASLR [25] or Blind ROP (BROP) [11], which

allows the attacker to chain gadgets together without foreknowledge of the target binary.

There are many different ways to defend against these types of attacks. For example, with

control-flow integrity (CFI) [6], we can detect anomalies in program execution. Upon de-

tection, we can take some action, which could include the termination of the program as to

1.1. MOTIVATION 3

avoid leaking sensitive data. Another effective method of defense against both code-reuse

and memory corruption has been some form of randomization [31]. The main idea of ran-

domization is to provide toolchains or methods for diversifying memory or code. This makes

it more difficult to chain together gadgets since useful gadgets may be broken, moved, or

completely eliminated through randomization. Nevertheless, the more advanced extensions

of ROP are still able to bypass these modes of security. Namely, non-control data attacks,

such as Data-Oriented Programming (DOP) [28], are effective because they do not break

control flow (i.e. they trigger no abnormalities in a programs normal execution). Addition-

ally, DOP relies heavily on the predictability of the stack, which many works do not attempt

to randomize.

1.1.2 Cloud Security

Works that thwart these more advanced variations of code-reuse and memory corruption

attacks do exist [7, 35, 48]. However, some of these these defenses struggle to be as flexible as

their attacker counterpart. That is, they exist largely in experimental settings or are difficult

to deploy. Many vulnerable (and targeted applications) exist in a cloud environment and

cannot afford to use these tools.

Many cloud providers use containers [38] to serve clients. Containers offer a more lightweight

way to group processes and applications compared to more coarse-grained virtualization. At

the same time, they provide much stronger isolation as opposed to process-process isolation.

Because of these features, containers are much more flexible when it comes to application

deployment. In many cases, it may be desirable to run several containers for a single appli-

cation then load balance or deploy those containers dynamically through a cluster controller

like Kubernetes [10]. However, because some prior arts can be difficult to deploy or inte-

4 CHAPTER 1. INTRODUCTION

grate, containers are left without defense. This thesis aims to parallel existing defenses in a

more practical setting by providing code diversification to commonly used applications and

containers.

1.2 Thesis Contributions

The contributions of this thesis are as follows:

• Librave: a library built to assist with the static analysis and rewriting of binaries.

This library is used to generated new versions of the binary’s text section. Specifically,

it applies a randomization that permutes the stack slot locations of callee-preserved

registers to defend against memory corruption attacks. In addition, it is able to rewrite

a live stack space to match the randomized code layout.

• CRIU-rave: Linked with librave, this extended version of CRIU supports the ran-

domization of processes upon process restore. This includes a randomized version of

the binary and a re-written stack to match the new code layout.

Altogether, rave aims to be a framework through which code transformation techniques can

be applied to vulnerable programs. Since too often previous works [5, 6, 18, 27, 48] cannot

coordinate with each other, are unstable, or are not easily deployable, there is a need for this

type of framework. For example, Chameleon [35] relies heavily on custom built tools which

restrict what applications it can run. Other works incur too high an overhead to function in

real-world settings while others simply don’t defend against the most sophisticated types of

code-reuse and memory corruption attacks [6, 18, 27]. With rave, we are able to overcome

some of these issues by more closely studying the underlying issues in these attacks and by

integrating with real-world applications like CRIU.

1.2. THESIS CONTRIBUTIONS 5

Through this study, we observe that most works have common design features which rave

provides through several layers of abstraction. Rave takes advantage of this by providing

tooling necessary to defend against attacks using similar techniques shown in previous works.

It also leverages the hardened and rich CRIU environment to apply transformations to live

processes and to improve overall stability. The current prototype of the rave framework is

able to transform real-world applications like NGINX, while also introducing a high enough

diversification to disrupt memory corruption attacks. We are able to quantify the quality

of randomization showing that for applications like NGINX, on average, attackers will only

be able to guess the locations of stack slots 19.1% of the time (assuming they only need to

find one slot). The overhead incurred in CRIU-restore is hardly noticeable - even for large

applications with over 40 thousand functions to analyze (MySQL), CRIU-rave analyzes and

transforms them in under two seconds on the experimental machine.

1.2.1 Improving Container Security

Another benefit of integration with CRIU is that rave is able to introduce randomization

(i.e. security benefits) to Linux container migration [42, 44]. Containers provide high levels

of isolation for user programs, but do not inherently add any security benefits to said ap-

plications. The ability to migrate containers across machines is valuable in a cloud setting,

yet there is a lack of mitigations for memory corruption and code-reuse attacks there. This

further motivated the extension of CRIU.

6 CHAPTER 1. INTRODUCTION

1.3 Thesis Organization

Following this introduction, this thesis provides background information for the topic as well

an overview of other related works in chapters 2 and 3. Next, the design and implementation

of the primary contributions are described in chapter 4, which is followed by their evaluation

in chapter 5. Finally, this thesis closes with concluding statements and future work in

chapters 6 and 7.

Chapter 2

Background

This chapter provides an overview of relevant background information including insights on

security and process migration. It also covers some related works which seek to address

similar vulnerabilities rave was built to defend against.

2.1 Memory Corruption

By modifying the internal state of a program in its execution, we can hijack a program’s

control flow, disclose secret information in memory, or modify non-control data. This is

called memory corruption. It is one of the leading exploits attackers use to gain control of a

system [13, 23].

In order to understand the threat model, the subsequent subsections provide a foundation

in understanding some application vulnerabilities and how we can defend against them and

memory corruption attacks. As such, this will not be an exhaustive analysis of memory

corruption techniques, and it will largely focus on stack-based vulnerabilities.

2.1.1 Buffer Overflows

Buffer overflows [40] are one of the most prevalent types of memory corruption techniques

used in gaining control of a program. An overflow occurs when data is written outside of

7

8 CHAPTER 2. BACKGROUND

a fixed-size buffer thus corrupting memory adjacent to the buffer in a program’s memory

space. These writes can happen directly by the attacker or indirectly through a number

of function calls (like read, recv, etc.). In modern systems, the former is unlikely to occur

because of process isolation, unless the attacker already has full control of the system. The

same cannot be said about the latter. When receiving data from an outside source via some

function, typically the size of the data is included with the incoming payload (if not, the size

can be measured or restricted). If a program does not have proper bounds-checking logic and

naively writes incoming data to some place in memory (i.e. a fixed-size buffer), it leaves itself

in a rather vulnerable position. Without restricting memory reads and writes, attackers can

send malicious payloads that overwrite critical data (which, in turn, allow them to hijack

the control flow of a program).

While these memory vulnerabilities are less likely to manifest through using safe program-

ming languages, like Rust [36], it’s not always possible to (re)write applications in these

newer languages. Much of the world runs on legacy code, and C continues to hold a lot of

influence. Thus, we cannot just ignore buffer overflow vulnerabilities and discard them as

the programmer’s duty to guard (unfortunately, computers do exactly what we tell them to

do).

While a buffer overflow can happen anywhere in memory, many attacks target a thread’s

execution stack. On the stack, functions store local variables, preserve register data, and

return addresses which serve as a history of the program’s control flow [37]. The layout of

this memory will differ between functions and architectures, but there are several common

features. For example, whenever a program is about to finish execution of some function, it

will pop a return address from the stack then, using a special instruction (e.g. ret), set the

program counter equal to that address, thus resuming program execution. Early exploits

involve submitting a payload which includes malicious code in addition to rewriting the

2.1. MEMORY CORRUPTION 9

return addresses stored on the stack. Once a function is ready to return to its caller, it

will pop the overwritten address, setting the instruction pointer to another portion of the

payload containing the malicious code.

Listing 2.1: Example of code vulnerable to buffer overflow

1 #inc lude <s t d i o . h>

2 #inc lude <s t r i n g . h>

3

4 extern char ∗ s e c r e t ;

5 void f oo (void) {

6 char buf [1 0] , ∗c ;

7 int ac c e s s = 0 , i = 0 ;

8

9 while ((c = getchar ()) != EOF) buf [i ++] = c ;

10 i f (! strcmp (buf , s e c r e t)) a c c e s s = 1 ;

11 i f (a c c e s s == 1) grant_access () ;

12 }

Listing 2.1.1 is a simple example of code vulnerable to buffer overflow. The read function

call writes to a buffer allocated on the stack, but is not bounds checked. This means that

someone could (accidentally or maliciously) overflow the buffer by sending more data to be

read than the buffer can handle. Other variables allocated on the stack are subject to be

overwritten since they are adjacent in memory to the overflowed buffer.

With Data Execution Prevention (DEP) [16], these types of code-injection attacks are no

longer feasible. Since code on the stack (and other regions like the heap) is no longer

executable, setting the program counter to point to memory on the stack will likely just

cause the program to abort or perform some other type of control flow recovery.

Now, this doesn’t mean that buffer overflows are no longer a means of memory corruption,

10 CHAPTER 2. BACKGROUND

we just can’t simply attach code with malicious payloads and expect them to execute. This

led to a new class of attacks where attackers instead use existing code to perform malicious

attacks. Instead of corrupting stack memory to jump to injected code, an attacker could

redirect control flow to another executable part of the already-running program.

2.1.2 Code-Reuse Attacks

Return-into-libc [46] is one of the earliest manifestations of code-reuse attacks [11, 12, 24,

25, 45]. It uses buffer overflow vulnerabilities to overwrite the return address on the stack

to point to some other function, often a libc function like system or mprotect. Along with

the modified return address, the attacker would attach function arguments to spill onto the

stack, thus causing the program to deviate from its intended control flow.

Naturally, these types of attacks circumvent DEP since they are only executing code in

memory which is already marked executable. However, with Address Space Layout Ran-

domization (ASLR) [22], this attack becomes less practical, as the location of libc is no

longer predictable. In addition, this attack is tightly coupled to the ABI of the machine. In

x86-64 systems, this Return-into-libc will not work directly since arguments are first stored

in registers before being spilled onto the stack [37].

Now arrives Return Oriented Programming (ROP) [43] - a well-known attack involving

code-reuse. ROP is a more general, modern version of the Return-to-libc attack. There

exist many extensions and variations of ROP which provide more advanced and robust ways

of hijacking the control flow of a program through memory corruption, but they all follow

similar principles to ROP. In ROP, an attacker will search for gadgets: small fragments

of existing code which share some characteristics. In traditional ROP, these gadgets are

short instruction sequences ended by a control transfer instruction (e.g. ret, jmp, call, etc.).

2.1. MEMORY CORRUPTION 11

These gadgets may be chained together through memory corruption to perform arbitrary

computations (It has been shown that ROP is Turing-complete [43], which basically means

ROP is able to perform any computation). By carefully chaining ROP gadgets together,

an attacker could load registers used for function arguments (as defined by and ABI), then

return from a gadget to a targeted function (including those in libc). These gadgets do not

have to consist only of existing instructions in an executable. By feeding the instruction

pointer with a unaligned address, an attacker could run an unintended gadget [41].

Recall that these attacks are still coordinated through memory corruption. The attacker

must identify gadgets and carefully modify memory through techniques like buffer overflows

such that the malicious gadget chain will be executed. Also, traditional ROP attacks rely on

return instructions (hence the name), however, there exists other variations of ROP attacks

that do not need return instructions to hijack a program’s control flow such as Jump-Oriented

Programming (JOP) [12].

2.1.3 Non-Control Data Attacks

A more recent class of code-reuse attacks have emerged, and are far more threatening than

previous methods. These attacks are dangerous because, unlike ROP, they do not deviate

from the program’s intended control flow (i.e. they are harder to detect). These are called

non-control data attacks (as opposed to control-data attacks like ROP) [14, 28]. Non-control

data attacks do not alter a program’s control data (function pointers and return addresses).

Instead, attackers target the program’s data plane to extract data or gain control of the

program or system.

Naturally, these attacks are much more difficult to orchestrate. However, work by Dr. Hu

et al. shows that non-control data attacks can be Turing-complete through Data-Oriented

12 CHAPTER 2. BACKGROUND

Programming (DOP), and are a very real threat to computer systems [28]. In some cases,

just one memory error can be used to form a chain of DOP gadgets, allowing the attacker

to execute arbitrary operations without breaking the intended control flow of a program.

These DOP gadgets are small fragments of code used to perform a number of operations

(logical, arithmetic, memory accesses, and control transfer operations). DOP is particularly

effective in loops where the loop condition is controlled by a stack-allocated variable. Once

that condition is hijacked by memory corruption (i.e. stack buffer overflow), the attacker

could potentially chain together an infinite number of DOP gadgets.

2.2 AMD64 System V Stack Layout

DOP attacks and other stack-related memory corruption techniques often take advantage of

the stack’s predictability. In order to understand how this happens, we need to understand

how stack frames are organized. This organization differs between architectures and ABI’s,

but we will be looking at the AMD64 System V ABI [37].

Whenever a function is called (generally, with the exception of red zones [37]), memory is

allocated onto a special region of memory called the stack. This region of memory grows

downward (from a high address to a low address). As a function is called, it places a

unique block of memory onto the runtime stack called a frame. Stack frames are used to

preserve function-specific information, like shared register contents. In the x86-64 System V

specifications, each stack frame will begin with a return address (an address pointing to the

caller function). Following that, the contents of the frame base pointer is stored, which is

then proceeded by callee-saved registers and function-local variables. The stack pointer will

(in the absence of a red zone) always point to the top of the stack.

These registers (the stack pointer, frame base pointer, and callee-saved registers) are all

2.3. ELF BINARIES 13

owned by currently executing function. With the frame base pointer, programs can easily

trace back execution, and thus return to the caller function. The other registers (%rbx, %r12,

%r13, %r14, %r15), must be preserved as the ABI states that these registers are free to use

- if not saved onto the stack, their contents would be clobbered, causing parent functions’

states to change unintentionally. If the frame pointer is omitted (an optimization used to

reduce the number of instructions used to setup and navigate stack frames), then it is also

considered a function-owned register and must be saved to the stack in callee-preservation

code. However, in this work, we do not omit the frame pointer since it provides a safe and

stable way to unwind the stack (further explained in section 2.3.1).

In our ABI, call instructions push the return address of the calling function onto the stack,

then increment the stack pointer - this begins the allocation of a new stack frame. Two more

instructions are used to preserve the old frame base pointer and update the register with the

address of the new frame (again, the stack pointer is incremented). Finally, function-owned

registers are pushed onto the stack for preservation. This makes up the prologue of the

function.

Once the program is ready to return from a function, it enters the epilogue. It first pops all

values off the stack back into the function-owned registers, restores the old frame pointer,

then, by executing the return instruction, pops the return address off the stack and sets the

instruction pointer equal to that value.

2.3 ELF Binaries

The Executable and Linkable Format [2] is the de-facto standard for binaries on Unix-like

systems. These files house converted source code (generated by a compiler) along with

metadata describing what the source code is used for, and how it is to be handled. There

14 CHAPTER 2. BACKGROUND

are different types of ELF object files, each with different use cases: normal executable files,

relocatable object files, core files, and shared libraries.

At the beginning of the file resides the ELF header, which provides information like what

type of file it is (an executable or shared object for example), what architecture this code

was compiled for, and metadata describing the rest of the file. It is followed by the program

header table and/or the section header table (these may or may not be present depending

on the file).

ELF files are made up of segments and sections. Segments describe how an executable is

to be loaded into memory (e.g. alignment, memory access permissions, dynamic linking

information, etc.). Segments can contain sections, which can contain information like code

(typically labeled the .text section), relocation entries for static and/or dynamic linking, or

debug information. Figure 2.1 provides a visual overview of what an ELF might look like.

Figure 2.1: Overview of the Layout of an ELF Executable

In an executable (or dynamically linked executable, which are labeled as shared object files),

there will be a loadable segment containing all (local) executable code. This segment will

have read and execute permissions, and will likely request to be page-aligned. When an ELF

is being prepared for execution, the contents of this segment (which will contain sections like

the .text section), will be copied into a memory region marked with matching permissions.

Any remaining memory, not initialized by the file, is zero-filled.

2.3. ELF BINARIES 15

In our system, we replace that executable segment (containing the .text section among other

executable sections) with randomized code.

2.3.1 DWARF Metadata

Binaries (not limited to ELF), are often accompanied with extra metadata. This metadata

can give us all sorts of hints about the compiled code including function boundaries, debug

information, and more. With this metadata, we can more safely and confidently perform

analysis (and even binary rewriting). DWARF [15] is a popular debugging format specifi-

cation which defines how metadata emitted by compilers should look. Its most obvious use

is in software debugging, but with the information it provides, we can use it to augment

binary analysis. It’s also used to perform stack unwinding, as it emits metadata necessary

to locate callee-saved registers preserved on the stack (this is especially important when the

frame pointer is omitted).

If the frame pointer is used as a stack element, then we can use it to traverse up the call stack,

frame by frame. This process of walking through stack frames is called stack unwinding [9].

In our work, we do not omit the frame pointer as a stack element since it helps us reliably

unwind the stack during a rewriting phase. However, it is possible to omit the frame pointer

during program compilation. In other words, it can be left to use as another function-owned,

general-purpose register [37]. However, without the frame pointer, any generated code will

now use offsets from the stack pointer (which is more difficult to track) to access and unwind

the stack. DWARF emits a debug section (commonly labeled .eh_frame), which is used to

gather information about how stack frames are organized. This is usually included as a

section in the binary, and contains information for every instruction in the binary about how

to find stack slots (specifically, callee-saved registers and the return address).

16 CHAPTER 2. BACKGROUND

DWARF unwind information may sometimes be unreliable [9], especially as a program is

processed through optimization passes during compilation. Keeping this information up-to-

date is no simple task, and it is constantly improving. Nevertheless, to ensure stability, this

work does not omit the frame pointer (i.e. we do not rely on DWARF unwind information

to unwind/rewrite the stack).

2.4 Linux Process Migration with CRIU

Process migration [8, 39, 42] involves saving the state of a process (register data, opened

files, memory layout, etc.) and moving it somewhere else (temporally or spatially). In cloud-

based scenarios, the ability to move programs (or even virtual machines) from one machine

to another (without shutting down that service) promotes high availability in dynamic load

balancing. Other benefits of process migration include fault tolerance, flexible administra-

tion, and better data locality. An example scenario: new machines are getting installed or

old machines are beginning to fail from age. Programs running on the machines are expected

to maintain high levels of availability, and they cannot be allowed to shut down. So, through

process migration, it is possible to relocate those processes to another machine with minimal

downtime. In the case of works like H-Container [8], process migration is used to better serve

clients by moving processes to edge nodes which are physically closer to the client (cutting

down on latency).

Checkpoint/Restore In Userspace or CRIU [1] is a hardened checkpoint and restore utility

built for Linux. When a user wants to migrate a process, they can invoke CRIU to dump

the process’ state into a set of image files, then, from those files, restore the process (either

on the same machine, or on another machine).

At the beginning of the dumping process, CRIU attaches to a process and all its children

2.4. LINUX PROCESS MIGRATION WITH CRIU 17

using ptrace [3]. To stay as true to the current state of the process, CRIU does not use ptrace

to signal the process to stop. Instead, they use an in-kernel facility to freeze the process [1]

before collecting and saving to disk information about the running process(es). Information

about the process is mostly gathered from Linux’s /proc filesystem [5].

When its time to restore a process, CRIU will analyze the dumped process image, then

morph itself into the target to be restored. For every restoree, CRIU will fork itself then

continue per-process restoration. Files are re-opened, memory is remapped and filled with

dumped data, thread’s executions are resumed, and the process gets restored. This can

happen on the same or different machine, but there are some restrictions: the filesystems

must match (or else things like open files cannot be restored). Any kernel features that

exist in the source node, must also be available on the target node. Unlike virtual machines,

process migration is not as flexible since they must still be fully supported by the OS that

runs them.

CRIU also has additional methods for restoring a process. In some cases, like live migration,

it may be undesirable to copy all the dumped process data to another machine before restor-

ing that process (since this data may contain heap data, it could be very large). So, CRIU

provides a way to lazily-load memory pages. Processes are restored like normal for the most

part, but instead of reading and copying all dumped memory from the files into the restorees’

memory, some pages are marked as lazy loadable and registered with a userfaultfd [4] file

descriptor. Userfaultfd is a Linux kernel facility that allows users to handle page faults in

user space. Basically, this allows us to register regions of memory with a file descriptor, then

when a page fault happens (e.g. when some memory has not been loaded into memory), we

are notified of it and are able to serve the fault.

This allows a second process, the lazy-pages process, to provide the restoree with data only

when it needs it (both locally or over the network). In this work, we leverage lazy-pages

18 CHAPTER 2. BACKGROUND

restoration to perform randomization outside of the target process’ context, making the

randomization tooling transparent to the target.

Chapter 3

Related Works

In this chapter, we explore several works which aim to mitigate memory corruption and

code-reuse attacks discussed in section 2.1. By no means is this an exhaustive list, but by

enumerating a few of these works and by studying their underlying concepts, we can come

to understand methods of defense against aforementioned attacks.

3.1 Control-Flow Integrity

While Control-flow integrity may not prevent memory corruption, it is still useful in defend-

ing against some code-reuse attacks because it can verify that the program has not deviated

from its intended control flow [6, 20, 26]. There are a number of ways we can use CFI to

maintain the integrity of a program’s execution: In general, CFI involves detecting anoma-

lies in a program’s control flow. Some implementations might monitor a process, making

sure it follows a pre-generated control-flow graph (CFG) [26], while others may insert arti-

facts into the code which help verify the intended control-flow. Naturally, there are trade

offs for different designs of CFI - some may incur too high an overhead as they monitor a

process in its runtime; some may require complex offline processing (which in of itself may

be imperfect, generating false positives).

19

20 CHAPTER 3. RELATED WORKS

3.1.1 Works Using Control-Flow Integrity

One reason why memory corruption vulnerabilities are so good at granting attackers control

of program execution is because the data-plane and control-planes of applications are often

interleaved [13]. For example, the stack stores return addresses, which, under memory

disclosure, can allow an attacker to hijack control flow (these are called backward control-

flow attacks). Because of this vulnerability, several works employ shadow stacks or stack

canaries to maintain the integrity of program execution.

Stack canaries [13, 17, 18] are essentially tags that sit in stack memory along with saved

return addresses in function frames. During runtime, these tags (often random values) are

verified to make sure a continuous buffer overflow hasn’t occurred. If this value is different

than what the runtime expects, it’s likely that some time of memory corruption has occurred,

so the code can terminate before any damage is done. However, these are still possible to

bypass if the attacker can acquire a pointer to the return address. For example, instead of

directly overwriting the return address in a stack frame, an attacker could overwrite some

other memory to point to the return address, effectively skipping over that tag.

Shadow stacks [13, 18], as opposed to stack canaries, do not inject the defense into the

target space. Instead, shadow stacks are parallel data structures which allow applications

to store function return addresses somewhere else in memory. When a function is prepared

to return from execution, the return address saved on the stack is compared to a matching

value in the shadow stack. If these values do not match, then the application has likely

detected a memory corruption attack. By separating the control and data planes, shadow

stacks enforce stronger isolation compared to stack canaries. Of course, these do not defend

against non-control data attacks like DOP.

In CFI, there are two directions of control we need to protect. The aforementioned stack-

3.2. RANDOMIZATION 21

based CFI methods only defend backward control-flow, where as works like BBB-CFI [27]

also operate on forward control-flow (e.g. function calls or use of function pointers outside of

invoking a return instruction). BBB-CFI works on a basic block level (as opposed to function

granularity). This creates a more fine-grained method of CFI. Basic blocks are streams of

instructions separated by control transfer instructions (blocks have one pair of entry and exit

points). Code-reuse attacks might often chain basic blocks together since many of them can

be equivalent to gadgets found in an application. BBB-CFI enforces CFI by ensuring basic

blocks are not accessed abnormally. That is, they should only be entered through their entry

point and exited through the exit point (not in between). It does this without the need for

a CFG or source code. Unfortunately, like many CFI works, this does not defend against

non-control data attacks like DOP since the stack is not protected.

3.2 Randomization

Parallel to CFI, another way to defend against code-reuse (and memory corruption more

directly in some cases), is to employ some form of randomization. The basic idea is to

play hide-and-seek with the attacker. By shuffling locations of targets, or by reducing the

predictability of vulnerable components in a program, we can significantly increase the diffi-

culty of attack. Some of these works attempt to disrupt code-reuse attacks specifically, while

others fight memory corruption directly. There are different types of randomization: some

are more coarse-grained, like ASLR [22], do not defend well against more advanced types

of code-reuse attacks. Others, more fine-grained like Chameleon [35], are more effective in

defending against even DOP as the level of entropy introduced into the program is much

higher. Randomization is defense through diversification [31].

22 CHAPTER 3. RELATED WORKS

3.2.1 Works Using Randomization

Address Space Layout Randomization [20, 22] is worth expanding upon because it is a staple

in modern computer systems. There is no reason not to have this active. However, it

does not sufficiently defend against certain types of code-reuse attacks. Simply put, ASLR

loads various application components into random places in memory (e.g. the base address

of libc’s executable region will be random). However, in some attacks, these address can

be leaked. There are even other variations of ROP that don’t need leaked addresses like

Position-Independent ROP (PIROP) [25] which leverages left-over data on the stack (i.e. it

corrupts memory in stale function frames). Thus, this coarse-grained form of randomization

does not introduce enough unpredictability to defend against more sophisticated code-reuse

attacks.

Diving into more fine-grained randomization, Pappas et al. [41] attempt to defend against

ROP attacks with in-place code randomization. This paper makes a few interesting contri-

butions to application diversification. Firstly, any randomization transformations are done

in-place. That is, the size of the code is not changed. Instructions are only appropriately

shuffled and replaced with equally-size instructions. This is an important restriction - if new

instructions are added or instructions removed, any further binary rewriting would have to

find and fix all code references. That is, arbitrary modification to code size would require

us to update an transfer control instruction targets (jumps between basic blocks, returns,

etc.). This is not known to be statically solvable [47].

Despite operating within this restriction, they are still able to make an effective defense

against ROP. By reordering instructions, performing register reassignment, and equivalent

instruction substitution, they are able to break or eliminate ROP gadgets while maintaining

program correctness. This is an important distinction which is eloquently introduced by

3.2. RANDOMIZATION 23

this work. In some cases, it may be possible to completely eliminate gadgets (for ROP, this

means getting rid of unintended return instructions). However, most of the time, gadgets

are simply broken. That is to say, the same ROP chain may not work between two version

of the binary. Nevertheless, this work is susceptible to other types of code-reuse attacks,

in particular, Blind ROP [11], in which ROP payloads are generated remotely (as opposed

through static, offline analysis which requires a copy of the target binary).

Shuffler [48] is a type of fine-grained ASLR where functions in the binary are continuously

relocated. By continuously reorganizing code locations, attackers will have a more difficult

time trying to reuse gadget strings. Shuffler does not require any source code, making it

fairly flexible - it only needs the binary with symbols still attached. It rewrites the binary

to abstract code pointers, meaning, instructions are modified to (instead of calling directly

into a function) reach out to a table in memory which contains a function address. In other

words, function addresses are replaced with table indexes. This allows Shuffler to randomize

the location of functions simply by changing entries in this indirection table. A separate

thread continuously relocates these code pages, however, the stack remains untouched (the

contents of each function remain constant). The stack, left unmodified, is still vulnerable to

exploitation, thus making DOP a viable attack on applications protected by Shuffler.

Isomeron [19] features randomization designed to take down JIT-ROP code-reuse attacks.

These differ from traditional ROP as they are designed to work against fine-grained ASLR.

By leaking a runtime memory address (again, through memory disclosure techniques), JIT-

ROP can craft gadget chains on the fly. Isomeron battles these types of code-reuse attacks by

invoking fine-grained randomization along with continuous randomization. This work keeps

multiple copies of diversified code in a process’ address space, then decides which version

to execute during runtime. This does not inherently prevent memory corruption, but it can

disrupt gadget chains built for are particular execution path.

24 CHAPTER 3. RELATED WORKS

Smokestack [7] is an interesting work where stack frames are randomized as a part of the

binary’s runtime. Using a modified version of LLVM [32], Aga et al. instrument binaries

such that several permutations of functions’ stack allocations are available at runtime. The

randomization instrumentation randomly chooses among these permutations when a function

is called, thus introducing a different stack layout each time a function is called. They have

even taken steps to protect the randomization instrumentation where return addresses are

obfuscated to defend against control-flow attacks. The authors have shown that this method

is effective in defending against DOP attacks, but it incurs a non-trivial runtime overhead

in some cases (although, sometimes a performance hit is necessary to obtain better security

while maintaining stability).

There is another, more conservative, method of randomization described by Kumar and

Kisore [30]. In their work, the researchers develop a (theoretical) method of adding padding

between stack slots, specifically, between function-local variables allocated on the stack.

Their design, requiring the modification of GCC, inserts instrumentation into the binary

which adds random amounts of padding between stack-allocated variables. This makes

more difficult for an attacker to corrupt memory via buffer overflow. Another, similar

work, developed by Liang et al., performs a minimal rewriting of ARM binaries (running on

Android). These researchers take advantage of ARM push and pop instructions but adding

additional registers without modifying code size [33]. By pushing more registers onto the

stack (and by shuffling existing registers), they induce the same padding effect, making it

more difficult to trigger memory corruptions. Still, these, like other works, cannot guarantee

that an attacker will not be able to locate a stack slot for memory corruption.

Chameleon [35] is one of the more aggressive code diversifying frameworks out there. Like

Shuffler [48], randomization is transparent to the application. It tries to defend against

memory corruption by reorganizing all stack slots in a function frame through binary rewrit-

3.2. RANDOMIZATION 25

ing. That is, any callee-saved registers, function-local variables, and even the return address

saved to the stack gets shuffled and relocated. In addition to this shuffling, it has the ability

to add random amounts of padding between stack slots, further increasing the entropy of the

application. With this aggressive type of randomization, it is already more difficult to cause

memory corruption through buffer overflow (and by extension defends against several code-

reuse attack vectors). Chameleon takes this randomization a step further and continuously

re-randomizes applications during runtime (both the code and the live stack are rewritten

periodically). This way, even if the attacker is somehow able to guess the location of a stack

slot through memory corruption (buffer overflow), that location will likely change before an

effective attack can be executed. Additionally, the randomization happens in a separate

process, providing a strong isolation between the vulnerable process and itself. The down-

side is that Chameleon is limited to running in a largely experimental setting - enabling this

level of randomization required significant modifications to LLVM [32] and additions to a

binary’s runtime. One of the larger drawbacks is that it only works with statically compiled

executables, which is not an option for some applications (since they may call functions like

dlopen which invoke the dynamic loader).

Chapter 4

Design and Implementation

This chapter covers the design and implementation of the rave library as well as its integration

into the checkpoint-restore tool for Linux called CRIU.

In chapter 3, we explored several existing techniques in attack mitigation. Often, these

works target a single type of memory corruption or code-reuse attack to defend against,

then fail to be effective against another variation. Since some works address the weaknesses

in others, it would be interesting to combine several, non-interfering techniques to defend

against multiple variations of memory corruption and code-reuse attacks. Altogether, rave

seeks to be a more flexible, extensible framework to code transformations which can defend

against aforementioned attacks.

Rave is split up into two components: a library and an extended version of CRIU. Both

are written entirely in user space. In an effort to defend against memory corruption-based

attacks, rave rewrites code and live stacks spaces to confuse attackers who are trying to

take advantage of stack predictability. It leverages the rich environment of CRIU’s process

migration, which allows it to take advantage of several existing features while bolstering

features like live migration through the additional security techniques it provides. Section 4.1

covers librave in more detail, while section 4.2 discusses the extended version of CRIU.

26

4.1. LIBRAVE 27

4.1 Librave

One draw back of previous works (discussed in chapter 3) is that the driver code is often

either a part of the target binary or is tightly coupled to the randomization code. That is, it

would be a non-trivial engineering task to disassociate randomization techniques in previous

works from the applications that apply those techniques. In order to avoid this type of

behavior, rave was built as a library so that no one program was tied to its capabilities.

Librave is also coded in C to avoid adding unnecessary weight (e.g. the C++ standard

library) to existing applications like CRIU, which is also written in C.

This library’s goal is to provide the basic tools with which code transformations can be

applied (somewhat following LLVM’s [32] modular philosophy). This includes abstractions

for reading and navigating binary files (in this case ELF files), abstractions for reading and

using binary metadata like DWARF [15] debug information, binary rewriting (disassembly

and reassembly), and methods for maintaining records of code transformation (so that live

processes can be adjusted to match re-written code).

librave can be logically broken into two phases of execution: an analysis phase, and a trans-

formation phase. These are discussed further in subsections 4.1.1 and 4.1.2 respectively.

4.1.1 Analysis Phase

The analysis phase of librave consists of any setup required to being transforming code.

This includes setting up pages for serving transformed code, parsing metadata, and creating

internal representations of transformable functions.

The first step in rave analysis is to prepare the binary. When given an executable ELF,

librave parses the program headers and section headers to find the .text section (the section

28 CHAPTER 4. DESIGN AND IMPLEMENTATION

containing the user’s compiled code) as well as the segment containing the .text section.

This segment is artificially loaded into librave’s address space for further analysis and trans-

formation. That is, a region of memory is prepared for transformation so that it can be

readily served via page faults or written back to a randomized executable (which one is up

to the discretion of the driver code). Note that in order to serve valid code pages, we cannot

just read in the .text section since it may not be the only section included in an executable’s

executable segment. For drivers like CRIU (which use facilities like userfaultfd to serve code

pages), we cannot omit other executable sections like .plt or initialization code. These often

share pages with the .text section and must be served along with it.

Next, librave parses any metadata available to it through a metadata abstraction class. The

prototype of librave written for this paper uses DWARF debug information as the backing

structure for this metadata class. This class exposes an interface through which we can

interact with information about the code we just mapped (regardless of the backing source

of metadata). For example, there is a foreach_function method which we can used to

iterate over all functions defined by the backing metadata. This function takes a callback

as an argument through which we can interpret common function information, like function

boundaries, and apply them to further analysis and transformation.

This leads us to the final step in analysis where we iterate through and process each func-

tion defined by the included DWARF metadata. Using the metadata and mapped code

region, rave disassembles each function to discover and record information about randomiz-

able functions. We use DynamoRIO [34] to perform disassembly - this is a dynamic binary

instrumentation tool, but they have a standalone disassembler which is robust and easy to

use.

What constitutes a randomizable function? In this prototype of librave, we focus on permut-

ing callee-preservation code. That is, stack slots containing the contents of function-owned

4.1. LIBRAVE 29

registers. By permuting the locations of these stack slots, we can make it harder for attackers

to guess where target slots are located (i.e. an increase in entropy can make memory corrup-

tion more difficult to execute). So, a randomizable function is one that features a prologue

that pushes two or more callee-saved registers onto the stack. Several push instructions

construct function prologues and are accompanied by one or more matching epilogues.

In our analysis (to find prologues and epilogues), we break down functions into logical in-

struction sets. To locate these sets, we record groups of sequential instructions that pass a

particular test. For example, to find function prologues, the test expects there to be only

push instructions (preceded by frame base pointer manipulation) for function-owned reg-

isters at the beginning of the function. Once we encounter an instruction that does not

pass the test, we close off the instruction set. Subsequently, when searching for epilogues,

we search for any instruction sets that pass the epilogue test: sets will only contain pop

instructions for function-owned registers, and they will mirror the order of push instructions

in the prologue.

Figure 4.1: Rave Analysis Phase Visulaized. The binary is loaded into librave’s address
space and analyzed. Librave searches for transformable functions and records metadata
about those functions (e.g. locations of prologues and epilogues).

For any randomizable functions found, we record them as a transformable, which is librave’s

30 CHAPTER 4. DESIGN AND IMPLEMENTATION

internal representation of a function that is... transformable. In this prototype, we record

any relevant information about the function, including the locations of any prologues and

epilogues along with an indexed mapping of stack slots (referring to the order in which

callee-saved registers are saved onto the stack). These transformables are available for the

transformation phase.

Librave also exposes a way to artificially relocate the randomized code. For dynamically

linked executables, the executable segment may not be located at the address given in the

ELF program header. Thus, for live programs, rave is designed to be able to interpret a new

base address for these sections. This is a mirrored in stack rewriting, since the base address

and offsets of the stack space could vary.

4.1.2 Transformation Phase

Once librave has finished analysis, the driver program can trigger a transformation. This

transformation is applied to each function captured by the analysis phase, then re-encoded

back into the locally loaded text segment (using the same disassembler used to decode

instructions during analysis).

In the current prototype, rave transforms application code by permuting register preservation

code. That is, the stack slots containing callee-saved register data and their respective

push/pop instructions are permuted. The transformables generated from the analysis phase

contain metadata relating the order of callee-saved registers on the stack. This information

is stored in an array which we can shuffle to logically reorder instructions in the prologue

and epilogues of these transformables. Once the new order is determined, we re-encode

preservation instructions for each function according to the shuffled order.

Finally, once transformations have been completed, the driver code is responsible for taking

4.2. CRIU-RAVE 31

the modified code and serving it. This could mean saving it to a new, randomized binary,

or serving code pages through page faults like CRIU-rave does.

Transformations also support stack rewriting since rave as a whole was designed to support

live-process transformations in systems like CRIU in addition to offline transformations.

Given a stack space, the current instruction pointer, and the frame base pointer, rave can

unwind a live application stack (using the frame pointer, we can traverse through each stack

frame). Each stack frame is matched to its respective function (previously recorded in the

analysis phase) by either the instruction pointer or the return address saved on the stack.

If the function is found to be randomizable, rave rewrites the current frame to match the

code layout. In the current prototype, this means that callee-saved registers (found just after

the location of the frame pointer) are re-organized to match the randomized order in the

transformable function’s metadata. The driver program is responsible for providing librave

with the stack space and relevant information

4.2 CRIU-rave

Rave is a library, and thus can be driven by a third party. CRIU is one such party which

enables process migration in Linux. CRIU-rave is a fork of CRIU built to link with and drive

librave. Upon restore, CRIU is able to invoke librave to randomize a process by rewriting

its code and stack. We chose to build this randomization framework on top of CRIU since

it is a battle tested process migration tool, and it offers a rich set of features we can use to

apply code transformations made by CRIU.

While rave could be built in directly to the restore process, integration was instead performed

within the lazy-pages co-process (a feature already existing in CRIU). Building directly into

CRIU restore would offer a simpler approach, but it would only allow for one-shot migration.

32 CHAPTER 4. DESIGN AND IMPLEMENTATION

That is, the process could not be checkpointed again unless the randomization metadata was

stored somewhere else. Since transformation metadata could end up being too complicated

to serialize in future iterations of librave, it was decided that maintaining that information

in the rave runtime was more efficient. So, when it comes time to checkpoint a randomized

process, we can restore the original layout of the code and stack spaces before dumping it

with CRIU. This has an added effect of not having to update any debug information (i.e.

DWARF metadata and any other information remains accurate). Of course, this was not

the only justification in using lazy-pages.

In addition to maintaining transformation metadata, there are a few more reasons for piggy-

backing the lazy-pages co-process: by keeping the randomization instrumentation in a sep-

arate process, we have much stronger isolation. It is much easier to make claims about the

safety of tooling when it runs outside the target application. Also, this creates opportunities

for continuous re-randomization. Similar to works like Chameleon [35], we can perform code

randomizations while the target application runs, only interrupting it occasionally update

the code and stack. The current prototype does not feature continuous re-randomization.

Figure 4.2 features an overview of CRIU-rave architecture (which essentially covers the design

of this thesis’ prototype). The target process is restored separately from where librave is

invoked to randomize its layout. The stack and code pages are served from the lazy-pages

co-process on demand through page faults. So, by the time the restoree is ready to resume

execution, the randomized code pages and stack are ready to be delivered once accessed. Let

us now explore the finer details of implementation:

To serve code and stack pages from the lazy-pages daemon, CRIU uses Linux’s userfaultfd

facility. This interface allows us to handle page faults from user space. During CRIU’s restore

process, we can register memory regions in the restoree’s address space with the uffd (the file

descriptor associated with the userfaultfd facility). Note that this interface only works on

4.2. CRIU-RAVE 33

Figure 4.2: Overview of CRIU-rave Runtime. CRIU-rave runs the restore process and the
lazy-pages process in parallel. Relevant pages are dropped or left unloaded by the restoree.
Librave intercepts code and stack pages in the lazy-pages process to serve them out via
userfaultfd whenever the restoree triggers a page fault by touching an unmapped page.

anonymous memory mappings. Trying to register a file backed mapping, like the executable

region of the target binary, will fail. To work around this, we replace the file-backed mapping

of the executable segment with an anonymous mapping (matching all original permissions of

course). This is the only artifact in the target application that might suggest our tooling is

active. Once this region is registered with userfaultfd, we make a call to madvise with the

DONT_NEED flag, effectively telling the kernel that these pages can be dropped (thus triggering

a page fault the next time they are accessed).

The stack region needs no special treatment as it is already marked for lazy loading. Once

both the code and the stack regions are prepared in the restoree (and any other lazy-loadable

34 CHAPTER 4. DESIGN AND IMPLEMENTATION

pages), CRIU sends the userfaultfd file descriptor to the lazy-pages process. Normally,

under this facility, we could only serve pages from within the same process. However, by

using a Unix socket to transfer the file descriptor to a listening process, we can continue to

serve page faults in user space from outside the target process. Let us take a closer look at

the lazy-pages process to see how it will handle these page faults:

CRIU lazy-pages will initialize itself in preparation to receive the uffd. It sets up a list of

lazy-process structures which carry any relevant information necessary to serve page faults

including structures which are prepared to read memory from the dumped process images.

During this initialization, we can prowl the dumped images (on a per-process basis) to find

the location of the executable file, as well as which region we should expect the code to reside

in. At this time, we can also read the stack memory and register snapshot, which will be

used to rewrite the stack.

The binary file is not saved in the dumped memory (it is re-opened on CRIU restore). So, we

end up passing the location of this file to librave, triggering the analysis and transformation

of the code. Once the code is transformed, we can send it the stack space we read from the

dumped memory for rewriting. Once we have these components available, the co-process

must wait for a page fault.

In unmodified CRIU, when a pagefault occurs, it will capture that event and serve memory

directly from out the dumped memory images. In the rave-aware version of CRIU, we

intercept this process and check to see if the page fault happened in a registered code or

stack region. If this was the case, librave exposes the modified code or stack to CRIU

so that it can serve the page fault, thus injecting the randomized memory into the target

application.

Chapter 5

Evaluation

In this chapter, we evaluate both librave and CRIU-rave in terms of security and performance.

Specifically, we will quantify the level of randomness introduced into the application. We

also evaluate the time it takes to perform code analysis and transformations to get an idea

of what types of overheads are induced through CRIU-rave’s code modifications.

5.1 Experimental Environment

CRIU-rave was evaluated on an x86-64 machine with an Intel i7-6500U CPU clocked at

2.5 GHz. This core has two physical cores, two thread per core (4 total threads). This

machine has 16 GB of DDR4 RAM. For the OS, it is running Ubuntu 20.04 LTS (kernel

version 5.8). To compile and link benchmarks and other test programs, we used GCC version

10.3.0 and binutils version 2.34. CRIU-rave was tested on several programs including: SPEC

CPU 2017, SNU C versions of NPB (single-threaded) benchmarks, NGINX, Redis, Lighttpd,

and MySQL server. All programs were compiled with flags -fno-omit-frame-pointer and

-mno-red-zone due to limitations in librave (see section 6.1.2). They are also dynamically

linked (only the target application code is modified - external libraries and libc are not

touched).

Figure 5.1 contains a basic overview of librave’s analysis of all programs tested. This tells

us how many functions exist in each binary, and how many are randomizable by the current

35

36 CHAPTER 5. EVALUATION

Figure 5.1: Number of Functions for Tested Binaries

prototype of librave. Naturally, as we will see in section 5.3, smaller applications (like NPB

EP which has no randomizable functions), gain no security benefits through rave.

5.2 Performance Analysis

The primary point of focus for performance overhead lies in the time it takes to analyze

and transform binaries. This overhead, for the current prototype of the rave framework,

is incurred only once during process restoration (which in of itself is already littered with

variability). Note that this overhead does not affect the runtime of the application because

transformations happen out-of-band in the CRIU lazy-pages process.

Even for large applications like MySQL (which had 42470 functions to analyze, 7049 to

transform), it takes less than two seconds from rave initialization of the unmodified binary

to the complete transformation of the target. This is an acceptable performance hit since rave

runs in a migration context where there is already much variability in the checkpoint/restore

5.3. SECURITY ANALYSIS 37

Figure 5.2: Average time taken to analyze and transform various binaries (seconds)

process. The geometric standard deviation for performance was about %7.74. Upon closer

inspection, we see that this number (being a bit high) is skewed by the performance times of

smaller applications (including ones like NPB’s EP which has no randomizable functions).

For these smaller applications, standard deviation is very high because the analysis and

transformation runtimes are clouded by OS support (e.g. memory allocation). For larger

applications (like MySQL), the standard deviation was only %1.05, which equates to about

1.8± 0.02 seconds.

5.3 Security Analysis

Librave cannot guarantee any attacks will not succeed, since it may be possible for an

attacker guesses the location of a shuffled stack slot or accesses a stack slot not covered by

rave transformations. In this work, rave’s goal was primarily to show that transformations

can be made within the migration context. Nevertheless, by shuffling stack slots, we can still

38 CHAPTER 5. EVALUATION

claim to disrupt memory corruption attacks since the predictability of the stack is partially

broken.

We can quantify the quality of randomization by measuring the average entropy of an ap-

plication. Functions that are randomizable will always have an entropy of two or higher. A

function’s entropy, in this case, is equal to the number of permutable stack slots e.g. if there

are three stack slots, there are three possible locations a particular slot could be in, thus

that function has an entropy of three. By collecting an average entropy across the entire

application, we can get a general idea of how well librave transformations might protect

against memory corruption attacks.

Figure 5.3: Quality of Randomization for Various Applications

Figure 5.3 shows the average entropy for an application assuming all functions are called

with uniform probability. For particular workflows or attacks, the true entropy may vary

and can be calculated given function call frequency. However, do to the nature of many

code-reuse attacks, we can assume that any code in the application is vulnerable to memory

corruption and/or code-reuse.

5.3. SECURITY ANALYSIS 39

For most applications, the total average entropy is less than two, which implies that an

attacker can generally guess where stack slots will be located regardless of randomization.

The only application here that has a high enough entropy to qualify in disrupting memory

corruption attacks is NGINX. This is because more than half the functions in NGINX are

randomizable. With an average entropy of 2.39, an attacker will have an average probability

of 1
22.39

≈ 19.1% in guessing the location of a stack slot. Do note that in some cases attackers

will generally have to chain together multiple stack slots to execute an attack. In the case

where three stack slots are required, there is an average probability of 19.2%3 ≈ 0.7% that

the attacker will find all three slots.

Compared to other works, like Chameleon [35], librave does not introduce nearly as much

randomization (Chameleon boasts over 9 bits of entropy for some applications). However, in

these works, applications are statically linked, with self-compiled versions of libraries like libc.

In that case, the code base is much larger, creating more opportunity for randomization. The

drawback though is that certain applications, like NGINX, do not run under Chameleon’s

instrumentation (partially because NGINX requires access to the dynamic linker to call

dlopen). In addition, we already knew that the types of transformations made in those

works are far more aggressive compared to the ones made in rave (see chapter 2). This is

discussed further in chapter 7.

Chapter 6

Conclusions

In this thesis we explored common security vulnerabilities relating to memory corruption

and code-reuse attacks. We studied how these attacks are still prevalent today as they have

evolved in the attack versus defense arms race of computer systems. Memory corruption

still remains to be one of the leading program weaknesses which malicious actors are able to

exploit. Attackers continue to formulate new and sophisticated ways of taking advantage of

these weakness to gain control of the vulnerable program or steal information. More recent

methods of attack, like Data-Oriented Programming (DOP), have proven troublesome as

they are difficult to detect once they are active. Following this discussion, we surveyed sev-

eral works which aim to fight against both code-reuse attacks and the root of these exploits,

memory corruption. There were two classes of defense: control-flow integrity (CFI) and ran-

domization. In CFI, applications are monitored or have checks to ensure they do not deviate

from their intended execution paths, however they are still just as vulnerable to memory

corruption. Randomization continues to prove successful against many variations of attacks,

but is often met with instability or high runtime overhead. Modern computer systems would

benefit from a combination of these works, yet many of them struggle to operate outside of

an experimental setting or are difficult to deploy. Moreover, both CFI and randomization

techniques are too tightly coupled to the implementation that drives them, making it dif-

ficult to use more than one technique at a time. To address this problem, we designed a

framework with which programmers could develop and deploy defense instrumentation in a

40

6.1. LIMITATIONS 41

real-world setting.

In summary, this thesis makes the following contributions: We developed librave, a library

which assists in the static analysis and rewriting of binaries. The prototype of which is able

to shuffle callee-saved registers in an attempt to disrupt attackers from corrupting those stack

slots. For some applications, it is able to introduce non-trivial amounts of randomization

which could disrupt attacks involving memory corruption. We built an extended version of

CRIU which drives librave. We showed that it is possible to checkpoint a live process and

resume it with a new code layout and matching stack space. Additionally, by piggy-backing

on CRIU, we provide randomization tooling which is able to protect container migration by

means of diversification.

In the next section, we discuss the limitations of librave and how it and other defenses might

evolve to meet new, challenging methods of attack. Namely, we discuss how code patching

techniques and coordination with custom binary compilation could enable us to perform

more aggressive transformations, giving us an advantage in this game of memory corruption

hide-and-seek.

6.1 Limitations

There are a few limitations that exist with the current prototype of rave (both the library

and extended version of CRIU). This section highlights some of those issues and discusses

previously unmentioned implementation details and potential solutions to these limitations.

42 CHAPTER 6. CONCLUSIONS

6.1.1 Cross-Platform Support

Since rave was built with CRIU in mind, only ELF binaries are supported since the only

platform CRIU runs on is Linux. However, librave principles could certainly be extended to

support other platforms. Again, rave was built to be a foundation for flexible and extensible

code transformation. It is not tied to CRIU in any way. If one so desired, they could write

their own driver code which invokes librave for any platform.

Do note, however, that the transformations the current prototype of librave are performed on

an assembly level. So, to support other architectures, transformations may look different [33].

6.1.2 Stack Unwinding

Working within CRIU (more generally, live processes) induced a limitation required for

stable stack rewriting. While third party stack unwinders exist, they are often unreliable

or unstable for the type of stack frame rewriting rave requires to be effective [9, 48]. Stack

unwind information can also be unreliable when it comes to optimized binaries. Of course,

this is a difficult problem to solve, but it is outside the scope of this work. So, to simplify the

problem, binaries to be randomized with CRIU-rave are compiled with the frame pointer in

tact (red zone is also omitted). This allows rave to more reliably unwind and rewrite a live

stack when driven by CRIU.

There is another limitation in stack unwinding which manifests when working with dynami-

cally linked executables. It is possible that CRIU will stop a process at an unknown location.

That is, inside a function which is not tracked by librave. For example, if the process was

trapped in the middle of a libc call, we would not have the necessary information required

to being unwinding the stack (the frame pointer is likely omitted, and it is not reasonable to

think we have the unwind metadata for this shared library). Of course, this extends to any

6.1. LIMITATIONS 43

library, not just libc. Since it is not reasonable to require any applications intended for use

with librave be statically linked (also requiring versions of libc and other libraries to retain

the frame pointer), we take a different approach. To ensure we are able to unwind the stack,

librave was extended to trap processes at well-defined locations.

We use ptrace [3] to attach to the target application before dumping it with CRIU. Librave

then analyzes the target, locating all call sites. We again use ptrace to spray breakpoints

(int3 instructions in x86) so that the application will trap at a well-defined location where

we can unwind the stack. Once the application is trapped, we can detach from the process

and allow CRIU to dump it.

Under normal execution, most applications can have their stacks unwound by librave. How-

ever, there is still a corner case where a runtime stack could be interleaved with call frames

from untracked libraries if callbacks are used. In which case, the stack transformation will

fail.

For a more robust and flexible implementation, it may be necessary to locate any shared

libraries loaded for the target application (all that information is stored by CRIU). In these

cases, it may be possible for librave to also analyze those applications. At which point, it will

have to rely more on DWARF frame data instead of the frame pointer for stack unwinding.

However, in this approach, care must be taken to adjust relocation entries if necessary since

all relocation entries will have already been resolved and saved by CRIU - updating this

information may be difficult.

6.1.3 Towards Multi-Threaded Support

Multiple threads are not supported by the current prototype. It proves to be a non-trivial

engineering problem, although not very complicated in design. As discussed in subsec-

44 CHAPTER 6. CONCLUSIONS

tion 6.1.2, librave requires stacks to be stopped at well-defined locations. This must be true

for all threads in an application. Since librave uses int3 instructions to trap a target process

at a known location, only the first thread to execute that instruction will be appropriately

trapped since the trap signal will be sent to the whole process (not just the thread). One

way to trap all threads at known locations is to trace each of them with ptrace, single

stepping their execution until a valid call site is reached. After this, identifying stack regions

in CRIU restore is fairly trivial, and they could just be passed to librave the same way the

main thread’s stack is passed.

Chapter 7

Future Work

This chapter covers related and future works with which rave can be extended. These include

two methods of improving the quality of randomization librave offers (sections 7.1 and 7.2),

and an additional work involving process migration.

As seen in chapter 5, librave is outperformed from a security standpoint compared to other

works like Chameleon [35]. While beating these other works was not rave’s only focus,

this still raises the question about what makes those techniques more effective. Part of the

reason is because rave operates in a very restricted mode. That is, it relies mostly on static

assembly code analysis and binary re-writing. Because we are restricted to not alter the code

size, or do not have control over external libraries (when working with dynamically linked

executables), the types of transformations we can make are severely limited. In order to

reach the same quality of randomization, transformation, and instrumentation other works

present, there are a couple techniques we might employ to help.

7.1 Trampolining

One of the major restrictions in rave is not being able to change the code size. It is infeasible

to recover control flow through just static binary rewriting [21, 47] (i.e. if we change code size,

jump targets become mangled and very difficult to fix). This prevents us from making ag-

gressive changes to applications that would otherwise allow us to more adequately randomize

45

46 CHAPTER 7. FUTURE WORK

the layout of memory on the stack. Other works suffer from this same restriction [34, 35, 41],

and some offer some pretty crazy workarounds (which are sometimes impractical). There

are, however, ways to circumvent this issue with code patching.

Duck et al. present a tool called e9patch [21] which enables you to insert arbitrary in-

strumentation into binaries without changing the set of jump targets. At the core of their

design is a method called trampolining, where code for patches or other instrumentation can

be arbitrarily sized and flexible. By inserting path points into existing functions (through

several novel methods like instruction punning), they are able to jump from certain places

to trampoline functions which execute the desired instrumentation and jump back to the

original code. Rave could use similar methods to patch every function such that stack slot

allocation and organization is fully controlled with these trampoline functions.

7.2 Compiler Assisted Randomization

Another way to expand on possible transformations is to modify binaries by changing the

way they are compiled (LLVM [32] makes this a more friendly process). With pure rave,

we are restricted to in-place code transformation or code-patching discussed in section 7.1.

With compiler support, we could make much more aggressive changes to code while also

eliminating restrictions such as these.

With the help of the compiler, you could tailor metadata designed to cooperate with some

binary rewriting framework. One of the reasons why rave does not attempt to shuffle all

stack slots in a function (as opposed to just callee-saved registers), is because there is no

way to confidently identify them at arbitrary points of executions. LLVM can be extended

to emit stackmaps [32] which contain information like this. With the help of the compiler,

we could also generate new rules for stack frame allocation. You may even be able to link

7.3. CROSS-ISA MIGRATION AND RANDOMIZATION 47

metadata to code through the use of an indirection table - instead of having instructions

directly access stack memory by using offsetting the stack or frame pointers, they could be

assigned indexes specific to the running function. With these indexes, they could access the

indirection table to figure out where relevant information is stored on the stack.

This coordination between the compiler and instrumentation is further discussed by Koo et

al. [29]. However, this approach is not without burden. Some works, like Chameleon, struggle

to work in a more practical environment because they rely heavily on custom compiler

toolchains which add lots of complexity to an already complex process.

7.3 Cross-ISA Migration and Randomization

Another work related to CRIU-rave is H-Container [8] - another extension of CRIU which

enables cross-architecture migration (e.g. a process or container can migrate from AMD64

to ARM architecture or vice versa). This work was motivated by the emergence of edge

computing in recent years. Edge computing basically means that there might be servers at

the edge of larger networks that are physically closer to clients. Naturally, clients will realize

much lower latency when interacting with closer targets. So, H-Container provides a way to

move services closer to clients regardless of system architecture.

This system would benefit from rave since it does not directly defend against memory corrup-

tion or code-reuse attacks. You could also imagine a scenario where an attacker might force

a service to move to a node that is more susceptible to attack. Through rave’s diversification

built into migration, we could disrupt such malicious actors.

Bibliography

[1] Criu. URL https://criu.org/Main_Page.

[2] elf(5) - Linux man page, 2021. URL https://man7.org/linux/man-pages/man5/elf.

5.html.

[3] ptrace(2) - Linux man page, 2021. URL https://man7.org/linux/man-pages/man2/

ptrace.2.html.

[4] userfaultfd(2) - Linux man page, 2021. URL https://man7.org/linux/man-pages/

man2/userfaultfd.2.html.

[5] proc(5) - Linux man page, 2021. URL https://man7.org/linux/man-pages/man5/

proc.5.html.

[6] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity

principles, implementations, and applications. ACM Transactions on Information and

System Security (TISSEC), 13(1):1–40, 2009. ISSN 1094-9224.

[7] M. T. Aga and T. Austin. Smokestack: Thwarting dop attacks with runtime stack layout

randomization. In 2019 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), pages 26–36. doi: 10.1109/CGO.2019.8661202.

[8] Antonio Barbalace, Mohamed L. Karaoui, Wei Wang, Tong Xing, Pierre Olivier, and Bi-

noy Ravindran. Edge computing: The case for heterogeneous-isa container migration. In

Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments, VEE ’20, page 73–87, New York, NY, USA, 2020. Association

for Computing Machinery. ISBN 9781450375542. doi: 10.1145/3381052.3381321.

48

https://criu.org/Main_Page
https://man7.org/linux/man-pages/man5/elf.5.html
https://man7.org/linux/man-pages/man5/elf.5.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html

BIBLIOGRAPHY 49

[9] Théophile Bastian, Stephen Kell, and Francesco Zappa Nardelli. Reliable and fast

dwarf-based stack unwinding. Proceedings of the ACM on Programming Languages, 3

(OOPSLA):1–24, 2019. ISSN 2475-1421.

[10] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud

Computing, 1(3):81–84, 2014. ISSN 2325-6095.

[11] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh. Hacking blind. In

2014 IEEE Symposium on Security and Privacy, pages 227–242. ISBN 2375-1207. doi:

10.1109/SP.2014.22.

[12] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented pro-

gramming: a new class of code-reuse attack. In Proceedings of the 6th ACM Symposium

on Information, Computer and Communications Security, pages 30–40.

[13] Nathan Burow, Xinping Zhang, and Mathias Payer. Sok: Shining light on shadow

stacks. In 2019 IEEE Symposium on Security and Privacy (SP), pages 985–999. IEEE.

ISBN 153866660X.

[14] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer. Non-

control-data attacks are realistic threats. In USENIX Security Symposium, volume 5.

[15] DWARF Standards Committee. The dwarf debugging standard. URL http://

dwarfstd.org/Home.php.

[16] corbet. x86 nx support. Linux Weekly News, 2004. URL https://lwn.net/Articles/

87814/.

[17] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve Beattie,

Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard: automatic

http://dwarfstd.org/Home.php
http://dwarfstd.org/Home.php
https://lwn.net/Articles/87814/
https://lwn.net/Articles/87814/

50 BIBLIOGRAPHY

adaptive detection and prevention of buffer-overflow attacks. In USENIX security sym-

posium, volume 98, pages 63–78. San Antonio, TX.

[18] Thurston HY Dang, Petros Maniatis, and David Wagner. The performance cost of

shadow stacks and stack canaries. In Proceedings of the 10th ACM Symposium on

Information, Computer and Communications Security, pages 555–566.

[19] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and Fabian

Monrose. Isomeron: Code randomization resilient to (just-in-time) return-oriented pro-

gramming. In NDSS, .

[20] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitching

the gadgets: On the ineffectiveness of coarse-grained control-flow integrity protection.

In 23rd USENIX Security Symposium (USENIX Security 14), pages 401–416, . ISBN

1931971153.

[21] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. Binary rewriting without control

flow recovery. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 151–163.

[22] Jake Edge. Kernel addres space layout randomization. Linux Weekly News, 2013. URL

https://lwn.net/Articles/569635/.

[23] Common Weakness Enumeration. Cwe top 25 most dangerous software weaknesses.

Report, 2020. URL https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.

html.

[24] Y. Guo, L. Chen, and G. Shi. Function-oriented programming: A new class of code reuse

attack in c applications. In 2018 IEEE Conference on Communications and Network

Security (CNS), pages 1–9. doi: 10.1109/CNS.2018.8433189.

https://lwn.net/Articles/569635/
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html

BIBLIOGRAPHY 51

[25] E. Göktas, B. Kollenda, P. Koppe, E. Bosman, G. Portokalidis, T. Holz, H. Bos, and

C. Giuffrida. Position-independent code reuse: On the effectiveness of aslr in the absence

of information disclosure. In 2018 IEEE European Symposium on Security and Privacy

(EuroSP), pages 227–242, . doi: 10.1109/EuroSP.2018.00024.

[26] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. Out of

control: Overcoming control-flow integrity. In 2014 IEEE Symposium on Security and

Privacy, pages 575–589. IEEE, . ISBN 1479946869.

[27] Wenjian He, Sanjeev Das, Wei Zhang, and Yang Liu. Bbb-cfi: Lightweight cfi approach

against code-reuse attacks using basic block information. ACM Trans. Embed. Comput.

Syst., 19(1):Article 7, 2020. ISSN 1539-9087. doi: 10.1145/3371151.

[28] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. Data-oriented

programming: On the expressiveness of non-control data attacks. In 2016 IEEE

Symposium on Security and Privacy (SP), pages 969–986. ISBN 2375-1207. doi:

10.1109/SP.2016.62.

[29] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Kemerlis, and Michalis Polychron-

akis. Compiler-assisted code randomization. In 2018 IEEE Symposium on Security and

Privacy (SP), pages 461–477. IEEE. ISBN 1538643537.

[30] K. S. Kumar and N. R. Kisore. Protection against buffer overflow attacks through run-

time memory layout randomization. In 2014 International Conference on Information

Technology, pages 184–189. doi: 10.1109/ICIT.2014.57.

[31] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok: Automated software diversity.

In 2014 IEEE Symposium on Security and Privacy, pages 276–291. ISBN 2375-1207.

doi: 10.1109/SP.2014.25.

52 BIBLIOGRAPHY

[32] Chris Arthur Lattner. LLVM: An infrastructure for multi-stage optimization. Thesis,

2002.

[33] Yu Liang, Xinjie Ma, Daoyuan Wu, Xiaoxiao Tang, Debin Gao, Guojun Peng, Chunfu

Jia, and Huanguo Zhang. Stack layout randomization with minimal rewriting of android

binaries. Information Security and Cryptology - ICISC 2015, pages 229–245. Springer

International Publishing. ISBN 978-3-319-30840-1.

[34] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,

Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized

program analysis tools with dynamic instrumentation. In Proceedings of the 2005 ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’05, page 190–200, New York, NY, USA, 2005. Association for Computing Machinery.

ISBN 1595930566. doi: 10.1145/1065010.1065034.

[35] Robert Lyerly, Xiaoguang Wang, and Binoy Ravindran. Dynamic and secure mem-

ory transformation in userspace. In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve

Schneider, editors, Computer Security – ESORICS 2020, pages 237–256. Springer In-

ternational Publishing. ISBN 978-3-030-58951-6.

[36] Nicholas D. Matsakis and Felix S. Klock. The rust language. Ada Lett., 34(3):103–104,

2014. ISSN 1094-3641. doi: 10.1145/2692956.2663188.

[37] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. System v application

binary interface. AMD64 Architecture Processor Supplement, Draft v0, 99:57, 2013.

[38] Dirk Merkel. Docker: lightweight linux containers for consistent development and de-

ployment. Linux journal, 2014(239):2, 2014.

[39] Dejan S Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian

BIBLIOGRAPHY 53

Zhou. Process migration. ACM Computing Surveys (CSUR), 32(3):241–299, 2000.

ISSN 0360-0300.

[40] Aleph One. Smashing the stack for fun and profit. Phrack magazine, 7(49):14–16, 1996.

[41] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hin-

dering return-oriented programming using in-place code randomization. In 2012

IEEE Symposium on Security and Privacy, pages 601–615. ISBN 2375-1207. doi:

10.1109/SP.2012.41.

[42] Simon Pickartz, Niklas Eiling, Stefan Lankes, Lukas Razik, and Antonello Monti. Mi-

grating linux containers using criu. High Performance Computing, pages 674–684.

Springer International Publishing. ISBN 978-3-319-46079-6.

[43] M. Prandini and M. Ramilli. Return-oriented programming. IEEE Security Privacy,

10(6):84–87, 2012. ISSN 1558-4046. doi: 10.1109/MSP.2012.152.

[44] Rami Rosen. Linux containers and the future cloud. Linux J, 240(4):86–95, 2014.

[45] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A. Sadeghi. Just-in-

time code reuse: On the effectiveness of fine-grained address space layout randomization.

In 2013 IEEE Symposium on Security and Privacy, pages 574–588. ISBN 1081-6011.

doi: 10.1109/SP.2013.45.

[46] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and Peng

Ning. On the expressiveness of return-into-libc attacks. Recent Advances in Intrusion

Detection, pages 121–141. Springer Berlin Heidelberg. ISBN 978-3-642-23644-0.

[47] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John Grosen,

Paul Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr: Making reassembly

great again. In NDSS.

54 BIBLIOGRAPHY

[48] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake, Xin-

hao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang, and

William Aiello. Shuffler: Fast and deployable continuous code re-randomization. In

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI

16), pages 367–382. ISBN 1931971331.

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	Introduction
	Motivation
	Code-Reuse Attacks
	Cloud Security

	Thesis Contributions
	Improving Container Security

	Thesis Organization

	Background
	Memory Corruption
	Buffer Overflows
	Code-Reuse Attacks
	Non-Control Data Attacks

	AMD64 System V Stack Layout
	ELF Binaries
	DWARF Metadata

	Linux Process Migration with CRIU

	Related Works
	Control-Flow Integrity
	Works Using Control-Flow Integrity

	Randomization
	Works Using Randomization

	Design and Implementation
	Librave
	Analysis Phase
	Transformation Phase

	CRIU-rave

	Evaluation
	Experimental Environment
	Performance Analysis
	Security Analysis

	Conclusions
	Limitations
	Cross-Platform Support
	Stack Unwinding
	Towards Multi-Threaded Support

	Future Work
	Trampolining
	Compiler Assisted Randomization
	Cross-ISA Migration and Randomization

	Bibliography

