
Explicit-State Model Checking of Concurrent x86-64 Assembly

Abhijith Ananth Bharadwaj

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Binoy Ravindran, Chair
Freek Verbeek

Michael S. Hsiao

May 13, 2020
Blacksburg, Virginia

Keywords: Partial Order Reduction, x86, Machine-Code Verification, Software Model
Checking, Concurrency

Copyright 2020, Abhijith Ananth Bharadwaj

Explicit-State Model Checking of Concurrent x86-64 Assembly

Abhijith Ananth Bharadwaj

ABSTRACT

The thesis presents Xavier, a novel tool-set for model checking of concurrent x86-64 as-
sembly programs, via Partial Order Reduction (POR). Xavier presents a realistic plat-
form for systematically exploring and analyzing the state-space of concurrent x86 assembly
programs, with the aim of detecting bugs via assertion failures in mainstream programs.
Recently, a number of state-of-the-art model checking solutions have been introduced to
efficiently explore the state-space of concurrent programs, using POR algorithms. However,
such solutions are inefficient while analyzing stateful programming languages, such as the
x86 assembly language, due to the solutions’ higher level of abstraction. To this end, Xavier
makes two contributions: i) a novel order-sensitivity based POR algorithm, that is applicable
to concurrent x86 assembly, ii) an x86 machine-model that can accurately perform relaxed-
consistency emulation of concurrent x86 assembly, without the need for any translations. We
demonstrate the applicability of Xavier through an evaluation on several classical mutual-
exclusion benchmarks and mainstream benchmarks from the Userspace Read-Copy-Update
(URCU) concurrency library, where the benchmarks range from 250− 3700 lines of x86 as-
sembly. The framework is the first that supports systematic model checking of concurrent
x86 assembly programs, and the effectiveness of Xavier is demonstrated by reproducing a
concurrency issue of threads accessing intermediate states in the URCU library, which stems
from an assumption violation.

This work is supported in part by the US Office of Naval Research under grant N00014-17-
1-2297.

Explicit-State Model Checking of Concurrent x86-64 Assembly

Abhijith Ananth Bharadwaj

GENERAL AUDIENCE ABSTRACT

Sound verification of multi-threaded programs necessitate a systematic analysis of program
state-spaces that result from thread interactions. Consequently, model-checking [1], [2] has
been one of the prominent methods used to tackle the verification of multi-threaded pro-
grams. However, existing model-checking solutions are inefficient while analyzing stateful
programming languages, such as the x86 assembly language, due to the solutions’ higher
level of abstraction. Therefore, the thesis presents Xavier, a novel tool-set and a realistic
platform for systematically exploring and analyzing the state-space of mainstream concur-
rent x86 assembly programs, with the aim of detecting bugs via assertion failures. To this
end, Xavier makes two contributions: i) a novel order-sensitivity based Partial Order Re-
duction algorithm, which efficiently explores the state space of concurrent x86 assembly, ii)
an x86 machine-model that can accurately emulate the execution of concurrent x86 assem-
bly, without the need for any translations. We demonstrate the applicability of Xavier
through an evaluation on several classical mutual-exclusion and mainstream benchmarks
from the Userspace Read-Copy-Update (URCU) concurrency library, where the benchmarks
range from 250 − 3700 lines of x86 assembly. Moreover, we demonstrate the effectiveness
of Xavier by reproducing a concurrency issue in the URCU library, which manifests as a
result of an assumption violation.

This work is supported in part by the US Office of Naval Research under grant N00014-17-
1-2297.

Dedication

To my parents, and my wife Poojashree.

iv

Acknowledgments

At the foremost, I would like to express my sincere gratitude to my advisors Dr.Freek Verbeek
and Prof.Binoy Ravindran for providing me a platform in their research group to explore my
enthusiasm on research. I would also like to thank them for sharing their immense knowledge
though their continuous guidance and support throughout the course of my degree. Besides
my advisors, I would also like to thank Dr.Michael Hsiao for being an integral part of the
thesis committee and for sharing his knowledge through insightful comments and questions.

I would like to thank my fellow labmates Jae-Won Jang, SengMing Yeoh, Md Syadus Sefat,
Joshua Bockenek, Mincheol Sung, Yihan Pang, A K M Fazla Mehrab, Ian Roessle, Xiaoxin
An, Balaji Arun, Ho-Ren Chuang and Cathlyn Stone from the Systems Software Research
Group for all the insightful discussions and the good times we’ve had in the past two years.

I would also like to thank my previous wonderful colleagues M. Achutha KiranKumar V.,
Bindumadhava S. S. and Dr.Disha Puri for introducing me to Formal Verification and for
inciting my interest in research.

Finally, I would like to thank the most important people in my life: my amazing parents
Vijayalakshmi K M and Anantha Padmanabha M S and my wonderful wife Poojashree N S,
for their patience and for supporting my aspirations at every step. My parents have always
been the light of my life and I credit every bit of my enthusiasm to their willingness to
support me. Likewise, my most loving wife has been the source of the unwavering strength
that I needed to face the hardships in the pursuit of this degree. It beats me to know what
have I done to deserve her as the better half of my life.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation for Analysis of Assembly . 2

1.2 Overview of State-Of-The-Art . 4

1.3 Thesis Contribution . 5

1.4 TCB of the Thesis . 7

1.5 Thesis Organization . 7

2 Background and Related Work 9

2.1 Partial Order Reduction . 9

2.2 Relaxed Consistency Execution . 11

2.3 x86 Assembly Verification . 13

2.4 Model Checking of Concurrent x86 Assembly 14

3 POR for x86 Assembly 15

3.1 Requirements . 15

3.2 Benefits of applying POR to assembly . 16

4 POR Algorithm: Definitions 19

4.1 Model basics . 19

vi

4.2 Running Examples . 20

4.3 Model Definitions . 22

5 POR Algorithm: Pseudo Code 31

5.1 POR base algorithm . 31

5.2 Running Example . 33

5.3 Improvements to the base algorithm . 36

5.4 Algorithm Back-end Implementation Requirements 38

6 Machine Model 40

6.1 Design Structure . 40

6.2 Design goals . 42

6.3 Execution Model . 43

6.3.1 Implementation of State Automaton Constructs 44

6.3.2 Implementation of Algorithm Constructs 50

6.3.3 Providing semantics for the POSIX thread library APIs 52

6.4 Memory Model . 53

6.5 System-Call Model . 57

7 Experimental Results 59

7.1 Case Studies . 59

7.1.1 Program setup . 62

7.2 Discussion on Verified results . 63

7.3 Discussion on Unverified results . 64

7.4 Discussion on Unsupported Results . 67

8 Conclusion and Future work 68

8.1 Conclusion . 68

8.2 Future Work . 69

References 70

vii

List of Figures

2.1 x86-TSO block diagram . 12

3.1 Assembly verification requirements . 16

3.2 A toy program with two threads . 17

4.1 Example program P1 . 21

4.2 Example program P2 . 21

4.3 Example program P3 . 22

4.4 Example program P4 . 22

5.1 State exploration for program P4 . 34

6.1 machine model Structure . 41

6.2 State configuration . 45

6.3 Machine actions type . 48

6.4 Memory block layout . 53

7.1 LFQ CEX replay . 66

viii

List of Tables

6.1 Supported X86 register stack . 46

7.1 Experimental results . 61

ix

Explicit-State Model Checking of Concurrent x86-64
Assembly

Abhijith Ananth Bharadwaj

July 9, 2020

Chapter 1

Introduction

Verification of correct concurrent software is non-trivial, since concurrent programs can have
additional sources of bugs compared to sequential programs. This is so, primarily due to
the non-deterministic behavior of programs owing to interleaving thread interactions. More-
over, the manifestation of bugs in concurrent programs are often dependent on the order of
thread execution [3] - such bugs are also termed as Heisenbugs. Hence, concurrency bugs
are inherently more difficult to be reproduced by trivial testing, as systematic analysis is key
to analyzing the combinatorial nature of thread interactions. Therefore, formal analysis is
essential in proving correctness of concurrent programs.

The non-deterministic inter-leavings of thread interactions have long been considered as the
predominant source of bugs in concurrent programs. At the very least, the sound formal
analysis of a concurrent program requires a systematic exploration of the thread interactions.
Hence Stateless Model Checking [1] has been the preferred method to verify concurrent pro-
grams. However, the combinatorial and non-deterministic nature of interleaved executions
can cause an exponential increase in the number of states needed to be examined. Any
model checker hoping to verify concurrent programs must systematically take into account
the multiple possibilities of thread interactions. Hence, most modern model checkers tar-
geting concurrent programs tend to primarily focus on mitigating the state-space explosion
problem.

One of the predominant techniques used in the concurrency community to tackle the state-
space explosion problem is Partial Order Reduction (POR). POR algorithms [4]–[6] are tech-
niques used to efficiently explore the state-space of a concurrent program. POR algorithms
define equivalence classes of traces, where the traces in a class are considered equivalent
based on a pre-defined criterion. POR algorithms then reduce the portion of the program
state-space explored by intelligently limiting redundant trace explorations from the equiva-
lence classes. However, such techniques are predominantly applied to either the source-code

1

2

or a compiler Intermediate Representation (IR), such as LLVM or Java Bytecode, which are
competent platforms to discern and analyze thread interactions.

However, apart from the non-deterministic nature of thread interleavings, there can be sev-
eral other less considered and equally insidious external factors that can influence the exe-
cution of a concurrent program. The optimizations enforced by the compiler may produce
assembly code with different behavior than the source-code, which can introduce bugs in the
compiled program [7], [8]. The thread scheduling model of the Operating System (OS) and
its implementation of concurrency primitives often perform run-time optimization by embed-
ding assembly code in libraries. Additionally most modern processors, in view of achieving
better performance, relax the memory consistency during execution through implementing
the Total Store Order or the Partial Store Order memory models [9], [10], which can also
contribute to the complexities in assembly code.

The aforementioned complexities can potentially contribute to behaviors that would not
manifest at the source-code level. This is so, since most of these modifications and optimiza-
tions are effected at levels lower than the source-code. However, the resulting behaviours will
be readily apparent in the assembly code. Hence verification of multi-threaded programs at
a level higher than the assembly can result in admitting several of the aforementioned factors
into the Trusted Code Base (TCB) of the verification effort [11]. In contrast, verification of
multi-threaded programs at the assembly level can provide a tractable solution that accounts
for the aforementioned external influences. Therefore the thesis aims to contribute a novel
and an efficient tool-set to formally verify multi-threaded programs at the assembly level.

1.1 Motivation for Analysis of Assembly

Source-code verification has long been used to prove correctness over program behavior. The
semantics of source-code is evidently at a higher level of abstraction than assembly. This
makes verification at the source-code level appealing, as the effort required is significantly
less compared to assembly verification. However, for several reasons, source-code verification
may not always be a viable strategy, and verifying the assembly may be more advantageous.
We will detail few such reasons:

1. Compiler trustworthiness. Verification at the source-code level requires the compiler
and the programming language implementation to be admitted into the Trusted Code
Base (TCB). Even with extensively tested compilers, compiler translations can still in-
troduce bugs in the compiled program [7], [8], which can affect concurrent executions.
The source-code optimizations such as instruction re-ordering, instruction deletions can
potentially allow threads to access illegal intermediate states [12]. The different opti-
mization strengths of the compiler can also expose new interactions between threads.

3

Therefore, correctness in program behavior at the source-code level may not translate
to actual concurrent execution.

However, assembly verification does not require the compiler to be in the TCB. As-
sembly programs are downstream products of compiler translations, and can thereby
witness the behaviors introduced by the compiler [11]. Therefore, verification of as-
sembly programs can expose the concurrency issues introduced by the compiler.

2. Assumptions in source-code verification. Verification at the source-code level requires
making assumptions over several external factors. For example, source-code verification
requires trusting the implementation of external libraries. Multi-threading libraries of-
ten perform code optimizations by embedding or replacing code with assembly during
compile-time. Hence such implementations are included in the TCB, as they cannot
be exposed at the source-code level. Moreover, source-code verification also requires
including implementation of the language semantics into the TCB. It is usually the
underlying language semantics that provides support to concurrency constructs such
as thread creations, memory barriers etc., which unless also verified, needs to be added
to the TCB.

However, assembly programs include both the optimizations by the libraries and the
implementation of the language semantics. Hence,verifying assembly programs can ac-
count for such behaviors, thereby offering higher confidence over execution correctness.

3. Low-level correctness. Even with the availability of verified mainstream compilers [13],
verification of low-level constructs such as memory isolation [14] and execution consis-
tency cannot be guaranteed unless the low-level implementations of such constructs are
modelled and verified. The source-code possesses an abstracted view of shared mem-
ory interactions, thereby necessitating admitting semantics of the underlying memory
model to be in the TCB. Moreover, source code verification usually assumes sequential
execution consistency. However, modern processors typically re-order instructions to
relax the execution consistency (TSO, PSO, etc.). These behaviors are usually not
visible at the source-code level.

However, verification of such low-level constructs is more amenable at the assembly
level. Assembly contains an explicit view of the memory and assembly programming
makes less assumptions about these low-level constructs. Also, assembly programs
interact directly with such language constructs, which necessitates precise modelling
of such constructs for assembly program verification.

4. Availability of source-code. Most production-ready programs have software modules
that are integrated at the machine-code. Moreover, the source-code for such modules

4

may be Intellectual Properties and not be available for verification, rendering source-
code level verification impossible. In such cases, verifying the assembly will be more
advantageous, as it does not rely on the presence of the source-code.

Therefore, in view of the above caveats, we maintain that verification of the assembly code
is more advantageous than verifying source-code.

1.2 Overview of State-Of-The-Art

Concurrent verified compilers. Verified compilation of sequential code has a long history
of contributions, notably by [13], [15]–[20]. However, the contributions on verified compi-
lation of concurrent programs are comparatively minimal. The most notable work is this
domain is by CompCertTSO [21], which details the verified compilation of a C-like concurrent
programming language, designed to provide x86-TSO [10], [22] based relaxed consistency ex-
ecution on x86 processors. Such work is important in proving that the intent of the program
is preserved during the translation by the compiler. However, it is not the intent of such
works to prove correctness over program behavior.

Translation validation. Translation validation has been another avenue that has been
explored to verify assembly, where a relation is established between the source code and the
compiled artifact. To this end, the contributions in [23], [24] are the most notable. The
work in [23] proves correctness over assembly code by establishing a refinement relation be-
tween the compiled ARM assembly and the high-level C source code. However, even as the
method shows excellent scalability, at the foremost it requires the source code. The work in
[24] tackles assembly verification by establishing a refinement relation between the assembly
and an abstract code defined in the paper, which does not necessitate the requirement of
the source-code. However, both the works have been mainly focused on single threaded
execution.

Partial Order Reduction. POR [4]–[6] methods have long been used in efficient model-
checking of the correctness of concurrent programs. POR is a class of algorithms that defines
heuristics for efficient state-space exploration of concurrent programs. More details are
provided in Chapter 2. The state-of-the-art in POR algorithms have contributed towards
being more efficient at exploring new states in a concurrent program [25]–[27] and also
towards applying POR to different execution consistency models [28]–[31]. However, since
the assembly language is an imperative language and due to the low-level nature of assembly,
the state-of-the-art in POR is not directly applicable to assembly programs. We will provide
more details in the following chapters.

5

1.3 Thesis Contribution

In order to perform formal analysis of multi-threaded x86 programs, the thesis contributes
Xavier, an explicit state model checker that consumes off-the-shelf x86 assembly. The rest
of the thesis will refer to x86 assembly as simply the assembly. The aim of this model checker
is to detect illegal states of threads by way of encountering assertion violations during exe-
cution.

In the view of the tool-set, the contributions in this thesis is twofold.

1. We present a novel Order-Sensitive Dynamic POR algorithm, which efficiently exposes
and explores the interactions between concurrent assembly threads.

The goal of the POR algorithm is to efficiently set up trace explorations that allow
the tool-set to uncover the (possibly) several end-states of assembly program. To that
end, the POR algorithm includes the following features.

• The POR algorithm is not restrictive to a declarative programming model, and
is thereby applicable to the assembly programming language.

• The POR algorithm is order-sensitive, wherein the equivalence classes are sensitive
to the order of selective actions in the trace. More details will be provided in
Chapter 4 and 5.

• The POR algorithm is dynamic, as the equivalence classes are defined on-the-fly.

• Each trace exploration is a stateful simulation of the program that allows the
tool-set to uncover new program states, wherein the safety properties can be
evaluated (via assertions in the program). We call the simulations stateful, as
every program state achieved during a simulation is stored for use by the POR
algorithm to efficiently set-up new explorations.

2. We present an x86 machine model that emulates the concurrent execution environment
of an x86 processor in a relaxed consistency setting.

The goal of the machine model is to provide a realistic simulating environment for
executing concurrent x86-64 assembly. To that end, the machine model design incor-
porates the following features

• The machine model is designed to consume off-the-shelf x86 assembly programs.

• The machine model draws inspiration from [32]–[34] in providing interpreter style
semantics to several instructions, including concurrency instructions, of the Intel
IA-32e 64-bit ISA (x86-64) [35].

6

• The machine model incorporates a byte-addressable memory model, as well as
semantics for the x86-TSO Relaxed Memory Model (RMM).

• The machine model provides semantics to several APIs from the POSIX thread
library, and semantics to several system calls sourced from the Linux kernel im-
plementations.

In view of the above design features, the machine model is capable of emulating ex-
ecution of concurrent assembly programs extracted from C programs that utilize the
POSIX thread library for multi-threading.

The combination of the novel POR algorithm with the machine model presents several
advantages:

• Inclusion of a sound POR algorithm guarantees the exploration of all unique end-states
of the program, and thereby establish the absence of bugs.

• Inclusion of the machine model allows the POR algorithm to be applicable to concur-
rent x86 assembly programs.

• The machine model is designed to consume off-the-shelf x86 assembly programs, with-
out the need for any translations or pre-processing. This imparts higher confidence
over the effort as program translations are not a part of our TCB.

• The machine model allows the verification effort to be downstream of the compiler,
thereby allowing the tool-set to identify illegal program behaviors that are a product
of compiler translations.

• Incorporating the byte-addressable memory model allows for precise emulation of mem-
ory interactions by the x86 instructions.

• The machine model implements the x86-TSO RMM to provide a realistic, relaxed con-
sistency environment for executing and verifying assembly. As a result, the emulation
of x86 programs provided by the machine model is precise and thereby offers higher
confidence over execution correctness.

• Verifying assembly programs does not rely on the presence of the source-code. There-
fore, due to the inclusion of the x86 machine model, the verification effort is not reliant
on the presence of the source code.

Finally, we demonstrate the applicability of Xavier by applying it on several classical mu-
tual exclusion benchmarks and on several data-structures from a mainstream concurrency
library- the Linux Userspace RCU (URCU). We have applied Xavier on 17 case-studies,
ranging from 250 to 3700 lines of assembly. The benchmarks chosen vary in complexity,

7

both in terms of the lines of assembly program executed and the constructs used to achieve
concurrency.

The goal of choosing the classical benchmarks is to demonstrate the applicability of Xavier
to concurrent programs that achieve mutual exclusion through typical means such as spin-
locks. Subsequently, the goal of choosing benchmarks from the URCU library is to demon-
strate the applicability of Xavier to programs that achieve concurrency through means
other than acquiring mutual-exclusion locks. Moreover, the results of the experiments have
not only been used to demonstrate the applicability of Xavier, but also the effectiveness of
the implementation. This was achieved through intentionally violating a behavioral assump-
tion in one of the benchmarks, which was subsequently exposed by the implementation.

1.4 TCB of the Thesis

We will now discuss about the several factors of the machine model that are included in the
TCB of Xavier, our tool-set.

1. We include the semantics implemented for the concurrency instructions of x86 ISA
into the TCB. The semantics provided to such instructions have been tested against
their specifications in the Intel (R) manuals [35]. However, the semantics for such
instructions have not been formally verified.

2. We include the x86-TSO RMM implementation provided to support relaxed consis-
tency execution into the TCB. The implementation follows the semantics from [10],
[22], but, however, has not been formally verified.

3. We include the implementation of the Linux system calls into the TCB. The imple-
mentation semantics have been sourced from the Linux kernel implementations, and
tested against corresponding simulations in GDB [36]. However, the semantics have
not been formally verified.

1.5 Thesis Organization

The subject matter of the thesis is organized into the following chapters.

• In Chapter 2, we provide the necessary background for our solution, and an overview
of the related works that have influenced the design decisions in this work.

• Chapter 3 provides two small motivating examples that first demonstrate the require-
ments for verifying concurrent assembly, and then the gains of the approach.

8

• Chapter 4 provides a formal view of the Concurrency model that underlines the novel
POR algorithm.

• Chapter 5 provides a comprehensive description of the algorithm and its constructs.

• Chapter 6 outlines the Machine model, which is the implementation of algorithm to
support assembly.

• Chapter 7 presents the experimental results of applying the tool-set on classical bench-
marks, and on several data-structures from Linux URCU.

• Chapter 8 concludes the thesis with discussions on limitations of our approach and
future work.

Chapter 2

Background and Related Work

This chapter provides the necessary background related to the concepts involved in this
work. Section 2.1 begins the chapter by introducing Partial Order Reduction (POR), and
provides details about several POR algorithms that this work derives inspiration from. The
chapter then continues to Section 2.2 which introduces the required background on Relaxed
Consistency memory models, and the application of POR to the verification of such models.
Section 2.3 provides background on x86 assembly verification. Section 2.4 completes the
chapter by contrasting the several works mentioned to the thesis contributions.

2.1 Partial Order Reduction

Model Checking. Formal analysis of concurrent programs, for soundness in verification,
require systematic exploration of the thread interleavings. Model checking [37] has been one
of the preferred methods employed to verify concurrent software. Model checking system-
atically explores the state-space of a given program and verifies the validity of each state
achieved in doing so. However, model checking of concurrent software faces two considerable
challenges: a) Model checkers typically store a large set of visited states which renders a
systematic approach at verifying realistic concurrent programs intractable, and b) the non-
determinism in inter process communication can potentially result in an exponential blowup
of the traces to be explored.

Stateless Model Checking. Stateless Model Checking (SMC) [1] has been one of the
most predominantly used techniques to combat state-space explosion in concurrent program
verification. SMC works through scheduled exploration of traces that capture all possible
orderings of interactions between threads, without storing the state details. Hence, on one
hand, Stateless model checkers can be very memory efficient. On the other hand, the state-
less nature of SMC can potentially lead to exploring redundant traces reaching the same

9

10

states. Several techniques such as context bounding [38] and depth bounding [39] have been
introduced in the past to combat the exploration redundancy. Amongst them, one of the
most promising techniques is Partial Order Reduction (POR) [4], [40]–[42].

Partial Order Reduction. Partial Order Reduction (POR) algorithms were introduced
to limit trace equivalent explorations, through exploiting conflicts or dependencies between
thread actions. POR algorithms limit the trace exploration by, first, identifying classes con-
taining equivalent traces. POR considers two traces to be equivalent if they adhere to the
same partial order between dependent actions (called Mazurkiewicz traces [43]). Intuitively,
two traces are considered to be equivalent if the execution order of independent actions in
one trace is a permutation of the other. Secondly, POR algorithms then pursue a limited
subset of explorations among the equivalent execution traces. Therefore, the main crux of
POR algorithms is defining the the equivalence relation for identifying the trace-equivalence
classes. POR algorithms are guaranteed to preserve soundness in state exploration by exe-
cuting at-least one trace from all trace-equivalence classes, thereby exploring only a subset
of the entire trace-space. Additionally, the soundness in exploration guarantees to cover all
possible behaviors reachable in every interleaving.

Classification. POR algorithms can be broadly classified into two classes: Static POR and
Dynamic POR. Static POR [44] rely on defining partial order between conflicting events stat-
ically, before execution. However, Static POR algorithms more than often over-approximate
trace non-equivalence, as they can estimate dependencies that may not manifest during exe-
cution. Therefore, Static POR algorithms can potentially undertake redundant explorations.
Several classes of works were subsequently introduced aiming at increasing the efficiency of
POR. Dynamic POR (DPOR) algorithms [41] observe and define ordering between depen-
dencies on-the-fly, which allows for a more fine-grained recognition of trace equivalencies.
Intuitively, an action is executed in the current step only if it was proven to be dependent on
an action from a previous step. Hence, DPOR algorithms resolve dependencies dynamically,
thereby reducing the number of traces explored on-the-fly.

Works by Abdulla et. al. [45], [46] have then improved upon DPOR by introducing Opti-
mal Dynamic Partial-Order Reduction (DPOR) which guarantees to explore only one trace
from an equivalence class, hence optimality. A caveat, however, is that Optimal-DPOR
optimal only under a stateless setting, by requiring execution steps to be unconditionally
(in)dependent at all possible states.

Context Sensitivity. Several later works on DPOR have aimed at achieving a equivalence
classes coarser than Mazurkiewicz traces, in view of reducing redundant trace exploration.
One such foray is Context Sensitivity [26], [27], where the equivalence relation limits explo-
rations that are executionally different but statefully redundant. These works utilize context

11

sensitive independence, where two actions a and b are required to be independent only in
the in the state that they are executed from. Intuitively, a and b are independent from state
s if executing either a · b or b · a from s results in the same state. Thus, context sensitive
algorithms can be optimal in the number of global states reached.

Value sensitivity. While context sensitivity does result in a coarser dependency relation,
it comes at the cost of having to execute the actions to decide independence and can also
potentially initiate exploration of redundant traces. On the other hand, the dependency
relations in all of the above works are inherently generic as they are insensitive to the values
taken by the action variables. In contrast, works by [25], [27]–[29], [47] utilize a coarser
dependency relation by taking the variable states into context, thereby achieving coarser
equivalence classes. The initial works in this regard [28], [47] relied upon computation-
ally expensive Oracle-based methods (such as requiring SMT solvers) to achieve a coarser
trace scheduling. The later works by [25], [29] have developed static-analysis based methods
to construct value-sensitive equivalence classes, which are exponentially coarser than their
counterparts.

The POR algorithm presented in this paper is dynamic in nature, and the equivalence classes
are dynamically calculated based on identifying stateful conflicts. The following chapters will
describe the mechanisms of the algorithm in detail.

2.2 Relaxed Consistency Execution

Sequential Consistency. One of the most basic memory models for describing threads-
memory interactions in a concurrent system is Sequential Consistency (SC) [48]. Under SC,
concurrent threads possess a sequentially consistent view of the memory: the memory inter-
actions across threads are assumed to follow a sequential order, with the memory operations
in each thread following the pre-defined program order. The SC model is fairly intuitive
from the perspective of a programmer since it can reasonably emulate program behavior.
However, realizing sequentially consistent behavior is inefficient, as both the hardware and
the compiler are required to explicitly serialize memory operations which otherwise can be
executed in parallel [9]. Therefore, most modern processors implement relaxed-consistency
behaviors where program ordering in a thread can be violated for certain instructions to
achieve better performance.

Total Store Ordering. The realistic relaxed-consistency behavior of programs on most
modern x86 processors can be emulated through using the x86-TSO memory model [10].
The relaxed-consistency execution in x86-TSO is achieved by allowing a write followed by
a read, accessing different memory locations, to proceed out-of-program-order. Figure 2.1

12

represents the abstract model of x86-TSO, which has been sourced from [10] and provides
semantics for the following operations.

Figure 2.1: x86-TSO block diagram

1. Store: The TSO semantics buffers all writes to the memory by threads using per-
thread store-buffers. That is, any thread that executes an x86 instruction that intends
to write to the memory will not be allowed to do so immediately. Instead, the memory
store by the thread is first buffered in the thread-specific store buffer, which is then
flushed later to update the memory.

2. Load: Any thread that executes an x86 instruction that intends to read data from a
memory address will first query the store-buffer for a corresponding store to the memory
address. If a corresponding store is present, then the store value is forwarded to the
instruction. The Load query will be forwarded to the memory only if a corresponding
store is not found in the thread specific buffer.

3. Update: An Update operation by a thread will always flush a single store operation
from the thread-specific store buffer to the memory. Flushing a store to the memory will
update the value in the memory at the memory locations pointed to by the flushed store
operation. The Update from a thread is non-deterministic and the update operation
flushes stores of a thread in the order of their enqueuing. However, the TSO model
forces no ordering between updates of different threads.

4. Fence: A Fence is a memory barrier operation that imposes the program ordering
between actions before and after the execution of the Fence. Semantically, a Fence
cannot be executed by a thread when its store buffer is non-empty.

13

5. LOCK: The x86 Instruction-Set Architecture (ISA) provides the LOCK prefix that
when used allows Read-Modify-Write (RMW) instructions to acquire exclusive own-
ership of the appropriate bus, and in extension the memory, for the duration of the
instruction. In essence, the LOCK prefix renders the RMW instruction atomic. To
execute a LOCK’d instruction under the TSO semantics, a thread first acquires the
bus lock and then executes the instruction. Before relinquishing the bus lock, the store
buffer of the thread is flushed to the memory to guarantee atomicity.

TSO and POR. Verification of concurrent programs under relaxed consistency settings is
non-trivial, since allowing instruction re-ordering can significantly blow-up the verification
state-space. However, doing so is necessary to achieve realistic program verification. Several
works such as [28], [29], [31], [49] have explored the application of DPOR to verify concurrent
programs under relaxed memory settings. The main advantage of such approach is the ability
to expose several more program behaviors which could be then exploited to fine-tune the
interleaving semantics. Since the thesis is focused on assembly verification, the approach
taken draws inspiration from these works in providing verification semantics for the x86-
TSO memory model.

2.3 x86 Assembly Verification

With x86 being one of the more prominent architectures used for desktop and server pro-
cessors, program verification at the assembly level has been a prominent area of research.
There has generally been two prongs in research on x86 program verification: On one hand,
in order to reason over assembly, several previous works [30], [32]–[34], [50] have contributed
to developing execution semantics of the x86 ISA. On the other hand, several previous works
[33], [51]–[53] have contributed in engineering the infrastructure around the semantics for
program verification. But, to the best of our knowledge, there exists no other work till
date that can efficiently emulate and model-check concurrent assembly execution, under re-
laxed consistency. Thus this section will delineate the previous works that this paper draws
inspiration from in defining both the execution semantics and emulation environment for
multi-threaded assembly programs.

The work on ISA semantics draws inspiration from [34] and [32]. Dasgupta et.al., in [34],
have presented executable semantics for the most comprehensive set of x86 instructions till
date, which supports the execution of sequentially consistent and single threaded programs.
We utilized the formalism in [34] as a starting step in defining execution semantics for x86
concurrency and synchronization operations. However, the assembly verification infrastruc-
ture presented draws inspiration from [32]. The tool suite by Goel et. al., in [32], [33],
formalizes about 33% user level instructions of the x86 ISA in the ACL2 theorem prover,
with a goal of both explicitly simulating and formally reasoning over assembly. They have

14

also formalized the x86 system call (syscall) instruction, with execution support for system
calls provided by the underlying OS for simulation.

2.4 Model Checking of Concurrent x86 Assembly

POR and x86 assembly. The main aim of the work is to present a model checking tool-set,
Xavier, that can emulate and efficiently verify concurrent assembly execution. Incidentally,
the “Efficiency” part is achieved by exploring the concurrent x86 machine state through
applying POR. This, as stated in Section 1.3, is the first contribution of Xavier. However,
as a critical distinction, the variations of POR algorithms presented in Section 2.1 apply to
abstract languages, i.e, either to the source code or to a form of its intermediate representa-
tion (e.g, LLVM or Java Bytecode). In contrast, the approach taken involves applying POR
to the x86 assembly, where each instruction can potentially have several side effects.

Any sound model checker consuming assembly will have to accurately emulate and track the
modifications to the system state, through a concrete execution and memory model, which
makes the verification model stateful. In order to take complete advantage of the stateful
setting, we have drawn inspiration from [25] in making the POR algorithm sensitive to the
value of the state constituents, and thereby stateful. What differentiates our algorithm from
the state-of-the-art is its dependence on order-sensitivity to recognize equivalence classes.
The following chapters will delineate this contribution in-depth.

Concurrent x86 assembly verification. The second contribution of Xavier, as men-
tioned in Section 1.3, is similar to the contributions in [32], [33]. It focuses on both defining
the execution semantics for the x86 ISA and on modelling an external non-deterministic
execution environment [54]. However, there are several distinctions of Xavier from the
state-of-the-art.

The first distinction is the support for concurrency and the focus on the emulation model for
multi-threaded assembly execution. The execution model supports dynamic thread creation
by providing execution semantics for the Linux pthread library. Secondly, the framework
provides support for defining semantics for system calls, thereby not relying on the under-
lying OS for sound execution. Additionally, the execution model is not limited to sequential
consistency, as the memory model included in Xavier supports the TSO relaxed memory
model[10]. Finally, the approach of the thesis is geared towards developing an emulation
framework for concurrent assembly programs, rather than completeness in defining execu-
tion semantics for x86 ISA.

Chapter 3

POR for x86 Assembly

This chapter is intended to i) delineate the requirements for efficiently verifying multi-
threaded assembly programs using POR algorithms and ii) demonstrate the benefits of ap-
plying POR at the assembly level. To that end, the chapter is organized as follows. Section
3.1 details the requirements that any POR algorithms verifying concurrent assembly should
uphold. Section 3.2 details the several benefits of applying POR algorithms to assembly.

3.1 Requirements

Due to the large semantic gap, program verification at the assembly level is typically more
involved than verification at either the source or the byte-code level. Hence, the application
of traditional POR algorithms to assembly programs can be faced with several challenges.
We will attempt to demonstrate such challenged and the requirements of applying POR to
assembly with the help of an example.

Figure 3.1a contains the snippet of a concurrent program with two threads. The program
contains a global variable y and two integer pointers a and b. The two threads first carry
out a simple concurrent update of y, and then the two threads update the memory locations
pointed to by a and b respectively. Figure 3.1b, on the other hand, represents the assembly
equivalent of the program in Figure 3.1a. We have chosen to represent only the lines of
assembly that directly correspond to the lines in the source-code.

We will now use the code snippet in Figure 3.1 to demonstrate the requirements for verifying
a concurrent assembly program through POR.

1. POR algorithms traditionally recognize program variables through their declarative
names. While higher level programs can be clearly expressed through variables, as-

15

16

assume y :: int = 1

a :: int* = ∅
b :: int* = ∅

// thread 1

y = 1;

*a = 1;

// thread 2

y = 2;

*b = 2;

(a) Source code

// thread 1

mov dword ptr [rip+@], 0x1 # <y>

// ------

mov rax, rdi

mov dword ptr [rax], 0x1

// thread 2

mov dword ptr [rip+$], 0x1 # <y>

// ------

mov rax, rdi

mov dword ptr [rax], 0x2

(b) Assembly code

Figure 3.1: Assembly verification requirements

sembly programs have no notion of variables. This can be seen from the global variable
y. While the variable is addressed unceremoniously in the source-code, y is accessed
through rip relative addressing in the assembly. This makes recognizing trace equiv-
alences in the usual fashion non-trivial. Hence, any POR algorithm working at the
assembly level will have to be independent of declarative semantics of the program,
i.e., be independent of variable names.

2. An assembly program would have access to a limited set of hardware registers, which
would be used to represent program variables. Hence, the set of hardware registers
could potentially be reused while representing a large set of variables. Thus, in order
to reason over the state of registers, any POR algorithm working at the assembly level
will require to be stateful.

3. Pointers in higher level languages are typically associated with a type and have an
abstracted view of the underlying memory. Pointers in the assembly, on the other
hand, have no notion of types. Moreover, pointers in assembly are more precise as they
deal with byte-addressable memory. Thus, any POR algorithm looking to efficiently
handle pointers in assembly will require a strong byte-addressable memory model.

3.2 Benefits of applying POR to assembly

The aim of this section is to present an example that demonstrates the benefits of applying
POR to assembly. Consider the following code snippet of concurrent string manipulation.

17

There are two threads t1 and t2 communicating over a shared contiguous piece of memory
storing characters. Thread t1 performs one action by initializing the memory region with
a string. Thread t2 performs three actions by concurrently initializing and subsequently
writing new characters to this memory region.

assume str :: string = "zz"

itr :: char∗ = ∅

// thread 1

1. str = "ab";

// thread 2

1. str = "ab";

for(itr = str.begin(); itr 6= str.end(); ++itr)

2. ∗itr = 'a';

Figure 3.2: A toy program with two threads

• Scalability. All of the POR algorithms in the literature define dependency between ho-
mogeneous actions, i.e., actions of threads that work on the same underlying datatype.
At a higher level of abstraction than the assembly, defining dependencies between non-
homogeneous actions requires establishing a formal relationship between, at the least,
all datatypes used in a program. This hiders scalability. However, all datastructures in
the assembly are represented as a string of bytes. Thus, references to all datastructures
in the assembly are homogeneous, which aids in scalability.

• Figure 3.2 can be used to demonstrate the second disadvantage with applying POR
at an abstract level. Consider the following notation: let tji donate the jth action of
thread i. Considering a stateless dependency relation, there exists 4 Mazurkeiewicz
orderings.

O1 : t11 · t12 · t22 · t22 O2 : t12 · t11 · t22 · t22 O3 : t12 · t22 · t11 · t22 O4 : t12 · t22 · t22 · t11

Any sound POR algorithm will explore at least the two traces O1 and O4 (since
{O1, O2, O3} lead to the same end state). A POR algorithm that depends on only
the Mazurkeiwz orderings will explore, at the least, all four traces. On the other hand,
a POR algorithm that whose dependency relation is defined for homogeneous actions
and is sensitive to the state of the dependent variables will explore only three traces
(O1, O3 and O4). This is so, since t11 and t12 are homogeneous writes writing the same
value.

However, in the assembly, all of the writes to memory are a string of bytes, irrespective
of the underlying data-structure. This makes memory access actions in the assembly
truly homogeneous, allowing to form a much coarser dependency relation. In the above

18

example, the string initialization actions (t11 and t12) are both seen as writes to of bytes
to contiguous memory locations. Hence the actions t11 and the first instance of t22 are
also seen as independent, as the overlapping memory regions get the same value written.
Thus our POR algorithm will explore only two traces (O1 and O4) as {O1,O2, O3} form
an equivalence class.

• Defining stateful dependency relations between actions operating on pointers at higher
levels of abstraction requires extensive points-to analysis. This is so, since a pointer
variable can potentially reference several datastructures during the lifetime of a pro-
gram. However, such points-to analysis are unnecessary while analyzing pointers in
the assembly. This is so since the assembly maintains a rigid and explicit model of the
underlying memory. Therefore, memory locations of datastructures referenced in the
program are explicitly calculated before the reference in assembly. This allows defining
coarser dependency relations between assembly instructions with lesser computational
effort, than actions at a higher level of abstraction.

Chapter 4

POR Algorithm: Definitions

This chapter will present the technical and formal background used in the rest of the work.
The chapter is staggered as follows; Section 4.1 presents the basics for the concurrency
model that underlines the algorithm contributed in this thesis. Subsequently, Section 4.2
will introduce several examples that will be used to explain critical definitions and concepts
of the work. Finally, Section 4.3 we will introduce several essential definitions that the
algorithm is built upon.

General notations. Given a sequence of elements X = [x0, x1, . . . , xn], we use E(X)
to denote the elements of X. Given a sequence X = [x0, x1, . . . , xn] and an element
xi ∈ E(X), we define split :: x 7→ [x] 7→ ([x], [x]) as a function that returns a tuple of
lists such that split(xi, X) = ([x0, . . . , xi−1], [xi, . . . , xn]). Similarly, we define the func-
tion split at :: x 7→ [x] 7→ ([x], [x]) as a function that returns a tuple of lists such that
split at(xi, X) = ([x0, . . . , xi], [xi+1, . . . , xn]).

4.1 Model basics

We consider the concurrency modelM as a system working upon a multi-threaded assembly
program P of {p1, . . . , pj} variable threads that communicate through manipulating shared
memory. We make no distinction between threads and processes, as all threads are con-
sidered to be spawned by the same program. Thread p1 behaves as the main thread of the
program, and is initialized statically at the beginning of the simulation with a unique starting
state s0. Subsequently, {p2, . . . , pj} are threads dynamically created during the execution of
the program. The concurrency model imposes no restrictions on the number of threads in
the system and makes no assumptions about the constituents of the states; the underlying
machine model is entirely responsible for defining the states and their manipulations.

19

20

Model semantics. We describe the execution behavior of M as a transition system M =
{Σ,A, s0,→, enabled}. The characteristics of M are as follows;

• Σ is the set of all the program states reached during the program analysis.

• s0 ∈ Σ is the initial state of the transition system. s0 is supplied externally to the
model, and every valid execution in M should start at the initial state.

• A =
⋃j
i=1Ai represents the set of all the actions to be performed by the program.

Each thread pi of the program is assumed to execute a set Ai = {a1i, . . . , a
j
i} of atomic

actions, resulting in advancing the program state at each execution step.

• →:: Σ 7→ A 7→ Σ is the step function that, given a state and an action produces the
next state.

• enabled :: Σ 7→ {A} represents the set of actions enabled in a state for execution.

In a given program state s, a thread in the system can either be blocked from execution,
or can have an action enabled to be executed. A thread is considered to be blocked in the
present state if i) it has no more actions to execute, or ii) if the instruction semantics re-
quire it to be blocked (unsuccessful lock acquire or exceptions etc.). Moreover, there can be
multiple actions enabled in a state, since the state can potentially have multiple un-blocked
threads. Additionally, given an action ai ∈ Ai, âi represents the thread pi executing the
action.

From each program state s ∈ Σ the model requires the execution of a single atomic action
a ∈ enabled(s), thereby advancing both the shared state of the system and also the local
state of the executing thread. Consequently, from a state s ∈ Σ, chosen(s, a) :: Σ 7→ A 7→ B
represents the action a ∈ enabled(s) chosen to be executed. We represent s

a−→ s′ as a legal
transition from states s ∈ Σ, by executing the action a ∈ enabled(s) ∧ chosen(s, a) in state
s, to achieve the state s′ ∈ Σ. Additionally, we call a state s ∈ Σ final, notation final(s),
if enabled(s) = ∅, i.e., there are no actions enabled in state s, from all threads, to continue
execution.

4.2 Running Examples

The rest of this section will introduce several definitions that are vital to describe our algo-
rithm. Therefore, we will use the following examples to explain these definitions in detail.

Figure 4.1 represents a toy multi-threaded program P1 with 4 threads. The state of the
program is comprised of four global variables (w, x, y, z). An action is considered global if

21

assume s0 ≡ w = x = y = z = 0

// thread 1

1. x = y;

// thread 2

2a. w = 1 ;

2b. skip;

// thread 3

3a. skip;

3b. y = z;

// thread 4

4. z = w;

Figure 4.1: Example program P1

accesses the state of the global variables, and local otherwise. All the threads perform at-
least one global action, which work on the global variables, with zero or more local actions.
Each action is annotated with a unique identifier, which will be used to represent the action
in an trace. There can be several possible execution interleavings amongst the execution
ordering of the thread actions, resulting in several possible maximal traces.

Using the example to describe the constructs of this work requires defining the abstract
concurrency model for the the program P1. This entails instantiating the program P1 as a
transition system M = {Σ,A, s0,→, enabled}, where

• Σ is the set of all the program states reached during the program analysis.

• s0 ∈ Σ is the initial state of the transition system with the values of all the variables
{w, x, y, z} initialized to 0.

• A =
⋃4
i=1Ai represents the set of all the actions to be performed by the program.

• The step function→:: Σ 7→ A 7→ Σ is defined straightforwardly as executing an atomic
action from a state, thereby updating the value of the global variables.

• enabled :: S 7→ {A} represents the set of actions enabled in a state for execution. The
actions in a thread are enabled in thread order. For example, in thread 2, action 2b

will be enabled only after the execution of 2a. A given thread pi is considered to be
blocked in a state s only if enabled(s) = ∅.

assume s0 ≡ w = x = y = z = 0

// thread 1

1. x = y;

// thread 2

2. w = 1 ;

// thread 3

3. y = z;

// thread 4

4. z = w;

Figure 4.2: Example program P2

Program P2 presented in Figure 4.2 is a simplified version of the program P1 in Figure 4.1:
we have chosen to omit the local actions of the threads to achieve a simplified representation.
Defining the abstract concurrency model for the the program P2 is similar in every way to
that of P1, except that threads in program P2 perform only one global action.

22

assume s0 ≡ x = y = z = 0

// thread 1

1a. x = y;

1b. x = 1;

// thread 2

2. z = x;

// thread 3

3. y = z;

Figure 4.3: Example program P3

assume s0 ≡ x = y = z = 0

// thread 1

1a. y = 1;

1b. x = y;

// thread 2

2. z = x;

// thread 3

3. y = z;

Figure 4.4: Example program P4

Figure 4.3 and Figure 4.4 represent another toy multi-threaded programs P3 and P4 with
three threads. Defining the abstract concurrency model for the the program P3 and P4,
follows the same procedure as for program P1. This entails instantiating the program P3

and P4 as a transition system M = {Σ,A, s0,→, enabled}, where

• Σ is the set of all the program states reached during the program analysis.

• s0 ∈ Σ is the initial state of the transition system with the values of all the variables
{x, y, z} initialized to 0.

• A =
⋃3
i=1Ai represents the elements of all the actions to be performed by the program.

Each thread pi · i ∈ {1, . . . , 3} of the program executes at-least one atomic action, with
zero local actions, resulting in advancing the program state at each execution step.

The rest of the instantiations are the same as from the program P1.

4.3 Model Definitions

We will now provide several key definitions in this section that will be used to define the
behavior of the concurrency model, and the succeeding algorithm.

Traces. We define a trace τ as an ordered sequence of actions intended to be executed from
a given state s ∈ Σ. Given a trace τ and a state s ∈ Σ, we define the executability of the
trace τ from the given state s as follows;

23

Definition 4.3.1. Executability. A trace τ = [am, . . . , an] is executable from a state s ∈ Σ,
notation executable(s, τ), if and only if we can define a list of states S(τ) = [sm, . . . , sn+1]
such that:

sm = s ∧ ∀m≤i≤n si
ai−→ si+1

Intuitively, the execution of a trace represents the series of legal transitions that the system
can perform by executing the sequence of actions, starting from the given state.

Example 4.3.1. (executability). We will consider an example execution from Figure 4.1
to understand executability. Consider the state s = (w = x = y = z = 0) and a trace τ =
[2a, 2b, 4]. The state s, incidentally, is equivalent to the initial state of the system. Hence,
a trace of P1 that respects thread ordering should be executable from s. And indeed so, we
have

executable(s, [2a, 2b, 4])

This is because, we can construct the witness list of states S(τ) = [s, s1, s2, s3] from the
definition of executability, that corresponds to a legal execution of τ . s1 = step(s, 2a) gives
us a legal state s1 = (w = 1, x = y = z = 0) by executing the action 2a from the state s.
Since action 2b is a skip, we have s2 = s1. Finally, we get s3 = step(s2, 4), where s3 =
(w = z = 1, x = y = 0). Hence, we can represent the computation of τ from s as

s
2a−→ s

2b−→ s2
4−→ s3

Now consider the trace τ ′ = [2b, 3a, 3b] and state s = (w = x = y = z = 0). Trace τ ′ does
respect thread ordering in threads. But we have

¬ executable(s, [2b, 3a, 3b])

This is because τ ′ fails the definition of executability, We cannot define a state s′ such that

s
2b−→ s′, since action 2b /∈ enabled(s). Thus the trace τ ′ is not executable from s.

Given an trace τ = [a0, . . . , am], we define τ as a valid trace, if and only if τ is executable
from the initial state s0. In other words, the the execution of τ from s0 will result in a valid

computation of M. We represent the computation of τ on as s0
[a0,...,am]−−−−−→ sm+1 where

s0
[a0,...,am]−−−−−→ sm+1 = s0

a0−→ s1
a1−→ s2

a2−→ . . . sm
am−→ sm+1

Every valid trace begins with the initial state s0 of M. Thus, the execution of a valid
trace τ can be used to characterize the state of the system. Notation s[τ] denotes the state
ofM achieved after computing τ onM. Therefore, while determining the executability of a
trace τ ′ from a state s′, we can overload the use of executable(s′, τ ′) by passing in sτ as the

24

first parameter, where s[τ] = s′. Hence, notation executable(τ, τ ′) indicates that the trace τ ′

will be executable only after the execution of the valid trace τ . Additionally, a valid trace
τ = [a0, . . . , am] is considered to be maximal if its last state sm+1 is final. Finally, we use τ · τ ′
denote the extension of a valid trace τ with another trace τ ′. That is, for a trace τ , τ · τ ′
represents a valid trace if

1. τ is valid

2. τ is not maximal

3. We have executable(τ, τ ′), that is τ ′ is executable after τ , from state s[τ].

We will explain the definition of trace extension with an example

Example 4.3.2. (trace extension). We will revisit the example from Figure 4.1 to explain
the extension of traces. Consider the trace τ = [1, 2a, 3a] being executed from the initial state
s0 = (w = x = y = z = 0). The trace τ is executable from the initial state s0, since it follows
thread order in all the involved threads. Hence, we have

executable(s0, [1, 2a, 3a])

Trace τ is a valid trace since it was executed from the initial state. Hence, we can repre-
sent the state of the system, after the computation of tau as s[τ] = (w = 1, x = y = z = 0).
Now consider the trace τ ′ = [2b, 3b, 4]. For τ ′ to be executable after τ , we must have i)
τ being valid, ii) τ not being maximal. And indeed, we have so since τ was executed
from the initial state and enabled(s[τ]) 6= ∅. We must then have iii) The trace τ ′ is exe-
cutable from s[τ]. And indeed, that is so since we can construct the witness list of states
S(τ ′) = [(w = 1, x = y = z = 0), (w = 1, x = y = z = 0), (w = z = 1, x = y = 0)], that repre-
sent the computation of τ ′ after τ . The actual construction of the witness list of states is left
to the reader. Therefore, we have

executable(τ, τ ′)

Consider another trace τ ′′ = [2a, 3b, 4]. In this case, τ ′′ is not executable after τ , since τ ′′

does not respect the definition of executability. That is because action 2a /∈ enabled(Sτ).
Hence, we have

¬ executable(τ, τ ′′)

Reachability. Given a step function →, we use →∗:: Σ × Σ 7→ B to denote reachability.
That is, s→∗ s′ denotes that there exists some trace τ that is executable from s such that
s′ can be reached by executing τ ′ from s. Using reachability, we define freach as follows;

25

Definition 4.3.2. freach. The freach of state s, notation freach(s), is defined as the set
of final states reachable from s. That is

freach(s) ≡ {sf · final(sf) ∧ s→∗ sf}

We denote freach as a set of states, since there can be multiple final states reachable from
a given state. This is because each state reached in the system can possibly have multiple
actions enabled. And consequently, the order in which the enabled actions are executed can
influence the configuration of the final state reached. We will demonstrate this definition in
the following example

Example 4.3.3. (freach, Part I). We will revisit the program in Figure 4.1 to demon-
strate this definition. Consider the initial state s0 = (w = x = y = z = 0) of the program.
freach(s0) denotes the set of all final reachable states from s0. Since s0 is the initial state of
the system, freach(s0) is a set of all possible, unique, final states of the program. That is,

freach(s0) ≡ (w, x, y, z) = {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 1), (1, 1, 1, 1)}

This is because we can define at-least four maximal traces (for example (1,2a,2b,3a,3b,4),
(1,2a,2b,4,3a,3b), (1,4,2a,2b,3a,3b), (2a,2b,4,3a,3b,1)) that are executable from the initial
state s0, and can lead to the four final states respectively.

(freach, Part II) Consider another state of the system s′ = (w = 1, c = y = z = 0). State
s′ is a legal state of the program, since it can be achieved by executing the trace τ = [2a] from
the initial state s0. The freach of state s′ will then be

freach(s′) ≡ (w, x, y, z) = [(1, 0, 0, 1), (1, 0, 1, 1), (1, 1, 1, 1)]

This is because we can define at-least three traces (e.g., {[2b, 1, 3a, 3b, 4], [2b, 1, 4, 3a, 3b],
[2b, 4, 3a, 3b, 1]}) that are executable from state s′ and can lead to the three final states.
Moreover, freach(s′) does not include the final state (w = 1, x = y = z = 0) since there can be
no trace that would be executable from s′ and can reach the final state (w = 1, x = y = z = 0)

Example 4.3.3 clearly demonstrates the influence that choosing actions to execute from a
state have over reachability. As seen from Example 4.3.3 Part I, every possible end state
of the program is reachable from the state s0. Since s0 is the initial state, all possible
valid traces are rendered executable, thereby allowing all end states to be reachable from s0.
Whereas in Example 4.3.3 Part II, the number of states that are reachable from state s′ is
limited. The action 2a was first chosen to be executed from the state s0. This resulted in
the variable w taking the value of w = 1 in the state s′. Beginning from state s′, there can
be no other enabled actions that assign a value to the variable w, which restricts the value
of w to be 1 in all the final states reachable from s′.

26

We can examine the execution of the valid trace τ = [2a, 4, 3a, 3b, 1] to understand this
behavior better. We coin the term dataflow to any sequence of actions involved in a chain
of computation. Moreover, from the initial state s0, every possible final state is reachable.
However, by executing the action 2a w = 1 from the initial state, the data w = 1 now flows
to every later state that utilizes the value of w. This restricts the value of w to be 1 in all
final states henceforth. Similarly, extending the valid trace [2a] with [4] results in the data 1

flowing from w to z, which restricts the value of {w, z} = 1 in all states reached henceforth.
Finally, extending the valid trace [2a, 4] with [3a, 3b, 1] results in the data w = 1 flowing to
x via z, y. This restricts the final reachable state to be {w, x, y, z} = {1, 1, 1, 1}.

We term the influence that executing actions in an order have over the reachable final states
as a order-sensitivity. In Example 4.3.3 Part II, executing the action 2a from state s0 to
achieve the state s′. resulted in the data w = 1 flowing to the states in the rest of the
exploration that directly or indirectly utilizes the value of w. Hence, all final states that
have w = 1 became reachable from the state s′. Alternatively, if the action 1 (x = y) was
executed from the initial state s0, to achieve state s′

′, then every final state that have x = 0

would have become reachable from s′
′. The algorithm, while exploring new states, dynam-

ically detects these order-sensitivities in the current trace and sets. Formally, we define a
order-sensitivity as follows.

Definition 4.3.3. order-sensitivity. Let τ = τ1 · τ2 be a valid trace, where τ2 = [a0, a1, . . . , an]
is a valid extension after trace τ1. Trace τ2 is order-sensitive after trace τ1, notation
order-sensitive(τ1, τ2), if and only if:

∃τ ′. executable(τ1, τ
′) ∧ a0 /∈ τ ′ ∧ (τ ′) = an ∧ freach(τ1 · τ ′) * freach(τ1 · τ2)

Let s be the state reached after execution of trace τ1, which we will term as the start-state of
the order-sensitivity. order-sensitivity indicates that the execution of the trace τ2 from state
s, caused at least one final state to become unreachable from s[τ]. This was because the last
action an in τ2 recorded a dataflow that the first action a0 was not a part of. Moreover, there
exists some alternative trace where an is executed before action a0 such that this final state
does become reachable. In other words, executing an before a0 renders a0 as the new recipi-
ent of the dataflow, that uncovers at least one final state unreachable after the execution of τ .

Example 4.3.4. (order-sensitivity) We revisit the running example. Consider the trace
τ = [1, 2a, 2b, 4, 3a, 3b]. Intuitively, one expects a dataflow from action 2a (w = 1) via action
4 (z = w) to action 3b (y = z): the data-value 1 flows from w via z to y. Delaying this
dataflow until after execution of action 1 caused final state {w, x, y, z} = {1, 1, 1, 1} to become
unreachable. Indeed, we have:

order-sensitive([], [1, 2a, 2b, 4, 3a, 3b])

27

This holds, since there exists an alternative trace τ ′ = [2a, 4, 3a, 3b] that does not have
action 1 in it and ends with action 3b. The final state {w, x, y, z} = {1, 1, 1, 1} is reachable
after execution of τ ′, but is unreachable after execution of τ .

In the Example 4.3.4, the action sequence [2a, 4, 3a, 3b] in τ represented a dataflow that
action 1 was not initially a part of. However, executing the trace τ ′ = [2a, 4, 3a, 3b] before
action 1 resulted in 1 now becoming the recipient of the dataflow. This shuffle in ordering
resulted in uncovering a new final state {w, x, y, z} = {1, 1, 1, 1}.

Note that τ ′ is the minimal trace needed to flow the data-value 1 from w to z in the initial
dataflow. Omitting any of the actions would either make the trace τ ′ non-executable after
τ , or the variable z would end up with value 0. Consequently, action 1 would not be the
new recipient of the dataflow in the shuffled trace, Thus τ ′ is the most suitable trace to ex-
plore in order to uncover new final states. Therefore, we are interested in the minimal trace
needed to replay a dataflow, without the loss of data, which we call as the dataflow-sequence.

Definition 4.3.4. dataflow-sequence (dfs). Let τ2 = [a0, a1, . . . , an] be an order-sensitive
trace after a valid trace τ1. The dataflow sequence of this order-sensitivity, notation dfs(τ1, τ2),
is defined as the largest action sequence as such that the predicate Pdfs(as) holds. Here pred-
icate Pdfs is inductively defined by the following equations:

(base) Pdfs([an])

(rec.) if

as = [ai, . . . , an]
Pdfs(as)
0 < j < i
necc for(aj, as)
∀j<k<i.¬ necc for(ak, as)

 then Pdfs(aj, as)

The predicate necc for is defined as follows. Consider an action a ∈ E(τ2), such that τ ′ · τ ′′ =
split(a, τ2). The action a ∈ E(τ2) is necessary to be included in as = dfs(τ1, τ2), notation
necc for(a, as), if

necc for(a, as) = ∃a′ ∈ as . â = â′ ∨ order-sensitive(τ1 · τ ′, τ ′′)

Definition 4.3.4 details the predicate that is required to construct the dataflow-sequence, and
the construction happens in the opposite order of execution. The dfs(τ1, τ2) is the minimal
sequence of actions in τ2 that is required to replay the dataflow in order-sensitive(τ1, τ2) after
the execution of τ1. From the definition of order-sensitivity, action an in τ2 is the recipient
of the dataflow, and hence is trivially required to replay the dataflow. This is the base case
of Pdfs.

28

The recursive case of Pdfs defines the rest of the actions from τ2 that are required to construct
the dataflow. The definition uses the predicate necc for, expressed “necessary for”, to define
this requirement. While constructing the dataflow-sequence as to replay the dataflow in τ2,
action a ∈ E(τ2) is necessary to be included in as, if

1. There is an action a′ ∈ as that is executed by the same thread as that of action a. or

2. Action a itself initiates a dataflow to the last action an of τ2.

The first requirement for necc for preserves the thread order in the threads, while replaying
the dataflow. The second requirement is necessary to preserve actions that take part in the
actual dataflow to the last action an of τ2. We will illustrate the construction of a dataflow-
sequence with an example.

Example 4.3.5. (dfs). Consider the order-sensitive trace in presented in Example 4.3.4,
that is order-sensitive([], [1, 2a, 2b, 4, 3a, 3b]) where τ1 = [] and τ2 = [1, 2a, 2b, 4, 3a, 3b].
The dataflow in the example occurred from action 2a (w = 1) via action 4 (z = w) to action
3b (y = z). The dfs of this dataflow should be comprised of actions that enable the dataflow.
And indeed, we have

dfs(τ1, τ2) = [2a, 4, 3a, 3b]

The dfs for the dataflow in τ2 is constructed using the predicate Pdfs as follows:

1. Pdfs([3b]) trivially holds from the base case, since action 3b records the dataflow

2. Pdfs([3a, 3b]) holds, since from the recursive case, necc for(3a, [3b]) holds. This is be-
cause, from the definition of necc for, action 3a is necessary to enable action 3b as
3̂a = 3̂b

3. Pdfs([4, 3a, 3b]) holds, since from the recursive case, necc for(4, [3a, 3b]) holds. This is
because order-sensitive ([1, 2a, 2b], [4, 3a, 3b]) holds. Intuitively, action 4 is included in
the dfs, since it participates in the original dataflow by passing on the value of variable
w to y in action 3b, through the variable z.

4. Pdfs(2b, [4, 3a, 3b]) does not hold since, firstly, the base case does not hold. Secondly,
the recursive case does not hold either as necc for(2b, [4, 3a, 3b]) does not hold. This
is because i) @a′ ∈ {4, 3a, 3b} such that 2̂b = â′ and ii) there is no dataflow in
[2b, 4, 3a, 3b]. That is, order-sensitive ([1, 2a], [2b, 4, 3a, 3b]) does not hold

5. Pdfs([2b, 4, 3a, 3b]) holds since from the recursive case, there is a dataflow from action
2a to 3b, via 4 in τ2. That is, order-sensitive ([1], [2a, 2b, 4, 3a, 3b]) holds

29

The aim of the algorithm is to dynamically construct maximal traces that explores all unique
end states of the program. However, as seen from Definition 4.3.3, order-sensitivities in a
trace can result in limiting the final reachable states from the trace. The dataflow-sequence
of such order-sensitive traces can be replayed from the corresponding start-state, in order to
uncover these hidden final reachable states. However, not all dataflow-sequences will be re-
playable, from the start-state of their corresponding order-sensitive traces. Therefore, we will
introduce here the concept of Replayability. We define an order-sensitivity to be replayable,
if the dataflow-sequence for the order-sensitivity is replayable. The following definition will
detail the semantics of Replayability.

Definition 4.3.5. Replayability. Let τ = τ1 · τ2 be a valid trace, where τ2 = [a0, a1, . . . , an]
represents an order-sensitive after the valid trace τ1. Let τas = dfs(τ1, τ2) be the dataflow-
sequence for a the order-sensitivity in τ2. The order-sensitivity in τ2 is replayable if τas, the
dfs of order-sensitive(τ1, τ2) adheres to the predicate re-playable(τ1, τas), where

re-playable(τ1, τas) = (1) executable(τ1, τas) ∧
(2)@τ ′τ ′′ · τ ′ · τ ′′ = τ2 ∧ τ ′ 6= [] ∧ τ ′′ 6= [] ∧ order-sensitive τ1, τ

′

Let s be the start-state of order-sensitive(τ1, τ2). The action sequence τas can only be re-
played from the state s, if τ · τas represents a valid trace. Case (1) of the predicate expresses
this soundness condition, by requiring τas be executable from the state s. Intuitively, replay-
ing the order-sensitivity requires executing the action a0 after the valid trace τ1 · τas. This
execution can be unsound if executing a0 after the actions from τas violates the thread order
of â0.

Case (2) preserves the integrity of the dataflow during its replay from state s. Essentially,
the trace τas would be unable to replay the dataflow, if the action a0 is an integral part in
computation chain of the dataflow. Intuitively, executing the trace τas before executing the
action a0 from state s prevents the dataflow from occurring. We will explain these definitions
in the following examples.

Example 4.3.6. (replayability, case (1)). Consider the example program in Figure 4.3.
We will examine a trace in the execution of the program P3, to understand the case (1) of
replayability. Consider the valid trace τ = [1a, 1b, 2, 3]. There exists a dataflow from action
1b (x = 1), via the action 2 (z = x) to action 3 (y = z). And indeed we have

order-sensitive([], [1a, 1b, 2, 3])

This is because we can define another valid trace τ ′ = [2, 3] that does not have the action 1a

in it and ends with the action 3. The final state {x, y, z} = {1, 0, 0} is reachable after the

30

execution of τ ′, but is unreachable after the execution of τ . In order to replay this order-
sensitivity we will construct the τas, the dataflow-sequence of the order-sensitive trace. Hence,
we have

τas = dfs([], τ) = [1b, 2, 3]

The construction of the dfs is left to the reader. The trace τas, as stated in Definition 4.3.4,
contains the necessary actions required to replay the order-sensitivity. However, the order-
sensitivity is not replayable since

¬ re-playable([], τas)

From case (1) of Definition 4.3.5, the dfs τ2 is not executable from the start-state of the pro-
gram. Executing the trace τas from the start-state will violate the thread order in Thread1,
since replaying the order-sensitivity entails executing the action 1b before 1a.

Remark. On a side note, the final state {x, y, z} = {1, 0, 0} can be uncovered by replaying
order-sensitive([1a], [1b, 2, 3])

Example 4.3.7. (replayability, case (2)). Consider the example program in Figure 4.4.
We will examine a trace in the execution of the program P4, to understand the case (2) of
replayability. Consider the valid trace τ = [1a, 1b, 2, 3]. We have

O1 ≡ order-sensitive([1a], [1b, 2, 3])

This is because we can define another valid trace τ ′ = [3] that does not have the action 1b

in it and ends with the action 3. The final state {x, y, z} = {0, 0, 0} is reachable from the
execution of τ ′ after [1a], but is unreachable after the execution of τ .

In order to replay this order-sensitivity we will construct the τas, the dataflow-sequence of
the order-sensitivity. Hence, we have

τas = dfs([1a], τ) = [2, 3]

The construction of the dataflow-sequence is left to the reader. The trace τas, as stated in
Definition 4.3.4, contains the necessary actions in [1b, 2, 3], that is required to replay the
order sensitivity. However, we have

¬ re-playable([1a], τas)

This is because, from case (2) of Definition 4.3.5, we also have

O2 ≡ order-sensitive([1a], [1b, 2])

From the Definition 4.3.3, by replaying O1, action 1b becomes the recipient of the dataflow
in [1b, 2, 3]. Moreover, by replaying O2, action 1b also becomes the recipient of the dataflow
in [1b, 2]. Thus by transitivity, the action 1b is an integral part of the dataflow in [1b, 2, 3],
which contradicts Definition 4.3.3.

Chapter 5

POR Algorithm: Pseudo Code

The intent of this chapter is to present and explain our Partial Order Reduction algorithm,
which is one of the core contributions of our work. The chapter is organized as follows. We
will first present the basic version of our algorithm, in Section 5.1, with suitable soundness
arguments which will be used to delineate the core concepts of the work. Subsequently, we
will present a running example in Section 5.2 that describes the step-wise execution of our
algorithm. We will then present the enhancements that were incorporated to better the
performance of the algorithm, in Section 5.3. Ultimately, in Section 5.4 we will present the
final version of our POR algorithm, which mirrors our implementation.

5.1 POR base algorithm

We are now ready to present a basic version of our main Partial Order Reduction algorithm,
which is documented in Algorithm 1. The algorithm is described in a recursive fashion,
and takes two inputs; iii) the current exploration trace and ii) a dataflow sequence to be
replicated. The algorithm also requires the abstract concurrency model for a concurrent
program, as it utilizes the concurrency constructs described in the chapter 4.

31

32

Algorithm 1: POR base algorithm

Requires: The concurrency model constructs
Initially: por([], [])

1 def por(τ, τdf ,):
2 s ← s[τ]
3 g ← (1) if τdf 6= ∅ then head(τdf)

(2) else pick fair(enabled(s))

4 if g is none then
5 return
6 else
7 τ ′ ← τ · [g]
8 τ ′df ← tail(τdf)

9 por(τ ′, τ ′df)

10 while ∃(τ1, τ2) . τ1 · τ2 = τ ′ ∧ order-sensitive(τ1, τ2) do
11 τdf ← dfs(τ1, τ2)
12 if re-playable(τ1, τdf) then
13 por(τ1, τdf)

The algorithm is basically a depth-first exploration of the state graph. However, not all ac-
tions are chosen to be explored from a state and thus not all states are explored. The entry
point to the algorithm is the recursive function por(). The initial call of the por() function
takes as input ii) the initial empty trace and ii) an empty dataflow sequence. Additionally,
the aim of the algorithm is to quit after exploring all unique final states of the program.

Depth-First Execution. Any call to the function por() first tries to advance the current
exploration state, by choosing an action to be executed. This can be seen in Line 3 of the
algorithm. If such an action cannot be found, the algorithm performs the base case by re-
turning from the recursive call (Line 5). If an action can be found, the algorithm performs
the recursive case (Lines 6 - 13) by continuing the depth-first exploration. In the recursive
case, the algorithm first extends the current trace with the chosen action (Line 7), shrinks
the dataflow sequence by one action (Line 8), and and advances the depth-first exploration
through the recursive call in Line 9.

Line 3 of the algorithm depicts how an action is chosen to be executed from the present
state. An action would be chosen from either the dataflow sequence that needs to be re-
played, or from the enabled pool of the current execution state. From Definition 4.3.4, the
actions in a dataflow sequence are required to be executed in the sequence order, to replay
a dataflow. Consequently, the algorithm first gives execution preference to the actions from
the dataflow sequence, by picking the sequence actions over enabled actions. This is repre-

33

sented by case (1) of the assignment in Line 3.

Alternatively, case (2) of Line 3 represents the semantics of picking an action from the
enabled set. The algorithm proceeds to pick an action from the enabled set only when there
are no actions to be executed from the dataflow sequence and given that there are actions
enabled for execution in the current program state. The case (2) of Line 3 makes sure that
there can be only one action picked from an execution state since, from the concurrency
model, there can be only one action chosen from an execution state.

The depth-first exploration, from Line 9, proceeds until the algorithm can find an atomic
action to further the execution progress. However, the algorithm will eventually reach the
base case when there are no more actions to be executed from an execution state. The
concurrency model defines such a state as a final state and the corresponding execution
trace as a maximal trace. Upon executing a maximal trace, the recursion stack unwinds the
exploration stack into Line 10. The algorithm then proceeds to construct new traces that
can reach new final execution states.

State exploration. Lines 10 - 13 details the construction of new traces to reach new
final states. The algorithm does so by recognizing order-sensitive sub-traces, initially, in
the current maximal trace (Line 10). Recall from Definition 4.3.3, the execution of an
order-sensitive trace renders at-least one final state unreachable. Hence, in order to un-
cover unreachable states the algorithm first constructs the dataflow sequence (Line 11) for
all such order-sensitivities, and utilizes the constructed sequences to uncover new final states.

The algorithm then confirms the constructed dataflow sequences to be re-playable from the
start-state of the order-sensitive traces (Line 12). If so, the algorithm then proceeds to replay
each constructed dataflow sequence, from start-state of the corresponding order-sensitive
trace (Line 13). The replay is achieved by passing the dataflow sequence as a parameter to
a new recursive por() call, which is parameterized to begin exploration from the initial state
of the order-sensitive. The por() call then, in depth-first fashion proceeds to explore new
maximal traces that can uncover the newly reachable final states. Finally, when all of the
order-sensitive traces have been examined in the current maximal trace, the recursion stack
unwinds the algorithm to return from Line 13.

5.2 Running Example

We will now replay the algorithm on a running example. Consider the example program P4

presented in Figure 4.2 (see Page 21). The Figure 5.1 shows the exploration tree of unique

34

Figure 5.1: State exploration for program P4

end states obtained by running the algorithm on the program P4. Each node in the tree
represents a state reached by the algorithm, and each arrow represents a transition. Ev-
ery transition is annotated with the thread ID performing the transition and atomic action
performed by the thread, from the execution state. The states (s4, s6, s9, s13) represent the
unique final states reached during exploration and are annotated with their state configura-
tion, and the order in which they are explored.

The algorithm begins exploration from the initial state s0 of the program. Hence, the
initial function call for the algorithm becomes por([], []). In depth-first fashion, the algo-
rithm explores the first valid maximal trace τm1 = [1, 2, 3, 4] leading to the first final state
s4 ≡ {w, x, y, z} = {1, 0, 0, 1}. The trace τm1 is executable trace from the state s0 as, from
Definition 4.3.1, we can construct the witness set of states S(τm1) = [s0, s1, s2, s3, s4] that
represent a valid execution. Since the algorithm does not set up any dataflow replays, until
a final state is reached, the actions for the first maximal trace are chosen for execution, at
random, entirely from the enabled set (case (2) of Line 3).

35

Upon reaching the first maximal trace, the recursion backtracks to Line 10. The algo-
rithm recognizes the first order-sensitivity in τm1, that is, order-sensitive([1, 2], [3, 4]). Here
τ1 = [1, 2] and τ2 = [3, 4]. This holds since, from Definition 4.3.3, there exists an alternative
trace τ ′ = [4] that does not have action 3 in it and ends with action 4. The final state
s6 ≡ {w, x, y, z} = {1, 0, 1, 1} is reachable after execution of τ1 · τ ′, but is unreachable after
execution of τ . Therefore, the algorithm proceeds to uncover the currently unreachable state.
The algorithm first defines the dataflow sequence τdf = [4] (Line 11). The construction of the
dataflow sequence happens according to Definition 4.3.4, where τdf is the minimal sequence
in τ2 that is required to replay the dataflow. The algorithm then finds the dataflow sequence
to be re-playable after τ1 (Line 12), as from Definition 4.3.5, τdf is executable after τ1. Hence,
the algorithm sets-up the dataflow replay from the state s[τ1] = s2, by calling por([1, 2], [4])
(Line 13).

The algorithm now begins a new branch of execution from the state s2. Since the dataflow
sequence τdf = [4] needs to be replayed, the algorithm chooses the action 4 from τdf for
execution (case (1) of Line 3). The algorithm then continues execution, in depth-first
fashion and by choosing actions from the enabled pool, to reach the second new final
state s6 ≡ {w, x, y, z} = {1, 0, 1, 1}. τm2 = [1, 2, 4, 3] is the second maximal trace corre-
sponding to this execution. Upon reaching the second maximal trace, the recursion back-
tracks to Line 10. The algorithm recognizes the second order-sensitivity in τm2, that is,
order-sensitive([], [1, 2, 4, 3]), which makes the final state s13 ≡ {w, x, y, z} = {1, 1, 1, 1} be-
come unreachable. Here τ1 = [] and τ2 = [1, 2, 4, 3]. Therefore, the algorithm proceeds to
uncover this unreachable state. The algorithm defines the dataflow sequence τdf = [2, 4, 3]
(Line 11). The construction of the dataflow sequence happens according to Definition 4.3.4.
τdf is the minimal sequence in τ2 that is required to replay the dataflow, and is re-playable
after τ1 (Line 12). The actual construction of the dataflow sequence is left to the reader. The
algorithm then proceeds to set-up the dataflow replay from the state s[τ1] = s0, by calling
por([], [2, 4, 3]) (Line 13).

The algorithm now begins a new branch of recursive execution from the state s0. The algo-
rithm first replays the dataflow trace τdf (case (1) Line 3) and proceeds to reach the third
new final state s13 ≡ {w, x, y, z} = {1, 1, 1, 1}. τm3 = [2, 4, 3, 1] is the third maximal trace
corresponding to this execution. Upon reaching the third maximal trace, the recursion back-
tracks to Line 10. The algorithm, in customary fashion, proceeds to find order-sensitive
traces in τm3. However, there are no order-sensitive traces in τm3 that can lead to a new
state that has not been reached before. Therefore, even though the base algorithm has
the provision to explore these redundant order-sensitive traces, our implementation of the
algorithm contains enhancements which will prohibit the algorithm in doing so. We will
detail the intuition behind these enhancements and their implementations in later chapters.
Therefore the recursion now backtracks to continue finding order-sensitive traces in the max-
imal trace τm2. There are no new order-sensitive traces in the maximal trace τm2 that can

36

lead to states unexplored before. Hence the algorithm further backtracks to continue finding
order-sensitive traces in the maximal trace τm1.

Upon backtracking to the maximal trace τm1, the algorithm finds the third order-sensitive
trace. That is order-sensitive([1], [2, 3, 4]), which makes the final state s9 ≡ {w, x, y, z} =
{1, 0, 0, 0} become unreachable. Here τ1 = [1] and τ2 = [2, 3, 4]. Therefore, the algorithm
defines the dataflow sequence τdf = [3, 4] (Line 11), that will uncover this unreachable final
state. Since τdf is re-playable after τ1, the algorithm then proceeds to set-up the dataflow
replay from the state s[τ1] = s1, by calling por([1], [3, 4]) (Line 13). The depth-first execution
from this recursive call leads to uncovering the final state s9, through the maximal trace
τm4 = [1, 3, 4, 2]. In the maximal trace τm4, the algorithm finds no order-sensitive traces that
can lead to a new state that has not been reached before. Hence, the algorithm backtracks
to the execution of the maximal trace τm1. As the algorithm has now exhausted exploring all
order-sensitive traces in τm1 , the algorithm then finishes execution by completely unwinding
the recursion stack.

5.3 Improvements to the base algorithm

The algorithm presented in Figure 1 is intended as a basic version that represents the crit-
ical concepts of this work. As noted in the previous chapter, Algorithm 1 is sound in its
execution, meaning that, given a concurrent program the algorithm will explore all unique
final states of the program. However, the algorithm provides room for several enhancements,
which are incorporated by the actual implementation, to increase the execution performance.
These enhancements come in the form of i) an over-approximation for dynamically detecting
order-sensitivity in execution traces and ii) an intelligent way of recognizing redundant order-
sensitive traces by the way of book-keeping. Therefore, we will now detail the enhancements
incorporated in our implementation of the algorithm, by providing an argument for their
requirement and by describing their mechanisms.

Over-approximation of order-sensitivity. The Definition 4.3.3 of Chapter 4 details the
semantics of recognizing order-sensitive execution among valid execution traces. Intuitively,
Order-sensitivity in a trace represents the fact that execution of the trace actions, in the
order defined by the trace, results in one or more of the final states becoming unreachable
after the trace execution. Therefore, given the execution of a valid trace, determining order-
sensitivity in the trace requires establishing two factors: (i) the final reachable state from the
current trace and (ii) a permutation of the current trace that can uncover a final state that
is unreachable after the execution of the current trace. However, following the definition to
establish order-sensitivity in a trace presents a nuanced requirement.

37

Consider the execution trace τm1 = [1, 2, 3, 4] of program P4 represented in Figure 5.1. For
the trace τm1, we have

order-sensitive([1, 2], [3, 4])

Fulfilling the requirement (i) for establishing the above order-sensitivity in this maximal
trace is trivial. That is, given its execution, the final reachable state from the maximal trace
τm1 is the state s4. This is trivially true since s4 is the state reached after the execution of
the valid trace τ4. Hence, for the trace τm1 we have,

s4 ≡ {w, x, y, z} = {1, 0, 0, 1} ∈ freach(sτm1)

However, fulfilling the requirement (ii) is not straightforward. Fulfilling requirement (ii)
entails both constructing the permutation sequence (the dataflow sequence) that contain
the original trace actions in a different order, and finding the final reachable states of that
permutation sequence.

From definition 4.3.4, the construction of the permutation sequence is recursively dependent
on the definition of order-sensitivity. Moreover, even if the dataflow sequence is defined as
a ‘simple’ permutation of the original trace, establishing all of its final reachable states re-
quires the complete execution of all possible maximal traces, that contain the permutation
sequence as a prefix.

Having to execute a new trace in order to establish order-sensitivity would be a hindrance to
the performance. The hindrance would be even more pronounced if the execution of the new
trace does not resulting in uncovering a new final state. Therefore, our implementation of
the algorithm includes an over-approximation of Order-sensitivity, that can recognize order-
sensitive traces dynamically without having to execute new traces. The semantics of this
over-approximation will be detailed in Chapter 6.4.

Execution of Redundant Traces. The algorithm presented above, as stated before, is
the basic version and can potentially explore redundant traces. We will revisit the run-
ning example to explain this case. Consider the scenario where the algorithm has com-
pleted the execution of the maximal trace τm1 = [1, 2, 3, 4] to reach the first final state
s4 ≡ {w, x, y, z} = {1, 0, 0, 1}. The recursion backtracks to Line 10 and detects the first
order-sensitivity in the maximal trace, that is

order-sensitive([1, 2], [3, 4])

As recorded in the example replay, the algorithm then begins the execution of τm2 =
[1, 2, 4, 3], to reach the second final state s6 ≡ {w, x, y, z} = {1, 0, 1, 1}.

After the execution of τm2, the recursion backtracks to Line 10 to find order-sensitive traces
in τm2. One of the order-sensitive traces that the algorithm can find in τm2 is

order-sensitive([1, 2], [4, 3])

38

However, there is no provision in the base algorithm that can stop the exploration of this
order-sensitivity. The exploration of this order-sensitivity is redundant as, in the process the
algorithm will explore the trace τ ′ = [1, 2, 3, 4] which is the same as τm1 and has already been
executed before. Therefore, our implementation of the algorithm includes a book-keeping
mechanism that keeps track of the order-sensitive traces previously explored, in order to stop
redundant executions.

5.4 Algorithm Back-end Implementation Requirements

In the course of describing the algorithm, we have referenced several constructs that any
implementation of the algorithm has to support. The constructs necessary to be implemented
range from the function semantics necessary for the Abstract Concurrency Model (described
in Section 4) to the algorithm specific improvements (described in Section 5.3). We will
utilize this section to detail all such requirements, and use the section as a prelude to the
introduction of the Machine model (Section 6), which details our algorithm implementation.

State Automaton Constructs

To analyze a concurrent program, the algorithm requires the abstract concurrency model
representation of the program. The abstract concurrency model is described as a transition
system T = {Σ,A, s0,→, enabled}. The state automaton constructs of the transition
system is detailed in Section 4. Hence, any implementation of the algorithm has to provide
the semantics for the constructs utilized by the transition system that adhere to the following
description.

• Σ, s0 : The implementation should provide meaningful semantics to the system state,
to help track the progress of both the algorithm and the underlying concurrent program.
The state of the system should easily be able to distinguish between the individual
thread states (local state L) and the state of the program (global state G). The
implementation should also provide semantics to the initial state of both the program
and the algorithm.

• A : The algorithm implementation should provide meaningful semantics to the instruc-
tion set of the program. The instruction semantics is necessary to both describe the
execution state and help evaluate the functions utilized by the algorithm.

• →: The implementation should provide semantics to the transition function of the
concurrency model. The transition function is necessary to advance the execution
state by utilizing the instruction semantics of the program.

39

• enabled : The algorithm implementation should provide semantics to the enabled func-
tion, that adheres to the semantics of the program and the system state.

Algorithm Constructs

In addition to the State Automaton constructs of the concurrency model, the algorithm
utilizes several functions, described by the concurrency model, to decide and advance the
course of state-space exploration. Hence, it is necessary for the algorithm implementation
to provide implementation semantics to the constructs listed below

• order-sensitivity: An integral function of the algorithm is to determine order-sensitivity
in explored traces, in order to find new final states. Hence, any implementation of the
algorithm should provide an implementation to the order-sensitivity semantics, in order
to explore order-sensitivity in executed traces. As stated before, our implementation
of the algorithm provides an over-approximated implementation for determining order-
sensitivity in a trace. The implementation semantics will be described in the following
section.

• Dataflow Sequence construction: From Definition 4.3.4, construction of the Dataflow
Sequence is necessary to explore order-sensitivities in a trace. Therefore, any imple-
mentation of the algorithm should implement the semantics for constructing dataflow
sequences.

The aforementioned constructs are necessary to be provided by any implementation of the
algorithm, for sound execution. As a case in point, our implementation of the algorithm
provides versions of these constructs that are tuned for executing assembly. Therefore, with
the information presented in this section, we are now ready to present our implementation
of the algorithm - The Machine Model.

Chapter 6

Machine Model

The intent of this chapter is to present and explain the machine model, which is another
core contribution of this work. The chapter is organized as follows. We will first present
the design structure of the machine model in Section 6.1. Subsequently, we will present the
design goals considered in engineering the machine model in Section 6.2. In Section 6.3,
Section 6.4 and Section 6.5 we then present the technical details about the machine model
structure.

The machine model is designed to serve as an explicit state model checking interface between
the POR algorithm and the assembly programs. While the POR algorithm is responsible for
scheduling execution traces, the machine model is responsible for initializing, maintaining
and analyzing the deterministic state changes according to the program execution. Moreover,
the intent of the machine model is to provide a modular and an extensible framework for
verification. In this chapter, we will detail the parameters considered in making these design
decisions and provide technical details on the constituents of the machine model.

6.1 Design Structure

Popular instruction simulators such as [36], [55]–[58] have been often used to efficiently em-
ulate and analyze assembly execution. There has also been notable effort, [33], in building
assembly simulators that can formally reason over assembly execution. These simulators
either have the ISA semantics written in higher level languages like C/C++ to optimize
execution, or use the underlying OS to provide execution for OS constructs like interrupts
and system calls. However, most modern assembly simulators are either tuned towards sin-
gle threaded execution, or provide minimal support for run-time analysis of multi-threaded
programs. Moreover, these simulators utilize optimized, but, sequentially consistent memory
models to support execution. Hence, the need for a realistic multi-threaded x86 emulator
justifies the decision of designing the interactive machine model and to support the TSO

40

41

relaxed consistency [10] environment.

Figure 6.1: machine model Structure

For the sake of brevity and simplistic design, as shown in Figure 6.1, we have bifurcated
the machine model into three modules - the Execution Model the Memory Model and the
System-call Model. The requirements for the three modules are as follows.

Since the machine language is imperative in nature, emulating multi-threaded x86 assembly
execution requires an execution model that can execute x86 assembly, supports dynamic
thread creation and can simultaneously track the execution of all spawned threads. The
execution model must also be a framework, in order to accommodate addition of semantics
for new x86 instructions. Moreover, the execution model is required to be stateful in nature,
in order to maintain and advance the state information of the program constructs, processor
specific constructs and the model specific artifacts.

Several constructs of an x86 program can potentially access and manipulate the memory,
hence a memory model is necessary to support the semantics of such constructs. Moreover,
in order to support the program execution under a realistic setting, the memory model needs
to support relaxed consistency in program execution.

Finally, user-level programs often request resources from the underlying OS through system-
calls. Hence, in order to provide better control over program execution, a system-call model
is required to provide semantics for system-call instructions that are encountered during
execution. Having discussed the design intent, we will now detail the several design goals
that were considered during the engineering of the machine model.

42

6.2 Design goals

The design of the machine model constituents is complex enough to warrant the need for
the following several design goals. For instance, with increasing complexity of assembly pro-
grams, the machine model should be simplistic enough, so as to not hinder its Usability. Also,
the machine model has to be Accurate in faithfully emulating the execution of the assembly
code and be Efficient in its representation of the program states. Finally, the machine model
should preserve Scalability, with increasing complexity of the program execution. We will
now discuss about these factors in detail.

Usability. While the POR algorithm is responsible for scheduling execution, the machine
model is responsible for both emulating the assembly execution and analyzing the states
reached for violations in program behavior. The machine model is also responsible for pro-
viding debugging support, when assertion violations are encountered. However, with increas-
ing threads and complexity of the program, the number of states reached can become quite
large and complex. Therefore, it is necessary for the machine model to maintain Usability, by
striking a balance between the “ease of use” and the complexity of the information provided
to the user.

Maintaining a simplified and compartmentalized implementation of the state is one of the
main solutions used to preserve the Usability. The information produced by the machine
state, on one hand, would often be necessary for the user during program debug. For ex-
ample, the program state includes information about the per-thread register values, system
flags and the memory contents. It would be necessary to enable access to these information
to the user during program debug. On the other hand, the machine state also contains
information that are extraneous at the user level. For example, when debugging memory
constructs, it would be cumbersome to the user to interact directly with the underlying
complex memory model. Moreover, users would prefer a simple linear memory abstraction
of the memory model. Other state information pertaining to the model artifacts such as
debug flags, interface status and program setup would require to be completely abstracted,
as they provide no valuable information to the user during simulation and debug. Hence, in
order to preserve usability, the execution model state is designed to present information at
different levels of abstraction to the user, based on the debugging autonomy.

The machine model is also designed to preserve usability during program setup. Similar to
other mainstream assembly simulators [36], [58] the machine model does not require any
pre-processing done over the assembly. The machine model extracts all configuration and
thread local information, required for program setup, directly from the object file. More
details about the program setup and usability are presented in the following sections.

43

Accuracy and Efficiency. One of the main design goals of the machine model was to
retain Accuracy in representation of the x86 machine state and the ISA semantics. For ex-
ample, the register bank is represented with 64-bit or 128-bit machine integers, rather than
unbounded abstract integers. The memory is represented as an array of bytes, whose access
supports all forms of pointer arithmetic. The memory model is augmented with TSO relaxed
consistency, to provide a realistic emulation environment. Moreover, no simplifications were
performed on the implementation of ISA semantics and the semantics were sourced from the
Intel (R) ISA manuals [35]. Additionally, the machine model also preserves accuracy in the
implementation of library functions, such as the system calls and the POSIX-thread library
functions, by sourcing the semantics from Linux library implementations.

Pursuing accuracy and detail in the machine model implementations comes with an inher-
ent trade-off with Efficiency, as the model becomes more complex. Therefore, the machine
model mitigates this trade-off by abstracting the information supply to the user, based on
the depth of interaction required. For example, if the user is just interested in a simulation,
all debugging capabilities are turned off and an abstract representation of the execution is
presented. On the other hand, if the user intent is debugging, then access to the machine
state and instrumentation functions are provided, based on the requirement. Moreover, sim-
ple constructs such as lists and maps are used in the state implementation, to manage the
dynamically growing threads states, to balance complexity and efficiency.

Scalability The machine model is implemented as a framework in order to provide support
for adding semantics for new instructions from the x86 ISA and implementations of new
system calls. Hence the size and complexity of the machine model can potentially grow with
the addition of new features. Hence, the constructs of the machine model are implemented
with scalability in mind, such that addition of new features should not hamper either the
performance or the soundness of preexisting functionality.

Having discussed about both the design intent and the considerations taken during the
engineering of the machine model, we are now ready to present the technical details of the
machine model constituents. Therefore, in the following sections, we will describe, in detail,
the execution model, the memory model and the system-call model.

6.3 Execution Model

During our research, we found that there was a requirement for a realistic debugging tool
that supports the relaxed consistency execution of concurrent assembly. The function of a
simulator satisfying such requirements was to enable dynamic instrumentation of the con-
current machine state, under relaxed consistency. Hence, the execution model is engineered

44

as an emulator, to emulate execution of x86 instructions under the x86-TSO [10] relaxed
memory setting. The execution model is interfaced with the POR algorithm, to achieve the
interleaved thread execution, where the algorithm acts as an instruction scheduler, perform-
ing scheduling decisions during run-time. Therefore, designing the POR algorithm to be
interactive allows for analyzing and instrumenting x86 assembly and provide various levels
of scheduling autonomy to the user during execution. Moreover, the the interactive emula-
tion of a concurrent program is performed as a linearization to a single threaded execution,
which assists in the run-time program analysis and debug.

The execution model presented in this work draws inspiration from the works by [32], [33].
The responsibilities of the execution model are broadly defined as follows

R.1 To provide the framework that instantiates the state automaton constructs, defined in
section 5.4. The state automaton constructs are required by the concurrency model,
which is entirely responsible for guiding the simulation.

R.2 To provide the framework that instantiates the algorithm constructs, defined in sec-
tion 5.4. The algorithm constructs define functions that the algorithm uses to decide
the course of the algorithm execution.

R.3 To provide semantics to a thread creation library, in order to allow the execution model
to dynamically spawn threads.

Hence, we will now describe the constituents of the execution model that fulfill the above
requirements.

6.3.1 Implementation of State Automaton Constructs

This subsection details the fulfillment of the requirement R.1 by the execution model. The
different state automaton constructs required by the Concurrency model are described in
Chapter 4. The abstract concurrency model is described as a transition system T =
{Σ,A, s0,→, enabled}. The machine model implementation of these constructs are de-
scribed as follows.

Program state Σ. From Section 4.1, Σ is defined as the set of all the program states
reached during the program analysis. We define a program state object si :: L × G to be
comprised of the set L of local states that are private to the threads and the global state G,
shared by all threads of the system.

Figure 6.2 details the composition of the Program state of the machine model. The program
state of the machine model, PState, is a concrete, mutable object that keeps track of the

45

simulation progress. PState is also a singular object, since the simulation deals with a pro-
gram at a time.

data PState :
shared :: GState

threads :: map (tid 7→ TState)

(a) Program state

data GState :
memory :: map (addr :: 64bit

7→ data :: 8bit)
sync :: Bool

(b) Global shared state

data TState :
regs :: Registers

flag :: map (Flags 7→ B)
buffer :: [Write]

(c) Thread state

Figure 6.2: State configuration

The configuration of the program state object PState is as follows

1. threads: From Figure 6.2a, the local state L is instantiated by the member field
threads. The field maintains a dynamic map from unique thread identifiers tid to the
thread states TState. Each thread upon creation is assigned a unique thread ID, with
0 representing the main thread.

The state for the main thread is initialized statically during program setup, the seman-
tics of which will be detailed later in the chapter. Whenever a new thread is spawned,
the state for the thread is initialized and a corresponding mapping is added to the
field. Consequently, when a thread dies, the mapping for the thread is removed from
the field.

2. shared: From Figure 6.2a, the global shared state G is instantiated by the member
field shared. The purpose of this field is to record the global state data-structure
GStatethat is shared amongst all the threads.

The configuration of the global state data-structure GState is detailed as follows.

1. memory: The field represents the byte-addressable memory block that maps 64bit
unsigned integer addresses to dynamically allocated bytes. The raw memory block
physically supports allocation up-to 264 bytes, but in order to preserve compatibility
with existing modern x86 implementations, the block is logically limited to support

46

252 bytes. In order to keep the memory framework lightweight, memory is allocated
and de-allocated precisely and upon request. The in-depth design considerations and
memory initialization is discussed in-detail in the section 6.4.

2. sync: This field records the several flags shared between the threads, used for System
call implementations. The semantics of this field will be elaborated upon in Section 6.5.

Type Configuration Comments

General-Purpose

Registers

16 64-bit registers Registers such as rax,

rbx,..., etc.

32-bit and 16-bit

representations are also

provided, wherever supported

by the Intel (R) manuals [35]

Instruction

Pointer

1 64-bit register Register rip

Segment

Registers

6 64-bit registers cs, ds, es, fs, gs, ss

registers

XMM registers 16 128-bit

registers

Registers such as xmm0,

xmm1,..., xmm15.

64-bit representations of the

registers are also provided,

wherever supported by the

Intel (R) manuals [35]

Flag registers 5 1-bit registers We currently support zf,

cf, sf, of and pf semantics

Table 6.1: Supported X86 register stack

The thread state data-structure TState, on the other hand, records the state information of
the constituents of a thread. The important fields of TState are as follows:

1. regs: This field records the state of the different x86 general purpose hardware regis-
ters supported by the implementation. Table 6.1 records these different registers and
their configuration. Each thread upon creation receives a exclusive copy of registers
which is thread local and is initialized to zeros.

Similar to the memory, the hardware registers are mappings from the register names
to their values, where the value size differs according to the register specification. And
unlike the memory, the mappings are allocated statically. Each thread looking to
update its register states does so first by accessing its register stack from the program

47

state, by using its unique thread ID and then by overwriting the required fields of
register stack with the modified data.

2. flags: The execution of an x86 assembly instruction can have several side effects,
one amongst which is the modifications to the flags register. This field records such
modifications to the hardware flags of the threads. Similar to the registers, each thread
receives a unique copy of the flags, which are reset upon initialization. The flag mod-
ifications follow the specifications from the Intel IA-32e architecture and the different
flags implemented in the model is shown in table 6.1.

3. buffer: In order to support relaxed consistency execution, the memory implementa-
tion follows the x86-TSO relaxed consistency model explained in Section 2.2. Conse-
quently, this data-structure is the implementation of the per-thread write buffer, shown
in Figure 2.1, where the record keeps track of the buffered per-thread byte-addressable
writes to the memory. The functions of this field will be presented in detail in the
Section 6.4.

Initial State s0: From Section 4.1, the state s0 ∈ Σ is the initial state of the transition
system, which is required to be supplied by the machine model. The initial state of the ma-
chine model will be a combination of the state of the state of the program and the execution
model. The initial state of the program will be the state of the memory locations that the
program initializes. This information is extracted from the data sections of the executable
binary. The initial state of the machine model would entail initializing the execution model
and the memory. Therefore, the following steps are taken by the execution model in defining
the initial state s0:

• The execution model is initialized with the main thread, which involves initializing the
register stack and the heap of the thread.

• The register stack of the main thread is created and the general purpose registers of
the thread are initialized to all 0s. The flags of the initial threads are also reset.

• The instruction pointer of the main thread is initialized to the beginning of the pro-
gram, by reading the “Task State Segment” of the binary.

• The execution heap is initialized with the initialized local and global variables of the
program, read from the .data segment of the binary and with the uninitialized variables
of the program, read from the .bss section of the binary.

• The arguments for the main function is written to the system heap.

• The thread local variables for the main thread are initialized by extracting the thread
local information from the “Thread Local Storage” sections (.tdata and .tbss) of the
binary.

48

Program actions A: Section 4.1 describes A =
⋃j
i=1Ai as the domain of all the atomic

actions to be performed by the program. The semantics of these actions are necessary to
advance the state of the simulation, during program exploration. The concurrency model
depends solely on its implementation to provide semantics to the atomic actions executed
during exploration. Hence, the machine model, in particular the execution model is respon-
sible for providing semantics to the executed actions.

type Instr :
x86 instr :: x86 Instruction∣∣ pop buf :: Write

Figure 6.3: Machine actions type

The responsibility of the execution model is to map the actual instructions performed by a
thread on the hardware to the atomic actions expected by the concurrency model. Figure
6.3 depicts this very mapping. The execution model instantiates the atomic actions executed
by a thread with Machine actions of type Instr. A Machine action is an instruction that
works on the program state of the machine model - thread specific registers and flags and
the shared memory.

An atomic action is considered local if it accesses only the local state L of its executing
thread. Conversely, an instruction is considered global if it accesses the shared global state
G of the system. An action of type Instr can either be an actual x86 hardware instruction
(x86 instr), or the flush of a single instruction Write in the thread buffer (pop buf). The
semantics of the x86 instructions are given by the Instruction-Set Architecture (ISA Model),
whereas the semantics for a buffered write is given by the memory model (TSO in this case).
We will discuss in detail about the buffered writes in section 6.4.

ISA Model : Considering x86 machine programs, the domain of actions is the Instruction-Set
Architecture. Hence the execution model provides semantics to the x86 instructions though
implementing a model of the x86 ISA. The x86 ISA model draws inspiration from [32], [33],
by implementing an interpreter-style operational semantics [59] for x86 instructions. Similar
to [32], the ISA model concentrates on the 64-bit implementation of the IA-32e architecture
(x86-64), with support for all addressing modes. The semantics of each instruction models
the transition relation of the concurrency model, by taking as input a program state and
returning the appropriately modified new program state.

The concurrency model also defines the requirements for an action to be either local or global.
From Chapter 4, an atomic action is considered local if it accesses only the local state L
of its executing thread. In similar lines, a machine action a :: Instr of a thread is local

49

if it accesses only the local state of the thread (regs and flags). Conversely, an action is
considered global if it accesses the shared global state G of the program. Hence, a machine
action a :: Instr of a thread is considered global, if it accesses information from the memory.

The (enabled) Function. From Section 4.1, the function enabled :: Σ 7→ {A} represents
the set of atomic actions enabled in a state for execution. Intuitively, given a program state
s, enabled(s) returns the set of actions that can potentially be executed by threads that are
not blocked from execution.

The semantics of the enabled function provided by the machine model are as follows. For a
given program state s,

enabled(s) = map (fetch s) {tids}

where,

• The fetch function, written fetch :: Σ 7→ tid 7→ A, is used to fetch and decode a
Machine action of the thread with the given thread ID tid. From Figure 6.3, a Ma-
chine action can either be an x86 instruction (x86 instr), or a buffer Write (pop buf).
The fetch function can choose non-deterministically, between the two instruction types.

If the action chosen is an x86 instruction (x86 instr), then the fetch function fetches
an instruction pointed to by the instruction pointer rip of the given thread in the
present state. If rip of the thread is within the program limit of the current thread,
then the corresponding instruction is returned. Else fetch returns ⊥. If the action
chosen is a Write, (pop buf), then the fetch function fetches the Write at the head
of the thread-specific store buffer in the present state. A Write can only be fetched if
the store buffer is non-empty. The semantics of store-buffering is detailed in Section 6.4.

However, when the fetch function for a thread returns ⊥that thread is considered to
be blocked from execution. That is, a thread is blocked in a state, if it has neither a
(x86 instr) or a (pop buf) to execute from that state.

• {tids} represents the set of the thread IDs of all the threads in the program, including
the main thread

The Transition Relation(→). From Section 4.1, →:: Σ 7→ A 7→ Σ is defined as the tran-
sition relation of the transition system T . Intuitively, → represents the transitional effects
of executing an atomic action from a given state.

The execution model implements → as a step function. The step function, written step ::
Σ 7→ A 7→ Σ, is the transition function for the execution model, responsible for decoding

50

and executing an action a ∈ enabled(s) from the given program state s. The action to be
executed is chosen and fetched by the concurrency model and the step function returns the
newly achieved program state upon execution. The action to be executed represents an x86
instruction, whose execution semantics is given by the ISA model.

6.3.2 Implementation of Algorithm Constructs

This subsection details the fulfillment of the requirement R.2 by the execution model. In
addition to the State Automaton constructs of the concurrency model, as mentioned in Sec-
tion 5.4, the algorithm utilizes several functions, described by the concurrency model, to
decide and advance the course of state-space exploration. Hence, it is necessary for the al-
gorithm implementation to provide implementation semantics to the following constructs.

Order-Sensitivity: From the Definition 4.3.3, we have understood the importance and
the need for identifying order-sensitivity in execution traces. However, from Section 5.3, we
have also understood the redundancies involved in identifying order-sensitivity in traces, by
following the definition strictly. Hence, the execution model provides an over-approximation
function for identifying order-sensitivities in an execution trace. The execution model im-
plements Order-sensitivity, which is a property over a trace, using the following function:

Pre-requisites : We will now setup the pre-requisites for understanding the over-approximation
function:

• Let τ = τ1 · τ2 be a valid execution trace, where τ2 = [ai, ai+1, . . . , aj] represents an
order-sensitive trace after the valid trace τ1. Let S(τ2) = [si, . . . , sj+1] be the states of
execution of τ2.

• The actions [ai, ai+1, . . . , aj] are of type Instrand therefore access either the program
registers or the memory.

• LetRi = {r1i , . . . , rni } andRj = {r1j , . . . , rmj } be the byte-addressable memory locations
accessed by the actions ai and aj respectively, where R = Ri ∩ Rj represents the set
of memory locations shared between the two actions ai an aj.

Definition 6.3.1. x86-order-sensitivity. The order-sensitivity in τ2, after the execution
of τ1, can be over-approximated by the x86-order-sensitivity relation,

notation x86-order-sensitive(τ1, τ2), if the predicate Px86-os(si, ai, sj, aj) holds. The predicate
Px86-os(si, ai, sj, aj) holds if R 6= ∅ and

51

if ∃r ∈ R . (1) write(ai, si, r, val) ∧ val′ = read(aj, sj, r)
∨ (2) val′ = read(ai, si, r) ∧ write(aj, sj, r, val)
∨ (3) write(ai, si, r, val) ∧ write(aj, sj, r, val

′)

 =⇒ val 6= val′

else =⇒ False

Where

• write(a, s, r, val) represents the write of the byte value val to the memory location
addressed by r, by the action a in the state s.

• val = read(a, s, r) represents the read of the byte value val from the memory location
addressed by r, by the action a in the state s.

Note that action ai is the first action in τ2 and action aj is the last action in τ2. The over-
approximation function stems from the intuition behind order-sensitivity: choosing actions
to execute can influence the final states reached from the execution. The cases of the function
represent this intuition as follows:

• Case (1): Reading the value val′ from the memory region r at the end of τ2 indicates
that the region r is restricted with the data val′ after τ2 and data val′ will henceforth
flow to any instruction that reads from r. Moreover, if val 6= val′ then the value val
would not be reachable to instructions after τ2 that read from the memory region r.
This constitutes an order-sensitivity, as choosing to execute action ai at the beginning
of τ2, prevents the data val from flowing to instructions after τ2. Moreover, executing
the action aj before ai would allow the data val to reach to instructions after τ2.
Therefore, the final states reachable from τ2 are sensitive to the order of execution of
actions ai and aj.

• Case (2): Case (2) is the complement of case (1). Delaying the writing of data val to
region r until the end of τ2 restricts the data val to flow to any instructions henceforth
that read from region r. Moreover, this prevents the value val′ from reaching to any
states after τ2. Therefore, τ2 constitutes order-sensitivity in this case as choosing to
execute action aj before ai, after τ1, can uncover final states after τ2 that read the data
val′ from r.

• Case (3): The reasoning here is similar to the other two cases. Case (3) represents an
order-sensitivity in τ2 since choosing to execute action aj at the end of τ2 restricts the
data val′ to flow to any instructions henceforth that read from region r. Moreover, this
prevents the value val from reaching to any states after τ2. Therefore, τ2 constitutes
order-sensitivity as choosing to execute action aj before ai, after τ1, can uncover final
states after τ2 that read the data val from r.

52

6.3.3 Providing semantics for the POSIX thread library APIs

This subsection details the fulfillment of the requirement R.3 by the execution model. One
of the major goals of the verification effort was to support dynamic thread creation in a real-
istic setting. One choice for modelling thread creation is to construct a simplistic abstraction
of the thread creation model to spawn dynamic threads. However, the assembly language
is a semantically rigid language that requires accurate environment initialization for sound
execution.

Threads created in the assembly typically exhibit behaviors that are not readily apparent at
the source code. For example initialization of the Thread Local Storage image [60] during
thread creation, or verifying the canary bit for buffer overflow detection. Therefore, em-
ploying an abstract model of the thread creation library would, depending on the level of
abstraction, require pre-processing and modification of the assembly to remove such arti-
facts. This could not only render the code potentially unsound, but also abstract out several
verification opportunities.

Implementing a model that emulates the POSIX library thread creation semantics allows the
execution model to consume mainstream code without any form of pre-execution analysis
or refactoring of the assembly. We chose to implement the POSIX thread library as it is
one of the more well-documented concurrency libraries with Linux repositories providing
the implementation. In essence, we have provided operational semantics for the following
POSIX thread APIs:

1. pthread create: This API call is responsible for spawning a child thread from a parent
process. The creation of a new thread involves several steps, of which the important
ones are mentioned here; i) To begin with, the new thread is initialized with a new
empty set of registers, flags and a store buffer, ii) a thread local space for the new
thread is allocated in the memory, iii) the pthread struct and the Thread Local Storage
(TLS) initialization image [60] is loaded onto the thread local storage. This data section
uniquely identifies the new thread, iv) the arguments to the pthread create function
call are parsed and the rip of the new thread is pointed to the first instruction of the
thread program. All of the above steps are executed as an atomic action.

2. pthread join: This API call blocks the execution of the caller thread until the callee
thread finishes execution. A thread is considered to have finished execution when its
program counter rip moves out of the program scope. The execution of a thread with
thread ID tid is blocked in a state s by forcing fetch s tid =⊥

3. pthread mutex lock and pthread mutex unlock : These are the synchronization primi-
tives offered by the pthread library. A thread calls pthread mutex lock to acquire the
lock on a mutex object. The caller thread blocks execution if the lock on the mutex

53

object has already been acquired by another thread. Conversely, pthread mutex unlock
releases the lock on a mutex held by the caller.

4. pthread mutex exit : This API aborts the execution of a thread by moving the program
counter of the caller thread outside the program scope.

6.4 Memory Model

Assembly programs provide a very close view of the underlying execution hardware to the
programmer. The composition of such assembly programs contain instructions that as-
sume and interact with the rigid and byte-addressable memory module of the processor.
Hence, in order to support sound execution of assembly programs, we have incorporated a
byte-addressable memory model to the machine model which is tuned for handling dynamic
thread creation. The memory model is represented by the state variable memory in the global
shared state GState and Figure 6.4 represents this abstraction.

Figure 6.4: Memory block layout

Several considerations were made during the design of the memory model;

• The memory model presented in Figure 6.4 is byte-addressable and the bytes are
addressed by 64-bit unsigned integers.

• The intent of the verification framework is to support one program at a time. Hence,
in the view of developing a simplified memory model the entire space of the memory
model is dedicated to the program under test. This allows us to abstract away memory

54

management principles such as address translation and virtual memory, which would
not influence the soundness of the verification statement.

• Since the entire memory is dedicated to a program, the addresses accessed by the
program can be and are considered to be linear in nature.

• During initialization, a part of the memory is reserved for storing the binary. The
entire binary is loaded onto this space and the instructions are read from this space
for execution.

• Each thread upon creation gets assigned a thread local region of memory. A part of
this memory is used to store the TLS initialization image and the thread local variables
of the assigned thread.

• All the allocated threads share a common heap space which is used to dynamically
manage memory through malloc, calloc and free APIs. Additionally, the memory
allocation and reclamation is based on the buddy allocator system [61].

• Each thread upon creation gets assigned a fixed stack space, allocated in the thread
local memory region. The stack space is individual to the thread and the utilization
can dynamically vary during the program execution.

x86-TSO Semantics. Another major goal of this verification effort was to incorporate
relaxed consistency execution, to provide a realistic setting for assembly program verification.
Hence, we have augmented the memory model with the x86-TSO operational semantics
presented in Section 2.2. The TSO modelling draws inspiration from that by [28], [29], with
additional modelling to support the byte-addressable memory of x86. We will now detail the
implementation of the x86-TSO operation semantics defined in Section 2.2.

1. Store implementation: Consider a thread pi in the program that executes an in-
struction intending to update a contiguous piece of the memory. The data to be stored
is broken down, in Little-Endian fashion, into an array of key-value pairs. The keys
are memory locations and the values are the corresponding bytes to be written and
this key-value pair array is represented by a Write data-structure. The Write action
is then immediately enqueued at the tail of the store buffer of pi, before the execution
of the next action.

2. Load implementation: A x86 instruction intending to read data from the memory
will specify the size of the data to be read, through width specifiers. Hence, a memory
read instruction of a thread pi can be broken down into a series of memory accesses.
To execute the read, the buffer of thread pi is first checked for the latest value for any
of the memory locations in the read. If the buffer does not contain the value for any
locations, the read request for such locations are forwarded to the memory.

55

3. Update implementation: The Update operation corresponds to executing the pop buf

Machine action, detailed in Figure 6.3. Update operation from a thread pi first de-
queues a Write from the buffer head of the thread. The contents of the dequeued Write

are then flushed to the memory in a single atomic action. An Update is considered
as an action of the thread that enqueued the corresponding Write. The Update can
occur non-deterministically at any state of execution but only after the Write has been
enqueued onto the store buffer. Hence, by design, Updates from a thread follow the
program order whereas no ordering is imposed between Updates by different threads.

4. Fence implementation: We implement a Fence operation by flushing the entire
store buffer of the thread executing the action. The Fence instruction is always of type
x86 instr, as its semantics is provided by the x86 ISA. During the execution of a Fence,
the corresponding thread is blocked from executing x86 instructions (x86 instr) until
the thread specific store buffer becomes empty. That is, during a Fence, the fetch
function for the corresponding thread will only fetch pop buf machine actions until
the thread-specific store buffer is empty. This will force program ordering between
actions before and after the Fence.

5. LOCK implementation: As mentioned in earlier sections, the emulation of a concur-
rent x86 program is performed as a linearization to a single threaded execution. Hence,
there can only be one action chosen for execution at each state transition which makes
the implementation of LOCK semantics straightforward: When a thread pi encounters
a LOCK’d instruction, the instruction semantics are first executed. Upon completing
the instruction execution, the entire store buffer of pi is flushed to the memory which
renders the LOCK’d instruction atomic.

We will now present an example of store-buffering.

Example 6.4.1. (store buffering). Consider a thread pi executing a x86 instr atomic
action, representing a mov x86 instruction that uses register-indirect addressing to write a
piece of data to the memory.

mov DWORD PTR [RAX], 0xDABBAD00

The mov instruction presented intends to move the 32-bit hexadecimal data 0xDABBAD00,
to a memory region whose address begins with the value in RAX. Let the value in RAX be
r :: 64Word.

From the semantics of x86-TSO, the execution of the above memory write will be buffered
through the store buffer of pi. To buffer the memory write, the data to be written broken-down
into a list of key-value pairs, represented by the Write data-structure. The data is broken
down in little-endian format, as shown below.

Write w = [(r, 0x00), (r + 1, 0xAD), (r + 2, 0xBB), (r + 3, 0xDA)]

56

The memory locations associated with w are {r, r + 1, r + 2, r + 3}. The buffer entry w1 is
then enqueued at the tail of the write buffer of pi.

Side-effects of the TSO model: Augmenting the memory model with TSO semantics
brings about several interesting side-effects to the constructs of the execution model. We
will now detail all such side effects:

1. pop buf machine actions are always Global.
This is true, since a pop buf machine action of a thread involves flushing the corre-
sponding Write to the memory. Since executing the action results in accessing the
memory field of the shared GState, pop buf actions are rightfully Global.

On a side note, the set of memory regions accessed by a pop buf is defined by all the
memory addresses updated by the corresponding Write.

2. A x86 instr will never directly update the memory.
This is true because, whenever a x86 instr intends to store its result in the memory,
the corresponding store will always be store-buffered as a Write. Hence the execution
of a x86 instr machine action will never directly update the memory.

3. A Fence instruction is always Global.
A memory Fence is associated with (potentially) several pop buf machine actions.
Therefore, the execution of a memory Fence will always result in manipulating the
shared state of the program. Hence, a Fence will always be a global action.

On a side note, the set of memory regions accessed by a Fence corresponds to the union
of the memory addresses updated by each pop buf during the Fence.

4. A LOCK’d x86 instr is always Global.
The LOCK prefix is always associated with a RMW instruction, whose execution will
always enqueue at-least one Write action onto the per-thread write buffer. Therefore,
the execution of a LOCK’d x86 instr will always result in manipulating the shared
state of the program. Hence a LOCK’d x86 instr will always be global.

On a side note, the set of memory regions accessed by a LOCK’d x86 instr corresponds
to the union of the memory addresses updated by each pop buf while flushing the
thread-specific store buffer.

5. A x86 instr without a LOCK prefix will be Global if and only if it performs a Load
from the memory.
Since any x86 instr will never directly update the memory, the only way an x86 instr

57

will be Global is if it reads from a memoy location. Thus, a x86 instr will be considered
Global only if it loads data from a memory location, irrespective of whether the data
came directly from the memory or from a corresponding Write

6.5 System-Call Model

The aim of this verification effort is to deterministically and efficiently explore all possi-
ble thread interleavings in a multi-threaded program. However, user-level programs can
encounter non-deterministic executions while requesting services from the underlying Op-
erating System through performing system calls. User-level concurrent programs can often
execute system calls such as setting CPU affinity or file management that have little or
no impact on the verification statement. However, such programs may also employ system
call services such as memory management (memory barriers) and synchronization (futex,
mutex), which can have an impact on the interleavings observed during execution. There-
fore, we have extended the machine model with a system call framework that achieves two
goals: i) recognizes and avoids the execution of system calls that do not influence the veri-
fication statement, thereby reducing the non-determinism during execution and ii) provides
an extensible framework for implementing semantics of system calls that can influence the
concurrency behavior of the program under verification.

The system call framework is built upon providing execution semantics for the syscall in-
struction, since it is one of the most efficient and versatile instructions that x86 programs use
to invoke system calls. The system call framework draws inspiration from [32]. While [32]
defers the system call execution to the underlying OS, the framework provides the execution
semantics for chosen system calls. At a high level, the system calls in x86 are invoked in
two steps. The first step corresponds to the userland program loading the thread-specific
RAX register with the appropriate system call number and calling the syscall instruction.
The execution of the syscall instruction results in the second step, where the kernel level
system call method loads the rip of the user thread with the address of the appropriate sys-
tem call. The system call framework works by interrupting execution in the second step and
provides the relevant execution semantics for the requesting system call which are crafted
based on their corresponding Linux OS implementations. The execution of a system call is
performed as a single atomic action.

The decision to provide operational semantics for system calls come with several advantages;
i) The system call execution becomes deterministic. Deferring the system call execution
to the underlying OS can result in non-determinism, where each run can yield different
results. For example, a futex wake operation on multiple threads can result in waking
different threads in different runs, which makes the state space exploration non re-playable.
Hence embedding the operational semantics into the system call framework makes the state

58

exploration deterministic and re-playable. ii) Redundant system call executions and thereby
redundant trace explorations can be avoided. For example, repeated wake calls to a futex
(syscall 202) can result in the OS waking the same sleeping thread every time, which can
lead to initiating redundant explorations. Embedding the operational semantics into the
system call framework allows for a better control on the system call execution. iii) Avoids
execution of non-essential system calls. The framework allows complete control over defining
the operational semantics for system calls. Hence, the semantics of calls whose execution do
not have an impact on the system state can be made a pass-through.

Chapter 7

Experimental Results

This chapter will be used to detail and discuss upon the empirical results used to evaluate
our work. The organization of the chapter is as follows. To begin with, in Section 7.1, we
will introduce the different metrics and testcases that been used to evaluate the work, which
entails demonstrating the results and discussing the initial set-up required to achieve those
results. Subsequently, we will provide discussions on verified results in Section 7.2, discus-
sions on un-verified results in Section 7.3, and discussions on unsupported results in Section
7.4. We will begin by introducing our empirical results.

7.1 Case Studies

We will now present the several case studies that we have used to evaluate our work. We
have applied our approach to several racy benchmarks, with the goal of testing the usability
and soundness of the implementation under various levels of contention. The source code for
all of the case studies have been written in c and used the pthread model for multi-threading.
Moreover, no pre-processing has been done to the source code to make it amenable to our
tool. In all of our experiments we have used a Linux machine with Intel(R) Core(TM) i7-
8700K CPU @ 3.70GHz and 16GB of RAM. We use the tool Objdump, in Linux to extract
the machine-code representation of the source code, however all of the initial and run-time
state information is extracted from the binary.

One of the main aims of our work has been to apply our approach to verify production
ready machine-code. In order to demonstrate this aim, we have divided the case studies into
two buckets: i) the more classical benchmarks such as Peterson’s, Dekker’s and Lamport’s
mutual exclusion algorithm, concurrent Fibonacci series and Craig, Landin, and Hagersten
CLH queue lock; and ii) to showcase our implementation’s applicability on production ready

59

60

code, we have consider several concurrent data-structures such as lock-free and wait-free
queues, stacks and hash-maps from the Userspace RCU code.

Classical benchmarks. The classical benchmarks serve the purpose of demonstrating the
soundness of our approach, more-so than its applicability. We have chosen these benchmarks
as they contain mutual-exclusion case studies from the literature. In particular, we have
chosen the following benchmarks:

• Dekker (DEK) and Lamport (LAM) benchmarks each spawn two threads, which compete
to write to a shared variable once.

• Peterson (PET) benchmark spawns two threads, each of which compete to write to a
shared variable multiple times.

• Fibonacci (FIB) and CLH Lock (CLH) benchmarks each can spawn multiple threads,
and use different locking mechanisms to synchronize writes to a shared variable.

The behavior of these case studies are easier to comprehend as they avoid races explicitly
with locks, and the intent of these algorithms are well documented. Hence they present a
perfect opportunity to demonstrate the soundness of our algorithm.

URCU benchmarks. We have chosen to represent several data-structures from the Linux
User-space Read-Copy Update (URCU) repository1, in order to demonstrate the applicability
of our algorithm on a more mainstream and involved set of benchmarks. RCU is one of the
more heavily used lock-free synchronization mechanisms, with uses in several components of
the Linux kenel. The Linux URCU is similar to its kernel-side counterpart in functionality.
It is extensively used by several user-land code projects, and is readily available in several
mainstrean Linux distributions. In particular, we have considered the following benchmarks:

• Wait− free Stack (WFS) is a concurrent URCU data-structure that provides wait-
free pushes and blocking pops. In our benchmark, the push and pop operations are
performed by different producer-consumer threads.

• Lock− free Stack (LFS) is a concurrent lock-free URCU data-structure that provides
lock-free pushes and concurrent blocking pops.

• Lock− free Queue (LFQ) is a concurrent lock-free URCU data-structure that provides
lock-free concurrent enqueue and dequeue. In our benchmark, the enqueue and dequeue
operations are performed by different producer-consumer threads.

1The repository can be found at git://git.liburcu.org/userspace-rcu.git

61

• Lock− free Hash Table (LFH) is a concurrent lock-free URCU data-structure that
provides lock-free concurrent insert, delete and find operations. In our benchmark,
the insert/delete and find operations are performed by different producer-consumer
threads.

RCU (as well as URCU) serves as a lock-free replacement for concurrent reader-writer lock-
ing scenarios. RCU optimizes the read side critical sections since the reader threads are
not required to directly synchronize with the writers, and thereby allowing the readers and
writer threads to progress concurrently. Hence, compared to the classical benchmarks, the
design of the URCU data-structures are involved and non-trivial. Therefore, verifying RCU
through our approach will demonstrate the applicability of our implementation. Table 7.1
will document our results of verifying the above algorithms through our implementation.

Benchmark LOA LOAPT Traces States Time Status

Classical Benchmarks

DEK(2) 251 39 2 156 0.24 Verified

LAM(2) 227 24 2 103 0.21 Verified

PET(2) 293 130 4 872 1.08 Verified

FIB(5) 267 46 5 2798 5.57 Verified

FIB(7) 267 46 7 11789 104.3 Verified

FIB(9) 267 46 9 42477 1261.3 Verified

CLH(4) 310 50 4 7423 47.56 Verified

CLH(6) 310 50 6 21687 396.5 Verified

CLH(8) 310 50 8 59882 2186 Verified

URCU Benchmarks

WFS(1, 1) 989 542 2 1814 2.6 Verified

WFS(1, 2) 989 542 3 11383 64.23 Verified

WFS(2, 1) 989 542 4 53134 868.42 Verified

LFS(1, 1) 683 220 6 1708 1.88 Verified

LFS(1, 2) 683 220 31 21482 41.09 Verified

LFS(2, 2) 683 220 154 > 125k 1953 Verified

LFQ(2, 1) 3721 2183 − − − CEX

LFH − − − − − Unsupported

Table 7.1: Experimental results

Evaluation. We evaluate the results of our experiments using five empirical metrics and
two status metics, which are listed in the columns of Table 7.1. Each benchmark name
is annotated with the number of threads being spawned dynamically (excluding the main
thread). The URCU benchmarks are annotated with the producer and consumer thread
numbers. The empirical metrics are described as follows

62

1. Lines of Assembly (LOA) : The total number of Lines of Assembly in the given bench-
mark. This metric is important as it can allude to the complexity of the program.
However, note that the total number of LOA may not necessarily indicate the actual
number of machine-code instructions actually executed, as instructions can be executed
multliple times by different threads.

2. Lines of Assembly per thread (LOApt) : The average number of Lines of Assembly, per
thread, in the given benchmark. This metric can indicate the number of LOA that a
dynamically spawned thread will execute, on an average, in a maximal trace. Note
that this metric does not subsume the LOA executed by the main thread.

3. Traces : The total number of maximal traces reached during the program execution.
This metric is important as it can help decide the soundness of our implementation,
and help analyze the final states reached during the program execution.

4. States : The total number of program states reached during the program exploration.
This metric can help indicate the complexity of both the program and our approach.

5. Time : The time taken for the complete program execution. The execution time can
depend on several factors; i) Internal factors such as the efficiency of implementation,
program complexity, etc, that are system characteristics, and ii) External factors such
as processor capacity, system memory availability, etc., that are extraneous to the
implementation. Hence, the time metric is recorded as an average over several runs, in
order to account for the external factors.

6. Status : Every benchmark is also annotated with the status of the verification activity.
Status Verified denotes that the benchmark was completely verified by the imple-
mentation, by successfully uncovering all final states. Moreover, Verified indicates
that there were no assertion failures found in the course of exploration. Status CEX

(Counter Example) denotes that a counter example was found during the course of
the exploration. A CEX is indicated by an assertion failure, which typically signals
the violation of a program property. Status Unsupported denotes a benchmark is not
supported by the implementation.

7.1.1 Program setup

Several steps were taken in configuring above benchmarks for the evaluation, which we
will detail as follows. The configuration parameters can be divided into three types: i)
multi-threading configuration, ii) compilation and iii) the configuration of the data shared
between the threads. The configuration of these parameters were chosen specifically to both
demonstrate the applicability of our approach to real-world problems and also to facilitate
a conducive description.

63

Pre-processing and compilation. As mentioned in earlier chapters, our approach does
not require any pre-processing to be done on the source code. Hence all of the benchmarks
are compiled as-is, without any structural modifications or translations. We use the GNU
Objdump v2.30 tool to disassemble the object file, to extract the machine-code. Moreover,
one of the requirements of our approach is for the program code to be available statically
during execution. Therefore, we have taken the following steps in compiling the benchmarks
for the evaluation. For all the benchmarks, we have used GCC v7.5.0 for compilation, with
O2 optimization levels.

1. For the classical benchmarks, since all of the execution code is standalone and contained
in the source file, the benchmarks are linked statically to the executable. Since the
machine model provides the semantics for the POSIX threads APIs, the pthread library
is linked dynamically to the executable.

2. The URCU benchmarks rely upon the liburcu libraries to provide semantics for the
RCU constructs. Hence, during the compilation of the URCU benchmarks, the neces-
sary URCU libraries are linked statically to the executable. However, since the machine
model provides the semantics for the POSIX threads APIs, the pthread library is linked
dynamically to the executable.

Multi-threading configuration. Every benchmark is parameterized by the number of
threads dynamically spawned during the course of its execution. The classical benchmarks
have a single count that represents the total number of dynamically spawned threads dur-
ing execution. Whereas, the URCU benchmarks are annotated with the individual thread
counts of the readers and the writers. Wherever possible, the benchmark metrics have evalu-
ated with varying thread count. Trivial case studies like the Peterson, Lamport and Dekker
mutual exclusion benchmarks are evaluated for only two threads as they are specifically de-
signed to support only the case. However, we have evaluated the rest of the benchmarks for
multiple thread counts, to show both the applicability of our approach and the complexity
scaling with increasing thread count.

7.2 Discussion on Verified results

Table 7.1 lists the several benchmarks that we have used to quantify our results. The
table also lists the status of our experiments on each benchmark, as either “Verified”,
“Unverified” or “Unsupported”. We will now discuss about the results that have been
marked as “Verified” in the table. We use the term “Verified” to denote that our im-
plementation was able to explore traces that reach all unique final states of the program.
Correspondingly, the “Traces” column reports the traces explored by the implementation

64

to achieve the maximal states.

Classical benchmarks. We will first consider the classical benchmarks. For DEK and LAM

benchmarks, the results are straightforward. The benchmarks contain only two threads,
competing to write unique data to a shared variable. Hence, there can only be two orderings
of the threads, leading to two final states, which is exactly what the implementation finds.

The FIB and CLH benchmarks, on the other hand, can spawn multiple threads (> 2). Hence,
the results are non-trivial. For example, the FIB benchmark spawns multiple threads that
individually calculate the Fibonacci series for different indices, and write the result concur-
rently to the same shared variable. Therefore, the number of final states reachable will be
equal to the number of unique results calculated. Table 7.1 depicts this outcome.

URCU benchmarks. In contrast to the classical benchmarks, the analysis of the URCU
benchmarks are non-trivial. This is so because the URCU benchmarks achieve synchro-
nization between concurrent threads through non-trivial means. The URCU benchmarks
typically achieve mutual exclusion through atomic Compare and Swap operations, which are
non-blocking. Therefore, such executions can often lead to several unique final states, that
differ only in the individual thread states and corresponding executions.

The threads in the URCU benchmarks behave in a producer-consumer fashion. Hence,
we have evaluated the benchmarks with varying producer and consumer threads. For the
verified benchmarks, we use the single producer and single consumer case to establish the
base case. For the stack data-structure benchmarks, the producer threads try concurrently
to push integers from a two-element array onto the stack, while the consumers try to pop the
elements concurrently from the stack. Similarly, in the queue data-structure, the producers
try to enqueue integers from a two element array onto the queue, whereas the consumers
then try to concurrently dequeue the elements from the queue.

7.3 Discussion on Unverified results

In the preceding sections, we have presented arguments that verify the soundness of our algo-
rithm . However, it is also in our interest to demonstrate that our implementation is capable
of catching issues in the program being verified. Hence, we will discuss about one such case
study (LFQ) in this section, wherein a functional assumption was intentionally violated in the
program, and our implementation was successfully able to uncover this issue. Introducing
the assumption violation, and subsequently reproducing the illegal scenario provides added
confidence over the applicability of our implementation. We have recorded the status of this
benchmark in Table 7.1 as Unverified since our implementation stops program exploration

65

upon encountering an assertion violation.

The Counter-Example. The issue uncovered in LFQ is a null-pointer dereference, and is
brought about by concurrent threads being able to access the intermediate states of other
threads, over the course of the data-structure manipulation. Before detailing the CEX, we
will mention some pre-requisites:

R.1 Recall that LFQ is a lock-free data-structure. Hence the concurrent queue manipulations
are performed through Compare and Swap (CAS) operations, rather than through
acquiring Spin Locks [62].

R.2 The queue is required to contain reference to at least one object at all times. When
the queue is empty, it will contain reference to only the Sentinel node.

R.3 The queue maintains separate references to the Head and Tail of the structure. An
enqueuer thread is allowed to manipulate only the Tail of the structure, as new nodes
are enqueued at the end of the structure. Conversely, a dequeuer is allowed to manip-
ulate only the Head of the structure, as nodes are dequeued from the beginning of the
structure.

R.4 The first node to be dequeued form the structure will always be the Sentinel. Conse-
quently, a dequeuer method will fail if the queue is empty. Moreover, if the queue has
a single node, a dequeuer must enqueue a new Sentinel node before progressing.

R.5 There are no restrictions for an enqueuer to enqueue a node onto the structure.

Figure 7.1 demonstrates the CEX found in the LFQ benchmark. The issue manifests through
an intricate interleaving between the threads, the steps of which are detailed as follows.

• Initial step: The queue for the CEX starts with a single node, as shown in Figure 7.1a.
There are two threads concurrently working on the queue, an enqueuer and a dequeuer.
The queue contains a Sentinel node, which the Head pointer points to. The single node,
Node1, is chained to the Sentinel, and is referenced by the Tail pointer.

• Step 1: The dequeuer takes the first step by trying to dequeue a node form the queue.
From requirement R.4, the first node to be dequeued will be the Sentinel, and the
dequeuer successfully does so. The timeline in Figure 7.1b shows the linearization of
the dequeue method. It has to be noted that the dequeuer has not dequeued an actual
node yet.

• Step 2: Since the dequeuer is not holding any mutexes on the structure (require-
ment R.1), a concurrent enqueuer enters the picture, to enqueue a new node. The
enqueuer is now witness to an intermediate state of the dequeuer, but is unaware of

66

(a) Initial Step (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4

Figure 7.1: LFQ CEX replay

the fact as the enqueuer works only on the Tail. The enqueue gets partially com-
pleted, as the enqueuer succeeds in attaching the new node to the end of the structure.
However, it has to be noted that the enqueue is partial, as the Tail of the structure
has not been updated yet.

67

• Step 3: Now the deqeuer resumes its execution. Before dequeuing the first node, it
checks if the node is a singleton in the queue. This is not the case, as the enqueuer
had enqueued a new node in the previous step. Hence, the dequeuer does not enqueue
a new Sentinel, and proceeds to successfully dequeue the node. The timeline for this
method is presented in Figure 7.1d. However, it has to be noted here that since the
enqueue was partial, the Tail of the structure now points to a dequeued and deleted
node.

• Step 4: Finally, the enqueuer resumes to complete its method. It attempts to do
so by correcting the Tail reference to point to the new enqueued node. This involves
testing the current reference of the Tail, which points to a deleted node. Hence, this
step leads to a null-pointer dereference.

The Assumption. As mentioned previously, the issue caught is not a real concurrency
bug in URCU, as it violates a fundamental assumption of RCU: The Grace-period guaran-
tee2 [63]. RCU preserves data integrity across readers and updaters, by making sure that
the updaters wait for all pre-existing readers to complete their critical sections, before up-
dating the data-structure. This period of waiting is called the grace period, which is achieved
by either blocking the writers or by having the writers register a callback which responds
after the readers have finished their critical sections. In order to introduce the above issue,
our benchmark intentionally violated the grace period guarantee, by allowing an updater to
update the structure, even when a reader is holding reference to the structure constituents.
This can result in readers holding references to potentially stale data.

7.4 Discussion on Unsupported Results

One of the main limitations of our approach is dynamic compilation. This is so, because the
command parser in the machine model currently requires all instructions and memory to be
statically present in the object file. Therefore, our implementation cannot support programs
containing libraries that cannot be statically compiled The Lock-free Hash table, presented
in Table 7.1 is one such example, which depends on shared memory from other libraries,
that can only be located during run-time. Therefore, the example is marked as unsupported
in the table.

2More details about the requirements can be found at: https://www.kernel.org/doc/Documentation/RCU/

Chapter 8

Conclusion and Future work

8.1 Conclusion

The thesis presents Xavier, a novel tool-set for efficient model-checking of concurrent x86
machine-code. To that end, the thesis has presented two primary contributions: The first
contribution is a novel Order-Sensitivity based dynamic partial-order reduction algorithm,
that efficiently explores and model checks a program under a stateful setting. The explo-
ration is provided through dynamically recognizing and efficiently replaying order-sensitive
traces. The model checking is provided by evaluating safety properties, via assertions, in
every exploration state reached. The second contribution is the x86 machine model, that sup-
ports execution of concurrent x86 machine-code. Moreover, the machine model incorporates
the x86-TSO memory model, for relaxed consistency execution. Therefore, the exploration
algorithm, in combination with the machine model provides a realistic environment for sim-
ulating and model checking concurrent x86 machine-code.

The purpose of our approach has been to provide a platform for verifying production-ready
machine-code, through identifying safety issues via assertion failures. Our implementation
is capable of detecting bugs in machine-code compiled from production-ready C programs,
that utilize the POSIX thread library to achieve concurrency. Moreover, our implementation
is capable of evaluating the compiled machine-code directly, without requiring any special
translations, and the results of our methodology are independent of the optimizations im-
posed by the compiler.

We have evaluated our tool set against several classical benchmarks and data-structures from
the production-ready URCU library. The results of our experiments demonstrate the appli-
cability of our approach, where the benchmarks achieve concurrency through both explicit
methods (acquiring spin-locks) and through implicit methods (atomic operations such as

68

69

CAS). Our approach was successful in proving correctness of all the supported benchmarks,
and as a soundness guarantee, was also able to uncover a counter-example representing the
assumption violation in the LFQ benchmark.

8.2 Future Work

The contributions presented in this work provides good scope for future work. Chapter 7
presents the evaluation of our work on both classical and production-ready benchmarks. The
results from the evaluation are sufficient to demonstrate the applicability of our tool-set.
However, the results also present a current limitation of our approach - dynamic compila-
tion. Hence, one of the future goals for this project would be to support programs that can
be dynamically compiled.

One of the main features of the work is the ability to detect illegal program behaviors via
failing assertions. However, this feature has a subtle limitation. While the implementation
can detect generic structural issues such as null-pointer de-references or exceptions in the
program, the detection of complex behavioral issues depends on the presence of adequate
assertions in the program. Therefore, one avenue for future work would be to extend the
dynamic instrumentation to support the on-the-fly addition of assertions.

Another possible future work is to increase the number and types of x86 instructions sup-
ported. Increasing the supported instruction count can increase the chances of a program
being supported by our implementation. The current implementation supports instructions
only with integer operands. Hence, one possible avenue for future work would be to support
instructions that consume floating point operands. The implementation is designed as a
framework where new instruction semantics can be added without affecting the soundness
of previous semantics. Therefore, we consider increasing the instruction count as an engi-
neering effort.

References

[1] P. Godefroid, “Model Checking for Programming Languages Using VeriSoft,” in Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, ser. POPL ’97, Paris, France: Association for Computing Machinery,
1997, pp. 174–186, isbn: 0897918533. doi: 10.1145/263699.263717.

[2] E. M. Clarke Jr., T. A. Henzinger, H. Veith, and R. P. Bloem, Handbook of model
checking, English, Cham, Switzerland, 2018. doi: 10.1007/978-3-319-10575-8.

[3] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu, “Find-
ing and Reproducing Heisenbugs in Concurrent Programs,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’08,
San Diego, California: USENIX Association, 2008, pp. 267–280. doi: 10.5555/1855741.
1855760.

[4] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled, “State Space Reduction Us-
ing Partial Order Techniques,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 2, no. 3, pp. 279–287, Nov. 1999, issn: 1433-2779. doi: 10.1007/
s100090050035.

[5] P. Godefroid, “Using partial orders to improve automatic verification methods,” in
Computer-Aided Verification, E. M. Clarke and R. P. Kurshan, Eds., Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1991, pp. 176–185, isbn: 978-3-540-38394-9. doi:
10.1007/BFb0023731.

[6] P. Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and P. Wolper, Partial-order
methods for the verification of concurrent systems: an approach to the state-explosion
problem. Springer-Verlag Berlin Heidelberg, 1996, vol. 1032, isbn: 978-3-540-60761-8.
doi: 10.1007/3-540-60761-7.

[7] V. Le, M. Afshari, and Z. Su, “Compiler Validation via Equivalence modulo Inputs,”
in Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’14, Edinburgh, United Kingdom: Association
for Computing Machinery, 2014, pp. 216–226, isbn: 9781450327848. doi: 10.1145/
2594291.2594334.

70

https://doi.org/10.1145/263699.263717
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.5555/1855741.1855760
https://doi.org/10.5555/1855741.1855760
https://doi.org/10.1007/s100090050035
https://doi.org/10.1007/s100090050035
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334

71

[8] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding bugs in c
compilers,” in Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’11, San Jose, California, USA: As-
sociation for Computing Machinery, 2011, pp. 283–294, isbn: 9781450306638. doi:
10.1145/1993498.1993532.

[9] S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Models: a Tutorial,”
Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996, issn: 1558-0814. doi: 10.1109/2.
546611.

[10] S. Owens, S. Sarkar, and P. Sewell, “A Better x86 Memory Model: x86-TSO,” in
Theorem Proving in Higher Order Logics, S. Berghofer, T. Nipkow, C. Urban, and M.
Wenzel, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 391–407, isbn:
978-3-642-03359-9. doi: 10.1007/978-3-642-03359-9_27.

[11] R. Kumar, E. Mullen, Z. Tatlock, and M. O. Myreen, “Software Verification with ITPs
Should Use Binary Code Extraction to Reduce the TCB,” in Interactive Theorem
Proving, J. Avigad and A. Mahboubi, Eds., Cham: Springer International Publishing,
2018, pp. 362–369, isbn: 978-3-319-94821-8. doi: 10.1007/978-3-319-94821-8_21.

[12] R. Morisset, P. Pawan, and F. Zappa Nardelli, “Compiler Testing via a Theory of
Sound Optimisations in the C11/C++11 Memory Model,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’13, Seattle, Washington, USA: Association for Computing Machinery, 2013,
pp. 187–196, isbn: 9781450320146. doi: 10.1145/2491956.2491967.

[13] X. Leroy, “The CompCert C Verified Compiler: Documentation and User’s Manual,”
Inria, Intern report, Sep. 2019, [Online]. Available: https://hal.inria.fr/hal-
01091802/file/manual.pdf, pp. 1–78.

[14] F. Verbeek, J. A. Bockenek, and B. Ravindran, “Highly Automated Formal Proofs
over Memory Usage of Assembly Code,” in Tools and Algorithms for the Construction
and Analysis of Systems - 26th International Conference, TACAS 2020, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings, Part II, A. Biere and D. Parker, Eds.,
ser. Lecture Notes in Computer Science, vol. 12079, Springer, 2020, pp. 98–117. doi:
10.1007/978-3-030-45237-7_6.

[15] F. Besson, S. Blazy, and P. Wilke, “CompCertS: A Memory-Aware Verified C Compiler
Using a Pointer as Integer Semantics,” Journal of Automated Reasoning, vol. 63, no. 2,
pp. 369–392, Aug. 2019, issn: 1573-0670. doi: 10.1007/s10817-018-9496-y.

[16] S. Boldo, J. Jourdan, X. Leroy, and G. Melquiond, “A Formally-Verified C Compiler
Supporting Floating-Point Arithmetic,” in 2013 IEEE 21st Symposium on Computer
Arithmetic, Apr. 2013, pp. 107–115. doi: 10.1109/ARITH.2013.30.

[17] Y. Kiam Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and M. Norrish, “The
Verified CakeML Compiler Backend,” Journal of Functional Programming, vol. 29, e2,
2019. doi: 10.1017/S0956796818000229.

https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-319-94821-8_21
https://doi.org/10.1145/2491956.2491967
https://hal.inria.fr/hal-01091802/file/manual.pdf
https://hal.inria.fr/hal-01091802/file/manual.pdf
https://doi.org/10.1007/978-3-030-45237-7_6
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1109/ARITH.2013.30
https://doi.org/10.1017/S0956796818000229

72

[18] A. Chlipala, “A Certified Type-Preserving Compiler from Lambda Calculus to Assem-
bly Language,” SIGPLAN Not., vol. 42, no. 6, pp. 54–65, Jun. 2007, issn: 0362-1340.
doi: 10.1145/1273442.1250742.

[19] X. Leroy, “Formal Verification of a Realistic Compiler,” Commun. ACM, vol. 52, no. 7,
pp. 107–115, Jul. 2009, issn: 0001-0782. doi: 10.1145/1538788.1538814.

[20] M. O. Myreen, “Verified Just-in-Time Compiler on X86,” in Proceedings of the 37th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’10, Madrid, Spain: Association for Computing Machinery, 2010, pp. 107–
118, isbn: 9781605584799. doi: 10.1145/1706299.1706313.

[21] J. Ševčık, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell, “Com-
pCertTSO: A Verified Compiler for Relaxed-Memory Concurrency,” J. ACM, vol. 60,
no. 3, Jun. 2013, issn: 0004-5411. doi: 10.1145/2487241.2487248.

[22] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “X86-TSO: A Rig-
orous and Usable Programmer’s Model for X86 Multiprocessors,” Commun. ACM,
vol. 53, no. 7, pp. 89–97, Jul. 2010, issn: 0001-0782. doi: 10.1145/1785414.1785443.

[23] T. A. L. Sewell, M. O. Myreen, and G. Klein, “Translation Validation for a Verified
OS Kernel,” in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13, Seattle, Washington, USA: As-
sociation for Computing Machinery, 2013, pp. 471–482, isbn: 9781450320146. doi:
10.1145/2491956.2462183.

[24] F. Verbeek, J. Bockenek, A. Bharadwaj, B. Ravindran, and I. Roessle, “Establishing
a Refinement Relation between Binaries and Abstract Code,” in Proceedings of the
17th ACM-IEEE International Conference on Formal Methods and Models for Sys-
tem Design, ser. MEMOCODE ’19, La Jolla, California: Association for Computing
Machinery, 2019, isbn: 9781450369978. doi: 10.1145/3359986.3361215.

[25] K. Chatterjee, A. Pavlogiannis, and V. Toman, “Value-Centric Dynamic Partial Order
Reduction,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. doi: 10.
1145/3360550.

[26] E. Albert, M. G. de la Banda, M. Gómez-Zamalloa, M. Isabel, and P. J. Stuckey,
“Optimal Context-Sensitive Dynamic Partial Order Reduction with Observers,” in
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2019, Beijing, China: Association for Computing Machinery,
2019, pp. 352–362, isbn: 9781450362245. doi: 10.1145/3293882.3330565.

[27] M. Chalupa, K. Chatterjee, A. Pavlogiannis, N. Sinha, and K. Vaidya, “Data-Centric
Dynamic Partial Order Reduction,” Proc. ACM Program. Lang., vol. 2, no. POPL,
Dec. 2017. doi: 10.1145/3158119.

https://doi.org/10.1145/1273442.1250742
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1706299.1706313
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/3359986.3361215
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3360550
https://doi.org/10.1145/3293882.3330565
https://doi.org/10.1145/3158119

73

[28] S. Huang and J. Huang, “Maximal Causality Reduction for TSO and PSO,” in Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA 2016, Amster-
dam, Netherlands: Association for Computing Machinery, 2016, pp. 447–461, isbn:
9781450344449. doi: 10.1145/2983990.2984025.

[29] H. Shiyou and H. Jeff, “Speeding Up Maximal Causality Reduction with Static De-
pendency Analysis,” in 31st European Conference on Object-Oriented Programming
(ECOOP 2017), P. Müller, Ed., ser. Leibniz International Proceedings in Informatics
(LIPIcs), vol. 74, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017, 16:1–16:22, isbn: 978-3-95977-035-4. doi: 10.4230/LIPIcs.ECOOP.2017.
16.

[30] S. Heule, E. Schkufza, R. Sharma, and A. Aiken, “Stratified Synthesis: Automatically
Learning the X86-64 Instruction Set,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI ’16,
Santa Barbara, CA, USA: Association for Computing Machinery, 2016, pp. 237–250,
isbn: 9781450342612. doi: 10.1145/2908080.2908121.

[31] P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and K. Sago-
nas, “Stateless Model Checking for TSO and PSO,” in Tools and Algorithms for the
Construction and Analysis of Systems, C. Baier and C. Tinelli, Eds., Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2015, pp. 353–367, isbn: 978-3-662-46681-0. doi:
10.1007/s00236-016-0275-0.

[32] S. Goel, W. A. Hunt, M. Kaufmann, and S. Ghosh, “Simulation and Formal Ver-
ification of X86 Machine-Code Programs That Make System Calls,” in Proceedings
of the 14th Conference on Formal Methods in Computer-Aided Design, ser. FMCAD
’14, Lausanne, Switzerland: FMCAD Inc, 2014, pp. 91–98, isbn: 9780983567844. doi:
10.1109/FMCAD.2014.6987600.

[33] S. Goel, W. A. Hunt, and M. Kaufmann, “Engineering a Formal, Executable x86
ISA Simulator for Software Verification,” in Provably Correct Systems, M. Hinchey,
J. P. Bowen, and E.-R. Olderog, Eds. Cham: Springer International Publishing, 2017,
pp. 173–209, isbn: 978-3-319-48628-4. doi: 10.1007/978-3-319-48628-4_8.

[34] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu, “A Complete Formal
Semantics of X86-64 User-Level Instruction Set Architecture,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI 2019, Phoenix, AZ, USA: Association for Computing Machinery, 2019,
pp. 1133–1148, isbn: 9781450367127. doi: 10.1145/3314221.3314601.

[35] I. Corparation, “Intel (R) 64 and IA-32 Architectures Software Developer’s Manual,”
Combined Volumes, October, 2019, Order Number: 325462-071US.

[36] E. Mercer and M. Jones, “Model Checking Machine Code with the GNU Debugger,”
in Model Checking Software, P. Godefroid, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 251–265, isbn: 978-3-540-31899-6. doi: 10.1007/11537328_20.

https://doi.org/10.1145/2983990.2984025
https://doi.org/10.4230/LIPIcs.ECOOP.2017.16
https://doi.org/10.4230/LIPIcs.ECOOP.2017.16
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1007/s00236-016-0275-0
https://doi.org/10.1109/FMCAD.2014.6987600
https://doi.org/10.1007/978-3-319-48628-4_8
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1007/11537328_20

74

[37] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model checking.
MIT press, 2018.

[38] M. Musuvathi and S. Qadeer, “Iterative Context Bounding for Systematic Testing of
Multithreaded Programs,” in Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’07, San Diego, Califor-
nia, USA: Association for Computing Machinery, 2007, pp. 446–455, isbn: 9781595936332.
doi: 10.1145/1250734.1250785.

[39] J. Russell Stuart and P. Norvig, Artificial intelligence: a modern approach. Prentice
Hall, 2009.

[40] P. Godefroid and D. Pirottin, “Refining Dependencies Improves Partial-Order Verifica-
tion Methods (Extended Abstract),” in Computer Aided Verification, C. Courcoubetis,
Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 438–449, isbn: 978-3-
540-47787-7. doi: 10.1007/3-540-56922-7_36.

[41] C. Flanagan and P. Godefroid, “Dynamic Partial-Order Reduction for Model Check-
ing Software,” in Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’05, Long Beach, California, USA:
Association for Computing Machinery, 2005, pp. 110–121, isbn: 158113830X. doi:
10.1145/1040305.1040315.

[42] A. Valmari, “Stubborn Sets for Reduced State Space Generation,” in Advances in Petri
Nets 1990, G. Rozenberg, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1991,
pp. 491–515, isbn: 978-3-540-46369-6. doi: 10.1007/3-540-53863-1_36.

[43] W. Brauer, W. Reisig, and G. Rozenberg, “Petri Nets: Applications and Relationships
to Other Models of Concurrency Advances in Petri Nets 1986, Part II Proceedings of
an Advanced Course Bad Honnef, 8.–19. September 1986,” in Conference proceedings
ACPN, Springer, 1986, p. 344. doi: 10.1007/3-540-17906-2.

[44] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün, “Static Partial Order
Reduction,” in Tools and Algorithms for the Construction and Analysis of Systems, B.
Steffen, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 345–357, isbn:
978-3-540-69753-4. doi: 10.1007/BFb0054182.

[45] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal Dynamic Partial Or-
der Reduction,” in Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’14, San Diego, California, USA:
Association for Computing Machinery, 2014, pp. 373–384, isbn: 9781450325448. doi:
10.1145/2535838.2535845.

[46] P. A. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Source Sets: A Foundation for
Optimal Dynamic Partial Order Reduction,” J. ACM, vol. 64, no. 4, Aug. 2017, issn:
0004-5411. doi: 10.1145/3073408.

https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-17906-2
https://doi.org/10.1007/BFb0054182
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/3073408

75

[47] B. Demsky and P. Lam, “SATCheck: SAT-Directed Stateless Model Checking for SC
and TSO,” in Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, ser. OOPSLA
2015, Pittsburgh, PA, USA: Association for Computing Machinery, 2015, pp. 20–36,
isbn: 9781450336895. doi: 10.1145/2814270.2814297.

[48] Lamport, “How to Make a Multiprocessor Computer That Correctly Executes Multi-
process Programs,” IEEE Transactions on Computers, vol. C-28, no. 9, pp. 690–691,
Sep. 1979, issn: 1557-9956. doi: 10.1109/TC.1979.1675439.

[49] N. Zhang, M. Kusano, and C. Wang, “Dynamic Partial Order Reduction for Relaxed
Memory Models,” in Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, ser. PLDI ’15, Portland, OR, USA:
Association for Computing Machinery, 2015, pp. 250–259, isbn: 9781450334686. doi:
10.1145/2737924.2737956.

[50] I. Roessle, F. Verbeek, and B. Ravindran, “Formally Verified Big Step Semantics out
of X86-64 Binaries,” in Proceedings of the 8th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, ser. CPP 2019, Cascais, Portugal: Association
for Computing Machinery, 2019, pp. 181–195, isbn: 9781450362221. doi: 10.1145/
3293880.3294102.

[51] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan, “RockSalt: Better,
Faster, Stronger SFI for the X86,” in Proceedings of the 33rd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI ’12, Beijing,
China: Association for Computing Machinery, 2012, pp. 395–404, isbn: 9781450312059.
doi: 10.1145/2254064.2254111.

[52] M. O. Myreen, “Formal Verification of Machine-Code Programs,” University of Cam-
bridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-765, Dec. 2009.

[53] X. Feng and Z. Shao, “Modular Verification of Concurrent Assembly Code with Dy-
namic Thread Creation and Termination,” in Proceedings of the Tenth ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP ’05, Tallinn, Esto-
nia: Association for Computing Machinery, 2005, pp. 254–267, isbn: 1595930647. doi:
10.1145/1086365.1086399.

[54] J. S. Moore, “A Mechanically Checked Proof of a Multiprocessor Result via a Unipro-
cessor View,” Formal Methods in System Design, vol. 14, no. 2, pp. 213–228, Mar.
1999, issn: 1572-8102. doi: 10.1023/A:1008624904634.

[55] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ser. ATEC ’05,
[Online]. Available: https://www.usenix.org/legacy/publications/library/
proceedings/usenix05/tech/freenix/full_papers/bellard/bellard.pdf, Ana-
heim, CA: USENIX Association, 2005, p. 41.

[56] K. P. Lawton, “Bochs: A Portable PC Emulator for Unix/X,” Linux J., vol. 1996,
no. 29es, 7–es, Sep. 1996, issn: 1075-3583. doi: 10.5555/326350.326357.

https://doi.org/10.1145/2814270.2814297
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/2737924.2737956
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1145/1086365.1086399
https://doi.org/10.1023/A:1008624904634
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/freenix/full_papers/bellard/bellard.pdf
https://doi.org/10.5555/326350.326357

76

[57] A. Q. Nguyen and H. V. Dang, “Unicorn: Next generation CPU emulator framework,”
in Proceedings of the 2015 Blackhat USA conference, 2015.

[58] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’05, Chicago, IL,
USA: Association for Computing Machinery, 2005, pp. 190–200, isbn: 1595930566.
doi: 10.1145/1065010.1065034.

[59] J. S. Moore, “Mechanized Operational Semantics,” Lectures in the Marktoberdorf Sum-
mer School (August 5-16, 2008)., Online, 2008.

[60] U. Drepper, “ELF Handling for Thread-Local Storage, Version 0.20,” Red Hat, 2005.

[61] J. L. Peterson and T. A. Norman, “Buddy Systems,” Commun. ACM, vol. 20, no. 6,
pp. 421–431, Jun. 1977, issn: 0001-0782. doi: 10.1145/359605.359626.

[62] M. Herlihy and N. Shavit, “The Art of Multiprocessor Programming, Revised Reprint,”
ISBN-13, pp. 978–0 123 973 375, 2012.

[63] M. Kokologiannakis and K. Sagonas, “Stateless Model Checking of the Linux Kernel’s
Read–Copy Update (RCU),” International Journal on Software Tools for Technology
Transfer, vol. 21, no. 3, pp. 287–306, Jun. 2019, issn: 1433-2787. doi: 10 . 1007 /

s10009-019-00514-6.

https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/359605.359626
https://doi.org/10.1007/s10009-019-00514-6
https://doi.org/10.1007/s10009-019-00514-6

	List of Figures
	List of Tables
	Introduction
	Motivation for Analysis of Assembly
	Overview of State-Of-The-Art
	Thesis Contribution
	TCB of the Thesis
	Thesis Organization

	Background and Related Work
	Partial Order Reduction
	Relaxed Consistency Execution
	x86 Assembly Verification
	Model Checking of Concurrent x86 Assembly

	POR for x86 Assembly
	Requirements
	Benefits of applying POR to assembly

	POR Algorithm: Definitions
	Model basics
	Running Examples
	Model Definitions

	POR Algorithm: Pseudo Code
	POR base algorithm
	Running Example
	Improvements to the base algorithm
	Algorithm Back-end Implementation Requirements

	Machine Model
	Design Structure
	Design goals
	Execution Model
	Implementation of State Automaton Constructs
	Implementation of Algorithm Constructs
	Providing semantics for the POSIX thread library APIs

	Memory Model
	System-Call Model

	Experimental Results
	Case Studies
	Program setup

	Discussion on Verified results
	Discussion on Unverified results
	Discussion on Unsupported Results

	Conclusion and Future work
	Conclusion
	Future Work

	References

