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Lowest-Slowdown-offloaded-First Heterogeneous-ISA Scheduler

Balvansh Heerekar

(ABSTRACT)

The end of Moore’s Law has brought a significant change in the architecture of servers used

in data centers. ARM, FPGA, and RISC-V processing cores are increasingly incorporated

in NICs/SSDs along with host x86 CPUs. Lately, embedded boards have become increas-

ingly OS-capable and can run Linux applications while consuming lesser power than servers

and at significantly low equipment costs. Previous works have demonstrated that offloading

applications during run-time from servers to embedded boards can result in increases in

throughput and energy efficiency. The RISC-V architecture has recently gained significant

commercial interest, and OS-capable embedded boards with RISC-V cores are increasingly

available at the commodity-scale. In this project, we show that offloading jobs from an x86

server to a RISC-V embedded board at run-time can also yield significant throughput and

energy benefits. Towards this, we propose an application job scheduler called LSF that of-

floads jobs from an x86 server to a RISC-V embedded board to alleviate workload congestion

on the server. LSF monitors job performance on the server and predicts its performance on

the board, which is then used to guide offloading decisions. We implement the LSF sched-

uler in the Popcorn Linux software stack, and evaluate it using a heterogeneous-ISA system

consisting of an Intel Xeon server and a SiFive HiFive Unleashed RISC-V embedded board.

Our evaluations reveal that LSF yields upto 20% increase in throughput while also gaining

16% more energy efficiency for compute-intensive workloads.
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Chapter 1

Introduction

For decades Moore’s law has been the fundamental guiding force in the design of computer

chips. The faster hardware developed each year provided improvements independently of the

software hence allowing the hardware and software to grow more independently. However,

increasingly cramming more number of transistors in a small area has brought issues such

as power consumption, heat dissipation, increasing manufacturing costs and limitation in

shrinking transistors to fit on smaller sizes. The key takeaway from this trend is that

increasing the number of transistors may not be the continuing solution for increases in

performance. In response to this trend, chip vendors have designed and manufactured vastly

different chip designs, including multicore and heterogeneous computing architectures.

The landscape on heterogeneous be broadly divided into three categories depending on how

cores are paired with host. GPU is used as an accelerator to perform massively parallel,

single-instruction/multiple data (SIMD)-style computations [23][30]. The second category

includes single-ISA heterogeneous architectures. First proposed by Kumar [20], ISA hetero-

geneous multicore machines [2][24] consist of multiple cores of the same ISA but with different

microarchitectural properties, i.e., clock speeds, cache sizes, pipeline stages. This design is

helpful in getting performance gains when running diverse application workloads by dividing

and matching applications with similar performance demands as the underlying cores. For ex-

ample, running performance-hungry applications on microarchitecturally ”beefier” cores and

switching to microarchitecturally ”wimpier” cores for power-sensitive applications can yield

1



2 CHAPTER 1. INTRODUCTION

overall gains in both performance and energy. The third category includes heterogeneous-

ISA machines. Unlike the previous two designs, these machines have heterogeneity at the

ISA level, such as cores of the CISC ISA family (e.g., x86-64) and the RISC ISA family

(e.g., ARM64) integrated together in the same hardware. There has not been a commod-

ity shared memory machine with ISA-heterogeneous cores. However, numerous examples

of heteregeneous-ISA machines with physically discrete memory exists. An exemplar case

is ”smart” I/O devices such as SmartNICs [39] and SmartSSDs [31] that include ARM and

RISC-V CPUs, which when attached to the PCIe slot of a high-performance x86-based server

yields a heterogeneous-ISA machine with discrete memory (for ISA-heteregeneous cores). In

addition, the research community has done much work to understand the performance and

energy gains that can be achieved by using heterogeneous ISA systems, [4][36][25][27][22] [18]

recent works have also demonstrated that migrating applications from high-performance x86

CPUs to low-performance and low-power ARM CPUs can yield higher throughput with

better energy efficiency [25]

1.1 Motivation

Hardware resource sharing is a common practice used in datacenters to improve overall

resource utilization and reduce capital costs. Factors that drive up datacenter costs are ac-

quisition of servers, power consumption, and cooling of equipment [7]. Datacenter providers

are constantly on the lookout for new methods that could be used to lower the price of deploy-

ment while not compromising on performance and the research community is responding in

kind. An interesting research direction in this space is to augment high performance servers

with low-cost embedded boards, instead of buying additional servers, as a way to improve

performance and energy at low cost. Embedded boards that are being produced lately have
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become more OS capable and have also become highly efficient while being available at very

low price points. Olivier et al. [25] show that by connecting ARM-based embedded boards to

an Intel Xeon (x86-based) server that are a fraction of the server’s price and offloading jobs

from the server to the boards to alleviate server’s resource congestion can yield throughput

increase of upto 67% and energy efficiency of 56%.

RISC-V is a new ISA that is open source and royalty free [38]. It has a set of fixed instructions

and any custom instructions required by manufacturers can be added as extensions. While

RISC-V is based on the same RISC principles as ARM, it has recently gained traction due

to it’s open source nature. The cost of producing boards with ARM processors have become

expensive due to the cost associated with procuring the IP from ARM for production. In

the case of RISC-V manufacturers would only pay the cost of manufacturing the processors

since the ISA is open source and thereby reduce the cost of RISC-V processor. This has

caused significant interest in RISC-V by the industry. For example, many Smart I/O device

vendors, especially SmartSSD manufacturers, are incorporating RISC-V-based CPUs in their

newer SSD products [31]. Given this trend, we are motivated to investigate how a RISC-V

based board when coupled with x86 servers may increase the overall throughput and reduce

energy consumption, similar to Olivier et. al [25].

To support this motivation, we conducted two experiments to understand the difference

in application execution times on a x86 server and RISC-V board as well as the energy

consumption difference. For these experiments we used an Intel Xeon E5-2637 x86 processor

and the SiFive HiFive RISC-V board. We selected benchmarks from the NAS Parallel

Benchmark suite [3], as representative of long-running compute-intensive applications. We

ran a single instance of the serially-compiled Class A workload of this benchmark on each of

the machines at a time and compared their execution times and energy consumption.

The results of the slowdown experienced by an application when running on the RISC-V
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Figure 1.1: Application Slowdown on SiFive RISCV Board vs 4-Core Intel Xeon E5-
2637Serve

machine are shown in the Figure 1.1. The x-axis shows the benchmarks being run and the

y-axis shows their corresponding slowdowns. The figure reveals that all the applications are

slower on the RISC-V machine but differ in the degrees of slowdown they experience. It is

worth noting that the Xeon core is clocked faster than the RISC-V core.

RISC-V’s idle power is 4.15 watts, whereas x86’s is 60 watts, we also investigated the energy

saved when an application runs on the RISC-V machine. The energy consumed by each of

the NPB application is calculated by using the HOBO Power Data Logger [26]. Figure 1.2
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Figure 1.2: Power Saved when running on RISCV vs 4-core Xeon

shows the energy saved when an application executes on the SiFive board. The x-axis show

the application and the y-axis shows the energy saved. We can observe that the factor energy

saved by each of the applications is different. Applications that face higher slowdowns when

running on the SiFive RISC-V board also consume more energy than the Intel Xeon server.

This is because the execution time of applications on the RISC-V is so high that is offsets

the low energy consumption of the SiFive RISC-V board. Hence when considering energy

efficiency it is beneficial to run an application that has low slowdown on the RISC-V board.

Traditionally compiled applications cannot migrate between heterogeneous ISA CPUs. Pop-
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corn Linux [4] and Venkat and Tullsen [36] over come this issue by creating multi ISA

compilation frameworks and run-time systems that enable cross-ISA execution migration.

Since it is not possible to migrate threads at any arbitrary instruction, these works insert

migration points instruction post-states where an application’s memory state is semantically

consistent across ISAs by modifying the source code at Intermediate Representation (IR)

level. The multi-ISA compiler creates program code for each ISA and aligns the virtual

addresses so that all program symbols are located at the same addresses. The compiler also

generates metadata that describe the layout of the runtime stack, live variables at migration

points and the target locations of the live variables (i.e., stack slots or registers), so that the

stack can be recreated for the destination ISA at a migration points. The compiler gener-

ated object files are then linked with application libraries and a run-time system to generate

multi-ISA executable binaries.

As Popcorn Linux is the only infrastructure that currently supports multi-ISA framework

and cross-ISA migration between x86 and RISC-V machine [29] our scheduler utilizes this

framework to produce the multi-ISA binaries and is built to run on Popcorn Linux.

1.2 Project Contribution

We developed an application job scheduler that decides what jobs must be offloaded, at

run-time, from an x86 server to a RISC-V board (that is attached to the server) to alleviate

resource congestion on the server. The scheduler, called the Lowest-Slowdown-offloaded-

First (or LSF) monitors job performance on the server (using performance counters) and

uses the monitored performance to predict job performance on the board. The prediction is

then used to guide offloading decisions. We evaluate LSF’s efficiency using a set of compute

intensive micro-macro benchmarks. The evaluation platform includes a SiFive HiFive RISC-
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V board that is connected to an Intel Xeon Silver 4110 server using a low-speed Ethernet

switch (1 Gbps). LSF can obtain upto 20% of throughput increase and upto 16% energy

efficiency. We consider these gains significant as the cost of a SiFive board is 3X less than

that of the server.

The project we makes the following contributions:

• The design and implementation of the LSF scheduler.

• Evaluation of the LSF scheduler which demonstrates a throughput increase of upto

20% and energy efficiency gain of upto 16%.

To the best of our knowledge, no prior work proposes a scheduler to offload jobs to a RISC-V

board in an x86/RISC-V heterogeneous-ISA hardware.

1.3 Report Organization

The rest of this report is organized as follows: Chapter 2 discusses the necessary background

for completeness. Chapter 3 describes past and related works in the space of scheduling

jobs in heterogeneous systems setup. Chapter 4 and Chapter 5 discusses the design and

implementation of the LSF. Chapter 6 discusses the performance evaluation and energy

efficiency of the LSF. Finally, in Chapter 7, we conclude this report, discuss LSF’s limitations

and identify directions for future work.



Chapter 2

Background

This chapter aims to provide the background information that is necessary to understand this

report. We first briefly introduce the RISC-V architecture, how it competes in the present

processor market, and why it is gaining momentum. As currently, there is no off-the-shelf

machine with a heterogeneous multiprocessor, we use a Xeon server and RISC-V system to

evaluate our scheduler. These machines are connected via Ethernet to form a heterogeneous

ISA system. The Popcorn Linux makes multi-ISA migration of applications between these

two machines possible. Hence, we also briefly discuss working of Popcorn Linux [4], and how

it handles migrating applications between cross-ISA machines.

2.1 RISC-V

RISC-V is an open-source, royalty-free ISA that is based on well-established RISC principles.

It was commenced by the engineers at UC Berkeley [38]. RISC-V is suitable for specific

application fields such as storage, computing, and AI applications.

Compared to the other group of processors that are based on the same principle, i.e; ARM,

RISC-V has a smaller base instruction set architecture. It is highly customizable as in-

struction sets can be added as extensions depending on the requirement. One of the main

advantages of RISC-V over ARM is the cost of a RISC-V machines is much lower than that

of ARM. This is mainly due to the reason that ARM earns their revenue by selling IP to

8
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the processor manufacturers, hence the consumer would end up paying for both the manu-

facturing of the processor and cost of using the IP. However in the case of RISC-V as it is

open source the consumers can use the open source designs or develop new designs according

to their needs and they will only be paying for the manufacturing of the chips. As there

is a spike in deployment of ARM machines in the datacenters [9] one of the main ways the

consumers can reduce the costs of their deployments is by using RISC-V processors.

The present RISC-V offerings cannot match ARM processors in performance. But since

RISC-V is a royalty-free and open source architecture, it has been receiving much interest

from corporate and academia. RISC-V has made it easier for the academia and the industry

to develop their custom chips. The demand for custom chips has also increased. With the

increasing use of RISC-V as an accelerator in networking devices [11] and the release of a

server RISC-V core [34] it is worth investigating the amount throughput gain and power

efficiency that can be achieved by using RISC-V in a heterogeneous ISA system setting.

2.2 Popcorn Linux

To enable migration of an application during runtime between heterogeneous ISA processors,

there are two requirements that need to be met. The underlying operating system must

provide the ability to migrate threads between heterogeneous ISA processors; it should also

have the ability to provide distributed virtual shared memory across heterogeneous ISA

processors. We use Popcorn Linux [4] which gives us the ability to migrate threads and

applications data between heterogeneous ISA processors.

Popcorn Linux uses a replicated kernel OS design. The kernels on different machines commu-

nicate with each other via message passing, hence providing an image that the applications

are executing on a single machine. The OS also provides all the necessary support for the
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threads to migrate and execute between processors of different ISAs

Popcorn Linux has the facility to migrate pages between the kernels on demand. After a

cross-ISA migration, the migrated application does not have any pages mapped into the

memory and all memory accesses by the application results in page faults. When the page

faults occur the OS page fault handler is notified. The OS then intercepts and observes

the faults and migrates the relevant page data between the machines. To enable the ease

Figure 2.1: Popcorn Compiler Toolchain

of development for such an environment, the Popcorn Compiler toolchain is used. This

toolchain is responsible for taking as input unmodified C files and generating multi-ISA

binaries that contain the modified data, code sections and the state transformation meta-

data that enable migration of applications between cross-ISA machines.These multi-ISA

binaries are generated by building upon the modularity of LLVM.

The virtual address space in these binaries is aligned so that the referenced symbols are the

same across all the machines. Migration in these multi-ISA binaries can happen only at an

equivalence point [37], i.e; the point at which the execution of the application has reached a

point where a valid mapping between the ISAs can be established. An LLVM pass inserts

migration points at all the equivalence points in the application. The pass tag contains the

information about all the live values at that migration point that would need to be recreated

if the application were migrated at that migration point. This information is passed to all

the binaries of different ISAs.

All the ISAs contain the same information about the live values at the migration points.
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The machine code for each of the multi-ISA binaries is different, hence the backend stores

this live value information in a stack or a register. Apart from the live values, the compiler

also notes the information about the callee saved register and the frame sizes. To correlate

all the call site information at run-time, each site is also assigned a unique identifier. In the

final step the linker takes in all the object files and produces the multi ISA binaries that

have aligned virtual address space and contain the metadata required for transforming the

application during migration.

When an application is executed, its threads execute like normal threads until it hits a

migration point. At this point they check if the migration for this thread has been requested.

This check is done by issuing a syscall to check the per thread flag that is used to signal

migration. If a thread sees that migration has been issued to it, it takes a snapshot of its

current registers and begins it’s stack transformation and register set transformation. The

first step is to unwind the stack and check all the activations that are active and load each of

these functions metadata. It then traverses the stack moving all the active live values to the

destination ISA location. The OS’s thread migration service is responsible for migrating the

outermost functions’ transformed register set to the right destination node. This migration

process creates a new thread with all the transformed register set information and returns

the thread to the userspace. The application then continues executing normally on the

destination node.

This project builds upon the work done by Phillipidis [29] of porting the Popcorn Linux to

x86 - RISC-V architecture.



Chapter 3

Related Work

This chapter provides an overview of related works that have been done in the research areas

that LSF targets. The research effort in this field is divided into two sections, in Section 3.1

we discuss the works done in the field of Single-ISA Heterogeneous machines and in Section

3.2 we discuss the efforts done to schedule applications in Heterogeneous-ISA systems.

3.1 Scheduling in Single ISA Heterogeneous Systems

The fundamental problem of a heterogeneous system is to understand how best the system

resources can be utilized. This problem has been studied extensively.

Koufaty et al. [19] propose the design of a scheduler depending on the slowdown of the

applications. It matches applications to the core with appropriate performance and micro-

architecture. The slowdown of an application in this scheduler is characterized by the internal

and external stalls faced by the threads of the application.

Van Craeynest et al. [35] propose a proportional fair scheduling approach to solve the problem

of barrier synchronization. The scheduler balances threads by giving equal time to all threads

on a core, or by making sure all the threads face same amount of slowdown. This scheduler

does not take into consideration the benefits of core sensitivity of an application.

12
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Petrucci et al. [28] proposes Lucky Scheduler that use lottery based approach to schedule jobs

in heterogeneous system. Depending on Million Instructions per Second and LLC misses each

application are given tickets. Higher the number of tickets, higher the chance of executing

on bigger core.

Jibaja et al. [16] in their scheduler WASH presents a dynamic thread scheduling algorithm

for AMP (Asymmetric Multi-core Processors) to improve performance and optimize energy

consumption. Their dynamic scheduler is based on Principle Component Analysis(predictive

model), which is trained offline using performance metrics to predict runtime slowdowns.

At runtime, the VM collects the performance data such as criticality, thread sensitivity,

and priority. Thus at every fixed interval, WASH sets thread affinity to a specific core

by collecting VM performance data in addition to checking core sensitivity and dynamic

parallelism metric.

Another approach that has been studied extensively is to schedule jobs by profiling them for

their memory and cache contention. [12][21][5][8].

However, all of these approaches have been developed for single ISA heterogeneous systems

that have heterogeneity in terms of their micro architectures, frequency of the processors,

and cache sizes [15].

3.2 Scheduling in Multi-ISA Heterogeneous Systems

The field of heterogeneous-ISA has received less attention than that of single-ISA heteroge-

neous systems. Work has been done in the field of accelerator-based heterogeneous environ-

ments [13]. The work done by Beisel et al. [6] extends the Linux Complete Far Scheduler

for CPU/GPU. Ardalani et al, work XAPP [1], proposed an ensemble prediction mechanism
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that, when given a source code, predicts which core (CPU/GPU) to run on. This scheduler

would require a profiling phase to understand which core an application needs to run on. [14]

work studies scheduling parallel applications by making decisions at runtime by observing

the metadata of the applications.

Barblace et al. [4] proposes two scheduling policies for heterogeneous system, the first policy

balances the number of threads on both the machines making up the hetereogenous system,

while the second policy runs more number of threads on the x86 machine. This policy doesn’t

take into consideration the slowdown an app would face when running on the core with lower

performance.

Karaoui et al. [17] present a scheduler for heterogeneous-ISA systems, that takes into con-

sideration the slowdown factor and the core count on both the processors. It migrates

application that has their slowdown factor less then the ratio of number of cores.

Yihan et al.[27] proposes a scheduler for SIMD region migration that divides the applica-

tions into regions depending on their slowdown and assigns them to cores depending on the

slowdown faced when executing on that core. Both Karaoui et al. [17] and Pang et al. [27]

assume we have the knowledge of the slowdown of an application before their execution,

however it is hard to argue such information would be available prior.

The idea of using correlation between performance statistics and the slowdown incurred, to

make informed scheduling decisions has been investigated before. Olivier et al. [25], in their

paper HEXO, developed a correlation value framework that collects the performance metrics

of a job and presents this data to a scheduler when the instance of the job begins to run.

However this work targets embedded ARM boards coupled with x86 servers.

As RISC-V boards that have the ability to execute Linux applications are comparatively

new, to our knowledge there exists no such scheduler that offloads jobs to a RISC-V board.
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In this project we extend the work done in HEXO [25] to a RISC-V - x86 heterogeneous

setup.



Chapter 4

Design

The motivation of our work is to design a scheduler that offloads applications at run-time

from an x86 server to a RISC-V board to alleviate resource congestion on the server. In

this chapter, we present the design and implementation of LSF scheduler that solves this

problem by monitoring application performance on the server.

In Section 4.1 we profile our workload for slowdown and energy efficiency by running the

considered micro-macro benchmarks on the SiFive RISC-V board and comparing the results

with Intel Xeon E5-2637 x86 server. In Section 4.2 we present the design of LSF scheduler.

4.1 Profiling Phase

This section describes the experiments we conducted to understand the slowdown and energy

efficiency characteristics of the micro-macro benchmarks we considered. This information

can help us in taking a more informed decision towards the design of the scheduler.

LSF scheduler targets compute intensive HPC workloads. Hence to measure the performance

and power characteristics we selected benchmarks from NAS Parallel Benchmark suite [3]

as they are representative of long running compute intensive applications. We ran a single

instance of serially compiled Class A workload of this benchmark on each of the machines

at a time and compared their execution times and energy consumption. We also use a set

16
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of custom memory intensive micro-benchmarks to measure the execution times and energy

consumption of the system. We discuss the workings of this micro-benchmark in Section 6.1.

The slowdown incurred when running the benchmarks on the SiFive RISC-V board to Intel

Xeon server is shown in the Figure 4.1. The x-axis shows the benchmarks being run and

they-axis shows their corresponding slowdown. The slowdown is normalized to the execution

time of the applications on the Xeon server, that is 1 on the y-axis represents the performance

of the Xeon server.

IS EP BT CG FT SP MG LU UA

CACHE_ST
EP_16

CACHE_ST
EP_32

CACHE_ST
EP_64

0

5

10

15

20

25

30

35

40

Applications

Sl
ow

do
w

n
Fa

ct
or

Figure 4.1: Application Slowdown on SiFive RISCV Board vs 4-Core Inetl Xeon E5-
2637Serve

From the Figure 4.1, we can observe that the slowdown is relatively small for some of the
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benchmarks, while few applications see very high slowdowns. Overall we see slowdown in

the range of 3.6X - 38X when running an application on the RISC-V board. It is important

to put into perspective that this slowdown is being faced by a RISC-V machine which is

three times lower in cost than that of the Xeon server. The result is also not surprising,

considering the SiFive RISC-V is clocked lower than the Intel Xeon server and compared to

the SiFive RISC-V the Intel x86 processors have been in market for decades and have been

highly optimized. The next generations of the SiFive RISC-V boards are likely to yield more

slower down than the present ones.
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We also profile these set of applications for their energy consumption on the 4-core Xeon

server. Figure 4.2 shows the energy saved when an application runs on the SiFive RISC-V

board. The x-axis shows the micro-macro benchmarks y-axis shows the energy saved. The

factor energy saved in normalized to that of Xeon’s energy consumption, that is 1 on the

y-axis represents energy consumption of Xeon.

From the figure 4.2 we can observe for applications that face higher slowdown also consume

more energy. This is because the execution time of these applications is so high that it

offsets the low energy consumption of the RISC-V board. From these experiments it can

be concluded to get higher throughput and low energy consumption applications with lower

slowdowns should be scheduled to execute on the SiFive RISC-V board.

4.2 Design

In this chapter we take into consideration our learnings from the profiling experiments and

present the design of LSF scheduler migrate jobs between an Intel Xeon server and a SiFive

RISC-V board to alleviate resource congestion on the server.

LSF’s objective is to maximize the throughput and power efficiency of the system. This is

done by offloading jobs to the RISC-V board such that at any point, neither of the machines

are overloaded.

The criteria by which the scheduler decides what jobs are to be migrated onto the RISC-

V machine is by checking the applications’ slowdown. In a data center scenario, we do not

always have prior information about a job’s slowdown when they arrive. Scheduling decisions

in such systems can be made by observing and comparing the application’s behavior before

migrating and after migrating. We can assess the behavior of the applications by monitoring
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performance metrics like last-level cache metrics, cache-loads, cache-stores, and the number

of instructions. These metrics vary depending on the machine specifications and micro-

architecture.

We profiled the selected applications for last-level cache misses per second number of instruc-

tions per second, cache-loads per second and number of branches per second. To get these

metrics, we ran a single instance of the application on the server. We found a strong correla-

tion between number of instructions per second and the slowdown observed. The correlation

r is 0.80, and R2 is 0.64. This correlation factor indicates that there is a direct relationship

between these metrics and the amount of slowdown. Hence by monitoring these metrics, the

scheduler can dynamically learn the slowdown information associated with each job. As the

objective of the scheduler is to gain higher throughput, all the jobs start their execution on

the server, hence we don’t need to measure these metrics for the applications when running

on the RISC-V machine. In our design we assume that the scheduler is trying to schedule

an infinite queue of jobs, and hence it server or the RISC-V board will never be idle. In the

case of a finite queue we would also have to measure the performance metrics on the RISC-V

board so that applications can be migrated back to the server, if the server becomes idle.

Another factor that affects the performance of the applications is resource availability. As

we consider compute-intensive jobs, we do not run more than one job on a single core, both

on the server and the RISC-V board. For this project’s scope, we assume that there exists

enough memory for the applications to run on either of the machines. Hence, the scheduler

doesn’t consider resource availability while scheduling and migrating applications.

Figure 5.1 illustrates the workflow of LSF. By default the scheduler is idle and is waiting for

four different events -

1. Application begins it’s execution
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Figure 4.3: Scheduler Workflow
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2. Application migrates back from the RISC-V board to the server.

3. Application ends.

4. An event notifying the scheduler of the performance metrics of the applications.

Algorithm 1 LSF
1: x86_size: Number of available server cores
2: risc− v_size: Number of available RISC-V cores
3: x86_list: List of (apps,pid) running on server
4: risc− v_list: List of (apps,pid) running on risc-v board
5: metric[apps]: Array of values containing performance metric information corresponding

to application
6: procedure LSF(command, value)
7: command: app_name/ end_signal/ migrate_back/ perf_metric_singal
8: value: PID/ perf_value
9: if command = end_signal then

10: // App completed execution
11: // Here the value = PID
12: if (value) in x86_list then
13: Remove corresponding value = pid from x86_list
14: else
15: Remove corresponding value = pid from risc− v_list

16: else if command = migrate_back then
17: // App migrates back to x86 server.
18: // Here the value = PID
19: Remove corresponding value = pid from risc− v_list
20: Insert (apps, pid) in x86_list
21: victim_app_pid = get_victim_x86()
22: Migrate victim_app_pid to RISC-V
23: Remove corresponding victim_app_pid from x86_list
24: Insert victim_app_pid to risc-v_list
25: else if command = perf_metric_signal then
26: // Receives Instr per second information
27: // of an app.
28: // Here the value = perf_value;
29: // command = name_of_app + perf_metric_signal
30: Update metric[app] value
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31: else ▷ Here value = PID; command = Name of app
32: // App begun it’s execution
33: // Here the value = PID; command = Name of App
34: if len(x86_list) < x86_size then
35: Insert (command = app,value = pid) in x86_list
36: Continue executing on the server
37: else
38: victim_app_pid = get_victim_x86()
39: Migrate victim_app_pid to RISC-V
40: Remove corresponding victim_app_pid from x86_list
41: Move victim_app_pid to risc− v_list
42: Insert (command = app,value = pid) in x86_list

43: procedure GET_VICTIM_X86
44: if len(metric) = 0 then
45: return Head of x86_list
46: else
47: Find (apps, pid) in x86_list where metric[app] is least in x86_list
48: return pid

In the case of an event where an application has just begun its execution, the LSF checks the

load of the server, and if there are cores available on the server, the application continues

executing on the server. If there are no cores available on the server, the LSF finds a ”victim”

to migrate and free up cores on the server. A victim application is one that has the least

instructions per second value from the currently running set and has been executing for

the most amount of time on the server. We select an application which has been already

executing on the server to migrate because the slowdown brought by this application would be

lower than migrating an application that has just begun it’s execution. When no information

about the profiled metrics is available, the scheduler migrates the job that has been executing

on the server for the most amount of time.

Currently, the RISC-V port of Popcorn Linux cannot support applications to end their

execution on the remote node. Hence, we migrate the applications back to the RISC-V

machine just before they finish. The LSF is notified about this back migration by the
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application. The LSF then finds a victim job from the currently running set of jobs on the

server and migrates it, preventing the server from overloading.

In the case when an application has completed it’s execution the LSF is notified of this event.

The LSF then updates the usage of the servers accordingly and waits for the next event.

When an application completes it’s execution the workload script notifies the LSF of the

instructions per second performance metric of that application. This is done for all the

applications. Hence LSF always has the most up to date information about the instructions

per second of an application and can take an informed decision while offloading applications.

The scheduling policy’s pseudo code after it receives an event is shown in Algorithm 1.
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Implementation

In this chapter, we discuss how LSF was implemented.

We implement LSF as an event-based client-server model, using socket communication in

C as shown in Figure 5.1. This implementation is done by modifying the Popcorn Linux

Compiler to include the client code in all the applications. The scheduler code contains

the server code that is listening for connections and is waiting to schedule or migrate jobs

depending on the usage of the server.

Figure 5.1: Least Slowdown First Scheduler’s Client Server model to migrate jobs in a
heterogeneous ISA system with x86 and RISC-V. Flag represents the target machine where
the application is scheduled to execute.

The scheduler is a single-threaded user-space application written in C. It runs on one of the

cores of the server and aims at scheduling jobs so that neither of the machines is overloaded

at any point in time. All the jobs are continuously profiled for the number of instructions

per second. This live profiling is done using Linux’s perf-stat tool.

25
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We use Popcorn Linux’s signal-based migration API to migrate applications from the server

to the RISC-V machine.

Intel’s RAPL [10] provides a set of counters that can be used to read energy and power

consumption information of the processor. As no such libraries exist for RISC-V to read the

energy consumption of the processor, we need to measure the entire power of the system.

To this cause we use a pair of HOBO Plug Load Data Logger [26] to measure the power

consumption of the server and RISC-V board.

We also measured the overhead of LSF. LSF brings an overhead of 0.8 seconds - 1 second.

This includes the overhead of using the perf-stat tool. Since our scheduler is aimed at long-

running compute-intensive workloads, this overhead is negligible.
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Evaluation

In this chapter, we describe the evaluation of LSF. We aim to answer the following two

questions

• What is the LSF’s throughput gain?

• What is the LSF’s energy efficiency?

This chapter is organized as follows: Section 6.1 describes the experimental setup we used

to evaluate LSF. Section 6.2 provides a summary of our evaluations.

6.1 Experimental Setup

6.1.1 Hardware Setup and Baseline

Several vendors offer RISC-V embedded boards with varying price points depending on their

frequency, memory, cache size, and extensions. For this project’s scope, any RISC-V board

that was to be considered needed to satisfy two requirements - 1. the price of the board

needed to be a fraction of the x86 server, and 2. the RISC-V board needs to have support to

run Linux applications. Although the first requirement was satisfied by most of the vendors,

SiFive’s HiFive Unleashed [32] and, HiFive Unmatched [33] are the only two boards that

27
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Machine Xeon HiFive Unleashed
CPU model Xeon E5-2637 U54 RISC‐V
ISA x86-64 RV64IMAFDC
CPU Frequency 3 GHz 1.5 GHz
Cores 4 (8 HT) 4
RAM 64 GB 8 GB
Power (idle) 60 W 4.15 W
Price $3049 $999

Table 6.1: Considered servers & board characteristics.

support running Linux applications. We use the HiFive Unleashed RISC-V board to evaluate

our scheduler.

Table 6.1 describes the key specifications of the sever and the RISC-V machine. Our hetero-

geneous setup consists of an Intel Xeon E5 and a SiFive HiFive Unleashed. These are linked

via Ethernet that is capped at 1 Gbps. The OS being used on Xeon E5 is Ubuntu 16.04,

while the RISC-V is running a custom Linux distribution built using the Yocto Project. Both

the machines are running Popcorn Kernel 5.2.21. To calculate the idle power consumption

of both the systems, we measure the power consumed by the server and the RISC-V board

when idle for a period of 10 minutes.

Hyper-threading is disabled on the x86 server and, we use 3/4 of the available cores on

both machines. This is done as it is common practice in data centers not to overload any

of the servers. Scheduler is launched on one of the cores of the server. In the evaluation

experiments, we demonstrate the benefits of LSF in consolidated scenarios. We show that

connecting a low cost, low power board to the server can yield throughput than a single

server while being energy efficient in the case of applications that face lower slowdown on

RISC-V board.

The evaluation workload script is a multi-threaded Python script running on another machine

on the same network as our servers and the RISC-V machine. We do this to closely mimic

the scenarios in data centers where the jobs are assigned to the worker servers by another
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machine. The server is only responsible for executing the tasks. The scheduler is usually

coupled with the server assigning jobs in a cloud computing scenario and acts as a load

balancer. We implement our scheduler on the server to reduce the latency between the

decision making process and the time to issue the migration command to the application.

The workload scripts take in as input a batch of applications that needs to be scheduled.

This batch of jobs is shuffled and added to a work queue. This is repeated multiple times

to create an infinite queue of jobs. The rationale behind this is to randomly distribute jobs

while ensuring all the jobs are uniformly distributed.

The evaluation script always assigns jobs just to the server. It does this by launching a thread

that establishes an SSH session with the server and launches the job. This evaluation script

also contains a piece of client code to communicate with the scheduler server the number of

instructions per second performance metric of the applications. Each thread communicates

the metric of their respective application to the LSF and then selects another job from the

work queue to launch on the server. We repeat this process until the end of the evaluation

period. We ran each of the experiments for 75 minutes because the most time taken by an

application to execute on RISC-V ranges between 47-50 minutes and, we wanted to make

sure multiple instances of all the applications are scheduled on the RISC-V machine.

6.1.2 Benchmarks

To evaluate the LSF we use a set of macro and micro benchmarks. For the macro benchmarks,

we use the NASA Parallel Benchmark suite[3]. This suite contains benchmarks which are

representative of HPC compute intensive workloads. For our evaluation we use the serially

compiled class A workloads of NPB suite. The class value is representative of the workload

of the benchmark.
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Another set of applications deployed in data centers are memory-intensive applications; hence

we developed a micro-benchmark to evaluate our LSF. These micro-benchmarks allocate a

fixed amount of memory that is higher than the cache size. It then accesses this allocated

memory in a randomized pattern such that each operation results in a memory fetch. We

access the allocated memory with step sizes multiples of the cache line size to create different

execution loads. As the step size increases, the number of memory fetches and cache-loads

decreases, decreasing the total execution time. This pattern of accessing the memory is

repeated for a fixed number of iterations for all step sizes to increase the overall execution

time and generate enough memory loads. Even though the cache size of the server and the

RISC-V machine are different, this micro-benchmark is suitable for our system as the cache

line size remains constant. Due to similar memory access patterns between the server and

the RISC-V machine, we find a direct correlation between the number of LLC-cache misses

per second and slow down. Thus, the slowdown decreases as the cache fetches decrease

for increasing step size. The memory allocation is done using integer arrays, hence we

consider step sizes of 16, 32 and, 64. Varying degrees of slowdown in this micro-benchmark is

achieved due to the size of the cache and the amount spent in fetching data from the memory.

Depending on their step sizes, we name our three micro-benchmarks as cache_step_16,

cache_step_32 and, cache_step64.

6.2 Throughput Experiments

We run two sets of experiments to measure the throughput of LSF scheduler. In the first

experiment, we launch 8 sets of jobs. Each of these sets contains an infinite queue of a

single instance of the micro/macro benchmarks we considered. We ran each of these sets

for 75 minutes. These sets represents an ideal case when only of single jobs being launched
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on the server that experience same amount of slowdown. We consider our baseline to be a

homogeneous setup consisting of an x86 setup.
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Figure 6.1: LSF’s throughput gain over a single Xeon server

Figure 6.1 shows the throughput increase achieved by the set of applications considered.

Here the x-axis shows the applications in the set and the y-axis represents the throughput

increase. Unlike our assumption that the application with the least slowdown would yield

higher throughput, application BT is the best case with a throughput yield of 20%. Although

IS gets an increase in throughput it is lesser than that of BT and EP that have higher

slowdowns when running on RISC-V board. This because IS has a very low execution time
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and the overhead of migrating this application to the RISC-V board outweighs the benefits

gained by migrating it when compared to BT and IS. Currently LSF scheduler does not

take into consideration the execution time of the application and migrates applications only

depending on their slowdown information. SP represents the worst case for our scheduler

with a throughput yield of 1.9%. The remaining benchmarks follow the trend where the

throughput of the applications are proportional to their slowdown.
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Figure 6.2: LSF’s throughput gain over a single Xeon server (consolidated case)

We also test LSF for consolidated case. We run six sets of consolidated applications A=BT,

EP and IS, B=FT, cache_step_32, cache_step_64, C=CG, LU, MG, SP, UA, cache_step_16,
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D=BT_SP, E=BT,CG,EP,FT,IS,LU,MG,SP and UA, F=NPB Apps + memory intensive

micro-benchmark. Set A contains the appliations that experience slowdown less than 10%

hence represents best case for LSF. Set B contains the applications that experience slow-

downs in the range of 11%-20%, hence it represents a middle case for LSF. Set D contains

applications that face slowdown greater than 21% hence represents the worst case for LSF.

Set C contains applications with the best and worst slowdown. Set E contains NPB applica-

tions with a variety of workloads and Set F consists of all the micro and macro benchmarks

we considered for evaluation. Set E and F represent the real world scenarios where a com-

bination of jobs are launched on a server. These experiments were run for 75 minutes.

Figure 6.2 shows the throughput gain for the consolidated sets. Set A we see a throughput

yield of 19% which is similar to the throughput gain in the case of an infinite queue of single

instance of BT. When combining the best and worst case (BT and SP) we get a throughput

increase of 16.6% this is less than the throughput increase brought by BT because when the

jobs are first launched and no profiling information is available, some of the SP applications

are migrated to RISC-V board. Set B and C with the middle and the worst case gain

a throughput of 4.4% and 2.8% respectively. The set with highest slowdown gains higher

throughput than SP as it also contains applications with slowdowns less than that of SP that

are more likely to be offloaded on the RISC-V board. Set E and F experience throughput

gains of 12.28% and 13.84%. The overall throughput is lesser than the combination of best

and worst case. This is because BT takes the most amount of time for execution, during

which no information about it’s instructions per second metric would be available, hence the

scheduler migrates applications with the lowest instructions per second metric available at

that instance. In the case of Class A applications with higher slowdown dominate the set

and hence would be migrated more often. While in the case of Set F, the set also contains

applications with medium slowdowns, hence the probability of migrating applications with
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medium slowdown is higher and therefore we see higher throughput in the case of set when

all applications are considered.

6.3 Energy Efficiency Experiments

We also collect the energy consumed by the SiFive RISC-V board and the Intel Xeon x86

server when running each of the queues. We calculated the energy efficiency for each sets by

dividing the total applications that completed their execution during the evaluation period

by the total energy consumed by both the machines during this period.
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Figure 6.3: LSF’s energy efficiency gain over a single Xeon server



6.3. ENERGY EFFICIENCY EXPERIMENTS 35

Figure 6.3 shows the throughput increase in terms of jobs completed per kilo-joule. The

x-axis shows the applications in the set and the y-axis represents the throughput in terms

of applications executed per kilo joule. Here 1 on the y-axis represents the energy efficiency

of the x86 server.

We can observe that the increase in energy efficiency brought by LSF scheduler is less than the

increase in throughput. The applications that face slowdown higher than 10X when executing

on RISC-V board do not see a higher energy efficiency instead they end up consuming more

energy than when running on a x86 server. Hence for applications with higher slowdown FT,

LU, SP, UA and cache_step_16 we see that the power efficiency is lower than the baseline.
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Figure 6.4: LSF’s energy efficiency gain over a single Xeon server (consolidated case)
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Figure 6.4 shows the energy efficiency in case of consolidated sets. We can observe that the

set containing applications with the least amount of slowdown has an energy efficiency of

16.5%. This is higher than that of infinite queue of BT because this set also consists of other

applications. These applications consume comparatively less energy on the x86 server than

BT. In the case of set with highest slowdown, the energy efficiency is better than SP as the

energy efficiency is offset by other applications in the set. The set containing BT_SP sees

higher energy efficiency than other sets, this is because this set higher executes higher ratio of

BT that results in higher energy efficiency. Set containing class A of NPB Benchmarks and

set containing all the considered micro-macro benchmarks follow a similar trend where set

containing all micro-macro benchmarks is more energy efficient than class A as it executes

higher ratio of applications with better energy efficiency.

6.4 Summary

Running workloads with different sets of applications, we see a throughput increase ranging

from 1.9% to 20% depending on the applications in the workload set. The evaluation results

prove that LSF can identify the right tasks that are to be migrated to the RISC-V board.

Energy efficiency evaluation shows that while LSF scheduler does provide us energy efficiency

in most of the cases with the best being 16.5%, the LSF scheduler doesn’t help to cause of

getting better energy efficiency while also getting better throughput in the case of sets

containing applications with higher slowdowns.
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Conclusions & Future Work

7.1 Conclusion

In this project we develop Lowest-Slowdown-offloaded-First Heterogeneous-ISA scheduler

(LSF), that can migrate applications during run time between RISC-V and x86 server. We

were able to demonstrate that in the case when LSF receives a combination of workloads, it

was able to rightly predict the job performance on the board and migrate the applications

which face least amount of slowdown when executing on the RISC-V board. We use a

SiFive RISC-V board and an Intel Xeon E5-2367 x86 server to evaluate LSF scheduler. Our

evaluations we show that LSF out performed a single x86 server setup. We were able to

achieve throughput gains of up to 20% while getting energy efficiency of 16%. We consider

these gains significant as the cost of a SiFive board is 3X less than that of the server. While

LSF was able to get throughput gains in all the cases, it is important to note that LSF

scheduler is better suited for long running compute-intensive HPC workloads.

In the end, we strongly support the use of RISC-V boards as a way of offloading jobs

during run time in data centers. RISC-V boards can be considered as an alternative to

ARM embedded boards that have seen a constant increase in prices. Our results show

that dynamically migrating applications in a heterogeneous system can bring significant

throughput gains while consuming lesser energy and also being highly cost efficient.
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7.2 Future Work

The Future work that can be carried out to improve the current capabilities of LSF is

highlighted in this section.

The RISC-V architecture has recently gained significant commercial interest, and OS-capable

embedded boards with RISC-V cores are increasingly available at the commodity-scale. LSF

scheduler uses one of the first generation RISC-V boards to offload jobs. With SiFive and

other vendors releasing new RISC-V boards and servers, it would be worth investigating the

throughput gain and energy efficiency that can be achieved by using the newer and improved

generations of these OS-capable embedded boards.

Currently LSF does not take into consideration specific set of codes that are more favourable

to execute on the RISCV. LSF scheduler can be modified to learn and offload code that is

more favourable to execute on the RISC-V board, similar to the work done by Pang et al.

[27].
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