
On the Correctness of Optimistic Composable Data Structures

Ahmed Hassan∗

Virginia Tech
hassan84@vt.edu

Sebastiano Peluso
Virginia Tech

peluso@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

1 Introduction

Concurrent data structures are widely used in multithreading applications as they efficiently enable the exploita-
tion of parallelism especially when deployed on multi-core architectures. Intuitively, the (complex) fine-grained
design of a data structure [10, 9, 6, 3], in which only the critical part of an operation is synchronized, provides
better performance than the (simpler) coarse-grained design where operations act in mutual exclusion. More-
over, there is a growing interest (e.g., [1, 7, 8, 17]) on composing data structure operations into a single trans-
action, rather than considering them as standalone atomic operations. This is mainly because Transactional
Memory [5] (TM), the recent appealing programming abstraction for developing concurrent applications, has
been integrated into commodity hardware chips [15, 2] and well-known compilers (e.g., [16]). This integration
allows the usage of in-memory transactions to all programmers, including those non-experts. As one of the
consequences of that, a programmer can easily wrap multiple data structure operations into a single atomic
transaction, which thus enables composability.

The design of a data structure has its own challenges that depend on its semantics and implementation
constraints. That is why, for the last decade, proving the correctness of most concurrent (and composable) data
structures followed an ad-hoc approach. This lack of generality contributed to make the task of assessing their
correctness very challenging. Recently, we observed an initial step towards accomplishing the goal of having
a general model for proving the correctness of concurrent data structures, which is the single writer multiple
readers model (we name it SWMR hereafter) presented by Lev-Ari et. al. in [13]. The SWMR model focuses on
two safety properties (roughly summarized here): validity, which guarantees that no “unexpected” behaviors
(e.g., access to an invalid address or a division by zero) can occur in all the steps of a concurrent execution; and
regularity, an extension of the classical regularity model on registers [12] that guarantees that each read-only
operation is consistent (i.e., linearized) with all the write operations. The appealing advantages of the SWMR
model are that: i) it allows the programmer to use general and well defined terms (i.e., base conditions and
base points) to prove the validity and regularity of any data structure fitting the SWMR model; and ii) it gives a
formal way to prove linearizability [11] by relying on regularity.

Despite the strengths of the SWMR model, the set of data structures that can actually benefit from it does
not include most of the recent highly optimized and practical concurrent [9, 6, 3] and composable [1, 7, 8, 17]
data structures which, in addition, allow concurrent writes. Fortunately, those recent data structures have some
common design principles that we can isolate. Specifically, in all the former examples, each update operation
is split into a read-only traversal phase and a read-write commit phase, and the traversal phase is optimistically
executed in isolation from the commit phase (and usually without monitoring its steps), counting on the fact
that the output of the traversal phase remains “valid” during the commit phase. Given their optimistic nature,
we name them as optimistic data structures.

∗Contact author: Ahmed Hassan 467 Durham Hall, Virginia Tech, Blacksburg VA, USA. Email: hassan84@vt.edu. Tel: +1 (540)
231-5336

1



In this presentation, we focus on the class of optimistic data structures and we provide a set of models for
assessing their correctness so that existing and future practical implementations can rely on that. The overall
goal of those models is to provide a general approach (which uses the notion of base points and base conditions
as SWMR) for proving the correctness of a set of data structures that allow multiple writers multiple readers
(MWMR) executions, which are wider and more practical than the set of data structures fitting the SWMR model.

2 The Single Writer Commit (SWC) Model

As mentioned before, in our models each operation is split into read-only traversal phase and read-write commit
phase. This representation is general enough to cover also those operations with either an empty traversal (i.e.,
operations whose first step is a write) or an empty commit phase (i.e., read-only operations).

We start by presenting the Single Writer Commit (SWC) model, a MWMR model in which both read-only
and update operations run concurrently with the restriction that only the commit phases are atomically executed
with the Single Lock Atomicity (SLA) semantics [14] (i.e., as if they are executed sequentially). For the sake of
simplifying the presentation, we first introduce this model by assuming that the commit phases are protected by
a single global lock, then we discuss the case of concurrent commits.

Figure 1 shows an example of this case with five update operations, uo1, ..., uo5, and one read-only opera-
tion ro. In this example, the commit phases of all the update operations do not interleave, even if the operations
themselves interleave. The read-only operation ro is concurrent with uo3, uo4, and uo5. In particular, it inter-
leaves with the commit phases of uo3 and uo4, while its commit phase only interleaves with uo4.

UO
1

RO

ROT

UO
1

T

UO
3

UO
2

UO
4

UO
1

C UO
3

T UO
3

C

UO
2

T UO
2

C

UO
4

T UO
4

C

UO
5

T UO
5

C

ROC

UO
5

(a) Multiple Writers

UO
1

RO

ROT

UO
1

T

UO
3

UO
2

UO
4

UO
1

C UO
3

T UO
3

C

UO
2

T UO
2

C

UO
4

T UO
4

C

UO
5

T UO
5

C

ROC

UO
5

(b) Single Writer Commit

Figure 1: An example of a MWMR concurrent execution (a) that can be executed using our model by converting
it to a Single Writer Commit scenario (b).

Figure 2(a) shows how we model a typical optimistic data structure operation. Any operationO is split into
two sequences of steps: OT = s1 · ... · sm; and OC = sm+1 · ... · sn. The sequence OT represents the traversal
phase, which does not contain any write step. The sequence OC represents the commit phase, which always
ends with returnO(vret) and can contain both read and write steps. Given that a data structure under the SWC
model allows concurrent traversal phases and a single commit phase at a time, the transitions from the shared
traversal phase to the exclusive commit phase and vice versa are represented by two auxiliary steps S′ and S′′

(e.g., they can be an acquisition/release of a global lock). We do not assume the presence of such a transition
in read-only operations, thus, in those cases, S′ and S′′ are just dummy steps that do nothing. Excluding the
auxiliary steps, the commit phase of a read-only operation O is OC = returnO(vret).

In practice, optimistic data structures usually start the commit phase by a validation mechanism to ensure
that the output of the traversal phase remains valid until the transition to the exclusive commit mode; otherwise
the traversal phase is re-executed. That is why it is important to include this re-execution mechanism in our
model. To do so, we define for each operation O on a data structure ds a variable u that represents the number
of unsuccessful trials (u ∈ {0, 1, ...,∞})1. The value of u is determined according to the design of ds and

1If for an operation O it is possible to have an execution with u = ∞, this (informally) entails that the operation is not wait-free.

2



s1=I sn= Rsm+1=r/w

OT OC

t
2

Ct
1

T t
u

Tt
1

C t
u

C

OT OC

t
u+1

T t
u+1

C

s'=L s''= U

s2=r sm=r

t
2

T

pre-commit-state
O

post-state
O

(a)

s1=I sn= Rsm+1=r/w

OT OC

t
2

Ct
1

T t
u

Tt
1

C t
u

C

OT OC

t
u+1

T t
u+1

C

s'=L s''= U

s2=r sm=r

t
2

T

pre-commit-state
O

post-state
O

(b)

Figure 2: a) Splitting the operation to support concurrent MWMR execution with Single Writer Commit (SWC).
OT is the traversal phase; OC is the commit phase. I:invoke, r:read, w:write, R:return, L:lock, U:unlock. b)
Unsuccessful trials are part of the overall traversal phase in our model.

the concurrent execution µ that includes O. Every unsuccessful trial resets the local state (i.e. the values of
the operation’s local variables) of the operation to the initial ⊥ state before starting the next trial. The commit
phases of all the unsuccessful trials are clearly not allowed to write on the shared memory because of their
inconsistent local state. As shown in Figure 2(b), the traversal phase of the operation O includes all those
unsuccessful trials and the commit phase of O is only the successful commit phase of the last trial (tu+1

C).
Under such a model we define two states for each update operation u: pre-commit-stateu, which repre-

sents the local state of u after the auxiliary step s′ and before the first real step in the commit phase, sm+1; and
post-stateu, which is the shared state of the data structure (i.e. the values of its variables) after the last step
of u. Then we enforce that for every update operation ui in a concurrent execution µ, pre-commit-stateui

observes post-stateui−1 , where ui−1 is the update operation whose commit phase precedes the commit phase
of ui in µ.

The main idea of modeling data structures and concurrent executions in this way is that we can redefine the
notion of base points and base conditions by following the main idea presented in [13]. Doing so we provide
the programmer with a general methodology to prove the correctness of a generic MWMR data structure by
identifying the base conditions associated with the steps of its operations.

By correctness here we mean validity, namely the execution of every step on a data structure ds is never
subject to “bad behaviors” (e.g., division by zero or null-pointer accesses), and regularity, namely for each
history H on ds, the sub-history composed of all write operations in H enriched with one read-only operation
(if any) in H is linearizable.

2.1 Allowing Concurrent Commits

The implementation of optimistic data structures usually do not rely on a global lock-based mechanism to
finalize the writes, but rather, in order to increase the level of concurrency, the commit phase either executes
inside TM transactions (hardware or software) [17, 1], or leverages the locking mechanism with fine-grained
locks that protect (at least) the written locations [9, 10]. Fortunately, some of those techniques provide the same
atomicity guarantees as global locks. For example, some TM implementation provides single lock atomicity
(SLA) guarantees [14] (e.g., the HTM transactions provided by Intel’s TSX extensions [15] and the SLA version
of NORec [4]). By definition, SLA guarantees that all the non-transactional reads observe the same serialization
of all the concurrent transactions. Thus, if those TM are used to execute the commit phases instead of serializing
them with a global lock, then we can easily prove that the same guarantees are fulfilled. In fact, in [14] the
authors formally prove that executing atomic blocks with SLA semantics is equivalent to executing them using
synchronized blocks protected by a single lock, which implies that our model is safe under this new assumption.

3



3 The Composable Single Writer Commit (C-SWC) Model

We now extend our model by allowing the composition of multiple operations into atomic transactions. For
the sake of simplicity, we assume that all the operations belong to the same data structure, and then we remove
this assumption by showing that operations on different data structures can be executed in the same transaction
under the C-SWC model as long as the data structures are independent.

In the C-SWC model, as shown in Figure 3, each operation Oi is split into traversal (OT
i ) and commit

(OC
i ) phases, and the transaction itself is split into a traversal phase that combines all the traversal phases

of the operations (i.e., T T = start · OT
1 · OT

2 · ... · OT
k ), and a commit phase that combines all the commit

phases, surrounded by two auxiliary steps to move the execution to/from the exclusive mode (i.e., TC =
S′ ·OC

1 ·OC
2 · ... ·OC

k · commit ·S′′). Like SWC, we assume for simplicity that commit phases are protected by
a single global lock. However, the same arguments adopted in SWC can be applied here to consider concurrent
executions under the SLA semantics. We also assume that the commit phases of transactions are the successful
ones, and any unsuccessful trial is included in the transaction traversal phase.

s1=I

sn=r/wsm+1=r/w

OT OC

O
2

T

TT TC

sm=Rs2=r

O
1

T O
k

T O
2

CO
1

C O
k

Cs' s''

post-traversal-state
O

post-state
O

post-state
T

post-traversal-state
T

CommitBegin

(a) Operation split

O
2

T

TT TC

O
1

T O
k

T O
2

CO
1

C O
k

Cs' s''

post-state
T

pre-commit-state
T

CommitBegin

(b) Transaction split

Figure 3: Splitting operations and transactions in the C-SWC model.

Figure 3 shows how operations are split in the C-SWC model. First, the return step of each operation is
shifted to be the last step of its traversal phase. This is important because the return value of the operation may
be used later in the transaction body. Second, the auxiliary steps S′ and S′′ are removed from the commit phases
of operations and they appear only once in the commit phase of the enclosing transaction. Finally, a dummy
step sro−commit is added to the commit phase of any read-only operation ro. This dummy step becomes the
only one in the commit phase of ro because the real return step is shifted to the traversal phase (as said before).

As shown in Figure 3, we define for each operation Oi one more state called post-traversal-stateOi ,
which is the local state before Oi’s return step. We also define for the whole transaction T a state called
pret-commit-stateT which is the local state after s′.

Analogously to the SWC case, under C-SWC we enforce that for every update transaction Ti in a trans-
actional execution µ, pre-commit-stateTi observes the post-stateTi−1 , where Ti−1 is the transaction whose
commit phase precedes the commit phase of Ti in µ. By doing so we redefine the notion of base points and base
conditions by starting from the definition provided in the SWC model. Therefore we provide the programmer
with a general methodology to prove the correctness of a transactional MWMR data structure by identifying
the base conditions associated with the steps of its operations.

By correctness here we mean i) validity, namely the execution of every step on a data structure ds is
never subject to “bad behaviors” (e.g., division by zero or null-pointer accesses); ii) internal consistency which
means that the return steps of the operations in the same transaction observes the same shared state, and can be
informally defined as follows: the post-traversal-states of every operation in a transaction T have the same
base point as pre-commit-stateT . iii) and a variant of regularity applied to transactional histories, and that
we can informally define as follows: for each transactional history H on ds, the sub-history composed by all
the committed update transactions inH plus another transaction inH (i.e., either read-only or update and either
live/aborted or committed) is strict serializable.

4



References

[1] Hillel Avni and Adi Suissa-Peleg. Brief announcement: Cop composition using transaction suspension in
the compiler. In DISC, pages 550–552, 2014.

[2] Harold W. Cain, Maged M. Michael, Brad Frey, Cathy May, Derek Williams, and Hung Le. Robust
architectural support for transactional memory in the power architecture. In Proceedings of the 40th
Annual International Symposium on Computer Architecture, ISCA, 2013.

[3] Tyler Crain, Vincent Gramoli, and Michel Raynal. A contention-friendly binary search tree. In Euro-Par,
pages 229–240, 2013.

[4] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. NOrec: Streamlining STM by abolishing
ownership records. In PPoPP, pages 67–78, 2010.

[5] Tim Harris, James Larus, and Ravi Rajwar. Transactional memory, 2nd edition. Synthesis Lectures on
Computer Architecture, 5(1):1–263, 2010.

[6] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In DISC’11, pages 300–314.

[7] Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. Optimistic transactional boosting. In PPoPP’14,
pages 387–388.

[8] Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. On developing optimistic transactional lazy set.
In OPODIS, pages 437–452, 2014.

[9] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William Scherer, and Nir Shavit. A lazy
concurrent list-based set algorithm. In OPODIS’05, pages 3–16.

[10] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised Reprint. Elsevier,
2012.

[11] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[12] Leslie Lamport. On interprocess communication. part II: algorithms. Distributed Computing, 1(2):86–
101, 1986.

[13] Kfir Lev-Ari, Gregory Chockler, and Idit Keidar. On correctness of data structures under reads-write
concurrency. In Distributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA,
October 12-15, 2014. Proceedings, pages 273–287, 2014.

[14] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Bratin
Saha, and Adam Welc. Practical weak-atomicity semantics for Java STM. In Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and Architectures, SPAA, 2008.

[15] James Reinders. Transactional synchronization in haswell. Intel Software Net-
work. URL: http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/, 2012.

[16] TM Specication Drafting Group. Draft specification of transactional language constructs for c++, version
1.1, 2012.

[17] Lingxiang Xiang and Michael L. Scott. Software partitioning of hardware transactions. In Proceedings of
the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2015,
San Francisco, CA, USA, February 7-11, 2015, pages 76–86, 2015.

5

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

	Introduction
	The Single Writer Commit (SWC) Model
	Allowing Concurrent Commits

	The Composable Single Writer Commit (C-SWC) Model

