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Abstract—We consider the rate allocation problem for data
aggregation in wireless sensor networks with two objectives: 1)
maximizing the lifetime of a local aggregation cluster and, 2)
achieving fairness among all data sources. The two objectives
are generally correlated with each other and usually they cannot
be maximized simultaneously. We adopt a lexicographic method
to solve this multi-objective programming problem. First, we
recursively induce the maximum lifetime for the local aggregation
cluster. Under the given maximum lifetime, we then formulate
the problem of maximizing fairness as a convex optimization
problem, and derive the optimal rate allocation strategy. We
also present low-complexity algorithms that a local aggregation
cluster can use to determine the optimal rate allocation. Our
simulation results validate our analytical results and illustrate
the effectiveness of the approach.

I. INTRODUCTION

We consider a wireless sensor network that is deployed in a
strategic location for surveillance — e.g., tracking intruding
targets [5]. Some nodes in the network generate physical
measurements of an intruding target after sensing the presence
of a target. A common operation on such tracking applications
is data aggregation [9]. During aggregation, sensed data is
gathered from different sensor nodes (i.e., source nodes) and
is combined at a local cluster head. Source nodes may transmit
sensed data via either one hop or multi-hop towards the cluster
head.

Generally, sensor nodes are battery-powered and consume
energy in sensing, transmitting, and receiving data. The limited
size of sensor nodes only allows for very limited energy
storage and in most applications such as tracking, it is in-
feasible to recharge the node batteries. Although substantial
improvements have been achieved in chip design for energy
conservation, energy-efficient battery designs still lag behind.
Thus, one of the fundamental challenges in sensor networks is
their energy efficient operation, and significant research efforts
are focusing on this problem.

An important approach for achieving energy efficiency is to
control the data rates in the network- or upper layers. There
are several reasons for doing so. For example, by controlling
the data rates, network congestion can be controlled or even
eliminated [4]. Congestion, if not controlled can impede the
performance of applications with delay constraints, besides
wasting transmission energy and radio resources due to re-
transmissions.

Further, by controlling the data rates, the network’s energy
consumption can be balanced, and thereby the network lifetime
can be maximized [16], [10]. For example, nodes with high
remaining energy can be allowed to transmit more data,
while those with low energy can be allowed to transmit less.
Without such balanced energy consumption, some nodes may
quickly exhaust their power, causing network partitions or
malfunctions.

The another requirement, from many data aggregation ap-
plications, is to achieve fairness [3], [4] among source rates.
Typically, applications can achieve better performance when
data gathered from different source nodes are identical in terms
of data rate. For instance, equal amount of data from some
video sensor nodes can help the cluster head build a whole-
scene image or video. To achieve fairness, it is important to
have data rates among all source nodes as equal as possible.

In most cases, an optimized rate allocation that simultane-
ously maximizes the network lifetime and fairness is difficult
as the two objectives are correlated with each other. For max-
imizing the network lifetime, it is better to bias the rate allo-
cation for nodes with different remaining energy/transmission
cost, as this will balance the energy consumption. However, for
maximizing fairness, it is better to average the data rate of all
nodes as much as possible. There is an inherent trade-off [17],
[11] between biased rate allocation (lifetime maximization)
and even rate allocation (fairness). Thus, find a rate allocation
strategy to achieve such trade-off is a challenge.

In this paper, we formulate the above challenge as a multi-
objective programming problem and adopt a lexicographic
method [15] to solve the problem. First, we recursively induce
the maximum possible lifetime in a local aggregation tree.
Under the given maximum lifetime, we then formulate the
problem of maximizing fairness as a convex optimization
problem, and derive the optimal rate allocation strategy. We
also present a low-complexity algorithm to compute the max-
imum network lifetime and the optimal rate allocation for
fairness. To the best of our knowledge, this is the first result
on rate allocation in sensor networks that simultaneously
maximizes network lifetime and fairness in data aggregation
using a lexicographic method.

The rest of the paper is organized as follows: In Section II,
we overview the related work in rate allocation for sensor
networks. In Section III, we present the network topology,



transmission power model, and our problem formulation. In
Section IV, we mathematically analyze the problem model and
present our lexicographic solution. Section V describes our
algorithms. We report our experimental results in Section VI,
and conclude in Section VII.

II. RELATED WORK

The problem of rate control and energy management in
wireless sensor networks has been extensively studied. To
maximize the network lifetime, Bhardwaj et al. [1] present
a network lifetime upper bound for energy-efficient collabo-
rative data gathering with optimal role assignments. Xue et
al. [16] adopt a dual decomposition method to determine the
optimal network lifetime for data aggregation in which source
nodes have multiple routing paths to the sink node. In [13],
Sankar et.al present a distributed algorithm with guaranteed
approximation error for flow routing. In [7], Hou et al. study
the max-min rate allocation among all nodes with a system
lifetime requirement.

The problem of achieving fairness in rate allocation has
also been well studied. For instance, achieving MAC-layer
fairness among one-hop flows within a neighborhood is studied
in [8]. In [14], the fair data collection problem with the
NUM framework is studied. In [2], Chen et al. determine
the maximum rate at which individual sensors can produce
data without causing congestion in the network and unfairness
among peer nodes.

Some previous efforts also consider both network lifetime
maximization and fair rate allocation. In [11], Nama et al.
present a general cross-layer framework that takes into ac-
count radio resource allocation, routing, and rate allocation
for achieving trade-off between lifetime maximization and
fairness. The authors solve the tradeoff problem via a dual
decomposition method. In [17], the similar problem is ad-
dressed at the transport layer. The method in this work is
to construct a new optimization function by linearly adding
up the two objective functions (i.e., lifetime and the objective
function presenting fairness) and derive an optimal solution
for maximizing the newly constructed function.

The differences between our work and the above two works
are: 1) we study the tradeoff problem in a local cluster which
has a tree-like network topology that is more suitable for data
aggregation . 2) We adopt a lexicographic method in which we
prefer network lifetime maximization to fairness comparing
with no preference in the existed works. This is because
network lifetime is strongly correlated to energy consumption
which is one of the most performance-critical aspect of sensor
networks.

III. NETWORK TOPOLOGY AND PROBLEM MODEL

A. Network Topology

The network topology for data aggregation is a tree structure
(aggregation tree). We have three types of sensor nodes in the
network: source nodes, relay nodes, and the cluster head (i.e.,
root node in the aggregation tree).

The source nodes are leaf nodes which generate sensor data.
The function of a source node is simple: once triggered by an
event, it starts to capture live information about the target,
which is then directly sent to the local cluster head within one
hop or multiple hops. Only source nodes can generate data in
our system. A relay node does not generate data. Its functions
include: 1) receiving data from its children nodes which can
be relay nodes or source nodes, and 2) forwarding the received
data to the next hop toward the cluster head (root node). The
cluster head is the aggregation end point.

For this network topology for data aggregation, we make the
following assumptions: (1) All sensor nodes and the cluster
head are time-synchronized; (2) Any sensor nodes at most has
one parent in the aggregation tree; (3) Each sensor node can
measure its transmission energy per byte and the remaining
battery capacity; and (4) Within each cluster, the source nodes
can sense events (targets) and transmit the sensed data to the
cluster head simultaneously.

We also assume that interference and hidden terminal prob-
lem at relay nodes/cluster head can be avoided by virtual
carrier sensing via RTS/CTS mechanism in IEEE 802.15.4
CSMA/CA protocol which is widely adopted by the MAC
protocol (i.e, S-MAC or B-MAC) for sensor networks. And in
the rest of the paper, for convenience, we will use the terms
leaf node and source node interchangeably, and the terms root
node and cluster head interchangeably.

B. Power Dissipation Model

For a sensor node, the power consumption due to data com-
munication (i.e., receiving and transmitting) is the dominant
factor. Suppose there are N sensor nodes in a cluster. Each
node is denoted as ni(i ≤ N). We denote gi as the bit rate
from node ni to its next hop node, and ci as the transmission
power cost over the radio link. We denote,

wi = α + β · dm
i

where α is a distance-independent constant term, β is a
coefficient term associated with the distance-dependent term,
di is the distance between the sensor node ni and its next-
hop node, and m is the path-loss index, with 2 ≤ m ≤ 4.
Typical values for these parameters are α = 50nJ/b and
β = 0.0013pJ/b (for m=4) [6]. The power dissipation at the
transmitter, mostly being source nodes, can be modeled as:

ps(i) = wi · gi. (1)

The power dissipation at the receiver, mostly being relay nodes
or the cluster head for receiving data, can be modeled as:

pr(i) = ρi · gi (2)

where the typical value for the parameter ρ is 50nJ/b [6].
For a relay node, the power dissipation consists of two parts:

receiving power and transmitting power. The power dissipation
for relay node can be modeled as:

pt(i) = (wi + ρi) · gi. (3)



C. Problem Formulation

Under the tree topology, we define N = {ni|i ∈ [0,K]}
as the set of all sensor nodes. A special node in N is cluster
head being n0. The set of all source nodes is denoted as S0 =
{sk|nsk

∈ N} in which sk is the index in [0,K]. In addition,
we define the set of source nodes rooted at node ni as Si and
Si = {ni} if ni is a source node.

Outgoing rate from source node/relay node is defined as
gsk

for node nsk
. We also define an unified term csk

which
presents the energy requested for transceiving one unit of data.
Based on Equation 1, 2 and 3, for a source node, csk

= wsk
;

for a relay node, csk
= wsk

+ρsk
; for the cluster head c0 = ρ0.

The system lifetime, defined as T , means the operational
time of the local cluster until the first node runs out of power.
And we define the initial remaining energy of a node as Esk

.
Finally, the transmission capacity over the shared channel is
R in this paper.

For each senor node ni in N , the transceiving energy
consumed within the network lifetime must not exceed its
initial remaining energy. This means,

∀i ∈ [1,K], T · ci ·
∑

sk∈Si

gsk
≤ Ei. (4)

where
∑

sk∈Si
gsk

presents the data rate accumulated by all
leaf nodes rooted at ni. For the cluster head, which is the
root node of the aggregation tree, the energy consumption
constraint is:

T · c0 ·R ≤ E0. (5)

In addition, to get the better performance, the accumulated
rates from all leaf nodes should not exceed the channel
capacity in the cluster head. Thus, we have:

∀sk,
∑

sk∈S0

gsk
≤ R. (6)

Furthermore, all the rate flows must be nonnegative, and the
union of all children set must be the set of all nodes in the
cluster. That is:

S0 = S1

⋃
S2...

⋃
SK ,∀i ∈ [1,K], gi > 0. (7)

The fairness among data rates from source nodes are defined
as product of all source rates. When we maximize the product,
it is equivalent to maximizing geometric mean so that we
can achieve fairness. Thus, we formulate the rate allocation
problem with the objective of maximizing both the network
lifetime T and the product of source rates (fairness) as follows:

P : maximize : T∏
sk∈S0

gsk

subject to : constraints ( 4), ( 5), ( 6), ( 7)
(8)

We solve the problem by adopting a lexicographic
method [15], which is a typical approach for solving multi-
criteria programming problems. By this method, we first
maximize one objective, T , and obtain the solution space of
rate vectors g for all source nodes. Within this solution space,
we then derive a rate vector g to maximize

∏
sk∈S0

gsk
, and

thereby seek to ensure fairness under the given maximum
network lifetime.

There are two reasons to select T as the dominant ob-
jective. First, the network lifetime is strongly correlated to
energy consumption, which is one of the most performance-
critical aspect of sensor networks. Secondly, if we maximize∏

sk∈S0
gk first, the only optimal solution will be determined

due to the convex feature of the objective function, which will
make the lexicographic method ineffective.

IV. LEXICOGRAPHIC SOLUTION

A. Bit Capacity

For convenience in presentation, we introduce the notion of
”Bit Capacity”, which is defined as the largest amount of data
that can be transmitted through one node before dissipating
all its remained energy.

B2 = 4
2
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Fig. 1. Aggregation Topology and Bit Capacity

Formally, it is defined as follows: Let Bi be the Bit Capacity
of node ni, which is defined as:

Bi =

{
min{Ei

ci
,
∑

dk∈Di
Bdk

}, ni is relay node

Ei/ci, ni is leaf node
(9)

where Di is the direct children set of node ni, and dk is the
index number in [1,K].

For example, in Figure. 1, at the initial state, B0 = 20,
B1 = 7 , B2 = 4, B3 = 5, and B4 = 6. After the first iteration,
B1 = min{E1/c1, B2+B3} = 7 and B0 = min{E0/c0, B1+
B4} = 13. Thus, the Bit Capacity of the cluster is 13.

B. Lifetime Maximization

Theorem 1: Suppose for the root node n0, its Bit Capacity
is B0. Then the maximum cluster lifetime is given by:

Tm =
B0

R
(10)

Proof: The proof is by induction. Suppose an aggregation
tree has H layers.

Base case When H = 1, Equation 10 is obviously true.
Inductive Hypothesis: Assume that Equation 10 holds

when the aggregation tree has m(> 1) layers. We must now
show that Equation 10 also holds when the tree has m + 1
layers.

Inductive Step: For H = m + 1, suppose the children set
of root node n0 is D0. Then, for each node dk ∈ D0, the
subtree rooted at ndk

has at most m layers, and its lifetime
is given by T = Bdk

Rdk

, where Rdk
is the outgoing data rate

from node ndk
. Thus, ∀dk ∈ D0, T · Rdk

≤ Bdk
. Therefore,



we have T ≤
∑

dk∈D0
Bdk∑

dk∈D0
Rdk

=
∑

dk∈D0
Bdk

R . Also, for the
root node n0, its energy constraint is given by Equation 4,
or expressed as T · R ≤ E0

c0
. Thus, we can show that

Tm = 1
R ·min{E0

c0
,
∑

dk∈D0
Bdk

}, or Tm = B0
R .

It is shown in Theorem 1 that the maximum lifetime only
depends on the Bit Capacity of the root node and the channel
capacity.

C. Fairness of Rate Allocation

After we obtain the maximized lifetime for aggregation
cluster, we can formulate the problem of rate allocation with
fairness as follows:

P : maximize :
∏

sk∈S0
gsk

subject to : ∀i ∈ [1, K],
∑

sk∈Si
gsk

≤ Bi

Tm∑
sk∈S0

gsk
≤ B0

Tm

(11)

We can express the constraints as A · g ≤ C, where A is a
matrix with (K + 1) × |S0| dimensions and C is a vector
with K + 1 items. This is a typical convex optimization
problem with linear constraints, and it can be solved by some
optimization methods, like Dual Decomposition [12].

However, by analyzing the problem’s constraint structure,
we adopt a lower complexity method to solve the problem.
Our approach is to reduce the number of constraints under
the convex objective function. To understand how to address
the optimization problem, we first consider the simple case in
which the tree has only 2 layers.

Proposition 1: Suppose the aggregation tree has only two
layers, and its K children are sorted as B1 ≤ B2 ≤ ... ≤ BK .
Under the maximized cluster lifetime Tm, the optimal rate
allocation for all leaf nodes is given by:

gj =

{
1

Tm
·min{Bj ,

B0
K }, j = 1

1
Tm

·min{Bj ,
B0−Tm·

∑j−1
k=1 gk

K−j+1 }, 1 < j ≤ K
(12)

By Lagrange relaxation theory, we can prove Proposition 1.
We omit the proof in this paper due to space limitation,.

In most cases, an aggregation tree has more than two layers.
Our objective is to convert the constraints in Equation 11
equivalently to a constraint structure for a two-layer tree.

Proposition 2: Equation 11 can be equivalently reduced to
the following problem which has the same constraint structure
as that in two-layered aggregation tree:

maximize :
∏

sk∈S0
gsk

subject to :
∑

sk∈S0
gsk

≤ 1
Tm

·B0

∀sk ∈ S0, gsk
≤ 1

Tm
·B′

sk

(13)

where B
′
sk

is the Bit Capacity value of node nsk
after

constraint reduction.
Before making a solid proof, we first give an intuitive

explanation via the following example. In Figure. 2, initially,
B2 = 4 and B3 = 5. After one iteration, we reduce the layer
of the original tree by 1. The leaf node (node 2 and node 3)
will get a new Bit Capacity B

′
2 = 1

2 ·7 = 3.5, B
′
3 = 3.5 (based

on Proposition 1 ) and the node 4 will keep its Bit Capacity.
After reduction, the new tree has two layers and we can apply

Proposition 1 to get the final rates for all leaf nodes as: r2 =
1

Tm
·min{3.5, 13

3 } = 3.5
Tm

, r3 = 1
Tm

·min{3.5, 13−3.5
2 } = 3.5

Tm
,

and r3 = 1
Tm

· min{6, 13−7
1 } = 6

Tm
. Tm is calculated as in

Equation 10.
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Fig. 2. Network Topology

Proof: The proof is by induction. Suppose the aggregation
tree has H layers.

Base case: H = 2. We can directly apply Proposition 1
without constraint reduction.

Inductive hypothesis: Suppose that when H = m, the
proposition holds.

Inductive Step: We need to show that when H = m + 1,
the proposition holds. Suppose the root node has a children set
D0. For each node dk ∈ D0, if ndk

is a relay node, suppose
the set of leaf nodes rooted at ndk

is Sdk
. For the subtree

rooted at ndk
(with K

′
leaf nodes), since its layer is less than

m, based on the inductive hypothesis, the convex optimization
problem can be reduced to the following problem:

P
′′

: maximize
∏

sk∈Sdk
gsk

subjectto
∑

sk∈Sdk
gsk

≤ 1
Tm

·Bdk

∀sk ∈ Sdk
, gsk

≤ 1
Tm

·B′′
sk

(14)

where B
′′
sk

is Bit Capacity value of node nsk
after constraint

reduction. Based on Proposition 1, ∀j ∈ [1,K
′
], the optimal

value of gj to maximize the fairness in the subtree is:

gj =





1
Tm

·min{B′′
j ,

Bdk

K′ }, j = 1
1

Tm
·min{B′′

j ,
Bdk

−Tm·
∑j−1

k=1 gk

K′−j+1
}, 1 < j ≤ K

′

(15)
Let B

′
sk

= gj ∗ Tm. Since ∀sk ∈ Sd0 , gsk
≤ gj , we have

∀sk ∈ Sdk
, gsk

≤ 1
Tm

·B′
sk

.
The another constraint for the root node is:

∑
sk∈S0

gsk
≤

1
Tm

·B0. Thus, the proposition holds.
Once the constraints are equivalently reduced to that in

Equation 13, the final rate allocation vector is derived based
on Proposition 1.

Since the constraint reduction is an iterative procedure,
we name FB(sk) as Fair Bit Bound for node nsk

in
each iteration. FB(sk) presents the upper bound of trans-
mitting/received bits during one intermediate iteration. For
example in Figure 2, FB(2) = 3.5 and FB(4) = 3.5 after
the first iteration.

V. ALGORITHMS

Based on the problem formulation and the lexicographical
solution, we present an algorithms to compute the maximum



lifetime and the fair rate allocation. The algorithms contain
both distributed part and centralized part. The intermediate
roots of different subtrees will distributively calculate Bit
Capacity and Fair Bit Bound for their leaf children. But the
final maximum lifetime and optimal rate vector is calculated
by the Cluster Head, in a centralized way.

Algorithm 1 shows the operation for all source nodes. It has
the lowest computational complexity.

Algorithm 1: Operations in Leaf Node (Source Node) ni:
Initialization:1:

Ei = getInitialEnergy(ni);2:
ci = getPowDispPara(ni);3:
Bi = FB(i) = Ei

ci
;4:

Report {Bi, {FB(i)}} to its parent node;5:
On receiving multicasted rate allocation vector g = {gsk}6:
If sk = i, set gi = gsk .7:

The operations for relay nodes and the root node (cluster
head) are described in Algorithm 2 and Algorithm 3, respec-
tively. Relay nodes and the root node need to first calculate
the Bit Capacity for leaf children (line 4 of both algorithms).
Di and D0 (in Line 3 of both algorithms) is the children set
of ni. Sdk

is the source node in the subtree rooted at ndk
.

Relay nodes also must update the Fair Bit Bound for all leaf
children. This is shown from line 5 to line 10 of Algorithm 2.
After obtaining the result of the computation, they report the
result to their parent nodes for further iteration. A relay node
also relays the multicasted rate vector from its parents to its
children. The root node calculates the optimal rate vector after
getting information from all the leaf nodes (source nodes), and
send back the fair rate allocation via multicasting to all leaf
nodes (line 13 of Algorithm 3).

Algorithm 2: Operations in Relay Node ni:
Initialization:1:

Set value for Ei, ci and Bi;2:
On Receiving Reports

{
Bdk

, {FB(sj)|sj ∈ Sdk
}|dk ∈ Di

}
:3:

Bi = min{Bi,
∑

sk∈Si
Bsk};4:

Sort the members in
{{FB(sj)|sj ∈ Sdk

}|dk ∈ Di

}
;5:

{FB(j)} = The sorted set in which Bj−1 ≤ Bj ;6:
sum = 0;7:
for k = 1 to |Si| do8:

FB(k) = min{FB(k), Bi−sum
|Si| };9:

sum = sum + FB(k);10:

Report {Bi, {FB(sk)}} to the parent node;11:
On receiving multicasted rate vector g:12:

Forward the information to all subtrees via multicast;13:

Theorem 2: Algorithms 1, 2, and 3 determine the optimal
rate allocation to maximize network lifetime and to achieve
fairness under the given maximized lifetime.

Theorem 3: Algorithms 2 and 3 have a complexity
O(nlogn), and the upper bound of the delay overhead is
K · RTT . K is the number of all nodes in the aggregation
tree and RTT is the average round trip time over one hop
transmission.

Due to space constraints, we don’t provide detailed proofs
of the two theorems. Theorem 2 directly follows from the two
algorithms that determine the optimal rate allocation based on

our analysis in Sections IV-B and IV-C. Theorem 3 directly
follows from the algorithm structure.

Algorithm 3: Operations in Root Node (Cluster Head) n0

Initialization:1:
Set value for Ei, ci and B0;2:

On Receiving Reports
{
Bdk

, {FB(sj)|sj ∈ Sdk
}|dk ∈ D0

}
:3:

B0 = min{B0,
∑

sk∈S Bsk};4:
Tm = B0

R
;5:

Sort the members in
{{FB(sj)|sj ∈ Sdk

}|dk ∈ Di

}
;6:

{FB(j)} = The sorted set in which Bj−1 ≤ Bj ;7:
sum = 0;8:
for k = 1 to |S0| do9:

gk = 1
Tm

·min{FB(k), B0−sum
|S0| };10:

sum = sum + FB(k);11:

g = {gsk |sk ∈ S0};12:
Multicast g to all source nodes;13:

VI. EXPERIMENTAL RESULTS

We evaluated the effectiveness of our algorithms through
simulation-based experiments. We first randomly generated an
aggregation tree with a topology as illustrated in Figure. 3. The
number of children of non-leaf nodes was randomly distributed
between [0, 5].
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Fig. 3. Topology in Experiments

The distance between one node to its next hop node was also
randomly generated between [15, 30] (m). In our experiments,
we set α = 50nJ/b, β = 0.0013pJ/b/m4, and m = 4 for the
power consumption model. The initial energy reserve of each
sensor node was defined using a normal distribution with mean
and variance of (25J, 16J2). The shared channel capacity
(IEEE 802.15.4) is set to 128Kb/s in oure experiment.
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To illustrate our solution strategy for the multi-objective
programming problem, we show the entire solution space in
Figure. 4. Each data point in the figure corresponds to one rate
vector (for all source nodes). The value of network lifetime



and the product of all source data rates were calculated for
each vector.

We randomly generated 500 rate vectors and plot the
network lifetime T and

∏
sk∈S0

gsk
for all vectors. Our goal

is to find the vector point (marked by red color) in the most
upper-right corner of Figure. 4. This most upper-right point
present the rate vector with maximized network lifetime and
maximized fairness under the given maximum lifetime.
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Fig. 5. Data Rates for All Source Nodes

We show our rate allocation strategy in Figure. 5. The
rates were calculated based on the distributed algorithm in
Section V. By comparing with the Average Rate Allocation
strategy in which all source nodes have same data rates, we
observe that the rates in our strategy varies from node to node
since each node has different Bit Capacity.
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Fig. 6. Individual Lifetimes for All Source Nodes

Figure. 6 shows the individual lifetime for all sensor nodes.
Recall that the network lifetime is defined as the smallest
lifetime among all the nodes. From the figure, we observe that
our rate allocation strategy achieves longer network lifetime
than the average rate allocation strategy.
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Fig. 7. Network Lifetime in Different Experiments

Figure. 7 shows the lifetime of the same cluster when
we change the node configuration with different remaining
energy and transmission distance. The remaining energy and
transmission distance of each node in different experiments has
a normal distribution. We repeated the experiment for 60 times,
and drew the maximum network lifetime in each time for our
rate allocation strategy and the average rate allocation strategy.
From the figure, we observe that the maximum lifetime also
has a normal distribution. In addition, our rate allocation
strategy always achieves better performance than the average
rate allocation strategy.

VII. CONCLUSIONS

This paper studies how to maximize the cluster lifetime
and to achieve fairness with rate control for data aggregation
applications on sensor networks. To solve the multi-objective
programming problem, we adopt a lexicographic method by
first determining the solution space of lifetime maximization
and then deriving the optimal rate allocation strategy for fair-
ness under that solution space. We also present low-complexity
algorithms to compute the maximum lifetime and the optimal
rate vector for fairness. The simulation results illustrate the
effectiveness of the approach.

Several directions exist for further study, including rate
allocation with multi-target tracking and multi-path routing
for lifetime maximization and fairness.
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