
RTRD: Real-Time and Reliable Data Delivery
in Ad Hoc Networks

Kai Han? Guanhong Pei? Hyeonjoong Cho? Binoy Ravindran? E. D.Jensen‡
?ECE Dept., Virginia Tech
Blacksburg, VA 24061, USA

{khan05,somehi,hjcho,binoy}@vt.edu

‡The MITRE Corporation
Bedford, MA 01730, USA

jensen@mitre.org

Abstract—In this paper, we present a reliable
real-time data delivery (communication) mech-
anism for ad-hoc networks, called RTRD. The
mechanism makes use of a proactive wireless
routing protocol (DSDV) for path finding and
maintenance, and timely delivers data through
a priori bandwidth reservation. In addition, to
be robust to network failures, or to deliver large
data chunks, it simultaneously delivers data in
multiple paths. The simulation results conducted
by NS-2 validate RTRD’s effectiveness.

I. Introduction

Over the last years, ad-hoc networks are widely
used in many smart applications, including bat-
tlefields and earthquake response systems. While
these applications remain diverse, one common
point they all share is the need of an efficient and
reliable real-time communication mechanism. How-
ever, the potential contention in MAC protocols
(e.g., IEEE 802.11 and 802.15.4), the node mobility
nature of the ad-hoc networks, and the interference
between the transmitting nodes, all make it difficult
to achieve good quality real-time communication
(data delivery).

We consider an ad-hoc network with a set of
mobile nodes N = {n1, n2, n3, . . .}. A basic wireless
routing protocol is available for packet transmission
between nodes. Medium Access Control (MAC)
protocol is IEEE 802.11. Node clocks are synchro-
nized. Nodes may join, leave, move or fail at any
time, resulting in unexpected packet losses.

Fig. 1. Real-time Task

Real-time data delivery is often triggered by
the completion of a real-time task. A real-time
task executes on an individual node, with a given
termination time tTerm. As shown in Figure 1, a
task starts at time tStart. After a given execution

time ET , it finishes at time tFinish and has some
data which requires to be delivered to another node
before tTerm. The time for real-time data delivery
is the task’s slack time ST , ST = tTerm − tFinish.
Before task execution starts, ET and the size of de-
livered data can be estimated through application
profiling techniques [1]–[3].

In this paper, we present a mechanism called
“Real-Time and Reliable Data Delivery” (or
RTRD), for real-time data delivery in ad-hoc net-
works. While a task is executing, RTRD reserves
enough bandwidth between the source and des-
tination nodes. After the task completes, RTRD
executes real-time data delivery within the required
time period ST . In addition, to deal with possible
message losses, or to deliver extremely large data
chunks, RTRD simultaneously transmits data in
multiple paths.

The rest of the paper is organized into three sec-
tions. In Section II, we describe the RTRD mecha-
nism by first overviewing RTRD and its underlying
routing protocol DSDV. After that, we illustrate
each RTRD component, including packet priority
management, bandwidth reservation, packet block-
ing control, and multi-path data delivery. In Sec-
tion III, we present and analyze simulation results,
which validate RTRD’s effectiveness with compari-
son to other algorithms. We conclude the paper and
present our future work in Section IV.

II. The RTRD Mechanism

Based on prediction on the possible size of real-
time data, RTRD executes bandwidth reservation
(or BR) before the real data delivery (or DD)
begins. In this way, when a real-time task completes
and data is ready for delivery, it can immediately
transmit data with desired sending rate. RRTD’s
basic strategy is shown in Figure 2.

RTRD uses an existing wireless routing proto-
col (DSDV in this paper) to provide immediate
data delivery path. It also needs to reserve enough
bandwidth before data is delivered, and achieves
bandwidth reservation by controlling its and its
neighbors’ packet sending and receiving rates. In

addition, it delivers data through multiple paths,
in order to robustly transmit data, or separately
transmit large data chunks.

Fig. 2. RTRD Strategy

A. Underlying Routing Protocol

RTRD makes use of routing protocols to discover
and maintain data delivery paths. Because deliver-
ies are real-time, it expects path-finding time to be
as short as possible.

Some well-known routing protocols, such as Ad-
hoc On-demand Distance Vector (or AODV) and
Dynamic Source Routing (or DSR), are reactive
in that they form a path on-demand when a
transmitting node requests one. Reactive protocols
are not considered by RTRD, because path-finding
time might be very long, especially when several
intermediate nodes exist in the path — i.e., long
path-finding time might cause data delivery violate
its time constraint.

RTRD therefore adopts a proactive routing pro-
tocol called “Destination-Sequenced Distance Vec-
tor” (or DSDV) [4]. DSDV achieves proactiveness
by letting nodes periodically discover and maintain
paths. With DSDV, when a packet needs to be
delivered, the path is already known and can be
immediately used. Table II-A shows one DSDV
node’s (N1) simplified forwarding table.

TABLE I
N1’s Simplified Forwarding Table

Destination Next Hop Hops Sequence Number
N1 N1 0 710
N2 N3 2 392
N3 N3 1 676
N4 N3 2 128
N5 N3 3 350

Each node maintains a forwarding table for all
reachable destinations. The table contains the next
hop, number of hops and sequence number for each
destination. A sequence number shows the freshness
of a path, and is used to help nodes distinguish stale
paths from the new ones and thus avoid formation
of path loops.

Nodes broadcast routing updates periodically or
at the time the network topology changes. Each
path is tagged with a Time-to-Live (TTL) to indi-
cate its freshness. Before a real-time data delivery
starts, RTRD will reduce the TTL of the path be-
tween the source and destination nodes, in order to
enhance path maintenance frequency. In this way,
it remains a reliable path when delivery begins.

B. Packet Priority Management

RTRD orders packet delivery sequence according
to their priorities. The packet with the highest
priority will be first delivered. Priorities in RTRD
are illustrated in Table II-B.

TABLE II
Priorities in RTRD

Priority Level Priority Packet Type
P1 11 Real-time
P2 21 RTRD Control (Reservation)
P2 22 RTRD Control (Multi-path)
P2 23 DSDV Routing
P3 31 Non-real-time

Here, RTRD control message (reservation) is sent
by sender nodes (the source or intermediate nodes)
to tell receiver nodes (the destination or interme-
diate nodes) the bandwidth to be reserved. RTRD
control message (multi-path) is used by the source
node to find multiple paths to the destination node.
The number of paths is application-specific. Note
that this number is an upper bound, because there
might be less than the required number of paths
between the source and destination nodes.

C. Delivery Bandwidth Computation

In order to know how much bandwidth is avail-
able for a node to use, we must take into con-
sideration all transmissions that directly affect its
opportunities to transmit.

IEEE 802.11 provides a CSMA/CA-based mech-
anism to allow nodes access wireless medium. To
avoid the “hidden terminal” problem, before data
transmission, the source node sends “Request to
Send” (or RTS), and the destination node replies
“Clear to Send” (or CTS). Every other node receiv-
ing RTS/CTS should remain in silence during the
transmission period. With RTS/CTS, a node is not
allowed to transmit whenever [5]:
1) It is receiving data;
2) One of its neighbors is receiving data (due to

the reception of a CTS);
3) One of its neighbors is transmitting data to a

node that is neither another neighbor nor the
node itself (due to the reception of a RTS).

The available bandwidth for a node i to transmit
(ABi) is calculated as follows:

ABi = EBi −

bi +

∑

j∈ℵi

bj +
∑

j∈ℵi,k 6=ℵ+
i

bjk


 (1)

where bi/bj is the receiving bandwidth used by
node i/j, bjk is the traffic from node j to k,
and ℵi/ℵ+

i is the set of neighbors of node i ex-
cluding/including itself. In real systems, poor link
quality and the interference between nodes makes
only a portion of the total bandwidth is usable.
Therefore, here we use the total effective bandwidth
EBi for available bandwidth computation.

Fig. 3. Data Delivery in a 4-Hop Path

TABLE III
Data Delivery in a 4-hop path

A B C D E
Hop1 S R CTS - -
Hop2 RTS S R CTS -
Hop3 - RTS S R CTS
Hop4 - - RTS S R

Denote r the required bandwidth for real-time
data delivery. In delivery processes, nodes not only
need to reserve r bandwidth, but also need to
consider the extra bandwidth which they use to
remain in silence due to the reception of RTS/CTS.
Figure 3 and Table II-C show bandwidth consump-
tion of nodes in data delivery path.

Algorithm 1: Computing Required Bandwidth
if i = source/destination then1

if destination/source in neighbors then2

r ≤ ABi;3

else4

r ≤ ABi/2;5

else if i ∈ ℵsource/destination then6

r ≤ ABi/3;7

else8

r ≤ ABi/4;9

where S and R are data sender and receiver,
respectively. Note that S may be the source node
(A) or intermediate nodes (B, C, D), and R may
be the destination node (E) or intermediate nodes
as well. Similar to [5], we show how to compute
reserved bandwidth for node i in Algorithm 1.

D. RTRD Bandwidth Reservation

In Equation 1, we observe that a node’s available
bandwidth is affected by its receiving bandwidth
(bi), neighbor nodes’ receiving bandwidth (bj) and
sending bandwidth (bjk). In order to reserve enough
bandwidth, a node (the source, destination or in-
termediate) should collaborate with its neighbors.

Except current available bandwidth ABi, the ex-
tra required bandwidth for real-time data delivery,
eri, is given by:

eri = r −ABi (2)

If eri ≤ 0, there is no need to reserve extra band-
width. But the node should exchange messages with
its neighbors, telling them control their bandwidth
usage. For instance, node j can only use |erij | more
bandwidth for its own transmission (|erij | ≤ |eri|).

If eri > 0, the RTRD mechanism needs to
reserve eri more bandwidth for the coming delivery.
For both neighbors and the node itself, if a data-
receiving process does not begin, they can postpone
this process by delaying to send CTS messages. In
this way, they can reduce bi or bj in order to obtain
eri more bandwidth. This is as well done through
collaboration between the node and its neighbors.

(a) Sharply Reducing Sending Rate

(b) Gradually Reducing Sending Rate

Fig. 4. Reducing Sending Rate on Neighbor Nodes

The RTRD mechanism also adjusts each neigh-
bor’s sending rate bjk for bandwidth reservation,
because the receiving process on nodes may have
started, or nodes are receiving real-time data, or
reducing bi and bj does not obtain enough band-
width. Node i sends a meta-message to its neighbor
j, telling it start to reduce |erij | sending rate from
a given time tS (|erij | ≤ |eri|).

Figure 4 shows two ways to reduce the sending
rate. In Figure 4(a), sending rate SR is sharply
reduced from SR0 to the required value RS at tD,
which is the starting time of the real-time data
delivery. However, there is a time delay for available
bandwidth AB to increase from current AB0 to the
required bandwidth RB. Because real-time delivery
begins at tD, the delay time causes the delivery
violate its time constraint.

RTRD adopts the sending rate control shown in
Figure 4(b), where the sending rate reducing begins
earlier than tD. At time t1 < tD, it reaches the
required RS, and continues to decrease till delivery
begins. After that, the sending rate increases to RS.
Although the available bandwidth increases with
a time delay, at tD, the total available bandwidth
exceeds the required value RB, and comes back to
RB at time t2. In this way, RTRD satisfies each
real-time data delivery’s time constraint.

E. Packet Blocking Control
In Figure 4(b), if SR0 is very large and the send-

ing rate does not decrease very fast, it is possible
that available bandwidth is less than the required
value at delivery starting time tD. RTRD provides
a packet blocking control mechanism to deal with
such conditions, as shown in Figure 5.

Fig. 5. Packet Blocking Control

When starting to receive real-time data, a re-
ceiver node (an intermediate node or the destina-
tion node) computes the error eSR between the
real-time data receiving rate RR and the required
bandwidth reservation RB, by extracting necessary
information from the MAC layer [6]:

eSR =
RR−RB

RB
(3)

If eSR < 0, the receiver randomly drops eSR

percentage P2- and P3- level non-real-time pack-

ets(Table II-B), in order to speed up real-time
packet delivery.

F. Multi-path Data Delivery

Message losses and node failures are frequent in
some ad-hoc networks. To achieve reliable real-time
data delivery, RTRD adopts multi-path delivery
mechanism (the number of paths is application-
specific), as shown in Figure 6(a).

(a) Multi-path for Reliable Delivery

(b) Multi-path for Large Data Delivery

Fig. 6. Multi-path Real-time Data Delivery

If the required bandwidth exceeds a node i’s total
effective bandwidth EBi, multi-path delivery can
help to distribute the delivery work load to different
paths, as shown in Figure 6(b).

III. Simulation Studies

We conducted a set of simulations of the RTRD
mechanism using NS-2, and its performance is
compared with several other mechanisms, e.g.
SRTC [7], which is available in the literature that
also provides real-time services in ad-hoc networks.

A. Simulation Environment

We consider a single broadcast region with an
available link capacity of 2 Mb/sec under the
IEEE 802.11 protocol with an effective data rate of
approximately 1.43 Mb/sec. Each node generates
variable-rate traffic (randomly uniform distribu-
tion) according to the exponential on-off traffic.
Real-time data chunk sizes are randomly generated

subject to uniform distribution with the minimum
value of 50 Bytes.

Non-real-time data transmission with a ran-
dom uniformly distributed rate with the mini-
mum value of 100 Bytes and the maximum of 400
Bytes. Within the transmission time, each delivery
task’s sending rate remains constant. Each real-
time task’s execution time (ET) and slack time
(ST) are also in a randomly uniform distribution
with the minimum value of 1000 ms (real-time tasks
are stated in Section I). Inter-packet time between
two packets is exponential distributed.

We employ random topologies with the node
mobility uniformly distributed ranging from 0.1m/s
to 3 m/s. If there is no possible path between source
and destination, the packet is deleted and counted
as an unsuccessful delivery.

Other parameters, e.g., 802.11 physical layer
parameters, were set to default values as recom-
mended in [8] and in NS-2.

B. Simulation Analysis

1) Correctness and Effectiveness: Given the sce-
nario that there are at least 2 intermediate nodes
between the source and destination nodes, we mea-
sure the RTRD performance with respect to the
success ratio (or SucR).

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

 E(Slack−Time) (sec)

 S
uc

ce
ss

 R
at

io
 (

%
)

(a) SucR Regarding Slack Time

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

 E(Date Size) (Mb)

 S
uc

ce
ss

 R
at

io
 (

%
)

(b) SucR Regarding Data Chunk Size

Fig. 7. SucR under Various Slack Time/Data Chunk Size

In Figure 7(a), we fix the data chunk size, and
randomly generate slack time according to different
expectation (E(Slack-Time)). We fix the slack time
and change (E(Data Size)) in Figure 7(b). We
observe that SucR approaches to 100% as E(slack-
time) increases in Figure 7(a), or as the E(data
size) decreases in Figure 7(b). Therefore, RTRD
achieves perfect SucR when given enough slack
time, or when the data chunk size is moderate. Only
when the slack time is very tight, or the required
bandwidth makes the link overloaded, will RTRD’s
performance degrade.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70

80

90

100

 E(Required Bandwidth) (Mb/sec)

 S
uc

ce
ss

 R
at

io
 (

%
)

Fig. 8. SucR Regarding Required Bandwidth

Figure 8 shows the success ratio SucR with two
intermediate nodes in the path. The upper bound
of the required bandwidth should be 1/3 of the
total effective bandwidth the network could afford,
and the upper bound here is 0.48 Mb/sec. Given
an expectation of the required bandwidth less than
0.25 Mb/sec, we can achieve 100% SucR. When the
expectation of the required bandwidth (E(Required
Bandwidth)) goes beyond 0.25 Mb/sec, the SucR
decreases. This is because the maximum possible
required bandwidth begins exceeding 0.48 Mb/sec
as E(RequiredBandwidth) ≥ 0.25Mb/sec.

0

1

2

3

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

0

20

40

60

80

100

Su
cc

es
s

R
at

io
 (%

)

Num
be

r o
f In

te
rm

ed
iat

e
Nod

es

E(Required Bandwidth) (Mb/sec)

Fig. 9. RTRD SucR Performance

Figure 9 shows the success ratio SucR un-
der different number of intermediate nodes and
E(Required Bandwidth). We observe that RTRD
can fully explore the total network effective band-
width for real-time data delivery.

0 1 2 3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

 Number of Intermediate Nodes

 S
uc

ce
ss

 R
at

io
 (

%
)

Fig. 10. SucR Regarding Number of Intermediate Nodes

Figure 10 shows how the number of interme-
diate nodes affects the success ratio SucR, when
E(RequiredBandwidth) = 0.6Mb/sec. As stated
in Algorithm 1, if there are more than 2 intermedi-
ate nodes in the path, the upper bound of required
bandwidth is limited to 1/4 of the total effective
data bandwidth (0.357 Mb/sec in our simulation),
thus gives the lowest SucR.

2) Comparison Test: Figure 11 compares RTRD
with other mechanisms. The experiment is con-
ducted with respect to E(Required Bandwidth).
The increment step of E(Required Bandwidth) is
0.05 MB/sec. We run 45 rounds of simulation
for each value of E(Required Bandwidth), each of
which lasts over 1200 seconds.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70

80

90

100

 E(Required Bandwidth) (Mb/sec)

 S
uc

ce
ss

 R
at

io
 (

%
)

RRTC
SRTC
DSDV
AODV

Fig. 11. Mechanism Comparison

The experiment can be intuitively divided into
two phases. In the first, the maximum possible re-
quired bandwidth does not overload the link, which

in the figure is that E(RequiredBandwidth) ≤
0.2Mb/sec. RTRD achieves near 100% SucR, and
outperforms SRTC with at least 13.3% and at
most 31.1%. The advantages come from RTRD’s
unique bandwidth reservation strategy illustrated
in Section II-D and II-E. We consider both the
sending and receiving rate of the neighbor nodes,
and use packet blocking control strategy for on-
going real-time transmission. In comparison, DSDV
and AODV exhibit poor SucR, which is at least
27% lower than RTRD due to their lack of real-
time properties.

In the second phase (E(RequiredBandwidth) >
0.2Mb/sec), the maximum possible required band-
width overloads the link, which seriously degrades
all mechanisms’ performance. RTRD still maintains
the leading role, although the gap between SRTC
and RTRD shrinks because of being under such
severe traffic condition. Same as that in the first
phase, DSDV and AODV fall far behind the former
two.

IV. Conclusions and Future Work

We present RTRD to reliably deliver real-time
data in ad-hoc networks. RTRD uses proactive
routing protocol DSDV to obtain immediate path,
and timely delivers data through a priori band-
width reservation. In addition, it simultaneously
delivers data to achieve fault tolerance or large
data chunk delivery. The simulation results validate
RTRD’s effectiveness.

Our future work including the study of trans-
mission fairness on neighbor nodes, and conducting
RTRD experiments on IEEE 802.15.4-based wire-
less sensor networks.

References

[1] OMG, “Real-time corba 2.0: Dynamic scheduling speci-
fication,” Tech. Rep., OMG, September 2001.

[2] B. Reistad and D. K. Gifford, “Static dependent costs for
estimating program execution time,” in ACM Conference
on Lisp and Functional Programming, 1994.

[3] P. Giusto et al., “Reliable estimation of execution time
of embedded software,” in DATE, 2001.

[4] C. E. Perkins and P. Bhagwat, “Highly dynamic
destination-sequenced distance-vector routing (dsdv) for
mobile computers,” in ACM SIGCOMM, December
1999, pp. 234–244.

[5] R. Guimaraes and L. Cerda, “Bandwidth reservation
on wireless networks with rts/cts signalling,” in 12th
European Wireless Conference (EW06), April 2006.

[6] T. He et al., “Speed: A stateless protocol for real-time
communication in sensor networks,” in ICDCS03, May
2003.

[7] B. D. Bui et al., “Soft real-time chains for multi-hop
wireless ad-hoc networks,” in RTAS07, 2007, pp. 69–80.

[8] ANSI/IEEE Std. 802.11 1999 Edition (R2003), “Part 11:
Wireles lan medium access control (mac) and physical
layer (phy) specifications,” Tech. Rep., Institute of
Electrical and Electronic Engineers, August 1999.

