
Probabilistic, Real-Time Scheduling of Distributable Threads Under
Dependencies in Mobile, Ad Hoc Networks

Kai Han?, Binoy Ravindran?, and E. D. Jensen‡
?ECE Dept., Virginia Tech
Blacksburg, VA 24061, USA
{khan05,binoy}@vt.edu

‡The MITRE Corporation
Bedford, MA 01730, USA

jensen@mitre.org

Abstract—We consider scheduling distributable
real-time threads that are subject to dependencies
(e.g., due to mutual exclusion constraints) in ad
hoc networks, in the presence of node and link
failures, message losses, and dynamic node joins
and departures. We present a gossip-based dis-
tributed scheduling algorithm, called RTG-D. We
prove that thread blocking times under RTG-D are
probabilistically bounded, thereby probabilistically
bounding thread time constraint satisfactions’. Our
simulation results validate RTG-D’s effectiveness.

I. Introduction

Causally-chained, multi-node sequential behaviors
(e.g., a sequence of multi-node, remote method execu-
tions) are common in many distributed applications.
Since partial failures are the common case rather than
the exception in many of them, applications typically
desire those behaviors to exhibit application-specific,
end-to-end integrity properties. Real-time distributed
applications also desire (application-specific) end-to-
end timeliness properties, besides integrity.

Object A Object DObject B

DT1

Object C

DT2

DT3

1-Way

Invocation

Fig. 1. Distributable Threads

An abstraction for programming such causal behav-
iors and for enforcing end-to-end properties on them
is distributable threads [1], [2]. A distributable thread
is a single thread of execution with a globally unique
ID that extends and retracts through local and remote
objects. Thus, a distributable thread is an end-to-end
control flow abstraction, with a logically distinct locus
of control flow movement within/among objects and
nodes. Fig. 1 shows the execution of three distributable
threads [3]. In the rest of the paper, we will refer to
distributable threads as threads, unless qualified.

A thread carries its execution context as it transits
node boundaries, including its scheduling parameters
(e.g., time constraints, execution time), ID, security
credentials, and any application data. The propagated
context is intended to be used by node schedulers
for resolving all node-local resource contention among

threads such as that for node’s physical and logical
resources (e.g., CPU, I/O, locks), and for schedul-
ing threads to optimize system-wide timeliness. Thus,
threads constitute the abstraction for concurrency and
scheduling.

In terms of providing direct support for causal
multi-node behaviors, threads can be viewed as at a
higher-level of abstraction than models such as pub-
lish/subscribe (P/S) [4]. With P/S, a causal sequence
can also arise—e.g., publication of topic A depends on
subscription of topic B; publication of B, in turn, de-
pends on subscription of topic C, and so on. Enforcing
end-to-end properties (timeliness, integrity) on such
a causal P/S chain will require similar context-based
mechanisms as that of threads. Thus, the problem of
enforcing end-to-end properties on such causal chains
— whether programmed using threads or P/S — is
conceptually similar.

We consider threads as the programming and
scheduling abstraction in ad hoc networks (e.g.,
those without a fixed network infrastructure, includ-
ing mobile and wireless networks), in the presence
of application- and network-induced uncertainties.
The uncertainties include resource overloads (due to
context-dependent thread execution times), arbitrary
thread arrivals, arbitrary node failures, and tran-
sient and permanent link failures (causing varying
packet drop rate behaviors). Another distinguishing
feature of motivating applications for this model
(e.g., [5]) is their relatively long thread execution time
magnitudes—e.g., milliseconds to minutes. Despite the
uncertainties, such applications desire the strongest
possible assurances on end-to-end thread timeliness
behavior. Stochastic assurances are often appropriate.

When threads mutually-exclusively share non-CPU
resources (e.g., disks, NICs) at a node using lock-based
synchronizers, distributed dependencies can arise be-
tween them. For example, a thread A may lock a
resource on a node and may make a remote invocation,
carrying the lock with it. Another thread B may later
arrive at the node and request the lock. Thread B is
now blocked by thread A, until A returns back to the
node from its remote invocation and releases the lock.
The time interval from B’s lock request till A’s release
of the lock is the blocking time that B suffers from
A. Unbounded blocking time can be antagonistic to
system-wide timeliness optimization—e.g., thread B
may have a greater urgency than thread A.



In this paper, we present an algorithm called Real-
Time Gossip algorithm for Dependent threads (or
RTG-D) that provides assurances on such blocking
times in ad hoc networks. RTG-D exploits the random-
ness of gossip protocols, which results in their reliabil-
ity and robustness in ad hoc networks (see [6] and the
references therein) to counter application/network-
induced uncertainties in our context. In doing so, the
algorithm answers the fundamental question of how
to design a gossip protocol that yields assurances on
thread blocking times. We prove that thread blocking
times and thread time constraint satisfactions’ are
probabilistically bounded under RTG-D. Our simula-
tion studies verify the algorithm’s effectiveness.

End-to-end real-time scheduling has been studied
in the past (e.g., [2], [7]–[12]), but these are limited
to fixed infrastructure networks. End-to-end timing
assurances in ad hoc networks are considered in [13]–
[16]. However, none of these works consider dependent
threads, which is precisely what our work does. Thus,
the paper’s contribution is the RTG-D that provides
probabilistic end-to-end timing assurances for depen-
dent distributable threads in ad hoc networks. We are
not aware of any other efforts that solve the problem
solved by RTG-D.

The rest of the paper is organized as follows: In Sec-
tion II, we discuss our models and state the algorithm
objectives. Section III presents RTG-D. We analyze
RTG-D in Section IV. In Section V, we report our
simulation studies. We conclude the paper and identify
future work in Section VI.

II. Models and Algorithm Objectives

Distributable Threads. Distributable threads [1]–
[3] execute in local and remote objects by location-
independent invocations and returns. A thread begins
its execution by invoking an object operation. The
object and the operation are specified when the thread
is created. The portion of a thread executing an object
operation is called a thread segment.

A thread’s initial segment is called its root and its
most recent segment is called its head. A thread’s
head is the only segment that is active. A thread can
also be viewed as being composed of a sequence of
sections, where a section is a maximal length sequence
of contiguous thread segments on a node.

Execution time estimates of the sections of a thread
are known when the thread arrives at the respective
nodes. The time estimate includes that of the section’s
normal code as well as its exception handler code,
and can be violated at run-time (e.g., due to context
dependence), causing CPU overloads at the node.

Each object transited by threads is uniquely hosted
by a node. Threads may be created at arbitrary times
at a node. Upon creation, the number of objects (and
the object IDs) on which they will make subsequent
invocations are assumed to be known. The ID of the
nodes hosting the objects, and the sequence of the

thread invocations are assumed to be unknown at
thread creation time, as nodes may dynamically fail,
or join, or leave the network.

The application is thus comprised of a set of threads,
denoted T = {T1, T2, T3, . . .}.

Timeliness Model. Each thread’s time constraint
is specified using the time/utility function (or TUF)
model [17]. A TUF specifies the utility of com-
pleting a thread as a function of its completion
time. Fig. 2 shows example downward “step” TUFs.

-
Time

6Utility

0

Fig. 2. Step TUFs

A TUF decouples importance
and urgency of a thread—i.e.,
urgency is measured as a dead-
line on the X-axis, and impor-
tance is denoted by utility on
the Y-axis. This decoupling is
a key property of TUFs, as a thread’s urgency is
typically orthogonal to its relative importance—e.g.,
the most urgent thread can be the least important,
and vice versa.

A thread Ti’s TUF is denoted as Ui (t). Classical
deadline is unit-valued—i.e., Ui(t) = {0, 1}, since
importance is not considered. Downward step TUFs
generalize classical deadlines where Ui(t) = {0, {n}}.
We focus on downward step TUFs, and denote the
maximum, constant utility of a TUF Ui (), simply as
Ui. Each TUF has an initial time Ii, which is the
earliest time for which the TUF is defined, and a
termination time Xi, which, for a downward step TUF,
is its discontinuity point. Ui (t) > 0,∀t ∈ [Ii, Xi] and
Ui (t) = 0, ∀t /∈ [Ii, Xi] , ∀i.

If a thread has not completed by its termination
time, then a failure-exception is raised, and exception
handlers are released for aborting all partially exe-
cuted sections (for releasing system resources). The
handlers’ time constraints are specified using TUFs.

Resource Model. Thread sections can access non-
CPU resources (e.g., disks, NICs) located at their
nodes during their execution, which in general, are se-
rially reusable. Similar to fixed-priority resource access
protocols [18] and that for TUF algorithms [19], [20],
we consider a single-unit resource model. Resources
can be shared under mutual exclusion constraints. A
thread may request multiple shared resources during
its lifetime. The requested time intervals for holding
resources may be nested, overlapped or disjoint. We
assume that a thread explicitly releases all granted
resources before the end of its execution.

All resource request/release pairs are assumed to be
confined within nodes. Thus, a thread cannot request
(and lock) a resource on one node and release it on
another node. Note that once a thread locks a resource
on a node, it can make remote invocations (carrying
the lock with it). Since request/release pairs are within
nodes, the lock is released after the thread’s head
returns back to the node where the lock was acquired.

Threads are assumed to access resources
arbitrarily—i.e., the resources that will be needed,



and the order of accessing them are all assumed
to be a-priori unknown. Further, threads can have
precedence constraints. For example, a thread Tk can
become eligible for execution only after a thread Tl

has completed, because Tk may require Tl’s results.
As in [19], [20], we allow such precedences to be
programmed as resource dependencies.

System Model. The network consists of a set of
nodes, denoted N = {n1, n2, n3, . . .}, communicating
through bidirectional wireless links. A basic unicast
routing protocol such as DSR [21] is assumed to
be available for packet transmission between nodes.
MAC-layer packet scheduling is assumed to be done
by a CSMA/CA-like protocol (e.g., IEEE 802.11).
Node clocks are synchronized using an algorithm such
as [22]. Nodes may dynamically join or leave the
network. We assume that the network communication
delay follows some non-negative probability distribu-
tion such as the Gamma distribution. Nodes may fail
by crashing, links may fail transiently or permanently,
and messages may be lost, all arbitrarily.

Objectives. Our goal is to design a thread schedul-
ing algorithm with probabilistic blocking time bounds
(i.e., a thread’s probabilistically-satisfied blocking time
bound must be computable) and termination-time
satisfactions (i.e., the probability for a thread to satisfy
its termination time must be computable). Further, we
desire to maximize the total thread accrued utility.

III. The RTG-D Algorithm

We first overview RTG-D’s operation at a high-level.
When a thread arrives at a node, RTG-D decomposes
the thread’s end-to-end TUF into a set of local TUFs,
one for each of the remaining remote invocations.
Local TUFs are used for scheduling thread sections.

When a thread completes its execution on a node,
RTG-D starts a finite series of synchronous gossip
rounds. During each round, the node randomly selects
a set of neighbors and queries whether it can execute
the thread’s next invocation, satisfying its local TUF.
The number of gossip rounds, and the number of
neighbor nodes (i.e., the “fan-out”) are derived from
the local slack, as they directly affect the time incurred
for gossip, and thereby affect the next invocation’s
available slack for execution.

When a node receives a gossip message, it checks
whether it hosts the requested invocation, and can
feasibly execute it. If so, it replies back to the node
where the gossip originated. If not, the node starts
a set of gossip rounds (like the original node). If the
original node receives a reply from a node before the
end of its gossip rounds, the thread is allowed to make
an invocation on that node. If a reply is not received,
the node regards that further thread execution is not
possible (due to possible node/link failures or node
departures), and releases thread exception handlers
(for aborting partially executed thread portions).

We now discuss each of the key aspects of RTG-D
in the subsections that follow.

A. Building Local Scheduling Parameters

RTG-D decomposes the thread’s end-to-end TUF
based on the execution time estimates of the thread
sections and the thread’s termination time. Let a
thread Ti arrive at a node nj at time t. Let Ti’s total
execution time of all the remaining thread sections
(including the local section on nj) be Eri, the total
remaining slack time be Sri, the number of remaining
thread sections (including the local section on nj) be
Nri, and the execution time of the local section be
Eli. RTG-D computes a local slack time LSi,j for
Ti as LSi,j = Sri

Nri−1 , if Nri > 1; LSi,j = Sri, if
0 6 Nri 6 1.

RTG-D determines the local slack for a thread in
a way that allows the the remaining thread sections
to have a fair chance to complete their execution,
given the current knowledge of section execution-time
estimates, in the following way. When the execution of
Ti’s current section is completed at the node nj , RTG-
D determines the next node for executing the thread’s
next section, through a set of gossip rounds. The
network communication delay incurred by RTG-D for
the gossip rounds must be limited to at most the local
slack time LSi,j . The algorithm equally divides the
total remaining slack time to give the remaining thread
sections a fair chance to complete their execution.

The local slack is used to compute a local termina-
tion time for the thread section. The local termination
time for a thread Ti is given by LXi,j = t+Eli+LSi,j .
The local termination time is used by RTG-D to test
for schedule feasibility, while constructing local thread
section schedules (we discuss this in Section III-C).

B. Determining Thread’s Next Node

Once the execution of a section completes on a node,
RTG-D determines the node for executing the next
section of the thread, through a set of gossip rounds
during which the node randomly multicasts with other
nodes in the network. RTG-D determines the number
of rounds for “gossiping” (i.e., sending messages to
randomly selected nodes during a single gossip round)
as follows. Let the execution of a thread Ti’s local
section complete on node nj at time tc. Ti’s remaining
local slack time is given by LSri,j = LXi,j − tc.

Note that LSri,j is not always equal to LSi,j , due
to the interference that the thread section suffers from
other sections on the node. Thus, LSri,j ≤ LSi,j . With
a gossip period Ψ, RTG-D determines the number
of gossip rounds before LXi,j as round = LSri,j/Ψ.
RTG-D also determines the number of messages that
must be sent during each gossip round, called fan out,
for determining the next node.

RTG-D divides the system node members into:
a) head nodes that execute thread sections, and b)
intermediate nodes that propagate received gossip
messages to other members. Detailed procedure-level
descriptions of RTG-D algorithms on head node and
intermediate node can be found in [14].



C. Constructing Section Schedules
RTG-D constructs local section schedules with the

goal of maximizing the total utility accrued by all
threads, while respecting thread dependencies. Thus,
local thread sections must be scheduled to meet their
local termination times. Further, it must maximize
their remaining local slack times, which will increase
the gossiping time for the subsequent sections, and
thus the likelihood for the (respective) threads to com-
plete before their global termination times. The section
scheduling algorithm is derived from the Dependent
Activity Scheduling Algorithm (DASA) [19].

The algorithm’s scheduling events include section
arrivals and departures, and lock and unlock requests.
When the algorithm is invoked, it first builds the
dependency list of each section by following the chain
of resource request and ownership. Dependencies can
be local—i.e., the requested lock is locally held, or
distributed—i.e., the requested lock is remotely held.

The algorithm then checks for deadlocks. Deadlocks
are detected by the presence of a cycle in the resource
graph (a necessary condition). Deadlocks are resolved
by aborting that section in the cycle, which will likely
contribute the least utility. Before aborting a section,
the resources held by the section are released and
returned to consistent states.

After handling deadlocks, the algorithm examines
sections in the order of non-increasing potential utility
densities (or PUDs). The PUD of a section is the
ratio of the expected section utility to the remaining
execution time of the section and its dependents, and
thus measures the section’s return on “investment.”
Thereafter, the algorithm inserts each section and its
dependents into a tentative schedule that is ordered
by section slack (earliest slack first). The insertion is
done by respecting the sections’ dependencies.

After insertion, RTG-D checks the schedule’s feasi-
bility with respect to satisfying all section termination
times. If infeasible, the inserted section and its depen-
dents are rejected. The algorithm repeats the process
until all sections are examined, and selects the section
with the least slack for execution, to allow for greater
gossiping time for determining the thread’s next node.

If the selected section for execution is a remote
section (because it holds a locally requested lock), then
the algorithm speeds-up the remote section’s execution
by propagating the utility of the local dependents.

IV. Algorithm Analysis

Let δ be the desired probability for delivering a
message to its destination node within the gossip pe-
riod Ψ. If the communication delay follows a Gamma
distribution with a probability density function:

f (t) =
(t− LCD)α−1

e
−(t−LCD)

β

Γ (α)βα
, t > LCD

where Γ (α) =
∫∞
0

xα−1e−xdx, α > 0. Then, δ =∫ tb

LCD
f (t) dt, t > LCD, where tb : D (tb) = δ, and

D(t) is the distribution function. Note that LCD is
the communication delay lower bound and Ψ > tb.

We denote the message loss probability as, 0 ≤ σ <
1, and the probability for a node to fail during thread
execution as 0 ≤ ω < 1. Let C denote the number of
messages that a node sends during each gossip round
(i.e., the fan out). We call a node susceptible if it has
not received any gossip messages so far. Otherwise, the
node is called infected. The probability that a given
susceptible node is infected by a given gossip message
is:

p =
(

C

n− 1

)
(1− σ) (1− ω) δ (1)

Thus, the probability that a given node is not infected
by a given gossip message is q = 1−p. Let I(t) denote
the number of infected nodes after t gossip rounds,
and U(t) denote the number of remaining susceptible
nodes after t rounds. Given i infected nodes at the end
of the current round, we can compute the probability
for j infected nodes at the end of the next round (i.e.,
j − i susceptible nodes are infected during the next
round). The resulting Markov Chain is characterized
by the following probability pi,j of transitioning from
state i to state j:

pi,j = P [I (t + 1) = j|I (t) = i]

=





(
n− i
j − i

) (
1− qi

)j−i
qi(n−j) j > i

0 j < i
(2)

The probability that the expected number of j nodes
are infected after round t + 1 is given by:

P [I (0) = j] =

{
1 j = 1
0 j > 1

(3)

P [I (t + 1) = j] =
∑

i6j

P [I (t) = i] pi,j (4)

We established Theorem 1 and Lemma 2 in [13]:
Theorem 1: The number of rounds needed to infect

n nodes, tn, is given by:

tn = logC+1 n +
log n

C
+ o (1) (5)

Lemma 2: A head node will expect its gossip mes-
sage to be replied in at most 2tn rounds, with a high
(computable) probability.

Theorem 3: If a thread section is blocked by another
thread section on a different node, then its blocking
time under RTG-D is probabilistically bounded.

Proof: Suppose section i is blocked by section
j whose head is now on a different node. According
to Theorem 1, it will take section i at most tni time
rounds to gossip a message to section j’s head node.

After j’s head node receives i’s message, RTG-D
will compare i’s GUD with j’s. If GUDi > GUDj ,
then j should give the lock to i as soon as possible,
and the handler should deal with j’s head within
min(abtj,erj), where abtj is the time used to abort
section j, and erj is section j’s remaining execution



time. According to Lemma 2, i’s head will expect a
reply from j after at most tni

time rounds. If tni
−

min(abtj,erj) ≥ LCD, then j can reply and give
resource lock to i at the same time. Thus, i’s blocking
time bound bi,j = 2tni

. Otherwise, j should first reply
to i. Since i’s head needs at least LCD gossip time to
continue execution, the blocking time is at most LSri−
LCD. Thus, if (LSri−LCD)− tni− min(abtj,erj) ≥
LCD, bi,j = LSri − LCD. If not, i has to be aborted
because there is not enough time to give back the
resource lock. Under this condition, RTG-D aborts i,
and bi,j = 2tni, since j need not respond any more
after the first reply to i. If GUDi ≤ GUDj , then j will
not give i the resource lock until it finishes necessary
execution. Thus, bi,j = LSri − LCD.

The probability of the blocking time bound on a
given resource is induced by RTG-D’s gossip process.
It can be computed by recursively using (3) and (4),
and a desired probability can be obtained by adjusting
the fan out C.

Theorem 4: RTG-D probabilistically bounds thread
time constraint satisfactions.

Proof: Let a thread will execute through m head
nodes. The mistake probability pMk

that a head node
k cannot determine the thread’s next destination head
node after gossip completes at round tmax is given by:

pMk
= {1− P [I (tmax) = η]} × 1

U (tmax)

=



1−

∑

i6η

P [I (tmax−1) = i] pi[η]



× 1

U (tmax)

(6)

where η is the expected number of infected nodes after
tmax.

Let wk be the waiting time before section k’s execu-
tion, wi

k be the waiting time on execution interference
by other thread sections, wb

k(x, j) be the waiting time
on resource x’s blocking caused by another thread
section j, M be the number of resources, and N be
the number of threads. Then:

wk =
∑

x6M

∑

j6N

wb
k(x, j) + wi

k (7)

where {wk, wi
k, wb

k(x, j)} ∈ [0, LSrk−LCD] if node k is
not the last destination node; or {wk, wi

k, wb
k(x, j)} ∈

[0, LSrm] if it is the last one.
Let’s assume that wi

k will never exceed its upper
bound. Then, we have:

∑

x6M

∑

j6N

wb
k(x, j) = wk − wi

k (8)

Thus, if the thread section can successfully complete
on destination node k, then wb

k(x, j) should follow (8).
Let Pb(j, k, x) be the probability that section j will

block section k on resource x, and let pb(j, k, x) be
the probability that section j will block section k on

resource x within the required time bound given in (8).
Now, Xk can be defined as:

Xk = min
x6M


 ∏

j6N

Pb(j, k, x)× pb(j, k, x)


 (9)

Xk represents the probability that the relative sec-
tion can not only finish its execution, but also can
make a successful invocation. Consider the worst case:
every other thread section will block section k. Thus,
the lower bound of Xk is:

Xk = min
x6M


 ∏

j6N

pb(j, k, x)


 (10)

Thus, the probability for a distributable thread d to
successfully complete its execution PSd

, and that for
a thread set D to complete its execution, PSD

, is:

PSd
=

∏

k≤m

(1− pMk
)Xk PSD

=
∏

d∈D

PSd
(11)

V. Simulation Studies

We conducted simulation studies to evaluate RTG-
D’s performance. We used uniform distribution to de-
scribe the inter-arrival times, section execution times,
and termination times of a set of threads. All threads
are generated to make invocations through the same
set of nodes in the system. However, the relative arrival
order of thread invocations at each node may change
due to different section schedules on nodes. Thus, it is
quite possible that a thread may miss its termination
time because it arrives at a destination node late.

A fixed number of shared resources was used in
the simulation study. The simulations featured four
(one on each node) and eight (two on each node)
shared resources, respectively. Each section probabilis-
tically determines how many of these resources it
must acquire to successfully complete execution. Once
the number of resources has been decided, the exact
identities of shared resources that will be needed are
chosen randomly. Each time a resource is acquired,
a fraction of the computation time remaining in the
section elapses before the next resource is requested.
This fraction is drawn from a uniform probability
distribution.

We measure RTG-D’s performance using the metrics
of Accrued Utility Ratio (AUR), Termination time
Meet Ratio (TMR) and Offered Load (OL) in a 100-
node system. AUR is the ratio of the total accrued
utility to the maximum possible total utility, TMR is
the ratio of the number of threads meeting their ter-
mination times to the total number of thread releases,
and OL is the ratio of the total expected execution
time of all thread sections to the expected thread
inter-arrival time. Thus, when OL < 1.0, threads will
complete their execution before they arrive again;
when OL > 1.0, system will have long-term overloads.



(a) RTG-D AUR in 8-Resource-System

(b) RTG-D TMR in 8-Resource-System

Fig. 3. AUR and TMR in a 8-Resource-System Under RTG-D

Fig. 3 shows the results for the 8-resource system.
From Fig. 3(a), we observe that RTG-D has excellent
performance when OL is small (AUR = 95% when
OL = 0.33 and AUR = 86% when OL = 0.5). AUR is
decreased when OL is larger. However, because RTG-
D can filter ineligible threads before execution, it still
gets good performance when the system has long-term
overloads. For instance, AUR is above 60% when OL
= 1.33, which means that there is no possibility for
1/3 of total threads to be finished on time. We also
observe RTG-D’s similar performance in Fig. 3(b).

VI. Conclusions and Future Work

In this paper, we present a gossip-based algorithm
called RTG-D, for scheduling distributable threads
that are subject to dependencies in ad hoc networks,
in the presence of arbitrary node/link failures, message
losses, and varying node membership. The algorithm
uses gossip-based communication for (a) propagat-
ing thread scheduling parameters, (b) determining
successive nodes for feasible thread execution, and
(c) speeding-up the execution of blocking threads.
RTG-D constructs local thread section schedules us-
ing propagated and locally constructed scheduling

parameters. We prove that RTG-D probabilistically
bounds thread time constraint satisfactions in the
presence of dependencies. Our simulation studies val-
idate RTG-D’s effectiveness.

Some example directions for extending our work
include allowing node anonymity, studying standard
deviations for experiment results, multiple nodes to
host same thread sections, unknown number of thread
invocations, and non-step TUFs.

References

[1] J. Anderson and E. D. Jensen, “The distributed
real-time specification for java: Status report,” in
JTRES, 2006, Available: http://www.real-time.org/
docs/jtres06/jtres06.pdf.

[2] J. D. Northcutt, Mechanisms for Reliable Distributed Real-
Time Operating Systems - The Alpha Kernel, Academic
Press, 1987.

[3] OMG, “Real-time corba 2.0: Dynamic scheduling spec-
ification,” Tech. Rep., OMG, September 2001, Fi-
nal Adopted Specification, http://www.omg.org/docs/
ptc/01-08-34.pdf.

[4] OMG, “Data distribution service for real-time systems,
v1.1,” 2005, formal/2005-12-04.

[5] CCRP, “Network centric warfare,” http://www.dodccrp.
org/html2/research_ncw.html, Last accessed, May 2006.

[6] H. Li, A. Clement, et al., “Bar gossip,” in USENIX OSDI,
November 2006.

[7] K. Tindell and J. Clark, “Holistic schedulability analysis
for distributed hard real-time systems,” Microprocessing &
Microprogramming, vol. 50, no. 2-3, 1994.

[8] J. Sun, Fixed-Priority End-To-End Scheduling in Distrib-
uted Real-Time Systems, Ph.D. thesis, UIUC, 1997.

[9] A. Bestavros and D. Spartiotis, “Probabilistic job schedul-
ing for distributed real-time applications,” in IEEE Works.
on Real-Time Applications, May 1993.

[10] R. Bettati, End-to-End Scheduling to Meet Deadlines in
Distributed Systems, Ph.D. thesis, UIUC, 1994.

[11] T. F. Abdelzaher and K. G. Shin, “Combined task and mes-
sage scheduling in distributed real-time systems,” TPDS,
vol. 10, no. 11, pp. 1179–1191, November 1999.

[12] T. Abdelzaher et al., “A feasible region for meeting aperi-
odic end-to-end deadlines in resource pipelines,” in ICDCS,
2004, pp. 436–445.

[13] K. Han, B. Ravindran, and E. D. Jensen, “Real-time gossip:
Probabilistic, distributed real-time scheduling in ad hoc
networks,” Available: http://www.real-time.ece.vt.edu/
rtg.pdf, 2006.

[14] K. Han et al., “Scheduling distributable real-time threads
in dynamic ad hoc networks with probabilistic failure re-
covery times,” Available: http://www.real-time.ece.vt.
edu/rtg-fd.pdf, 2006.

[15] B. S. Manoj et al., “Real-time traffic support for ad hoc
wireless networks,” in IEEE ICON, 2002, pp. 335 – 340.

[16] N. Wang and C. Gill, “Improving real-time system configu-
ration via a qos-aware corba component model,” in HICSS,
2004, p. 10.

[17] E. D. Jensen et al., “A time-driven scheduling model for
real-time systems,” in RTSS, Dec. 1985, pp. 112–122.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheri-
tance protocols: An approach to real-time synchronization,”
IEEE Transactions on Computers, vol. 39, no. 9, pp. 1175–
1185, 1990.

[19] R. K. Clark, Scheduling Dependent Real-Time Activities,
Ph.D. thesis, CMU, 1990, CMU-CS-90-155.

[20] P. Li, Utility Accrual Real-Time Scheduling: Models and
Algorithms, Ph.D. thesis, Virginia Tech, 2004.

[21] D. Johnson et al., “Dsr: The dynamic source routing
protocol for multihop wireless ad hoc networks,” in Ad
Hoc Networking, C. E. Perkins, Ed., chapter 5, pp. 139–
172. Addison-Wesley, 2001.

[22] K. Romer, “Time synchronization in ad hoc networks,” in
MobiHoc, 2001, pp. 173–182.


