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Abstract—Consolidation and isolation are key technologies
that drove the undisputed popularity of virtualization in most of
the computer industry. This popularity has recently led to a grow-
ing interest in real-time virtualization, making this technology
enter the real-time system industry. However, it has several issues
due to the strict timing guarantees contracted. Moreover support-
ing legacy software stacks adds another level of complexity when
the software is a black box. We present KairosVM, a latency-
bounded, real-time extension to Linux’s KVM module. It aims to
bridge the lack of communication of the real-time requirements
between the guest scheduler and the host scheduler, exploiting
virtual machine introspection. The hypervisor captures the real-
time requirements of the guest by catching previously added
undefined instructions. Our evaluations show that KairosVM’s
overhead is negligible when compared to existing introspection
solutions thus can be used in real-time.

I. INTRODUCTION

Lots of existing real-time systems have been running for
years on the same platform since deployment. However, this
hardware is obsolescent and updating the software to take
advantage of newer processors is often not an option. Virtual-
ization is thus an appealing solution for these legacy systems.
It is therefore gaining traction in a variety of fields, including
real-time control. With such systems, the overheads of a virtual
platform must be carefully analyzed before promising certain
real-time guarantees, as these guarantees have the potential of
not being met due to hidden latencies in the design.

When using virtualization to consolidate existing real-
time software stacks, there are many issues that need to be
addressed. First of all, maintaining the same level of real-time
guarantees (soft, hard, or best-effort) contracted in the virtual-
ized software is mandatory. Furthermore, traditional real-time
scheduling techniques do not apply in virtual environments
where multiple schedulers coexist, in the hypervisor and in
the virtual machines.

Several solutions have already been proposed to schedule
virtualized systems using the hierarchical real-time scheduling
theory, e.g. RT-Xen [1]. It accounts for one scheduler in the
hypervisor and one in each guest operating system. However,
they require either modifications of the guest operating system
or an accurate offline analysis. There are many cases when
we want to reuse the previous existing software stack without
modifications. For example, the entire code-base could not be
available. Also, organizations do not want to pay an exorbitant
amount of money to rewrite and revalidate what they already
wrote many years ago.

In order to consolidate unmodified real-time software stack
we propose techniques to introspect the software to mon-
itor real-time scheduler calls. Our solution targets modern
operating systems with a traditional user-space/kernel-space
division, where real-time applications are implemented as
user-space threads. This work can easily be extended to one
address-space real-time operating systems, like VxWorks. Our
solution will track the scheduling calls on the guest systems,
while interacting with a real-time scheduler in the hypervisor
to provide the same guarantees contracted on each of the
virtualized software stacks.

We implement this mechanism on top of the existing
ChronOS 3.4 operating system [2] based on the 3.4.82-rt100
Linux kernel. The modified ChronOS would act as the hyper-
visor. We are proposing the adoption of a plugin infrastructure,
where each type of virtualized software stack (e.g. RTAI [3],
LITMUSRT [4], PREEMPT RT [5], etc.) would have its own
plugin. Thus we reduce the effort of the system integrator by
providing an interface to either write a new plugin or extend
an existing one. Next we will show how we implemented our
proposed mechanism for a particular combination of software
stacks. Specifically, we used ChronOS Linux as a guest. We
show how this solution is suitable for a real time system and
has lower overhead than other filtering solutions like Nitro [6].

Our contribution includes a virtual machine introspection
(VMI) mechanism and a pluggable interface to support dif-
ferent RTOS. The interface can be used to feed the right
information to the host OS scheduler in order to make the best
scheduling decision. Our lightweight introspection mechanism
allows the host scheduler to reconstruct the real-time state
of the guest. To the best of our knowledge introspection
techniques are being used in many other projects, specifically
related to security, but we are the first to propose its use
in real-time systems. It is important to emphasize that this
paper addresses an architecture for real-time schedulers and
not actual real-time scheduling algorithms, this is left as future
work.

Section II introduces previous works related to real-
time virtualization and virtual machine introspection. Sec-
tion III discusses virtualization solutions, our task model and
ChronOS. Sections IV and V detail our contributions: our event
trapping approach and our implementation for x86 systems.
How this approach can be integrated in KairosVM is discussed
in Section VI, while Sections VII and VIII evaluate our
solution and conclude.



II. RELATED WORK

While introspection techniques have not before been used
to inform the host scheduler, several informed scheduling
platforms have already been proposed. Many propriety real-
time hypervisor solutions are available on the market. Wind
River, National Instruments, TenAsys, and RTS all sell real-
time virtual machine management solutions. However, these
proprietary solutions tend to use strict partitioning schemes.
Dynamic real-time scheduling is left to research based tools
and solutions.

The scheduling theory to schedule real-time virtual ma-
chines is based on hierarchical scheduling (e.g. [7], [8],
[9]). This theory has first been developed such that multiple
applications with several real-time tasks can be executed in
the same platform. But it can be used in the context of
virtualization where an application is a virtual machine. In
hierarchical scheduling, the host operating system is respon-
sible for scheduling the virtual machines. And each virtual
machine has a local scheduler to schedule its own tasks.
Several solutions has been developed based on this theory.

Xen offers a paravirtualization approach and it thus a popu-
lar target hypervisor when researchers focus on the scheduling
translation problem (e.g. [10], [11]). The most advanced solu-
tion based on Xen is RT-Xen [1], [12]. They first implemented
in [1] four existing hierarchical servers: Defferable, Periodic,
Polling, and Sporadic and show that they improve the real-
time guarantees of the guests compared to the existing Xen
schedulers. Then, in [12], RT-Xen was modified to support
compositional scheduling frameworks (CSF) [13].

The L4 microkernel has also been used has a hypervisor.
Microkernels and traditional hypervisors share many character-
istics, so this is a natural use case. L4 also has a variation called
L4 Fiasco which is hard real-time capable. Fiasco has also
been used as a real-time hypervisor to observe the need of a
“flattened hierarchical scheduler” [14]. The Fiasco microkernel
offers an interface that allows user level schedulers to change
parameters in the kernel level scheduler policy. The authors use
paravirtualization techniques (vmcalls) to “flatten” the guest
and host schedulers. This is done by allowing the guest real-
time operating system to choose the underlying priority used
on the host (Fiasco) via the interface it provides. That is, the
guest has task by task control over the VCPU process’ priority.
The results of this technique indicates an overhead incurred by
the vmcalls that are used to do the priority switch.

Finally, several solutions has been developed using Linux
as the host. Using KVM, Kiszka [15] patched Linux with PRE-
EMPT RT to support real-time guarantees and then used a fix-
priority approach. This work showed that Linux has promise as
a real-time hypervisor. In that, using a real-time fixed-priority
scheduling policy (SCHED FIFO) on both the guest and host
can lead to reasonably low overhead and reduced scheduling
jitter for some use cases. However, there are still problems to
be solved, namely if there are still running tasks on the native
Linux install there may be priority inversions.

Nitro [6] is a virtual machine introspection framework
designed to monitor every system call made in the guests and
detect malicious activities. Thus Nitro is not suitable for real-
time systems because of the latency associated with catching
every system call made in the guests.

III. BACKGROUND

Common practice in building real-time systems dictates
that the software stack must be deployed directly on the
hardware in order to provide the expected time guarantees. The
real-time operating system and applications have full control of
all hardware resources in the system. Thus the OS maintains a
consistent view of the time. Applications are usually tuned for
a specific platform in order to meet time constraints imposed
by the activity they are carrying on. Furthermore the full
software stack undergoes extensive testing on the specific
hardware in order to prove its ability to comply to some real-
time properties.

A. Virtualization

When moving such a software stack to a virtualization
environment, it will not directly control the hardware anymore,
losing its capability to provide time guarantees. Hardware
resources are usually emulated, especially timing devices,
critical for a real-time software stack. Moreover, on the same
virtualization platform, many software stacks execute con-
currently on different virtual machines. Therefore hardware
devices are eventually shared among virtual machines. This
sharing happens at the hypervisor level that proxies or time-
partition the access to the shared resource. Because of that,
the flow of time perceived by the software running in a virtual
machine is different from the one perceived by the same
software running on real hardware.

In a virtualization environment the hypervisor (or virtual
machine monitor) schedules the virtual machines for execu-
tion on the available processors. When making scheduling
decisions, the hypervisor, Linux in KVM/QEMU, treats the
software stack in the VMs as a black box. For the scheduler,
a VM hosting a real-time software does not differ from a
VM hosting a general purpose operating system. Therefore
application’s declared real-time properties are not propagated
down the software stack. Consolidating real-time software
stacks on genuine virtualization solutions as KVM/QEMU will
not let the user retain the same real-time properties that he/she
was observing on bare hardware.

In order to consolidate real-time systems into a virtual-
ization environment the propagation of real-time properties
down the software stack will enable to make more informed
scheduling decisions at each software layer. When the software
stack can be modified, e.g. when the source code is available,
information passing from the virtual machine to the hypervisor
can happen via hypercalls or function calls (i.e. paravirtual-
ization). When the software stack is not modifiable there is
no easy way to communicate between VM and hypervisor.
Virtual machine introspection can be leverage as a way to live
gathering behavioral information of the VM. This creates an
unidirectional communication channel in which a stream of
events flows from the VM to the hypervisor but the inverse
communication path is not enabled.

Offline scheduling analysis can be used to avoid the need
of communication between VM and hypervisor as demon-
strated by previous work [1]. Such work is limited to periodic
tasks. Therefore the focus of this paper is on virtual machine
introspection as an aid for real-time hierarchical scheduling.
The approach proposed do not requires offline analysis of the
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Fig. 1. Linux’s scheduling classes ordered by their priority. The ChronOS
scheduler is nested in the RT scheduling class

virtualized software stack and is not limited to periodic task
sets. In the following we present a reference task model and an
overview of ChronOS Linux, our real-time operating system.

B. Task Model

In this paper we do not focus on a specific task model. The
natural model of ChronOS Linux is the aperiodic model, due
to the best-effort scheduling policies that come with it. Despite
this, we will often make references to the periodic task model.
In this model a set of periodic tasks T = {t1, t2, .., tn} are
characterized by release time r, period p, worst case execution
time e, and deadline d. Thus a task tx is defined by the tuple
(rx, px, ex, dx). We assume that all tasks in T are initially
released at the same time ri = 0, i = 1..n and all deadlines
are equal to periods di = pi, i = 1..n. The term job refers to
each periodic release of a task.

C. ChronOS

ChronOS Linux [2] is a scheduling framework developed
inside the Linux scheduler. It implements traditional real-time
scheduling algorithms as well as best-effort policies while fully
supporting multicore platforms.

As illustrated in Figure 1 the Linux scheduler is imple-
mented as an ordered list of scheduling classes. Every time
a scheduling decision must be made, the Linux scheduler
scans the class’ list and stops at the first class that has
ready tasks to be executed. The list is navigated from the
highest priority class (stop_sched_class) to the lower
priority class (idle_sched_class). These two classes
are not meant to be used from user space applications
but are reserved to specific kernel threads. The other two
classes are designed to schedule all kind of threads. The
fair_sched_class implements a time-sharing schedul-
ing policy (historically managed with the nice command
in UNIX). The rt_sched_class implements the POSIX
SCHED_FIFO and SCHED_RR by mean of a multi-level
priority queue indexed with a bitmap. There are 100 levels
or priorities. In kernel space, 0 is the highest real-time priority
while 99 is the least (which is the opposite in user space). In
a multiprocessor platform Linux maintains for each processor
a ready queue per scheduling class.

ChronOS scheduler is not implemented as a Linux schedul-
ing class but as an extension of rt_sched_class. A
ChronOS scheduling queue lives at a fixed priority level n
in the aforementioned class, see Figure 2. For the sake of
completeness it is important to note that with this architecture
real-time tasks can be divided as system critical, hard real-time
and soft real-time. Despite such division hold, ChronOS real-
time guarantees are dependent upon the real-time guarantees

Fig. 2. Real-time scheduling classes in ChronOS Linux. ChronOS’ scheduled
tasks are meant to be at SCHED_FIFO priority n

long begin_rtseg(int tid, int prio, int
max_util, struct timespec* deadline,
struct timespec* period, unsigned long
exec_time);

long end_rtseg(int tid, int prio);
long add_abort_handler(int tid, int

max_util, struct timespec *deadline,
unsigned long exec_time);

long set_scheduler(int scheduler, int prio
, unsigned long cpus);

Fig. 3. Chronos application programming interface (without mutexes)

provided by the rt_sched_class in which it is embedded,
and the PREEMPT RT patches. In addition ChronOS has
a pluggable interface: each plugin is a different scheduling
policy.

In ChronOS a real-time task is a user-space thread sched-
uled at priority n within the SCHED_FIFO policy. ChronOS
semantic requires to mark each job with the library calls
begin_rtseg() and end_rtseg(); to mark its start and
end respectively. In ChronOS terminology a job is more gener-
ically referred segment. The concise application programming
interface without mutexes is depicted in Figure 3.

The function add_abort_handler() allows the user
to be notified if a job exceed is deadline; set_scheduler()
allows to select which ChronOS’ scheduling policy to
use. From a system software point of view all of the
APIs are system calls but the first three map to the
syscall number __NR_do_rt_seg while the latter to
__NR_set_scheduler. Why this matter will be more clear
in the next Section.

Figure 4 pictures a periodic task in ChronOS in pseudo
C code. The real-time segment of each job must be written
between the invocations of begin_rtseg and end_rtseg.
In order to make the task periodic the programmer should
insert a sleep call (usleep() here). When the task exits the
real-time segment its SCHED_FIFO priority will be increased
in order to be awakened at the exact release time. The li-
brary function usleep() calls the syscall sys_nanosleep
(that maps to the number __NR_nanosleep). All the other
functions in the code above are user-space only (despite
pthread_setschedparam); they do not provide any ad-



void periodic_task()
{

param.sched_priority=TASK_START_PRIO;
pthread_setschedparam(0, SCHED_FIFO,

&param);
for (job=0; job<MAX_JOBS; job++) {

dead = find_job_deadline();
begin_rtseg(TASK_RUN_PRIO, dead);
// real-time segment
end_rtseg(TASK_CLEANUP_PRIO);
next = find_next_job_release();
usleep(now - next);

}
}

Fig. 4. Example of periodic task in Chronos

ditional information for the real-time scheduling.

IV. EVENT TRAPPING

In a real-time operating system with per process separate
address spaces (e.g. Linux with real-time extensions), a real-
time task will be eventually created in user space. To make
the kernel-space scheduler be aware of such a task, and its
real-time properties, system calls are exploited.

When this software stack is moved into a virtual machine,
a naive approach to get the hypervisor informed of real-
time scheduling events, is to configure the hypervisor to
trap system calls. Because our approach assumes unmodified
virtualized software stacks, we based our work on hardware
enabled full-virtualization in order to support legacy systems.
Already existent virtual machine introspection (VMI) libraries
offer syscall tracing functionality for hardware assisted fully
virtualized environments. Syscall events are caught by the
processor virtualization extensions, Intel’s VMX or AMD’s
SVM on x86 architectures. Every time the software in the
virtual machine executes a syscall or sysenter instruction the
hardware virtualization extensions (VTx) interrupts the guest
and context switches to the hypervisor. At this point, the
aforementioned VMI libraries add code in order to check the
syscall number against a list of registered syscalls. In the case
of an hit in the list some notifications or logging functions are
called, otherwise the control is returned to the virtual machine.

There are two main drawbacks in adopting a syscall
tracing approach in a real-time virtualization setup. First the
number of system calls that occur in a virtual machine can
be difficultly bounded. Thus the number of syscalls trapped
by the hypervisor can be significant and the trapping will add
a non-negligible overhead to the virtualized system (refer to
Section VII). Moreover because hard, soft and non real-time
tasks can potentially generate system calls, not all syscalls
are interesting for our purpose of trapping scheduling related
events. Second not all real-time operating systems have a per
process separate address space therefore system call tracing is
not the right solution to our problem. Instead function calls
must be trapped.

In addition to the two observations above, most of the VMI
libraries comes as user space software tools. Thus they are not
directly usable in kernel space where the scheduler resides.
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Fig. 5. KairosVM’s events trapping mechanism. KairosVM injects an
illegal/undefined instruction at the addresses where each real-time scheduling
function is located. If the undefined instruction was not injected by KairosVM
the hypervisor will continue its original execution path

A. The KairosVM Approach

In order to create a more deterministic and less intrusive in-
trospection framework we decided to do not trap each syscall.
Instead, we propose to live inject illegal/undefined instructions
in the guest. An illegal/undefined instruction will be inserted
at any point of interest, i.e. each scheduling related function.
When the processor will fetch such instructions, it will trigger
a hyperswitch and pass the control to the hypervisor that in turn
will invoke KairosVM. This process is illustrated in Figure 5
that includes the execution flow for illegal and undefined
instructions already existent in the guest software stack.

KairosVM, “RT Hyp” in Figure 5, is suddenly invoked
by the hypervisor when an illegal/undefined instruction has
been trapped. If the address at which the fault happened does
not correspond to any of the addresses at which we were
interested in, the hypervisor will handle it. The hypervisor
attempts to emulate the instruction at the faulty address and
then returns the control to the virtual machine. Whereas when
the address is one at which we inserted an illegal/undefined
instruction, KairosVM will first notify the real-time scheduler,
and then emulate the instructions that we had overwritten with
the illegal/undefined one. At that point KairosVM passes the
control to the guest software.

Note that the proposed mechanism removes both draw-
backs innate in available VMI libraries. Our approach traps
only the real-time scheduling events we are interested in,
without adding any other overhead. Because these events will



be due to the real-time activity they can be accounted in a
real-time hierarchical scheduler. We will show in Section VII
that our trapping adds a bounded overhead to the execution.
Furthermore, KairosVM approach is more generic, it can
actually be exploited to trap syscalls, interrupts and obviously
function calls, because illegal instructions can be inserted
mostly everywhere.

In order to trace the activity of a real-time operating system
running in a virtual machine, the scheduler in the hypervisor
should know which is the scheduling system call interface in
use. This information is much more helpful if related with the
notion of which entity, task, thread or process, triggered it.

In KairosVM we provide mechanisms to identify the entity
that triggered an event and auxiliary methods to manipulate
function arguments. We believe that these functionalities,
added to the hardware context identification facilities provided
by KVM, will facilitate and foster the development of hierar-
chical schedulers in Linux/KVM.

V. X86 IMPLEMENTATION

We implemented an initial prototype of the KairosVM
introspection engine on Linux kernel version 3.4.82-chronos
PREEMPT RT and KVM/QEMU version 0.12.3 with Intel
x86 64bit VMX as a target platform. The current implementa-
tion includes an initialization stage and a runtime, hypervisor-
side, trapping and handling stage.

A. Initialization

In order to being able to trap events, illegal or undefined
instructions must be injected in the guest software stack. The
injection should happen before the guest’s real-time application
starts but after the guest OS has been completely initialized.
Furthermore, injection requires to find the entry point of
each function that we would like to monitor. Although the
scheduling interface of a real-time operating system is known
in advance it is not always trivial to find its functions entry
points. Different techniques can be used based on how far we
can introspect. Disassembling, symbol listing and exploiting
debug symbols can be all used offline on the guest binaries
thus before the system starts executing a real-time application.
Within the Linux kernel, various authors [16], [17] suggest to
exploit System.map, which contains the kernel symbol list, and
usually accompanies each installed Linux kernel. The same list
can be obtained by reading /proc/kallsyms.

The current prototype targets Linux in the VM: a setup in
which the guest OS has a per process address space. Thus we
decided to trap syscalls, and we assume the syscall number of
the functions we want to monitor are known. To identify the
entry point of one of such functions we look up the address of
the sys_call_table symbol from System.map, and then
we get the nth entry starting from that address, where n is
the syscall id that we would like to monitor. If System.map
is not available the lookup is slightly more complicated: it
requires to read the syscall entry point from (virtualized)
hardware registers (IDT table, or MSR registers, respectively
for syscall and sysenter instructions), and disassemble
from the syscall entry point until the first call instruction,
which embeds the sys_call_table address (note that this
is highly Linux version specific).

With the knowledge of the function entry point we are
saving the first m bytes at that address while overwriting
the first few bytes with an undefined instruction. We set m
equal to 15 as KVM/QEMU is doing when emulating. We are
maintaining the syscall number, the address of the function,
and the m bytes of binary code in a single data structure.
Structures are stored in an hash table indexed by the hashed
function address. In order to maintain a minimal and constant
lookup time we store a single structure per table entry. In
case of collisions KairosVM is rehashing the table, this is
acceptable because during initialization there are no real-time
constraints to be meet.

B. Event Trapping

To be compliant to our design, Figure 5, we choose to
use undefined instruction 0, ud0, as the injected instruction
that will cause the trap to the hypervisor. We decided to
use ud0 instead of the well known ud2, commonly used in
the Linux source code to signal bugs (BUG() macro, i.e.
assert in kernel space), in order to reduce false positives. The
undefined instruction 0 is an Intel undocumented instruction,
but documented by AMD [18], that corresponds to the two
bytes {0x0F, 0xFF}.

Whenever the software in the virtual machine hits one of
the injected ud0 instructions, as a consequence of a scheduling
syscall, it context switches to the hypervisor. Because KVM is
by default configuring the hardware virtualizaiton extensions to
trap on undefined instructions, in order to emulate instructions
that are not supported on the platform, we didn’t have to enable
undefined instructions trapping.

After the hypervisor gets called for an undefined in-
struction it passes the control to KairosVM which checks if
the faulty address is present in the hash table. If it is not
present it returns the control to the hypervisor. Otherwise,
our prototype first dereferences the system call parameters and
notify the ChronOS scheduler (Section VI), then emulates the
instructions overwritten by the inserted ud0 (by using KVM’s
x86_emulate_instruction()), and returns the control
to the virtual machine.

Note that ud0 is two bytes long and in x86 assembly
there are (few) instructions which lenght is one single byte.
Therefore the number of instructions that must be emulated
can be maximum two. In order to account for determinism, we
measured the emulation time for all of the one byte instrcution
and we find it mostly constant. Despite that we observed that
the first instruction of each function we trapped is a push
type of instruction. This proves the suitability of our system
in a real-time environment.

VI. KAIROSVM INTEGRATION

The events that KairosVM will trap are dependent upon
the real-time operating system installed in a virtual machine.
Because we would like to create the foundations to support any
virtualizable real-time operating system we adopted a plugin
interface. We aim to develop a plugin for each supported OS,
we currently support ChronOS only.



A. ChronOS Introspection

In ChronOS, to trap the real-time scheduling events
we monitor the following syscalls: __NR_nanosleep,
__NR_do_rt_seg and __NR_set_scheduler. (We al-
ready described ChronOS internals and how an applica-
tion should be written in Section III.) Removing the latter
the other two syscalls are heavily used in real-time: they
are called for each (periodic) job. Specifically the syscall
__NR_do_rt_seg is called at the release and completion
of each job.

The information carried by these events can be used by the
scheduling algorithm in the hypervisor to better allocate CPU
time to the guests. However the event per se is not enough,
its arguments, that are carrying the real-time characterization
of the segment, must be extracted from the syscall context.
Therefore, in the ChronOS plugin, for begin_rtseg as
an example, we extract from the virtual CPU registers its
arguments (tid, priority, utility, deadline, period and wcet)
that are located at the address stored in the rsi register. Such
information, augmented with the entity triggering the event,
i.e. the task_struct pointer of the current thread in Linux,
is passed to the hypervisor scheduler (ChronOS in our setup).
Because these features are OS ABI dependent we implemented
them in the plugin.

As stated in Section I this work does not contribute
any scheduling algorithm. Nevertheless with the information
gathered by introspecting the guest OSes, new scheduling
algorithms can be implemented in the hypervisor in order
to meet real-time properties contracted in the guest software
stack. These new algorithms can be based on hierarchical
scheduling theory as introduced in Section II. Contrary to
existing solutions, like RT-Xen [1], KairosVM enables a
scheduling algorithm to get informed when tasks finish their
execution earlier than expected or when new tasks arrive,
fostering dynamic decisions.

B. Plugin Architecture

KairosVM integrates with KVM and ChronOS, and offers
a pluggable interface in order to support the introspection of
various real-time operating system, which differs by the way
scheduler related events and properties are communicated by
applications to a kernel.

A plugin is a standard Linux module which can be loaded
and unloaded at runtime. In order to register a KairosVM
plugin the developer has to call rt_plugin_register()
in the module intialization routine. To deregister a plugin
rt_plugin_unregister() must be called. Within the
registering function a structure rt_plugin must be passed.
The rt_plugin has to be populated with the name and a
range of versions of the RTOS supported by the plugin, probe,
initialization and exit functions. The probe function is meant
to check if the OS in the VM is exactly the one which the
plugin was made for. The initialization routine will account
for introspect the software, insert the undefined instructions,
and register the notification routines (see Section V-A). The
exit function cleans up the guest software from the inserted
faulty instructions. The notification functions are meant to be
called during the real-time execution (see Section V-B), they

Fig. 6. KairosVM overall architecture

should decode the syscall arguments, convert the information
for the hypervisor-level scheduler and notify it.

It is worth stressing that writing a plugin requires to know
the internals of the RTOS running in the virtual machine.
Despite that, KairosVM helps the plugin developer by pro-
viding her/him with routines for registering and deregistering
events at a specific address, complemented by the fact that
when an event occurs KairosVM will check it for genuinity
and eventually call the registered notification function. When
this function will return KairosVM will take care of the
emulation and the rest of handling. Figure 6 illustrates the
overall KairosVM architecture including the plugins. This
figure includes three different guest operating systems (RTOS
A, B and C): each of them requires a different plugin.

VII. EVALUATION

To evaluate our introspection mechanism, we performed
several experiments. We run the tests on an Intel Xeon E5520
processor with eight cores at 2.27GHz, and 16GB of RAM.
The host is running Ubuntu Server 10.04 with Linux kernel
3.4.82, ChronOS 3.4 patched, as the hypervisor. We used
KVM/QEMU version 0.12.3. On the guest, we used Ubuntu
Server 10.04 with Linux kernel 3.0.24, patched with our
ChronOS 3.0 patches. We compared vanilla KVM, KairosVM
and Nitro on a set of benchmarks. Nitro [6] represents the
state-of-the-art in virtual machine syscall tracing tools, we used
Nitro for Linux kernel 3.13.0-rc8 that we backported to 3.4.82.
The KVM module was swapped between tests to include and
exclude Nitro or KairosVM.

Tests were run on a VM with a single VCPU that is pinned
to a single CPU. We used the isolcpus kernel command line
argument to dedicate specific cores to the KVM processes. We
also followed the advice from Kiszka [15] to raise the priorities
of QEMU’s threads to improve the guest responsiveness.

In the experiments, we used two notions of time
in the virtual machine: virtual time, measured with
clock_gettime(), and physical time, obtained by reading
the machine time stamp counter register (TSC). We tweaked
KVM in order to do not dynamically change the TSC Offset
in the VMCS in order to obtain reliable physical time mea-
surements. Furthermore, because the VCPU is pinned to a



single CPU, we are mitigating any possible inconsistencies
due to subtracting TSC reads from different CPUs. Compared
to virtual time, the physical time has an absolute connotation,
while the former is relative, because the TSC does not pause
when the virtual machine is idle.

We first compared the overhead due to syscall trapping
by measuring single system call latency. We then measured
the effect of these overheads on the performance of real-time
applications with different non real-time workload.

A. Trapping Overhead

We compared the overhead due to syscall tracing in
KairosVM with Nitro, and we relate these measurement against
an execution on KVM without any tracing mechanism active
and against an execution without any virtualization. The test
examines the latency of 6 function libraries (with a correspond-
ing syscall) that are commonly used in ChronOS real-time
applications, but only begin_rtseg and end_rtseg have
been trapped/traced.

Because Nitro is logging the tracing data in user space,
on the Linux host, in order to make the comparison fair, we
accurately remove such user space time from Nitro’s results.
We collected the physical time over 1000 experiments, we
computed average, min and max, Figure 7 shows the results.

The results clearly indicate that Nitro has the higher
overhead per syscall compared to other solutions. Bare KVM
virtualization introduces between 1% and 30% of additional
overhead compared to a non virtualized setup. KairosVM
does not add any quantifiable overhead to the latencies of
the syscalls that are not meant to be trapped compared to
KVM. Differently, Nitro does that, because it is trapping every
syscall. For the syscalls that have been trapped, KairosVM is
between 7 to 10 times slower than KVM. Note that, the time
required to trap a syscall in KVM is mostly equivalent to the
syscall latency in Nitro for non traced syscalls. Therefore we
conclude that this time is highly due to the hyperswitch. Nitro
is substantially slower than KairosVM, being between 139 to
248 times slower then KVM. This is due to the asynchronous
notification mechanism implemented in Nitro.

B. Real-Time Performance

To determine the effect of each introspection mechanism on
real-time performance we used the sched test app benchmark
which is part of ChronOS distribution. This is a real-time
benchmark that simulates real-time workloads using the Baker
model [19].

We ran this benchmark in two configurations. In the first
one, a CPU intensive application is running alongside the
benchmark. In the second configuration Bonnie++ [20] is
used instead of the CPU intensive application. Bonnie++ is
a benchmark suite that is aimed at performing a number of
simple tests of hard drive and file system performance. Thus
the second configuration generates much more system calls
than the first one. In both configurations we used a script
to automatically start the non real-time application, and load
sched test app; the script then waits for sched test app to
finish, collects the output and kill the non real-time application.
Every data point in our experiments is averaged over 20
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repetitions. At each repetition we picked a different taskset
with a number of tasks in the range [20, 60].

Figure 8 and 9 show the Deadline Satisfaction Ratio (DSR)
as returned by sched test app on vanilla KVM, KairosVM and
Nitro for different utilizations (25, 50, 75 and 100). The graphs
refer to deadline misses by comparing physical times. When
virtual times are compared instead, we had mostly no misses.
This is because the relative time in the virtual machine is not
incremented while syscalls are being trapped. Figure 8 shows
that the DSR for KairosVM and when no introspection is active
are almost similar. On the other hand, the DSR for Nitro is
at most 5% lower, especially when the utilization increases.
This illustrates the fact that Nitro adds latencies that prevent
the completion of the real-time tasks before their deadline. As
KairosVM only traps syscalls related to real-time scheduling,
the latencies are much lower and the difference between the
KairosVM and the no introspection configuration is negligible.
The same trends can be observed for the experiment with
Bonnie++, in Figure 9, where Nitro never performs better than
KairosVM and the configuration with no introspection.

Table I shows Bonnie++’s overall number of syscalls and
the number of write syscalls done during each experimental
run for different configurations. We report numbers for the
two higher values of utilization that highlight the decrease
in general purpose activities, lower utilization values would
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TABLE I. NUMBER OF SYSCALLS AND WRITES ACCORDING TO THE
UTILIZATION

Util # of Syscalls # of Writes Case
4147015 3479204 KairosVM

75 3236017 3175538 Nitro
? 4153681 ? ? 3481426 ? No Introspection

4065685 ? 3452094 ? KairosVM
100 1282703 1282300 Nitro

? 4066879 ? 3452492 No Introspection

add no insight. Results show that the number of syscalls for
KairosVM and the no introspection configuration are similar,
while the number of syscalls for Nitro differs. The number of
overall syscalls and the number of write syscalls is decreasing
when the utilization grows because less time is allocated to
perform these syscalls and deadline misses can happen.

VIII. CONCLUSION

Consolidation of multiple legacy real-time software stacks
on the same hardware requires real-time aware virtualization.
We present KairosVM, a new hypervisor built to support
existing software stacks and guarantee their real-time require-
ments. As we aim to support legacy systems, we cannot use
paravirtualization. We thus introduced a new introspection
mechanism in the host operating system to extract the real-
time requirements of the guest. Our approach uses undefined
instructions to trap into the hypervisor. Evaluations showed
that state of the art solutions, like Nitro, are less suitable
for real-time because of the overhead generated on each
syscall. On the other hand, our introspection solution only traps
syscalls related to real-time scheduling, such that the overhead
is negligible compared to that of no introspection.

This paper is a first step in building a real-time aware
hypervisor where multiple guests can coexist while respecting
their real-time properties. We gave some pointers in Section VI
on how the information from guests can be used to dynamically
schedule the system. This allows the scheduling algorithm to
better allocate the processor time when tasks terminate their
execution earlier than expected. This could be exploited to
improve the schedulability of the system or reduce the energy
consumption. In future work, in addition to ChronOS, we
would like to support different guests RTOS (e.g. RTAI [3],
LITMUSRT [4], PREEMPT RT [5]) through the use of our
plugin infrastructure described in Section VI-B.
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