
A Formal Semantics for P-Code

Nico Naus1[0000−0003−3442−1543], Freek Verbeek1,2[0000−0002−6625−1123], and
Binoy Ravindran1[0000−0002−8663−739X]

1 Virginia Tech, Blacksburg, USA {niconaus,freek,binoy}@vt.edu
2 Open University of The Netherlands

Abstract. Decompilation is currently a widely used tool in reverse en-
gineering and exploit detection in binaries. Ghidra, developed by the
National Security Agency, is one of the most popular decompilers. It
decompiles binaries to high P-Code, from which the final decompilation
output in C code is generated. Ghidra allows users to work with P-Code,
so users can analyze the intermediate representation directly. Several
projects make use of this to build tools that perform verification, de-
compilation, taint analysis and emulation, to name a few. P-Code lacks
a formal semantics, and its documentation is limited. It has a notori-
ously subtle semantics, which makes it hard to do any sort of analysis
on P-Code. We show that P-Code, as-is, cannot be given an executable
semantics. In this paper, we augment P-Code and define a complete,
executable, formal semantics for it. This is done by looking at the docu-
mentation and the decompilation results of binaries with known source
code. The development of a formal P-Code semantics uncovered several
issues in Ghidra, P-Code, and the documentation. We show that these
issues affect projects that rely on Ghidra and P-Code. We evaluate the
executability of our semantics by building a P-Code interpreter that di-
rectly uses our semantics. Our work uncovered several issues in Ghidra
and allows Ghidra users to better leverage P-Code.

Keywords: Decompilation · P-Code · Formal semantics.

c©2022 Copyright held by the owner/author(s). Publication rights li-
censed to Springer-Verlag. This is the author’s preprint version of the
work. It is posted here for your personal use. Not for redistribution. The
definitive version of this work will be published in Proceedings of the
14th International Conference on Verified Software: Theories, Tools, and
Experiments (VSTTE’22), October 17-18, 2022, Trento, Italy

1 Introduction

After more than 60 years of research, the field of decompilation is currently
very mature. A plethora of open source and commercial decompilation tools
exist [7,13,1,11,12]. They are widely used to recover source code from binaries
and to detect software vulnerabilities.

2 Naus et al.

Ghidra 3 is one of those tools, developed by the National Security Agency
(NSA), and made public and open source a few years ago. Recent comparative
studies show that it ranks among the top performing decompilers [5]. At the
heart of Ghidra lies P-Code, an intermediate representation that exists at two
levels of abstraction. The first is a direct one-to-many translation of the disas-
sembled assembly instructions, called low P-Code. The second is high P-Code,
which is the result of various transformations on the low P-Code from Ghidra’s
decompiler. Since we focus our work on high P-Code, we will simply refer to it
as P-Code from now on.

From the P-Code, Ghidra constructs C code, which is the final decompilation
result. Users can define their own analyses over high P-Code, customizing the
decompilation process or extracting information from it. We have come across
several projects that perform a wide range of analyses on P-Code. Verification [6],
decompilation [14] and taint analysis [2], to name a few. However, the P-Code
documentation is very limited and P-Code lacks any form of formal semantics.
On top of that, P-Code has a notoriously subtle semantics, as will become clear
in the rest of this paper. This limits the usability of P-Code for formal analysis,
since there is no way to know if the analysis that is being performed is correct
with respect to the language semantics.

In this paper, we develop a formal semantics for high P-Code. We base our
work on Ghidra 10.1.4 released May 2022, which comes with P-Code documen-
tation last updated September 5th, 2019 [9]. Ghidra does come with a P-Code
interpreter, but only for low P-Code. This means that there is no ground-truth
that we can base our high P-Code semantics on. We therefore start our investi-
gation by looking at the P-Code documentation. Since this is rather limited, we
additionally run experiments for P-Code instructions that are unclear. These ex-
periments consist of compiling several C programs to binary, decompiling them
using Ghidra, and comparing the high P-Code and decompiled C code to the
original source code. During the development of a formal P-Code semantics, we
uncover several issues in Ghidra, P-Code and the P-Code documentation. These
issues all stem from inconsistencies in documentation, Ghidra’s output via UI or
API, and in some cases the inability to formulate executable P-Code semantics.
Our findings have been shared with the Ghidra team, which has confirmed all
issues we uncovered. As-is, P-Code cannot be given an executable semantics. To
overcome the shortcomings of P-Code, we extend the language with additional
information. For the extended P-Code semantics, we define a formal operational
semantics. We argue that projects relying on P-Code are directly affected by
these issues, and could benefit from a formal P-Code semantics. Since there is
no interpreter for high P-Code available, we are only able to validate our seman-
tics by writing an interpreter for high P-Code to show that our semantics are
executable. We have shared our results with the NSA prior to publication, and
acknowledge all issues identified in this paper.

More specifically, we make the following contributions:

– An extended P-Code language.
3 https://ghidra-sre.org/

https://ghidra-sre.org/

A Formal Semantics for P-Code 3

– A formal syntax and semantics for extended P-Code.
– A P-Code interpreter written in Haskell.
– An overview of several bugs, issues and inconsistencies in Ghidra, P-Code

and documentation.

P-Code interpreter written in Haskell and the accompanying Ghidra script
written in Java are publicly available.

Section 2 first gives an introduction to Ghidra, its assembly translator SLEIGH
and low & high P-Code. Section 3 describes and motivates our design choices.
Section 4 describes the P-Code syntax and Section 5 gives its semantics. We
list an overview of the bugs, issues and inconsistencies we have found, and a
response from the NSA on these, in Section 6. Section 7 presents related work
and Section 8 concludes.

2 Ghidra, SLEIGH & P-Code

Ghidra is an open-source reverse engineering tool, developed by the National
Security Agency. It is capable of decompiling binaries of a wide variety of archi-
tectures. To do so, it first disassembles the binary using its custom disassembler
SLEIGH, and performs several analysis steps. The end result is high-level C code,
as well as detailed control flow information. A recent study compared other well
known decompilers like IDA-pro [7] and Angr [13] to Ghidra, by evaluating 1760
binaries, using the correctly identified function starts (CFS) metric [5]. They
found that Ghidra performs above average.

Address x86-64 low P-Code high P-Code
0x100000e70 push rbp $Uea00:8 = RBP $Ud100:1 = EDI s< 3:4

RSP = RSP - 8:8 if $Ud100:1 goto 0x100000e95:1
*RSP = $Uea00:8

0x100000e71 mov rbp, rsp RBP = RSP
0x100000e74 mov dword ptr [rbp - 8], edi $U3100:8 = RBP + -8:8

$Ubf00:4 = EDI
*$U3100:8 = $Ubf00:4

0x100000e77 cmp dword ptr [rbp - 8], 2 $U3100:8 = RBP + -8:8
$Ubf80:4 = *$U3100:8
CF = $Ubf80:4 s< 2:4
$Ubf80:4 = *$U3100:8
OF = sborrow($Ubf80:4, 2:4)
$Ubf80:4 = *$U3100:8
$U29000:4 = $Ubf80:4 - 2:4
SF = $U29000:4 s< 0:4
ZF = $U29000:4 == 0:4
$U12e80:4 = $U29000:4 & 0xff:4
$U12f00:1 = popcount($U12e80:4)
$U12f80:1 = $U12f00:1 & 1:1
PF = $U12f80:1 == 0:1

0x100000e7b jle 20 <_isPrime+0x25> $Ud000:1 = OF != SF
$Ud100:1 = ZF || $Ud000:1
if $Ud100:1 goto 0x100000e95:8

Fig. 1. First few instructions in the decompilation of nearest prime

To illustrate the Ghidra decompilation pipeline, we take a look at the first
few instructions of an x86-64 binary. Figure 1 lists the decompilation result for
the first few addresses of our example binary. For readability’s sake, we have har-
monized notation, and simplified in- and output notation. Address 0x100000e70

4 Naus et al.

is the entry point of a function. Ghidra’s machine code translator SLEIGH takes
the x86-64 assembly instructions as listed in the second column in Intel syn-
tax, and translates them to low P-Code, listed in the third column. The exact
meaning of the P-Code instructions will be left for the coming sections, and is
not essential to understand at this point. As for notation, the $U prefix indi-
cates local variables. Registers are identified by their name, and are assumed
to have a fixed size. Addresses are given in a hexadecimal format, prefixed by
0x. Constants are given either as a decimal or hexadecimal prefixed by 0x. Both
addresses and constants have a size indicated by the number after the colon.

P-Code is considered low before decompilation, and is merely a one-to-many
translation from assembly instructions to P-Code. The instruction set of P-Code
is much smaller than x86, and SLEIGH basically breaks up a complicated assem-
bly instruction into simple P-Code ones. For example, the x86 compare instruc-
tion at address 0x100000e77 breaks down into 13 separate P-Code instructions.
To break down the instructions, P-Code uses local variables. The x86 push rbp
instruction at address 0x100000e70 for example, is broken down into three sim-
ple assignments, using the variable $Uea00:8 to hold the original value of RBP
temporarily, until it has been stored in memory.

After disassembly and translation, Ghidra performs several decompilation
analyses. This results in high P-Code, listed in the third column, which uses an
instruction set almost identical to low P-Code. The analyses Ghidra performs,
remove all instructions that have no effect on execution, resolves the stack and
constructs a control flow graph, among other things. A more detailed description
of Ghidra’s decompilation analyses can be found in other literature [4]. From the
high P-Code, Ghidra constructs the final decompilation result in C code.

By example, we have shown how the basic Ghidra pipeline operates. Users can
inspect the final decompilation result, but there also exists a plethora of scripts
that can be run to further analyse the final or intermediate P-Code result. It
is also possible to define custom scripts, through Ghidra’s extensive API [10].
Since these analyses can target high P-Code directly, it is important to have a
correct semantics for it.

3 Design Choices

As mentioned in Section 1, P-Code documentation is limited. On top of that,
P-Code as-is cannot be given a formal semantics, because crucial information is
not included. To arrive at an executable P-Code semantics, we had to make the
following design choices.

Conditional Branches. We observed that the P-Code generated for condi-
tional branches is often incorrect. Three different situations occur. One, the
conditional branch is correct. Two, the conditional branch incorrectly jumps
to the fall-through address in the True case. Three, the conditional branch
should jump to a different address than the fall-through in the False case.
The control flow API always returned the correct out addresses in our ex-
periments. We use this fact later on when we build our interpreter.

A Formal Semantics for P-Code 5

Phi-nodes. P-Code has a MULTIEQUAL instruction, which is better known as
a phi-node in literature [3]. A phi-node’s value depends on the address of the
previous block that was executed. In other SSA languages using phi-nodes,
like LLVM IR [8], every alternative value is guarded by an address, which
is compared to the address of the previous block. You compare the address
to the alternatives in the phi-node, to know which value will be selected.
This is not the case in P-Code. Here, only the alternative values are listed.
Looking at the documentation, no additional information is provided about
the ordering of the alternatives.
To determine which alternative belongs to which control flow, we have ran
several experiments. From these experiments, we know that the order of the
alternatives coincides with the inbound edge ordering when requesting these
though Ghidra’s control flow API.

Varnodes. Inputs and outputs are encoded by the so called varnodes. They
represent the arguments and destination of the instructions. The P-Code
manual states that varnodes are either a register or a memory location, and
that they consist of three components: address space, offset and size.
We use a slightly different view of varnodes, and regard the “address space”
as a varnode type. We have come across six different types, and they consist
of two components: a value and a size. Of those six, we can bring it down to
four essential types of varnodes.
(r, l) register, identified by a register address r and size l.
(a, l) memory, with a the starting address and l the size of the memory

region.
(c, l) constant value, with c the value and l the size.
(v, l) local variable, with v the identifier and l its size.
The register notation differs from the previous P-Code examples, like the
code listed in Figure 1. Instead of listing register names, an address in the
register space is used, together with a size. Using register addresses and sizes
has the advantage that we do not explicitly have to take care of register
aliasing.

Call & Return. For the CALL instruction, P-Code documentation lists:
“This instruction is semantically equivalent to the BRANCH instruction.
(...) The P-Code instruction does not implement the full semantics of the
call itself; it only implements the final branch.”
Above, we have already seen that this cannot be true. A function can have
arguments and return a value, and this behavior is certainly not captured by
a basic BRANCH instruction. What is more, not all varnode address spaces
will be in scope when dispatching a function call. Local variables are cleared
when a new function context is entered. Arguments are passed through the
registers, and these registers are cleaned up when P-Code returns from a
call. How this is done exactly depends on the calling convention that the
original binary relies on, more on this later.
For the indirect call and return, documentation lists a similar description.
They are both said to be equivalent to BRANCHIND. For indirect call, this
is false, for the reasons described above. For return, we see that this cannot

6 Naus et al.

hold for two reasons. One, in high P-Code, a return instruction can hold a
return value that is to be the result of calling the function. Furthermore, no
address to return to is included in the instruction; we do not have a branch
destination.

Fall-through. The P-Code outputted by Ghidra performs fall-through in a non-
uniform way. Looking at the P-Code output for several decompiled binaries,
there is no pattern to be found in the way fall-through is performed. The
most natural way to perform fall-through is to let control flow jump to the
next block listed in the output, but this is not always true. It can occur
that control flow jumps to a later or earlier block instead. The addresses of
those blocks are not logical either. In some cases, the address of the fall-
through block is higher than the current block, in some cases it is lower. We
therefore do away with fall-through alltogether, instead requiring that every
block ends in a branching instruction.

User defined instructions. P-Code allows the definition of so called “user de-
fined” instructions. The goal of these instruction is to capture very compli-
cated behaviour that cannot be described in terms of existing P-Code in-
structions. Since the user only provides syntax for these, but no semantics,
we consider user defined instructions out of scope for this paper.

Indirect instruction. One final tricky aspect of P-Code is the use of the indi-
rect instruction. We will denote an indirect instruction as out = in0 ←↩ in1.
The intuition of this instruction is that the value of in0 should be assigned
to out, but may be influenced indirectly by an instruction elsewhere, which
is described by in1. If there was an indirect influence, this means that poten-
tially any value may be assigned to out. This can happen for example when
calling external functions, so there is no way of knowing what the value will
be.

4 P-Code Syntax

This section lists the syntax of P-Code programs. We base the syntax on the
notation used in the P-Code documentation. P-Code features some instructions
that do not have a defined syntax. For those instructions, we have taken the
liberty of choosing an appropriate representation ourselves. On top of that, there
are several minor changes that we needed to make, in accordance with the design
choices from Section 3.

Figures 2 and 3 lists our P-Code syntax and P-Code operators. We model a
program as a mapping from addresses a to code blocks b.

Inputs and outputs are modeled by four different varnodes. Registers, mem-
ory, constants and variables. For registers, addresses are used instead of names.
To give an example, (0x18,8), (0x18,4) and (0x19,1) refer to RBX, EBX and BH
respectively.

A P-Code block must be non-empty, can have zero or more instructions i, and
must end in a terminator instruction t. This does not adhere to documentation or
Ghidra produced P-Code, but is required to correct the fall-through issues that

A Formal Semantics for P-Code 7

Program
p ::= a 7→ b Mapping from address to block
Block
b ::= i;b | t Sequence, terminator
Instruction
i ::= out = (o | s) | s Assignment, call
| * out = in | out = * in Store, load
| out = zext(in) | out = sext(in) Zero-extend, sign-extend
| out = float2float in Float size conversion
| out = trunc(in) Float truncation

s ::= call [in0] in1 . . . inn (Indirect) function call
Operation
o ::= in | in ((c, s)) | 	 in | in0⊕ in1 Copy, subpiece, Unary, binary operation
| φ(a0, in0) . . . (an, inn) | in0 ←↩ in1 Phi node (multiequal), indirect
| in0 +p in1×p in2 | in0 +p in1 Pointer calculation, simple pointer calc
| out((c0, l0), (c1, l0)) = in Bit insert
| out = in((c0, l0), (c1, l0)) Bit extract

Terminator
t ::= goto in | if in0 goto in1 else in2 (In)direct branch, conditional branch
| return [in0] in1 Function return

Varnode
in,out ::= (R r, l) | (A a, l) | (C c, l) | (v, l) Register, ram, constant, variable
a, r, c, l ∈ N Address, register, constant, length
v ∈ set of names

Fig. 2. P-Code language syntax definition

occur, as mentioned in Section 3. We distinguish between regular instructions
and terminator instructions, to make it easier to construct a semantics later on.

Instructions i are either basic operations on data, that is assigned to an
output, or a function call that may or may not return some value. The instruction
out = (o | s) represents basic operations o that are assigned to the output out, or
a function call s with a return value. In some cases, the data operation depends
on the size of the output, like sign-extend. These instructions are added at this
level for that reason.

A function call is denoted by call [in0] in1 . . . inn, where in0 is either a con-
stant, for direct calls, or a register, memory location or variable, which indicates
that this is an indirect function call. This notation is identical to the P-Code doc-
umentation, but differs from the P-Code that Ghidra produces. Instead, Ghidra
explicitly differentiates between direct and indirect function calls using different
instructions, and uses a memory-varnode in the case of a direct function call,
instead of a constant value.

Basic operations o are all data operations that are independent of the output.
Most of them are straight forward binary or unary operations. We will discuss
the non-standard operations.

8 Naus et al.

Operators
⊕ ::= ≡ | 6= | < | <s Integer: equal, not equal, (signed) less
| ≤ | ≤s | + | - | Y | ∧ | ∨ (Signed) less or equal, add, subtract, xor, and, or
| � | � | �s | × Left shift, (signed) right shift, times
| % | %s | ÷ | ÷s | :: (Signed) remainder, (signed) divide, piece
| carry | carrys | borrows (Signed) overflow or carry, signed overflow or borrow
| Yb | ∧b | ∨b Bool: exclusive-or, and, or
| ≡f | 6=f | <f | ≤f | +f Float: equal, not equal, less, less or equal, plus
| -f | ×f | ÷f Subtract, times, divide

	 ::= ! | - | ∼ | -f Bool negate, Int: sign negate, negate. Float: negate
| abs |

√
| nan Absolute value, square root, NaN test

| u | t | round | int2float Round to +∞, −∞, closest integer, int to float
| popcount | cast | new Popcount, casting operation, allocate

Fig. 3. P-Code language operator syntax definition

The P-Code documentation does not list a syntax for the phi-node, so we
have chosen one ourselves. We enhance the phi-node to include the address that
guards the value alternative.

Indirect (in0 ←↩ in1) is the second non-standard operation. This instruction
indicates that either the value of in0 will be returned, or the value is unknown,
because an instruction pointed to by in1 has altered it. A typical use case of this
is when an external function is called with a pointer.

Finally, we have terminator instructions. These instructions are not singled
out by the P-Code documentation, but as mentioned, by separating them, con-
structing a semantics becomes easier.

The conditional branch is an interesting case. We have seen that Ghidra does
not produces consistent P-Code for this instruction. To work around this issue,
we replaced the conditional branch instruction with our own, so we can later use
the Ghidra API to get a hold of the correct addresses, and explicitly state both
the true and false branch. This works since conditional branches are terminators
and can thus only appear at the end of a block.

Lastly, the return instruction. This instruction includes an offset, and may
hold a value to be returned. Looking at large pieces of P-Code, we found that the
offset is not actually used in performing the return. For completeness sake we
include this parameter in the syntax, but we will not give it any semantics. The
same is true for the cast and new unary operators, these are merely placeholders
to indicate that a value has been cast or new memory has been allocated. This
information can then be used by subsequent analyses.

For space reasons, we omit a description of all basic operations, as well as
unary and binary operators.

5 P-Code Semantics

This section presents a big-step semantics for P-Code. As described in the previ-
ous sections, defining a semantics for P-Code is not trivial. Based on our exper-

A Formal Semantics for P-Code 9

iments and observations so far, we assume that the following holds for programs
written in P-Code.

σ = (M,R,V) State, containing the address of the previous block,
the current block, memory, registers and variables

M = (A a, l) 7→ (C c, l) Memory
R = (R r, l) 7→ (C c, l) Register mapping
V = v 7→ (C c, l) Variable mapping

Fig. 4. Semantic objects

Local variables do not overlap. We assume that any local variables do not
overlap in the local variable address space. In other words, local variables
occupy separate memory locations. This property of P-Code has been verified
by decompiling large binaries and checking that no variables overlap.

No global variables. We assume that all declared variables are local. Strictly
speaking, the P-Code documentation does not prohibit an address space
that serves as global variables, but after running several experiments, this
behaviour has not been observed. Programs can and do have global variables,
but they are confined to memory and registers.

Call and Branch on constant. We assume that direct calls and direct branches
are encoded by having a constant varnode as an argument. In all other cases,
the call and branch will be interpreted as indirect.

Terminators only at block’s end. We assume that terminator instructions
like branch and return only occur at the end of a block. This assumption
already shows up in the syntax listed in the previous section, but for com-
pleteness sake, we reiterate this fact here.

Figure 4 lists the semantic objects needed for evaluation; state, memory,
registers and variable mapping. The memory mapping M takes an address a
and size l and returns a constant varnode (C c, l). The register mapping R takes
a register address r and a size l and returns a constant varnode (C c, l). Just a
register identifier is not sufficient, since registers can alias. Three special registers
are used to keep track of function return value, the address of the previous block
and the address of the current block. These registers are denoted by “Ret”, “Prev”
and “Cur”, assuming that a varnode representation that is separate from registers
used by the program exists. Variable mapping V takes a variable identifier v and
returns a constant varnode (c, l). Figures 7 through 11 list the rules for the
different semantic judgements we use. These rules use two auxiliary judgements,
namely the evaluation of varnodes and state update, listed in Figure 5 and 6
respectively.

Varnodes are evaluated by judgements of the form σ, in ↓ val, taking a state
σ and varnode in, and returning the resulting value val. The resulting value is
again a varnode, of the form (c, l), where c is a constant and l the size. Depending

10 Naus et al.

V-mem (M,R,V), (A a, l) ↓ M[(A a, l)] V-reg (M,R,V), (R r, l) ↓ R[(R r, l)]
V-Const σ, (C c, l) ↓ (C c, l) V-Unique (M,R,V), (v, l) ↓ (V[v], l)

Fig. 5. Evaluation of varnodes to values

U-reg
(M,R,V), (x, l2) ↓ val l1 ≡ l2

R′ = R[(R r, l1) 7→ val]
(M,R,V), (R r, l1), (x, l2) ↑ (M,R′,V)

U-mem
(M,R,V), (x, l2) ↓ val l1 ≡ l2
M′ =M[(A a, l1) 7→ val]

(M,R,V), (A a, l1), (x, l2) ↑ (M′,R,V)

U-var
(M,R,V), (x, l2) ↓ val l1 ≡ l2

(M,R,V), (v, l1), (x, l2) ↑ (M,R,V[v 7→ val])

Fig. 6. State update semantics

on the type of the varnode, this value is retrieved from memory, register mapping
or variable mapping.

Updates to memory are handled by judgements of the form σ, out, in ↑ σ′,
taking a state σ, destination out and source in, returning the updated state σ′.
The type of the destination is used to select the correct rule, and ultimately which
part of the state to update. In general, P-Code always requires that destination
and source size is equal. This is ensured by the update semantics.

At the top-level, we evaluate a block using the judgement p, σ, b −→b σ
′,

which takes a program p, state σ and entry block b and returns a new state
σ′, which is the result of completely executing the program. Figure 7 lists the
semantic rules for block evaluation.

B-Seq first evaluates the instruction i, and uses the resulting state to evaluate
the remainder of the block, b.

B-Term evaluates a block ending in a terminator, using the terminator seman-
tics.

The terminator semantics is given in Figure 8. It uses judgements of the
form p, σ, t −→t σ

′, taking a program p, state σ and terminator t as input and
producing a resulting state σ′.

The terminator semantics is pretty straight forward. T-Branch evaluates its
varnode in and looks up the next block in p, and then use the block semantics
to evaluate it. These rules make use of the varnode evaluation semantics ↓ listed
in Figure 5. In the case of a conditional branch, in0 is evaluated. If the condition
returns decimal 1, of any size, we go to the true-branch. All other return values
are regarded as false. Branching instructions also perform some bookkeeping on
what the current and previous block addresses are.

A Formal Semantics for P-Code 11

B-Seq
p, σ, i −→i σ

′ p, σ′, b −→b σ
′′

p, σ, i;b −→b σ
′′ B-Term

p, σ, t −→t σ
′

p, σ, t −→b σ
′

Fig. 7. Block evaluation semantics

T-CBranch-T

(M,R,V), in0 ↓ (C 1, l0)
R′ = R[Prev 7→ R(Cur),Cur 7→ (C a1, l1)]

p, (M,R′,V), p(a1) −→b σ
′

p, (M,R,V), if in0 goto (a1, l1) else (a2, l2) −→t σ
′

T-CBranch-F

(M,R,V), in0 ↓ (C c, l0)
c 6= 1 R′ = R[Prev 7→ R(Cur),Cur 7→ (C a2, l2)]

p, (M,R,V), p(a2) −→b σ
′

p, (M,R′,V), if in0 goto (a1, l1) else (a2, l2) −→t σ
′

T-Branch

(M,R,V), in ↓ (C c, l)
R′ = R[Prev 7→ R(Cur),Cur 7→ (C c, l1)]

p, (M,R,V), p(c) −→b σ
′

p, (M,R,V), goto in −→t σ
′

T-Return
σ, (Ret, s), (x, s) ↑ σ′

p, σ, return [in](x, s) −→t σ
′

Fig. 8. Terminator evaluation semantics

T-Return handles a return statement. To pass the return value to the caller,
we use the Ret. Updating the state as such is taken care of by the memory
update function ↑ listed in Figure 6.

Figure 9 lists the partial instruction semantics. Judgements have the form
p, σ, i −→i σ

′, taking a program p, state σ and instruction i, and returning the
resulting state σ′. For space reasons, we only list I-Assign, I-AssCall, I-Store
and I-Load here.

I-Assign uses the operation semantics to evaluate o, which returns the value
that should be assigned to out. The output out is updated by ↑, depending
on the type of varnode that out is; memory, register or variable.

I-AssCall relies on the call semantics to perform the call, and the resulting
value is again used to update out, and the final state is returned.

I-Store evaluates the destination, converts it to a varnode of type address, and
updates accordingly.

I-Load evaluates the input and then treats it as a memory address, and looks
up the final value in memory. The number of bytes to be retrieved from
memory is dictated by the output varnode.

The calling semantics is one of the more perculiar aspects of P-Code. All
arguments that are passed though registers in the original binary, are now passed
as function arguments in the call instruction. However, the called function does
still retrieve them from registers. How this is done precicely depends on the

12 Naus et al.

I-Assign
σ, o −→o val σ, out, val ↑ σ′

p, σ, out = o −→i σ
′

I-AssCall
p, σ, s −→s σ

′, val σ′, out, val ↑ σ′′

p, σ, out = s −→i σ
′′

I-Store
σ, out ↓ (C c, l) σ, (A c, l), in ↑ σ′

p, σ, * out = in −→i σ
′

I-Load
σ, in ↓ (A a, l′) σ, (A a, l) ↓ val′

σ, (x, l), val′ ↑ σ′

p, σ, (x, l) = * in −→i σ
′

Fig. 9. Partial instruction evaluation semantics

Call-AMD64-ABI
(M,R,V), in ↓ (C c, l) (M,R,V), ini ↓ (C ci, li)

R′ = R
[
(0x38,l0)7→(C c0,l0),(0x30,l1)7→(C c1,l1),(0x10,l2)7→(C c2,l2),(0x8,l3)7→(C c3,l3)

,(0x80,s4)7→(C c4,l4),(0x88,l5)7→(C c5,l5),Prev7→R(Cur),Cur7→(C c,l)

]
p, (M,R′, ∅), p(c) −→b M′,R′′,V ′)

R′′′ = R′′
[
(0x38,l0)7→R[(0x38,l0)],(0x30,l1)7→R[(0x30,l1)],(0x10,l2)7→R[(0x10,l2)],(0x8,l3)7→R[(0x8,l3)]

,(0x80,l4)7→R[(0x80,l4)],(0x88,l5)7→R[(0x88,l5)],Prev7→R(Prev),Cur7→R(Cur)

]
σ = (M′,R′′′,V)

p, (M,R,V), call [in] in0 in1 in2 in3 in4 in5 −→s σ,R′′[Return]

Fig. 10. Example of a function call evaluation rule

original calling convention. Figure 10 lists an example of a call rule for a binary
that uses the AMD64-ABI calling convention.

Judgements are of the form p, σ, s −→s σ
′, val, taking a program p, state σ,

call statement s and returning the resulting state σ′ and value val. In this case, a
call can have at most six arguments, adhering to the specific calling convention.

The semantics completely deviates from the P-Code documentation. Sec-
tion 3 discusses this issue, here we stick to a description of the semantics.

The Call-rule first resolves the address of the function to be called. As men-
tioned in Section 4, if in is a constant, we have a direct call. In all other cases, we
have an indirect call, and the varnode evaluation semantics takes care of resolv-
ing the address. We evaluate all arguments to the call, which are then assigned
to the appropriate registers. To execute the called function, the block seman-
tics is used. We look up the block, and evaluate it under the current memory,
the registers containing the arguments, and an empty local variable mapping ∅.
Returning from the call, the local variable mapping is disregarded, registers are
cleaned up, and the return value is retrieved from the registers. This value, along
with the new state are then returned.

Figure 11 lists a few of the operation evaluation rules. Judgements are of
the form σ, o −→o val, taking a state σ and operation o, returning the resulting
value val. For space reasons, we omit all basic operations, as well as unary and
binary operations. These operations are all straight-forward and standard.

O-Copy evaluates the varnode and return its value.

A Formal Semantics for P-Code 13

O-Copy
σ, in ↓ val

σ, in −→o val
O-Phi

ai ≡ R(Prev) (M,R,V), ini ↓ val
(M,R,V), φ(a1, in1) . . . (an, inn) −→o val

O-Indirect-val
σ, in0 ↓ val

σ, in0 ←↩ in1 −→o val
O-Indirect-ND

c, l ∈ N
σ, in0 ←↩ in1 −→o (C c, l)

Fig. 11. Partial operation evaluation semantics

O-phi evaluates the phi-node by finding the address ai that is equal to the ad-
dress of the last block. The selected input is evaluated and its value returned.

O-Indirect-val and -ND rules handle the indirect instruction. Here, we ba-
sically have two options. Either the value is unaffected, and we can return
it, or the instruction pointed to by the second argument has altered the first
in some way, in which case any value of any size can be returned.

5.1 P-Code interpreter

To validate that the semantics above are executable, we have built a P-Code
interpreter in Haskell. The source code is publicly available, and consists of a
parser, type definitions and the interpreter itself 4. Ghidra does not come with a
script to dump the P-Code, so we have created a script with that functionality 5.
The interpreter is intended to be used in combination with this Ghidra script,
since it corrects the P-Code output of Ghidra with respect to the conditional
branch, fall-through and phi-nodes.

We encountered several interesting issues in order to get to a working in-
terpreter. First of all, we had to bridge the gap between what we think the
syntax and semantics of P-Code should be, ideally, and what Ghidra actually
produces for us. We assumed that both call and indirect call use the same instruc-
tion, and we merged the branch and indirect branch instruction. In the P-Code
produced by Ghidra, these are all separate instructions. The direct call and di-
rect branch use a memory varnode where we prefer to use a constant. For the
MULTIEQUAL (phi-node), conditional branch instruction and the fall-through
mechanism, Ghidra’s output does not contain enough information to come to
an executable semantics, as described above. We augment the P-Code dumping
script to include the additional information required. Second, we assumed sev-
eral properties to hold for P-Code programs, as outlined in the beginning of this
section.

Finally, it is important to note that although the semantics is executable, it
is not practical to do so. Any realistic program will produce many INDIRECT
instructions, which introduces non-determinism into the program. Execution of
P-Code containing these instructions will therefore return many different al-
ternative outcomes, and may be propagating unknown values, not returning a
4 https://github.com/niconaus/pcode-interpreter
5 https://github.com/niconaus/PCode-Dump

https://github.com/niconaus/pcode-interpreter
https://github.com/niconaus/PCode-Dump

14 Naus et al.

meaningful result. The point of the P-Code interpreter is merely to validate the
property of our semantics that it is in fact executable. In our interpreter, we
have chosen to regard INDIRECT instructions as deterministic, assuming that
their value has not been changed by the indicated side-effect.

6 Changes to Ghidra & P-Code

Based on our findings, we recommend the following changes to Ghidra, P-Code
and its documentation.

6.1 P-Code

We recommend the following change to be made to the P-Code language, as
described by documentation and used by Ghidra.

MULTIEQUAL Currently, the phi-node, or MULTIEQUAL as P-Code calls
it, is incomplete. It only contains a list of alternative values, but not the
control flow address that guards it. We suggest to adopt the definition in-
troduced in Section 4, which includes both the address of the previous block
and the value associated.

6.2 Ghidra/SLEIGH

We recommend the following changes to be made to Ghidra and its machine
code translator SLEIGH.

CBRANCH Our experiments show that Ghidra can return erroneous desti-
nations for the CBRANCH instruction. It does have the correct informa-
tion available, as we have validated by requesting the true-branch and false-
branch destination via the Ghidra API instead of P-Code. It is clear that
there is a bug in the way Ghidra produces P-Code. As mentioned before,
one of three situations occur. The conditional branch is correct, and so is
the fall-through. The conditional branch is incorrect, either the true-address
or the fall-through branches to the wrong address.

Fall-through The P-Code outputted by Ghidra performs fall-through in a non-
standard way in certain cases. For assembly languages, the fall-through ad-
dress is the smallest address that is bigger than the address of the current
instruction, or in our case, current block. The P-Code that Ghidra returns
sometimes breaks with this standard, and fall-through goes to the next block
listed, which might have a completely different address, or in some rare cases,
to a completely different block all together.

P-Code rendering The P-Code displayed in Ghidra’s GUI uses a different
syntax than the one given in the P-Code documentation. The low P-Code in
the listing view uses the capital letters notation, where tools like the graph
AST do use the regular syntax. Readability would be greatly improved if the
same, preferably the regular, syntax is used.

A Formal Semantics for P-Code 15

6.3 Documentation

The P-Code documentation included with Ghidra has not been updated for
several years. We suggest to make the following changes to greatly improve the
quality of the documentation, both in correctness and completeness.

High and Low P-Code The P-Code Reference Manual attempts to cover both
low and high P-Code with one description for each instruction, and then tag-
ging on extra information for the high P-Code case. We recommend splitting
up documentation in high and low P-Code.

Varnodes In documentation, varnodes are described as containing three ele-
ments: address space, address and size. From our experiments, we see that
this view does not work in practice. Constants are also encoded as varnodes,
where the address is used as a constant value instead. When performing a
call (also see below), some address spaces are preserved, some are reset for
the scope of the call. In this paper we have used the address space field as the
type of the varnode, and this seems to be a better fit. We suggest one of two
things to be done. One, this view is adopted by documentation, including a
list of the different types of varnodes and how they behave in for example a
function call. Or two, the CALL and RETURN instructions are updated to
include address space scoping.

CALL, CALLIND, RETURN As mentioned in Section 3, documentation
states that CAll, CALLIND and RETURN are equivalent to BRANCH,
BRANCHIND and BRANCHIND respectively. From our experimental re-
sults, we see that this is not the case. Function arguments are transferred
via registers, local variables are reset, a value can be returned, and after
a call, register cleanup is performed and local variables restored. We don’t
see an issue with these instructions themselves, more with the way they are
explained. This also ties in with the first point made on the difference be-
tween low and high P-Code. Call, indirect call and return behave completely
different in low and high P-Code, and deserve a better documentation.

Small inconsistencies The documentation contains many small inconsisten-
cies which should be cleared up. For example, the syntax reference introduces
two different notations for SUBPIECE that are not in the P-Code Operation
reference, and that we have not found in our experiments.

6.4 Response from Ghidra developers

We have reached out to the Ghidra development team at NSA with our findings
and the above recommendations. They have confirmed our findings and acknowl-
edged all issues we found. As for the conditional branch, they refer to a GitHub
issue where this problem is also identified 6. Their stance is that although it is
semantically incorrect, they do not consider this to be a bug. The destination
of the conditional jump is preserved from low to high P-Code, which they deem
more important than the correctness of the instruction itself.
6 https://github.com/NationalSecurityAgency/ghidra/issues/2736

https://github.com/NationalSecurityAgency/ghidra/issues/2736

16 Naus et al.

7 Related work

Research that makes use of Ghidra’s results is scarce, due to the fact that Ghidra
has only been publicly available for a few years. Below is a survey of several
interesting projects that use Ghidra and P-Code to perform program analysis.

GhiHorn is an SMT based path analysis tool that uses Ghidra and P-Code [6].
Their goal is to determine if a path exists to a certain program point, and
how the program should be instantiated to reach this point. Their approach
relies on Ghidra’s control flow API to construct flow from block to block. For
the individual blocks, they use a custom made transformer from P-Code to Z3
expressions. The documentation provided is limited, and GhiHorn does not seem
to deal with the more intricate details of P-Code, such as phi-nodes, indirect and
the call/return mechanism. It would be interesting to see where this approach
leads in the future, when the tool matures further.

A recent master thesis describes work on decompiling binaries into LLVM IR
using Ghidra [14]. The binary is loaded into Ghidra, and the decompiled P-Code
is then translated to LLVM IR. Although this work does not provide a semantics
for P-Code, it does relate LLVM IR’s semantics to that of P-Code. We’ve looked
though the source code for this project, and compared the relational semantics
to our P-Code semantics. In most cases, translation to LLVM IR seems to be
a more straight-forward affair, since issues like the call/return mechanism carry
over directly. One big limitation of this work is again that more difficult P-
Code concepts like phi-nodes, the nondeterministic indirect instruction, floating
point operations and and pointer calculations are not supported. Looking at the
translation for conditional branches, we see that this work is susceptible to the
error that we discovered in Ghidra.

Ghidra has also been used to develop a static taint analysis [2]. The author
uses external lists containing sources and sinks, and uses a taint policy that
defines how a taint is introduced and propagated. Unfortunately, source code for
this project is no longer available. The group is working on a new version and
has pulled the code in the mean time. It would have been very interesting to see
what P-Code semantics they employ.

A caveat of all of these approaches is the fact that none of them do any kind of
verification or have any formal theory on their approaches. As we have seen from
our experiments, the P-Code semantics is not straight-forward. Having a formal
semantics has the potential to improve these and future efforts on decompilation
and binary analysis.

8 Conclusion

We have presented a formal semantics for Ghidra’s P-Code. By developing this
semantics, we have uncovered several undocumented properties of P-Code, as
well as some inconsistencies and one serious bug in the way that Ghidra builds
the conditional branch instruction. To arrive at an executable P-Code semantics,
we have made several extensions to the language. We have validated that our

A Formal Semantics for P-Code 17

semantics is executable by building an interpreter for P-Code in Haskell. The
semantics and issues described have been acknowledged by the NSA. We have
performed a survey of binary analysis projects that leverage Ghidra and P-Code,
and have seen several that are directly affected by the issues we uncovered.

Acknowledgements We would like to thank the anonymous reviewers for their
insightful comments and suggestions, which helped to greatly improve the paper.

This work is supported by the Defense Advanced Research Projects Agency
(DARPA) under contract N6600121C4028 and Agreement No. HR.00112090028,
and the US Office of Naval Research (ONR) under grant N00014-17-1-2297.

References

1. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A binary analysis plat-
form. In: Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings. pp. 463–469 (2011)

2. Cole, E.: Static taint analysis of binary executables using architecture-neutral in-
termediate representation (2019)

3. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

4. Eagle, C., Nance, K.: The Ghidra Book: The Definitive Guide. no starch press
(2020)

5. G, S.S., Darki, A., Faloutsos, M., Abu-Ghazaleh, N.B., Sridharan, M.: Disco: Com-
bining disassemblers for improved performance. In: RAID ’21: 24th International
Symposium on Research in Attacks, Intrusions and Defenses, San Sebastian, Spain,
October 6-8, 2021. pp. 148–161 (2021)

6. Gennari, J.: Ghihorn: Path analysis in ghidra using smt
solvers. Carnegie Mellon University’s Software Engineering Insti-
tute Blog (Oct 18, 2021), http://insights.sei.cmu.edu/blog/
ghihorn-path-analysis-in-ghidra-using-smt-solvers/

7. Hex-Rays, S.: Ida pro disassembler (2022)
8. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program

analysis & transformation. In: 2nd IEEE / ACM International Symposium on
Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,
CA, USA. pp. 75–88 (2004)

9. National Security Agency: P-Code Reference Manual (sep 2019)
10. National Security Agency: Ghidra API help (2021)
11. org, R.: Radare2 (2022), https://github.com/radareorg/radare2
12. PNF Software: Jeb decompiler (2022), https://www.pnfsoftware.com
13. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,

Grosen, J., Feng, S., Hauser, C., Krügel, C., Vigna, G.: SOK: (state of) the art
of war: Offensive techniques in binary analysis. In: IEEE Symposium on Security
and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016. pp. 138–157. IEEE
Computer Society (2016)

14. Toor, T.: Decompilation of Binaries into LLVM IR for Automated Analysis. Mas-
ter’s thesis, University of Waterloo (2022)

http://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
http://insights.sei.cmu.edu/blog/ghihorn-path-analysis-in-ghidra-using-smt-solvers/
https://github.com/radareorg/radare2
https://www.pnfsoftware.com

	A Formal Semantics for P-Code

