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Abstract
The ability to quickly setup and tear down a virtual machine
is critical for today’s cloud elasticity, as well as in numer-
ous other scenarios: guest migration/consolidation, event-
driven invocation of micro-services, dynamically adaptive
unikernel-based applications, micro-reboots for security or
stability, etc.

In this paper, we focus on the process of setting up/free-
ing the hypervisor and host control layer data structures at
boot/destruction time, showing that it does not scale in cur-
rent virtualization solutions. In addition to the direct over-
head of long VM setup/destruction times, we demonstrate
by experimentation indirect costs on real world auto scal-
ing systems. Focusing on the popular Xen hypervisor, we
identify three critical issues hindering the scalability of the
boot and destruction processes: serialized boot, unscalable
interactions with the Xenstore at guest creation time, and
remote NUMA memory scrubbing at destruction time. For
each of these issues we present the design and implemen-
tation of a solution in the Xen infrastructure: parallel boot
with fine-grained locking, caching of Xenstore data, and lo-
cal NUMA scrubbing. We evaluate these solutions using
micro-benchmarks, macro-benchmarks, and on real world
traces. Results show that our work improves the current Xen
implementation by a significant factor, for example macro-
benchmarks indicate a speedup of more than 4X in loaded
scenarios.

Keywords Virtualization, Cloud Computing, Elasticity,
Scalability
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1. Introduction
One of the key characteristics of today’s cloud is that
hardware and software resources are provided on demand,
thereby rendering the resource pool a user can exploit elas-
tic [9]. Elasticity provides benefits to customers, who can
scale up and down their resource usage based on their
clients’ demands, while paying the provider in accordance
with their need. At the same time, providers also benefit from
elasticity as they can combine virtual resources of tenants
with dynamic usage patterns and consolidate them on the
same set of physical machines, while reducing, for example,
energy consumption, and thereby costs. Elasticity requires
VMs to continuously be booted, shut down, migrated, check-
pointed and restarted – all operations that strongly depend
on quick VM initialization and/or fast VM tear-down and
resource liberation. In addition, swiftly loading Virtual Ma-
chines (VMs) in the cloud is also critical in various scenar-
ios: event-driven invocation of micro-services, dynamically
adaptive unikernel-based applications, and micro-reboots for
security or stability, load balancing. etc. Unloading a VM is
highly important as well, because it can for example block
other VMs starving for resources on the same host.

This paper argues that the initialization and destruction
of VMs in the cloud must be efficient, not only because it
is becoming a central functionality, but also because these
operations are pure overhead that do not hold any value for
the provider and are usually not billed to the client [18, 39].
Moreover, it is common today to hear developers claiming
long application deployment times in the cloud; initialization
and destruction are contributing to such times [3, 35].

There are two types of initialization and destruction over-
heads that affect cloud elasticity. The first is direct overhead,
which deterministically elongates the initialization and de-
struction times, and has been studied in previous work [17,
29, 30]. The second is indirect overhead, which manifests
with variable waiting times in variable stages of the initial-
ization and destruction processes. This paper targets both
and demonstrates with experiments on a real world deploy-
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ment using the Amazon EC2 that indirect overhead nega-
tively impacts the efficiency of auto-scaling systems.

Various previous works focus on efficiently restoring the
VM memory state for checkpoint/restart [21, 25, 43, 44, 46].
We focus the process of setting up/freeing the hypervisor and
host control layer data structures at boot/destruction time,
involved in both checkpoint/restart of stateful VMs as well
as regular boot/halt of stateless, lightweight VMs such as
unikernels. We show that this process does not scale in cur-
rent virtualization solutions. In particular, we focus on the
popular Xen [14] hypervisor for the case of paravirtual-
ized guests, and we identify three critical issues hindering
the scalability of the boot and destruction process: serial-
ized boot forced by coarse-grained locking, non-scalable in-
teractions with the Xenstore, and remote NUMA memory
scrubbing overhead at destruction time. For each of these
issues we present the design and implementation of a solu-
tion in the Xen infrastructure: parallel boot with fine-grained
locking, caching of Xenstore data, and local NUMA scrub-
bing. We evaluate these solutions using micro-benchmarks,
macro-benchmarks, and real world traces. Results show that
our solution significantly improves the current Xen imple-
mentation: macro-benchmarks results show a speed-up of
more than 1.5 times on a lightly loaded system, to up to more
than 4 times when scaling the number of VMs in the system.

This paper makes the following contributions:

1. A demonstration of the indirect cost of VM creation/tear-
down on cloud elasticity using real world deployment on
EC2, motivating our work;

2. The identification of performance scalability bottlenecks
in the VM creation/tear-down process of the Xen hyper-
visor;

3. The implementation of a new open-source version of the
Xen hypervisor which makes the boot and shutdown of
VMs faster, more scalable, and more stable;

4. A full evaluation of the proposed solution with micro-
and macro-benchmarks as well as real-world traces.

Our version of Xen, as well as the sources of all experi-
ments presented here, are available online (in an anonymous
way): https://github.com/xenboot/xenboot.

Section 2 motivates this work by demonstrating the in-
direct cost of creation/destruction time on cloud elasticity.
Section 3 gives a brief background on Xen. Section 4 de-
scribes the scalability issues of VM initialization in Xen and
proposes a new design, while Section 5 presents a solution
to improve VM tear down. In Section 6 the proposed solu-
tions are evaluated. Section 7 overviews related work and
Section 8 concludes.

2. Motivation
This paper focuses on VM initialization and destruction
times, which may cause several cloud issues such as per-
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Figure 1. VM boot time measurement in Xen, KVM,
VMware and EC2: (top) lowest values, (middle) longest val-
ues, and (bottom) a zoom in Xen for 10 parallel boot.

formance unpredictability as shown in this section. For the
sake of brevity, we focus here on VM boot time only. Fig-
ure 1 shows the measurement of VM boot time in different
situations: different hypervisors (KVM [20], VMware [13],
Xen [14], and Amazon EC2 [5]) and varying the number of
VMs booted in parallel (1 to 10). The EC2 experiments have
been realized on the same m3 dedicated host (not shared
with other cloud tenants) using the m3.medium VM type.
The server used in our lab for the experiments is equipped
with 64 cores (Quad node Opteron 6376) and 128 GB of
memory. Figure 1-top and Figure 1-middle respectively
present for each experimental context the shortest and the
longest measured boot time (e.g., in Xen they are given by
min/max(time xl create vm1;time xl create vm2; ...)).
Figure 1-bottom presents the internal results of a specific
experiment (booting 10 VMs on Xen). Note that the same
behavior has been observed with other hypervisors. Several
observations can be made. First, the shortest boot time is
always the same regardless of the number of parallel boot
processes, while the longest boot time increases linearly.
Second, the hypervisor boots VMs sequentially, disregard-
ing the number of available processors. Therefore, if n boot
commands are sent to the hypervisor at the same time, n− 1
commands are delayed. They are said to be penalized in the
rest of the document.
Takeaway (C1): The boot time of a VM depends on the
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Figure 2. Number of simultaneous task creation orders
computed from one month Google traces.
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Figure 3. Congestion analysis on Google datacenter.

number of VMs that are actually booting, resulting in
a potentially long and variable boot time. This situation
is highly problematic in large-scale clouds (EC2, Microsoft
Azure [35], Google cloud engine [16]) which receive so
many VM creation requests that the same server can be
solicited at the same moment for booting several VMs.
The next paragraph demonstrates this situation by analyz-
ing Google data-center traces [34, 41]. The description of
these traces is presented in Section 6.

Figure 2 presents the number of task (and hence VM)
creation commands handled by a Google data-center during
one month. The high number of simultaneous commands re-
ceived by the data-center scheduler increases the probability
that the same compute node can be solicited to launch more
than one VM at the same moment. Figure 3-top shows for
each instant the number of compute nodes which received
more than one VM creation request at the same time. The
resulting total number of penalized requests is shown in Fig-
ure 3-middle. There are a significant number of penalized
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Figure 4. Variable boot time impact on EC2 auto-scaling,
see encircled zones.

requests (up to more than 120 requests). Figure 3-bottom
shows the number of requests (congestion) received by the
most solicited compute node. The congestion level can be
highly significant (up to more than 25 requests received by
a compute node), resulting in a longer boot time. It is also
variable, and knowing that VM creation commands initiated
by the same user can be scheduled on any compute node,
solicited with different intensity, a cloud user may observe a
variable VM boot time.

Takeaway (C2): According to the congestion on the
solicited compute node, a cloud user may observe long
and variable VM boot time for the same VM type. A
long boot time is problematic for applications which require
quick scale-up (e.g., Netflix [37], unikernels [6]), while vari-
able boot time could lead to unpredictable behavior. The
next paragraph illustrates the consequence of the latter on
the auto-scaling service of EC2 [2].

EC2, as well as other public clouds, offers the auto-
scaling service (noted EC2-AS) [2]: the capability to auto-
matically adjust the number of VMs of a user application
in accordance with its workload. The implementation of this
service follows the classical observe-decide-act feedback
loop. To achieve this task, the auto-scaling engine relies on
the user for configuring the feedback loop. The configura-
tion of the cool-down/warm-up period is a delicate task be-
cause it directly affects the behavior of the EC2-AS. In fact,
any further trigger-related scaling activity can only occur af-
ter this period. Indeed, its value should depend on VM boot
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time, which is variable as shown above. Therefore, the ques-
tion is: how can the user statically configure this param-
eter (as imposed by EC2) knowing that VM boot time
is variable? A wrong configuration could lead to an unpre-
dictable behavior as illustrated below. We run the following
experiment on a single dedicated EC2 host. We deployed a 2-
tier website receiving an increasingly demanding workload
(see Figure 4-top). We denote vweb a VM used as a web ap-
plication. The second tier of the web application is subject to
the EC2-AS. The cool-down period is set to one second and
the scale-up rate is one VM. We run in parallel a script which
increasingly initiates parallel VM creation requests. We de-
note a VM created by the script as vscript. Figure 4 presents
the results of this experiment. From Figure 4-middle we can
observe several unexpected behaviors of the EC2-AS, de-
noted by encircled zones. We explain these anomalies by fo-
cusing on the first encircle zone. The EC2-AS observed a
breach at time (a), resulting in the initiation of a VM cre-
ation request (denoted vweb a). Surprisingly, another VM
creation request (denoted vweb b) has been initiated at time
(b) whereas there is no burst between time (a) and time (b)
(see the submitted load). This unexpected behavior happens
because vweb a boot time was much greater than the cool-
down period, delaying the handling of the breach observed
at time ”a”. This long boot time comes from the congestion
that occurred at time (a) (see Figure 4-bottom). Takeaway
(C3): as reported by Netflix in [37] ”Auto scaling is a very
powerful tool, but it can also be a double-edged sword. With-
out the proper configuration and testing it can do more harm
than good.” In the specific case, a wrong configuration can
slow down VMs other than the target one.

2.1 Observations
In this section we motivated our work focusing on optimiz-
ing VM boot time. In this paper we are also interested in
VM stopping time, which a potential source of issues in the
cloud too, as it defines the time taken for freed resources to
be available again. We believe these metrics are critical to
the elasticity of the cloud. In summary, this paper tackles the
following issues:

• Variable boot/stopping time: hinders predictability and
indirectly impacts cloud elasticity, as shown above;

• Long boot/stopping time: directly impacts elasticity.

In addition to the impact on cloud elasticity, the VM setup
and destruction times are critical in numerous scenarios as
showed in past studies: checkpoint/restart of stateful VMs,
or regular boot/halt for stateless, lightweight VMs such as
unikernels. These must be as quick as possible when consol-
idating dynamic workloads [45], for example to save physi-
cal resources or energy consumption. It is also the case when
using real-time/bidding-based pricing systems [11, 42] such
as Amazon Spot Instances [1]. Moreover, VM creation/de-

Figure 5. Xen architecture.

struction must be swift in micro-reboot scenarios for fault
tolerance [21] or security purposes [12].

As previously mentioned, we focus on the process of
setting up or destroying the hypervisor and control layer data
structures needed for VM management, involved in both
regular boot/halt and checkpoint/restart processes. Very few
studies target this area, most of them focusing on optimizing
the process of reinstating the machine memory state [21, 25,
43, 44, 46] for checkpoint/restart. We show in greater details
in the next sections serious scalability issues in setting up
VM management metadata in the hypervisor and control
layer, taking Xen as a case study. We demonstrate that these
issues are stronger in the case of small VMs (unikernels),
for which their lightweight properties make that one wants
to have a lot of them running on a single host. We also design
and implement solutions to these scalability issues.

3. Background: Xen Hypervisor
3.1 General Overview
Xen [14] is a popular open-source Virtual Machine Moni-
tor (VMM), or hypervisor, which is widely adopted by sev-
eral cloud providers, such as Amazon EC2. It was initially
designed to support para-virtualization [40], a virtualization
technology in which the guest OS is slightly modified, also
supported by several other hypervisors such as VMware.
Xen is a type 1 hypervisor. In this model, the hypervisor
is directly situated atop the hardware, taking the traditional
place of the OS (see Figure 5). Thus, it has all the privi-
leges and rights to access the entire hardware. It provides
the capability of concurrently running several OSes in vir-
tual machines (VM). In para-virtualization, VMs’ OSes are
modified to be aware of the fact that they are virtualized, re-
ducing virtualization overheads. To this end, Xen provides a
hypercall framework that is used by VMs when dealing with
shared resources (e.g., new page table installation). Xen or-
ganizes VMs in two categories: the host OS (called dom0)
and the others (called domU). Contrary to the domU, dom0 is
a privileged VM, responsible for hosting both device drivers
and the Xen management toolstack (named xl). dom0 can be
seen as an extension of the hypervisor. This paper studies the
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scalability of Xen management tools, specially those which
are related to VM creation and destruction.

3.2 VM Initialization and Destruction
xl create is the command used in dom0 to initiate the cre-
ation of a VM. Its main execution steps are the following: (1)
Checking the consistency of the VM configuration parame-
ters (e.g. the existence of the VM file system). This step is
performed at the dom0 level. (2) Creating the VM manage-
ment data structures to make the VM manageable during its
lifetime. This step is performed both at the dom0 and hyper-
visor levels. (3) Allocating resources to the VM (e.g. mem-
ory pages are granted to the VM). This step is performed at
the hypervisor level. (4) Finally, executing the VM’s kernel/-
bootloader. The traditional boot process of an OS starts here.
This step is performed at the VM level.

For its part, the destruction of a VM is triggered using
either xl shutdown/destroy in dom0 or halt in the VM
itself. It follows the inverse path of the initialization process:
(1) VM’s operating system shutdown, performed at the VM
level. (2) VM resource freeing, performed at the hypervi-
sor level. (3) Freeing VM management data structures, per-
formed at both at the hypervisor and dom0 levels.

Intuitively, one can see that operations which are per-
formed at the VM level are out of the cloud provider’s
purview. Indeed, they depend on both the VM kernel (built
by its owner) and assigned resources (booked by its owner).
This paper focuses on the steps performed either at the hy-
pervisor or dom0 level.

4. Fast Parallel VM Setup
In Section 2 we saw that a VM boot time depends on the
number of simultaneous VM boot requests. Here we deeply
investigate and optimize VM boot process scalability.

4.1 Enabling Parallel Boot
4.1.1 Issue: Coarse-grained Locks
Figure 6 presents the key functions executed by the tool-
stack when creating a VM. First, the toolstack ensures that
the hypervisor has enough available memory for accommo-
dating the VM to be created, see freemem (line 6). Oth-
erwise, the toolstack may ask dom0’s balloon driver to
deflate in order to deliver additional free pages to the hy-
pervisor. The toolstack proceeds to the VM creation phase
(libxl domain create new) only if the hypervisor has
enough available pages. However, between memory vali-
dation (freemem) and the actual consumption of memory
pages (xc domain claim pages) there is an interval which
is subject to race conditions. Thereby, this section is pro-
tected by a huge lock (from acquire lock() at line 8 to
release lock() at line 26). Since the lock have to be
shared between multiple VM creation processes, the tech-
nical choice is a file lock (flock). This is the reason why
VMs start sequentially regardless of the number of proces-

1int main_create(int argc , char **argv)

2 create_domain (...)

3 ...

4 // parse the configuration file

5 libxl_read_file_contents (...);

6 ...

7 acquire lock(); // acquire the file lock

8 ...

9 // ensure that there is enough free ↘

memory

10 freemem (...);

11 | // the VM’s necessary memory

12 | libxl_domain_need_memory (& need_memkb);

13 | // hypercall to get free memory

14 | libxl_get_free_memory (& free_memkb);

15 | if (free_memkb >= need_memkb)

16 | return true;

17 | else ask dom0 to balloon

18 ...

19 // create the VM

20 libxl_domain_create_new (...);

21 | ...

22 | xc_domain_claim_pages (...);

23 | ...

24 release lock(); // end of critical section

25 ...

Figure 6. Key function calls during VM create.
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Figure 7. Figure 1-bottom presented in detail. The large
majority of the actual VM creation code does not scale at
all. (Notice that the value observed here are lower than those
presented in Figure 1-bottom because we now focus only on
operations performed at the hypervisor and dom0 levels.)

sors assigned to dom0. Figure 7 (the detailed version of
Figure 1-bottom) shows that the time spent by the boot pro-
cess waiting for the critical section increases linearly with
the number of parallel boot processes. This is not the case
for the other functions.

4.1.2 Solution: Fine-grained Locks
In a parallel boot, the vanilla Xen toolstack launches a pro-
cess per booting VM. As presented above, this setup encoun-
ters a huge critical section. The basic idea behind our solu-
tion consists of introducing a new VM creation command
(xl client create <conf file1> <conf file2>
...), which is able to start VMs in parallel. Figure 8 presents
the algorithm of our new parallel create command in pseudo-
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1int free_memkb;

2// master thread

3int main_parallel_create(int[] need_memkb){

4 libxl_get_free_memory (& free_memkb);

5 for (i=0; i<argc; i++)

6 spawn_thread (& worker_task , &need_memkb[i↘

]);

7 // wait for worker threads

8}

9// parallelizable code

10int worker_task(int need_memkb){

11 if (free_memkb >= need_memkb){

12 free_memkb -= need_memkb;

13 } else {

14 req_memkb = need_memkb - free_memkb;

15 balooned = baloon_dom0(req_memkb);

16 if (balooned){

17 free_memkb = 0;

18 } else

19 return ERROR;

20 }

21

22 created = libxl_domain_create_new (...);

23 if (! created){

24 free_memkb += need_memkb;

25 return ERROR;

26 }

27}

Figure 8. Our parallel create algorithm.

code. First, we replace independent processes with threads
sharing the same virtual address space. Subsequent to the
command execution, the OS creates a main thread we call
master. First, the master retrieves the available memory from
the hypervisor and stores it in a shared variable (line 4). All
write operations on this shared variable (line 12,17,24) are
protected by a mutex. We have removed the locking/unlock-
ing calls in the pseudo-code algorithm. Second, the master
launches a worker thread for each VM to start (line 6). For
simplicity, in Figure 8 we consider that the only important
information for VM creation is the required amount of mem-
ory. Each worker thread first verifies that there is enough
available memory for its VM (line 11). If so, it subtracts the
needed amount from the shared variable (line 12) and pro-
ceeds to the VM creation (line 22). Otherwise, the worker
thread asks dom0 to balloon and free some memory pages
(line 15). If the VM creation process fails, the worker thread
performs a rollback of the shared variable state. Notice that
in our solution, the VM creation code (line 22) is outside of
the critical section. In addition, we mention that our solution
does not interfere with the legacy toolstack commands.
Optimization. Even if the scalability of our solution is
clearly superior to the legacy creation toolstack (see Sec-
tion 6.2.1), we still observed several limitations. First, the
solution presented above needs another module at the cloud
scheduler level (the component which handles cloud user
requests). Indeed, the cloud scheduler should buffer for
each compute node a set of VM creation requests (occur-
ring within a configured time frame) in order to be able

to initiate the parallel create command. Second, a group of
requests have to wait for the complete execution of the previ-
ous group. Thus, if the buffered time frame is too small, we
may fall into the same scalability problem as the legacy tool-
stack. Third, an important percentage of the creation process
time is consumed in context validation and other operations
that are orthogonal to the actual VM creation process. An
example of such operation is the available memory verifi-
cation (presented in Figure 8). The available memory can
be retrieved after the hypervisor is booted, and stored in a
shared variable. This variable could be maintained consis-
tent with the real physical memory state and, therefore, we
could avoid the cost of unnecessary hypercalls. That being
said, the improved architectural step that we have imple-
mented is to transform the xl toolstack into a daemon that
listens for commands on a socket. During the daemon’s de-
sign process, we have tried to identify all the elements which
are independent of the actual VM creation. Thus, the context
is prepared and warmed up when the daemon is launched.
When a command is received on the socket, the daemon will
spawn a worker thread to execute the command. We try to
minimize the operation set executed by a worker thread. This
architecture will further speed-up the VM creation process.
The cut out of the huge file lock uncovered another scalabil-
ity problem related to the Xenstore. The next section covers
this aspect in more detail.

4.2 Scaling Interactions with the Xenstore
4.2.1 Issue: Xenstore Scalability when Increasing the

Number of Domains
The Xenstore is a key-value store running as a daemon server
in dom0. It is part of the Xen toolstack, and its goal is to
store general information about the environment such as VM
state, names, etc. It is extensively used during the VM create
process to set up the hypervisor and dom0 data structures
in preparation for the guest execution. We observed that the
Xenstore becomes a serious bottleneck during VM creation
when scaling the number of VMs running in the system. This
is motivated by scenarios with hundreds of VMs running, as
in the case with lightweight unikernel-based applications.

We measured the execution time of booting a unikernel
based on Mini-OS [31] with 1 VCPU, executing an idle
loop, while varying the number of unikernels running in
the background. The background unikernels also execute an
idle loop to avoid disturbance, and they are not scheduled
on dom0 CPUs. To this end, we manually instrumented
the Xenstore with a lightweight profiling infrastructure (as
tools such as perf [38] and Oprofile [26] are inaccurate and
limited with Xen [36]) to measure the time spent in the
Xenstore. Profiling results are presented in Figure 9. On the
top, one can notice the increase of xl create execution
time with the number of running guests. Moreover, while
for a few number of background VMs the time spent in the
Xenstore is small (for example 23% for 2 VMs), it becomes
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Figure 9. Time spent during VM creation in Xenstore (top)
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Figure 10. Evolution of the number of Xenstore calls (top)
and average function execution time (bottom) while booting
one VM according to the number of running VMs.

extremely large when increasing the number of background
guests (96% with 512 guests). On the bottom of Figure 9 we
present a per-Xenstore-function breakdown of that overhead.
One can note that starting from 64 background VMs, more
than 50% of the overhead is due to only two functions:
xs read and xs get domain path. These two functions
represent up to 91% of the overhead with 512 VMs, so our
solution will focus on them. Overall, we found that booting
one unikernel takes 232 ms when no other guests run in the
background, 500 ms with 128 background guests, and up
to 4 seconds with 512 background guests. Latencies over a
second are unacceptable in many scenarios.

To analyze in detail the overhead due to the previously
mentioned functions, Figure 10 presents the evolution of the
number of calls and average execution time of each function
while booting a single VM and varying the number of back-
ground guests. One can notice that both metrics increase lin-
early with the number of background VMs. In conclusion,
the higher the number of VMs running in the system, the
more Xenstore calls are made, and the longer they are. Our
solution design is based on this observation. Note that there
exists an alternative Xenstore version to the one we bench-
marked (written in C), that is written in Ocaml [15]. We
reproduced our experiments on this version and obtained a
similar behavior: while the Ocaml Xenstore is slightly faster
(7%) with few background VMs, it is actually slower than
the C Xenstore when increasing that number (51% slower
with 512 VMs).

4.2.2 Solution: Xenstore Data Caching
Tracking the cause of the overhead due to the Xenstore
functions leads to two findings:

1. The increase in Xenstore calls’ execution time with the
number of running VMs is due to the following: with the
default toolstack behavior, for each running VM there is a
process running in Dom0 maintaining a connection to the
Xenstore until the death of the domain. The performance
of the Xenstore daemon decreases with the number of
current connections due to the way the Xenstore server
event loop is written;

2. The increase in terms of number of calls to xs read and
xs get domain path is due to the fact that during the
xl VM creation process, Xenstore calls are made in loops
iterating over the currently running domains.

The solution to the first issue is simple - disabling the
per-VM background process as we do in the parallel boot
solution presented above (Section 4.1.2). This feature is al-
ready supported by Xen, although not enabled by default.
Thus, we focus on providing a solution to the second is-
sue: the increase in the number of calls to xs read and
xs get domain path, made inside loops.

Analyzing the xl code related to the creation of a VM
indicates that most of the calls to these functions are made
into two for loops iterating over each currently running do-
main. One loop is calling xs read to check the uniqueness
of the created VM name. Another loop is calling xs read

and xs get domain path, checking for each currently run-
ning domain whether it is a stub domain (a special type
of VM used in Xen to offload Dom0 functionalities [24]).
These findings explain why in Figure 10 the number of
calls to xs read is roughly 1000 and the number of calls
to xs get domain path is roughly 500 when there are 500
VMs running in the background.

To speed up the execution of xl create, we store the
information required by the two loops in an in-RAM cache.
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The cache simply consists of a tail queue where each ele-
ment of the queue is a data structure containing the domain
id, name, and a boolean value indicating whether the do-
main is a stub domain or not. We then replace the calls to
libxl domid to name and libxl is stubdom with calls
to the cache look-up functions. The cache is populated lazily,
so if the required information is not present in the cache, we
make use of the default functions (libxl domid to name

and libxl is stubdom) to retrieve the information from
the Xenstore, and then add it to the cache. We also ensure
that the cache content is appropriately updated when a do-
main is renamed or destroyed.

5. Quick Domain Destruction
As mentioned in Section 2, we also investigate the VM
destruction process.

5.1 Issue: Remote Scrubbing by Dom0 CPUs
Cache-coherent Non-Uniform Memory Access (cc-NUMA)
enabled machines are composed of nodes, each node con-
taining compute units (cores) and some memory. Cc-NUMA
provides a unified view of the entire system to the OS / hy-
pervisor, in particular concerning the memory. However, in
NUMA systems there is a variable cost for memory access,
depending on the distance between the core and the accessed
memory. NUMA machines are supported by the Xen hyper-
visor and a lot of work has been done or is currently ongo-
ing in the Xen community to solve the challenges related
to NUMA [7, 8, 19, 33]. Key aspects include forwarding
NUMA information to the guest, scheduling guest VCPU
on the same NUMA node as the data they access, and allo-
cating VM memory on the same NUMA node. We identified
a scalability issue for Xen related to remote NUMA node
accesses in the VM destruction process.

When a VM is destroyed, the hypervisor needs to fill
its previously allocated memory with zeroes. This process,
called scrubbing, is done for security reasons: without it, the
fact that this memory may be later reallocated to another VM
would result in information leakage. The issue we identified
is the following: scrubbing is performed by the hypervisor
upon receiving a domain destroy command (hypercall) from
dom0. It is executed on the PCPU which is currently exe-
cuting the dom0’s VCPU from which the hypercall is origi-
nating. In the case where the memory of the VM being de-
stroyed is present on a remote node, scrubbing is slow due
to remote access. This case is very probable when consid-
ering large scale machines with a high number of NUMA
nodes. To illustrate this issue, we ran several experiments
with vanilla Xen on a machine with 64 cores and 128 GB
of RAM, divided into 8 NUMA nodes of 16 GB each. We
first validated the fact that destroy time can represent a sig-
nificant bottleneck due to scrubbing. We used a minimalist
Mini-OS based unikernel with one VCPU executing an idle
loop, varying the VM allocated memory from 32 MB to 16
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Figure 11. Remote scrubbing on NUMA machines.

GB, and compared the boot and destroy execution times. We
forced the memory to be allocated on the same NUMA node
as dom0 to exclude any interference from the previously de-
scribed issue. The results of the experiment show that when
the amount of allocated memory is very small (less than 128
MB), the destruction process is faster than the creation: 3x,
2.1x and 1.4x for 32 MB, 64 MB and 128 MB respectively.
However, when going above 128 MB the destruction time is
significantly longer than the creation time: 2.13x, 9.5x and
16.2x for 512 MB, 4 GB and 1 GB respectively. We con-
firmed the fact that scrubbing was responsible for the long
destruction time by disabling it and observing the time be-
ing reduced by 80% for a VM with 10 GB of memory. The
destruction time itself can be significant, reaching 5.34 sec-
onds for 16 GB. The performance loss combined with the
significant variability in the destruction execution time are
strong motivations to optimize that process.

To validate the remote NUMA scrubbing problem, we
measured the destruction time of the previously presented
Mini-OS based VM, while allocating 32 MB to 16 GB mem-
ory and forcing this memory to be allocated on a given
NUMA node. This was done by pinning the unique VM
VCPU to a PCPU belonging to the related NUMA node,
knowing that Xen will allocate the memory on that node.
The results of this experiment are presented in Figure 11,
presenting the VM destruction execution times according to
the NUMA node the VM memory is allocated on. The results
are normalized to the performance obtained when allocating
the VM memory on the same NUMA node as dom0 (node0).
One can clearly see that the issue is confirmed, showing a in-
crease in the execution time of around 10% for nodes 4 to 7,
20% for node 2, and up to 85% for node 3 (on that node, the
destruction time represents more than 10 seconds).

5.2 Solution: Delegated Local Scrubbing
A naı̈ve solution would be to give to dom0 one VCPU per
NUMA node. However, this solution exhibits multiple draw-
backs. First, this is not natively supported by Xen and would
require a lot of re-engineering as currently Xen only sup-
ports giving n pinned VCPUs to dom0 starting from PCPU
0 up to PCPU n. Second, spreading dom0 VCPUs on each
NUMA node would probably lead to a strong performance
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degradation due to the more frequent NUMA remote mem-
ory accesses for dom0’s own memory, which would lead to
a global performance loss for the entire virtualized environ-
ment due to the critical nature of dom0.

We chose to modify the scrubbing process performed
in the hypervisor. A high level view of our approach is
illustrated in Figure 12: the regular Xen implementation
is depicted by point (A) while our solution is marked by
point (B). In our solution, the dom0 CPU receiving the
destruction order sends an Inter-Process-Interrupt (IPI) to
one of the CPUs on the relevant NUMA node (B), that
performs the actual scrubbing. More precisely, we delib-
erately choose one of the CPUs used by the destructed
domU in order not to disturb the execution of the other
VMs. In that way, we delegate the scrubbing process to a
CPU local to the related NUMA node. Concerning the im-
plementation, we removed at destruction time the calls to
the scrubbing function, scrub one page, and add a pointer
to the structure representing the page to scrub (struct
page info) to a linked list. The scrubbing function is called
by free domheap pages, still executed by the dom0 CPU
in our solution. When the list size reaches a certain value, the
IPI is sent to one of the CPUs of the destructed VM. In the
IPI handler, that CPU actually scrubs the pages and removes
them from the list. In the meantime, the dom0 CPU spins on
a condition that is the list being empty, and returns back to
executing the destruction process when the scrubbing CPU is
done. One can configure the threshold size of the list leading
to the scrubbing process invocation. Obviously, triggering
it each time there is a page to scrub hurts the performance
because of the IPI overhead. We settled on a threshold value
of 128 pages as we did not notice any improvement while in-
creasing this value further. At the end of the VM destruction
process, any page left in the list is scrubbed synchronously
with the destroy process before it finishes. We deliberately
chose to perform the scrubbing synchronously with the de-
struction process. Having it happen in the background, for
example using idle CPU cycles, would speed up the destruc-
tion process itself. However as the amount of spare CPU
cycles is difficult to estimate, this would lead to a lot of un-

certainty about the time at which the memory will actually
be available for other VMs to use [27].

6. Performance Evaluation
In this section we describe the performance evaluation pro-
cess we adopted to demonstrate the benefits brought by our
solution over a regular Xen implementation. We first real-
ized a per-feature evaluation (Section 6.2) and an evaluation
of the full system containing all contributions (Section 6.3).
Theses evaluations are based on ad-hoc micro-benchmarks.
Last but not least a large scale evaluation of the full system
is presented in Section 6.4. This evaluation relies on both a
reference macro-benchmark and Google datacenter traces.

6.1 Hardware and Software Platform
We used a server-class machine containing a quad AMD
Opteron Processor 6376 CPU with 16 ∗ 4 = 64 cores. The
server is equipped with 128 GB of RAM. The platform
is composed of 8 NUMA nodes, each containing 8 cores
(half a chip) and 16 GB of RAM. On the software side,
we implemented our solution in Xen 4.7, more precisely
the tag RELEASE-4.7.0 on the Xen official git repository.
dom0 is set up with 4 VCPUS pinned on PCPUs 0-3, and is
configured with 4 GB of memory. Guest VMs use PCPUs 4
to 63. Unless otherwise specified, each VM runs a unikernel
based on Mini-OS executing an idle loop. It is configured
with a single VCPU and 32 MB of memory (the minimum
amount of memory needed by Mini-OS).

6.2 Per-Feature evaluation
6.2.1 Parallel Boot
For this experiment we have created VMs executing a virtu-
alized Ubuntu 16.04LTS. Fig. 13 presents the duration when
VMs are created using (1) regular Xen, (2) our parallel so-
lution and (3) our optimized daemon. First, we may observe
that even for a single VM, our daemon is capable of creating
a VM faster than the legacy toolstack. As we explained in
section 4, this is due to the fact that most of the initializa-
tion and context verification are already done when the first
creation request arrives. Second, we notice that our solution
shows a better scalability even for reduced order parallel re-
quests. This is down to the fact that we have replaced the
huge file lock with fine grained locks. These improvements
lead to an increased parallelization.

6.2.2 Xenstore Data Caching
To evaluate the Xenstore cache, we measured the execution
time to create a single VM in a system with a variable num-
ber of currently running VMs. We also measured the impact
of disabling the background process (called daemon in this
section) attached to each running VM because it impacts the
Xenstore scalability (as explained in section 4.2), and be-
cause it allows us to isolate the performance gains due to the
cache itself. Moreover, we profiled the reduction in number
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of calls to xs read and xs get domain path thanks to the
cache. The evaluation results are presented in Figure 15. At
the top, the execution time of creating one VM with the regu-
lar xl implementation is compared to the two optimizations:
daemon disabled without the Xenstore cache, and daemon
disabled with the cache. At the bottom we present the per-
centage of time saved by enabling each optimization com-
pared to no optimization. One can observe that for low num-
ber of running VMs (under 64), the cache does not help
much as the number of calls to the Xenstore stays low, while
disabling the daemon yields a 10% to 20% performance
gain. With a high number of running VMs, the impact of
the cache is significant. For example, in addition to the gains
brought by disabling the daemon, the cache reduces the la-
tency by 32% / 46% for 256 / 512 VMs running. This yields
very fast create time even in the presence of numerous run-
ning VMs, for example 0.23s with 256 guests, and 0.30s with
512 guests. We further investigated the number of calls made
to the Xenstore and confirmed that the cache makes it con-
stant, irrespective of the number of running VMs: when cre-
ating one VM, 8 calls to xs get domain path and 12 calls
to xs read are made, in a total of 117 calls to the Xenstore.
This is a 93% reduction compared to the regular Xen imple-
mentation.

We also observed that the cache brought significant sav-
ings in VM destruction time, as the Xenstore is also involved
in that process. We noted 33% of reduction in VM destruc-
tion time with 128 or 256 VMs running, and 47% of reduc-
tion with 512 VMs running, in addition to the gains brought
by disabling the daemon.
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Figure 15. Xenstore cache impact on VM creation time
(top) and percentage of create time saved by the cache /
disabling xl daemon (bottom)

6.2.3 Delegated Local NUMA Scrubbing
To evaluate the benefits brought by the delegated NUMA
scrubbing implementation, we measured the execution time
of xl destroy for one VM and varied the NUMA node
containing its memory. We also varied the memory allocated
to the VM from 32 MB to 16 GB (size of a NUMA node).
The results of this experiment are presented in Table 1. It
presents the VM destruction time for each point in the ex-
periment space normalized to the time for destroying the VM
with the regular Xen scrubbing implementation on NUMA
node 0, which is local to dom0 CPUs (seen as the ideal case).
X is the regular scrubbing implementation, and D is our del-
egated scrubbing solution. One can see that without the del-
egated scrubbing, the VM destruction time is significantly
longer when executed on a remote NUMA node (node 1-7),
on average by 21%. This is especially true on node 3 where
the performance loss can be up to 91%. This value is also
highly variable: the standard deviation of the performance
loss being 24%, leading to non deterministic VM destruc-
tion times. Concerning the delegated scrubbing solution, the
performance loss is negligible: it takes a maximum value of
3% on node 0 due to the IPI overhead. When considering
the entire set of results, the average overhead compared to
the ideal case is 2.4%, and the standard deviation is 0.8%. A
more detailed view of the results for a VM with 16 GB of
RAM is presented in Figure 16, where one can observe the
performance gains on remote nodes as well as the stability of
the solution. These results show that our delegated scrubbing
solution brings benefits in terms of (1) reduced and (2) stable
and deterministic execution time for Xen’s VMs destruction
process.

6.3 Putting it all Together
To evaluate our system with all the optimizations (parallel
boot, Xenstore cache, NUMA scrubbing) switched on, we
measured the total execution time of booting and destroying
512 VMs, comparing our system with a vanilla Xen setup.
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0
X 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D 1.01 1.03 1.02 1.01 1.03 1.02 1.02 1.03 1.02 1.02

1
X 1.01 1.04 1.03 1.03 1.04 1.03 1.03 1.03 1.03 1.01

D 1.01 1.03 1.02 1.02 1.02 1.03 1.02 1.03 1.03 1.00

2
X 1.13 1.18 1.21 1.24 1.27 1.28 1.9 1.30 1.30 1.27

D 1.02 1.02 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.01

3
X 1.38 1.52 1.65 1.75 1.83 1.86 1.89 1.90 1.91 1.87

D 1.03 1.02 1.03 1.02 1.02 1.02 1.03 1.02 1.03 1.01

4
X 1.05 1.05 1.07 1.08 1.09 1.09 1.09 1.10 1.10 1.08

D 1.01 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.01

5
X 1.08 1.11 1.12 1.14 1.15 1.16 1.17 1.18 1.18 1.16

D 1.03 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.01

6
X 1.05 1.08 1.09 1.08 1.09 1.09 1.10 1.10 1.10 1.08

D 1.01 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.01

7
X 1.10 1.14 1.14 1.16 1.17 1.18 1.18 1.20 1.20 1.16

D 1.01 1.03 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.06

Table 1. Domain destruction time normalized to the ideal,
local scrubbing case. X is the Xen regular scrubbing imple-
mentation, and D is our delegated scrubbing solution.
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Figure 16. xl destroy execution time of a VM with 16
GB of memory, with the regular scrubbing implementation
and our optimization

Regular Xen took 13 minutes 57 seconds to boot the VMs,
and 1 minute 45 seconds for the destruction. Our system
booted the VMs in 1 minute 51 seconds, and destroyed them
all in 42 seconds, which is an 87% and 40% performance
improvement for creation and destruction, respectively.

6.4 Real World Benchmarks
6.4.1 NPB Benchmark
We built a Mini-OS guest implementing the serial Integer
Sort benchmark from the NAS Parallel Benchmark (NPB)
suite [10]. We used the classes A and B, representing respec-
tively small and medium data sets, in order to represent rel-
atively short-lived, computation intensive jobs: a single exe-
cution of each class in a unikernel takes 5.08s (class A) and
17.57s (class B) in a regular Xen implementation, boot and
destruction time included. This choice of short-lived jobs is

NPB IS Class A B

Number of background ilde VMs 0 128 256 0 128 256

Vanilla Xen Jobs per minute 87.8 81.2 24.4 23.8 19.6 22.0

Optimized Xen Jobs per minute 136 128.8 117.8 31.2 29.6 29.8

Table 2. Jobs per minute for NPB classes A and B

deliberate, as it allows stressing the boot/destruction process.
For each class, we create, as fast as possible, VMs running
the benchmark during a five minute period, check the num-
ber of successfully finished benchmarks at the end of this pe-
riod, and compute the number of jobs (i.e. executions of one
benchmark) per minute. We compare our system to a regu-
lar Xen implementation. Each experiment is also relaunched
with 128 and 256 idle unikernels running in the background.
VMs are pinned in a round robin way on PCPUs. Note that
because of the short runtime of the benchmark, our 64 cores
platform is never saturated (at any given time there are no
more than 64 active unikernels). The results of this exper-
iment are presented in Table 2. Concerning class A, with
no VM present in the background, our system yields a 54%
performance improvement, mostly due to the parallel boot
with fine-grained locking. When increasing the number of
background VMs, the creation process is accelerated by up
to 4.8x with 256 background VMs thanks to the Xenstore
cache. While regular Xen takes an important performance
hit with 256 background VMs, a small loss can also be ob-
served on our system (14%), which is due to the xl daemon
being activated (see Section 4.2.2) as it provides a practical
way to automatically destroy a guest when the benchmark
returns. Note that the comparison is still fair as the daemon
is activated for both vanilla Xen and our system.

For class B, our system yields a 31% performance im-
provement. The performance loss observed from switching
to this class is related to the amount of memory needed for
the VM (512 vs 256 MB for A), imposing a longer boot time
for both our system and vanilla Xen. As a consequence, the
number of VM creations in a 5 minute time frame is consid-
erably smaller, lowering the gains brought from the parallel
boot. About the Xenstore cache, one can observe few differ-
ences from increasing the number of background VMs. We
then conclude that the number of VM creation is too few in
the case of class B to benefit from the cache.

6.4.2 Google Traces
We have also evaluated our solution with Google datacenter
traces [34] analyzed in Section 2. They represent the exe-
cution of thousands of jobs monitored during 29 days. Each
job is composed of several tasks and every task runs within
a container. The total number of compute nodes involved in
these traces is 12583. The traces contain, among other infor-
mation, for each task the amount of resources allocated to its
container, its hosted machine, its start time and termination
time. Using a Hadoop cluster we were able to extract curves
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Figure 17. Comparison of our solution with vanilla Xen on
Google datacenter traces presented in Figure 3-left-bottom.

presented in this section and also Section 2. This section
evaluates the benefits of our system over the regular Xen im-
plementation using these traces. To this end, we focus on all
situations where a compute node of the datacenter receives
more than one task creation order at the same time (see the
two leftmost curves in Figure 3). We evaluated the boot time
of each VM resulting in these situations. This evaluation has
been performed by simulation as follows: relying on micro-
benchmark results, we built two accurate boot time estima-
tion functions representing respectively the regular Xen im-
plementation and our solution. Figure 17 shows both the cu-
mulative distribution function (CDF) and the violin repre-
sentation of the boot time of each evaluated system. We can
see that with our solution, almost all VMs boot within one
second while it is the inverse in regular Xen. Further, the
maximum boot time in regular Xen is about 4x of the maxi-
mum boot time obtained with our solution. The small gap we
can observe between the minimum and the maximum boot
times in our solution demonstrates its stability, important for
predictability. This is not the case in the regular Xen imple-
mentation.

7. Related Work
As VM creation time is a critical metric in the elasticity of
cloud-based systems, a fair amount of work has been done
in studying and optimizing that process.

Several studies perform an analysis of VM startup (and
destruction) time [17, 29, 30]. The numbers presented in
these papers are consistent with our observation made in
Section 2 and Section 4: in particular, concerning a VM boot
time, the authors note that (1) the average as well as the vari-
ance increases with the number of concurrent VM boot re-
quests and (2) requesting to boot an additional instance in
an environment with already running VMs is significantly
more costly than the average cost of an initial deployment in
an empty environment. These studies focus on VM boot/de-

struction based on very high level parameters such as the
time of day, instance type, VM image size, etc. The observa-
tions are also high level, providing few explanations for the
observed results. We believe our detailed analysis presented
in Section 4 can shed some light on the behavior observed in
these papers.

Multiple papers focus on optimizing the VM creation
time, for both regular [21, 22, 25, 43, 44, 46] and lightweight
VMs [28, 32, 45]. With regular and stateful VMs, fast in-
stantiation is achieved by cloning an existing VM or load-
ing a previously made VM snapshot, using a checkpoint-
restart system. In these cases, studies focus on optimizing
the bottleneck that is reinstating the VM memory state,
which can take tens of seconds even for small working
sets [23]. This can be achieved by lazy/on-demand loading
mechanisms [21, 25] combined with memory access pre-
dictions [43, 46] or heuristics-based pre-fetching [44]. We
believe our work is complementary to these studies, and can
bring further gains as we focus on other sources of overhead.

Concerning lightweight VMs, while [45] also relies on
checkpoint-restart (for containers through CRIU [4]), in [28]
the authors present a work that is relatively similar to ours,
optimizing Xen VM creation time for unikernels. Optimiza-
tions include parallel device attachment, as well as Xen-
store transactions parallelization. Once again, we believe our
work is complementary: while in [28] an optimized Xenstore
model is developed, we do not modify this software but re-
duce its usage through a cache. Moreover, contrary to our
work, this paper as well as most of the work optimizing VM
creation time do not consider situations where multiple VMs
must be setup in a small time frame, or scenarios involving
significant amounts of VMs running on a single host.

Finally, related to our scrubbing optimization, a patch [27]
was proposed on Xen development mailing list allowing to
delay the scrubbing process and perform it during idle CPU
cycles. Contrary to our solution in which scrubbing is done
synchronously with VM destruction, [27] has the drawback
of letting a completely arbitrary amount of time be spent
before the memory is available again, introducing a lot of
non-determinism.

8. Conclusion
Long VM creation/tear-down times directly hinder cloud
elasticity. In this paper, we also demonstrate that non-
deterministic VM creation/tear-down overheads have an in-
direct impact by disturbing auto-scaling systems. Focusing
on the popular Xen hypervisor, we identified three issues
impeding the scalability of the current VM creation/destruc-
tion process: serialized boot forced by coarse-grained lock-
ing, non-scalable interactions with the Xenstore, and remote
NUMA memory scrubbing. For each of these issues we de-
signed and implemented a solution within the Xen hyper-
visor and toolstack: parallel boot with fine-grained locking,
Xenstore data caching, and local NUMA scrubbing. Eval-

12 2017/1/31



uation using micro and macro-benchmarks as well as real
world traces show a substantial performance improvement
over vanilla Xen, up to 4x for macro-benchmarks in a loaded
system.

The enhanced Xen version source code, as well as the
scripts for all experiments presented in this paper, are made
available online (in an anonymous way to satisfy the dou-
ble blind review process) here: https://github.com/

xenboot/xenboot.
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