A Binary-Compatible Unikernel

Pierre Olivier
Virginia Tech, USA
polivier@vt.edu

Changwoo Min
Virginia Tech, USA
changwoo@vt.edu

Abstract

Unikernels are minimal single-purpose virtual machines.
They are highly popular in the research domain due to the
benefits they provide. A barrier to their widespread adoption
is the difficulty/impossibility to port existing applications
to current unikernels. HermiTux is the first unikernel pro-
viding binary-compatibility with Linux applications. It is
composed of a hypervisor and lightweight kernel layer emu-
lating OS interfaces at load- and runtime in accordance with
the Linux ABIL HermiTux relieves application developers
from the burden of porting software, while providing uniker-
nel benefits such as security through hardware-assisted vir-
tualized isolation, swift boot time, and low disk/memory
footprint. Fast system calls and kernel modularity are en-
abled through binary rewriting and analysis techniques,
as well as shared library substitution. Compared to other
unikernels, HermiTux boots faster and has a lower mem-
ory/disk footprint. We demonstrate that over a range of
native C/C++/Fortran/Python Linux applications, HermiTux
performs similarly to Linux in most cases: its performance
overhead averages 3% in memory- and compute-bound sce-
narios.

CCS Concepts -+ Software and its engineering — Vir-
tual machines; Operating systems.

Keywords Unikernels, Linux Kernel, Binary Compatibility.
Virtualization, Operating Systems

ACM Reference Format:

Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Bi-
noy Ravindran. 2019. A Binary-Compatible Unikernel. In Proceed-
ings of the 15th ACM SIGPLAN/SIGOPS International Conference

“This work was done while Daniel Chiba was at Virginia Tech.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

VEE 19, April 13-14, 2019, Providence, RI, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6020-3/19/04...$15.00
https://doi.org/10.1145/3313808.3313817

Daniel Chiba*

Qualcomm Technologies Inc., USA
danchiba@vt.edu

Stefan Lankes
RWTH Aachen University, Germany
slankes@eonerc.rwth-aachen.de

Binoy Ravindran
Virginia Tech, USA
binoy@vt.edu

on Virtual Execution Environments (VEE ’19), April 13—-14, 2019,
Providence, RI, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3313808.3313817

1 Introduction

Unikernels have become popular in academic research, in the
form of a virtualized LibOS model bringing numerous bene-
fits: increased security, performance improvements, isolation,
cost reduction, ease of deployment, etc. Their potential ap-
plication domains are plentiful: cloud- and edge-deployed
micro-services/SaaS/FaaS-based software [8, 29, 30, 41, 63],
server applications [30, 39, 40, 63, 80], NFV [14, 40-42],
IoT [14, 16], HPC [31], efficient VM introspection/malware
analysis [79], and regular desktop applications [56, 68]. While
they are presented as a secure and attractive alternative to
containers [41, 55, 78], unikernels still struggle to gain sig-
nificant traction in industry and their adoption rate is quite
slow [41, 71]. One of the major reasons is the difficulty, and
sometimes impossibility, of porting legacy/existing applica-
tions to current unikernel models [7, 21, 40, 41, 51, 59, 61, 71].

In situations such as the use of compiled proprietary code,
the unavailability of an application’s sources makes it im-
possible for a user to port and run it using any of the exist-
ing unikernel models. Such binaries are generally stripped
and obfuscated, thus disassembling and re-linking with a
unikernel layer is not suitable. Even when sources are avail-
able, considering unikernel models supporting legacy pro-
gramming languages (C/C++) [8, 24, 28, 31, 42], porting a
medium/large-sized or complex codebase can still be diffi-
cult [7, 21, 40, 41, 51, 59, 61, 71]. This is due to factors such
as incompatible/missing libraries/features, complex build in-
frastructures, lack of developer tools (debuggers/profilers),
and unsupported languages. Porting complexity is further
increased as that process requires expertise in both the appli-
cation and the considered unikernel model [71]. Because it is
currently the burden of the application programmer [59], we
believe that this significant porting effort is one of the biggest
roadblocks preventing wide-spread adoption of unikernels.

The solution we propose is a unikernel that offers binary
compatibility for regular (i.e. Linux) applications, while keep-
ing classical unikernel benefits. It allows the development
effort to be focused on the unikernel layer. In this context, we
present a prototype named HermiTux, an extension of the

https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3313808.3313817

VEE 19, April 13-14, 2019, Providence, RI, USA

HermitCore [31] unikernel, which is able to run native (no
recompilation/relinking) Linux executables as unikernels. By
providing this infrastructure, HermiTux transforms the port-
ing effort from the application programmer into a supporting
effort from the unikernel layer developer. In this model, not
only can unikernel benefits be obtained transparently for
native Linux applications, but furthermore it is now possible
to run previously un-portable applications such as propri-
etary software. With HermiTux, the effort to port and run a
legacy application as a unikernel is non-existent, even when
its sources are unavailable. HermiTux supports statically and
dynamically linked executables, is compatible with multi-
ple languages (C/C++/Fortran/Python), compilers (GCC and
LLVM), full optimizations (-03), and stripped/obfuscated
binaries. It supports multithreading and Symmetric Multi-
Processors (SMP), checkpoint/restart and migration. Finally,
HermiTux offers intuitive debugging and profiling tools. We
demonstrate HermiTux on a set of native Linux applications
on the x86-64 architecture. Their performance running in
HermiTux is mostly similar to a Linux execution.

The first challenge HermiTux tackles is how to provide
binary compatibility? To that end, HermiTux sets up the exe-
cution environment and emulates OS interfaces at runtime in
accordance with Linux’s Application Binary Interface (ABI).
A custom hypervisor-based ELF loader is used to run a Linux
binary alongside a minimal kernel in a single address space
Virtual Machine (VM). System calls made by the program are
redirected to the implementations the unikernel provides. A
second challenge HermiTux faces is how to maintain uniker-
nel benefits while providing such binary compatibility? Some
come naturally (small disk/memory footprints, virtualization-
enforced isolation), while others (fast system calls and kernel
modularity) pose technical challenges when assuming no
access to sources. To enable such benefits, HermiTux uses
binary rewriting and analysis techniques for static executa-
bles, and substitutes at runtime a unikernel-aware C library
for dynamically linked executables. Finally, HermiTux is op-
timized for low disk/memory footprint and attack surface,
which are as low as or lower than existing unikernel models.

The contributions presented in this paper are: (1) a new
unikernel model designed to execute native Linux executa-
bles while maintaining the classical unikernel benefits; (2) a
prototype implementation of that model; (3) an evaluation of
this prototype comparing its performance to Linux, contain-
ers, and other unikernel models (OSv [28] and Rump [24]).

In this paper, we give some background and motivation
in Section 2. In Section 3, we present the design of Hermi-
Tux, then give implementation details in Section 4. A per-
formance evaluation is presented in Section 5. We present
related works in Section 6, before concluding in Section 7.

P. Olivier, D. Chiba, S. Lankes, C. Min and B. Ravindran

2 Background and Motivation

Unikernels & Applications Port. A unikernel [40] is an
application statically compiled with the necessary libraries
and a thin OS layer into a binary able to be executed as
a virtualized guest on top of a hypervisor. Unikernels are
qualified as: (A) single purpose: a unikernel contains only
one application; and (B) single address space: because of (A),
there is no need for memory protection within the unikernel,
consequently the application and the kernel share a single
address space and all the code executes with the highest
privilege level.

Such a model provides significant benefits. In terms of se-
curity, the strong isolation between unikernels provided by
the hypervisor makes them good candidates for cloud deploy-
ments. Moreover, a unikernel contains only the necessary
software needed to run a given application. Combined with
the very small size of the kernel, this leads to a significant
reduction in the application attack surface compared to regu-
lar VMs [39]. Some unikernels are also written in languages
providing memory-safety guarantees [9, 40, 74]. Concerning
performance, unikernel system calls are fast because they
are common function calls: there is no costly world switch
between privilege levels [31]. Context switches are also swift
as there is no page table switch or TLB flush. In addition to
the codebase reduction due to small kernels, unikernel OS
layers are generally modular: it is possible to configure them
to include only the necessary features for a given application.
Small size and modularity lead to a reduction in resource
usage (RAM, disk), which translates into cost reduction for
the cloud user, and high per-host VM density for the cloud
provider [37, 41].

Porting existing software to run as a unikernel in order
to reap these benefits can be difficult or even impossible.
First, in some situations, the unavailability of an applica-
tion’s sources (proprietary software) makes porting it to
any existing unikernel impossible, as all require recompila-
tion/relinking. Second, porting legacy software to a uniker-
nel that supports only modern programming languages re-
quires a full application rewrite in that target language [40],
which in many scenarios is unacceptable. Third, considering
the unikernels supporting legacy languages, the task still
represents a significant challenge [7, 21, 41, 51, 59, 61, 71]
for multiple reasons. A given unikernel supports a limited
set of kernel features and software libraries. If a feature, li-
brary, or a particular version of a library required for an
application is not supported, the application would need to
be adapted [7, 51]. In many cases the lack of a feature/library
means that the application cannot be ported at all [50]. More-
over, unikernels use complex build infrastructures and it
can be burdensome to port the large build infrastructures
of some legacy applications (large/generated Makefiles, au-
totools/cmake environments) to unikernel toolchains. The
same goes for changing the compiler or build options. In

A Binary-Compatible Unikernel

A SCONE HermiTux
(Hardk\l/\;gre Q Q. ,O
EPT/SGX) Memory-safe Legacy Graphene-

Unikernels Unikernels SGX
g Medium (ex: Mirage) (ex: Osv)
% (Software - QQ
S Libos/ Per':(_)rrr]mglc(;:;lmpact: Graphene gVisor
@ fiering)| | 8 TR,
Low| | O None Containers-Q
(None) »
High: full Medium: Need sources/ None: Binary
app. rewrite recompilation compatible

Porting effort
Figure 1. Lightweight Virtualization Design Space.

addition, unikernels lack practical developer tools such as
debuggers and profilers [61], further complicating the port-
ing process. The porting effort is made even more complex by
the fact that it necessitates expertise in both the application
and the considered unikernel model [71].

We believe that this large porting cost, combined with
the fact that it is the responsibility of the application pro-
grammer, represents an important factor explaining the slow
adoption of unikernels in the industry. One solution is to
have a unikernel provide binary compatibility for regular ex-
ecutables while still keeping the classical unikernel benefits
such as small codebase/footprint, fast boot times, modularity,
etc. This new model allows unikernel developers to work on
generalizing the unikernel layer to support a maximum num-
ber of applications, and relieves application developers from
any porting effort. Such an approach should also support
developer tools such as debuggers. In that context, HermiTux
allows running Linux binaries as unikernels, while maintain-
ing the aforementioned benefits.

HermiTux in the Lightweight Virtualization Design

Space. Using Figure 1, we demonstrate that HermiTux occu-
pies a unique location in the lightweight virtualization design
space. In that space we include unikernels, security-oriented
LibOS such as Graphene [68, 70], and containers [45] with
software [19] and hardware [2] hardening techniques. In ad-
dition to the points mentioned in the previous paragraph con-
cerning porting effort, HermiTux differs from other binary-
compatible systems because of the combination of 2 reasons.
First, hardware-enforced isolation such as the use of SGX
or EPT is fundamentally stronger than software-enforced
isolation (containers/software LibOS), as shown by the cur-
rent trend of running containers within VMs for security
(clear containers [13]) and the efforts to strengthen contain-
ers isolation (such as gVisor [19]). This is generally used as
a security argument in favor of unikernels versus contain-
ers [54]. Concrete examples include ret2usr [27], ret2dir [26],
and Meltdown [36] attacks, which containers are subject
to but not unikernels due to the guest running in a com-
pletely separate address space from the host. The minimal
nature of unikernels allows them to have a reduced attack

VEE 19, April 13-14, 2019, Providence, RI, USA

surface and to avoid vulnerabilities present in management
systems software such as shells (Shellshock), absent from
unikernels but included in the TCB of most containers. Sec-
ond, SGX-based isolation such as used in Graphene-SGX [70]
has a non-negligible performance impact [81] that is funda-
mentally higher than the very low performance overhead of
current direct-execution, hardware-enforced virtualization
techniques leveraged in HermiTux.

HermiTux enables a wide range of applications to trans-
parently reap unikernel benefits without any porting effort:
there is no need for code modification and the potential com-
plexities of maintaining a separate branch. Given the security
and footprint reduction features provided by unikernels, this
is highly valuable in today’s computer systems landscape
where software and hardware vulnerabilities regularly make
the news, and where datacenter architects are seeking ways
to increase consolidation and reduce resource/energy con-
sumption. Being binary compatible allows HermiTux to be
the only way to run proprietary software (whose sources
are not available) as unikernels. Finally, HermiTux allows
commodity software to reap traditional benefits of VMs such
as checkpoint/restart or migration without the associated
overhead of a large disk/memory footprint.

The HermitCore Unikernel. In this work we significantly
extend the unikernel implementation of HermitCore [31, 32].
Written in C, its sources are statically linked with applica-
tion code to create a unikernel binary. In HermitCore, while
most system calls are processed by the kernel, file-system
related ones (open, read, etc.) are forwarded to the host
and use its file-system for simplicity reasons. HermitCore
includes a C standard library (Newlib [48]), libraries for multi-
threading (Pthreads Embedded [57]) and TCP/IP (LWiP [38])
support. Device drivers for typical network interfaces are
also included. Uhyve (Unikernel Hypervisor) is a minimal
hypervisor developed by HermitCore’s authors, designed to
run that unikernel on a Linux host, using the KVM inter-
face [67]. It is an adaptation of the Ukvm hypervisor [64, 76],
tailored for unikernels. Motivations for its development are
the reduction of the attack surface and boot times compared
to complex hypervisors such as QEMU/KVM. Uhyve’s fast
initialization, combined with HermitCore’s swift boot time,
lead to initialization times of tens of milliseconds.

Because of its advantages in terms of low complexity/attack
surface/boot time, we chose the HermitCore/Uhyve couple
as a basis for HermiTux. Note that all of HermiTux design
principles, and most of its implementation techniques, are
easily applicable to other unikernels.

3 System Design

We assume that the sources of the binaries we consider are
unavailable. We make no assumption about the compiler
used, the level of optimizations, or whether the binary is

VEE 19, April 13-14, 2019, Providence, RI, USA

stripped or obfuscated. Thus, disassembling and reassem-
bling, generally considered quite unreliable [72, 73], is not a
suitable solution. We rather decide to offer binary compati-
bility with a commodity OS, Linux.

The Linux ABL. To offer binary compatibility, HermiTux’s
kernel needs to comply with the set of rules constituting
the Linux ABI [43]. These rules can be broadly classified
into load-time and runtime rules. Load-time rules include
the binary format supported (ELF), which area of the 64 bit
address space is accessible to the application, the method
of setting up the address space by loading segments from
the binary, and the specific register state and stack layout
(command line arguments, environment variables, ELF auxil-
iary vector) expected at the application entry point. Runtime
rules include the instruction used to trigger a system call,
and the registers containing its arguments and return value.
Finally, Linux applications also expect to communicate with
the OS by reading and writing various virtual filesystems
(/proc, /sys, etc.) [69] as well as through a memory area
shared with the kernel: the vDSO/vsyscall.

System Overview. HermiTux’s design objective is to emu-
late the Linux ABI at load- and runtime while providing uniker-
nel principles. Load time conventions are ensured through
the use of a custom ELF loader. Runtime convention are fol-
lowed by implementing a Linux-like system call handler in
HermiTux’s kernel. vDSO/vsyscall and virtual filesystems
access are emulated with methods described further. Finally,
HermiTux maintains some unikernel benefits (fast system
calls and modularity) without assuming access to the applica-
tion sources using binary rewriting and analysis techniques
for static executables, and substitution to a unikernel-aware
shared C library at runtime for dynamically compiled pro-
grams.

Figure 2 presents a high-level view of the system. At
launch time, the hypervisor allocates memory for the guest
to use as its physical memory. Next, the hypervisor loads
the HermiTux kernel () on Figure 2) at a specific location
in that area, and then proceeds to load the loadable ELF seg-
ments from the Linux binary at the locations indicated in the
ELF metadata. After that loading process, control is passed
to the guest and the kernel initializes. Page tables are set up
in order to build a single address space containing both the
kernel and the application. Following the unikernel principle,
the kernel and the application both execute in protection
ring 0.

After initialization, the kernel allocates and initializes a
stack for the application following the Linux loading con-
vention, then jumps to the executable entry point B whose
address was read at load time from the ELF metadata. Dur-
ing application execution, system calls will be executed ac-
cording to the Linux convention, using the syscall x86-64
instruction. The kernel catches such invocations by imple-
menting a system call handler that identifies the system call

P. Olivier, D. Chiba, S. Lankes, C. Min and B. Ravindran

Init. stack and jump to entry point
y

He';(n;:.tnué: Static/dynamic
oteall nativg Li_nux ‘g
bar?;%‘ziu/amy application 5
@Load A A e
[Hypervisor: uHyve | g
I

| Host: Linux kernel KVM [Debug & Profile|

Figure 2. Overview of the HermiTux system.

invoked, determines parameters from CPU registers, and
invokes the HermiTux implementation of the considered
system call ©.

Load-Time Binary Compatibility. At load time, the hy-
pervisor copies the kernel and Linux application loadable
ELF segments in guest memory at the virtual addresses in-
dicated in ELF metadata. Both application and kernel will
run in a single address space so we need to ensure that stati-
cally and dynamically allocated code/data for both entities
do not overlap. This is done by locating the kernel outside
of the memory region dedicated for application. Contrary to
Linux, which dedicates the upper half of the 48 bit virtual
address space to the kernel, and because of the very small
virtual/physical memory requirements of HermiTux’s kernel,
we can locate it below the area reserved for the application.
This gives the application access to the major part of the
virtual address space and has the interesting side-effect of
enabling very high entropy for randomized mappings.
HermiTux supports dynamically compiled binaries as fol-
lows: when the loader detects such a binary, it loads and
passes control to a dynamic loader that in turns loads the
application as well as the library dependencies, and takes
care of the symbols’ relocations. Because of its binary com-
patibility, in HermiTux the dynamic loader is an unmodified
version of a regular Linux dynamic loader. We assume it
comes shipped with the application binary and its shared
library dependencies. Contrary to KylinX [80], in HermiTux
we take the decision not to share in the virtual address space
the dynamic libraries between multiple unikernels. This is
mostly for security reasons as shared memory between VMs
makes them potentially vulnerable to side-channels [20] (for
example Flush+Reload or Prime+Probe). Moreover, if secu-
rity is less of a concern and memory usage is constrained,
Kernel Same page Merging (KSM) [1] is an efficient and stan-
dard way to solve that issue. While dynamic binaries are
favored by Linux distribution maintainers [69], static exe-
cutables still provide benefits in terms of performance [15]
and compatibility [10]. Thus we aim to support both linking

types.

A Binary-Compatible Unikernel

Runtime Binary Compatibility. In a unikernel, system
calls are common function calls. In HermiTux, the appli-
cation performs system calls using the Linux convention,
unsupported by existing unikernels kernel. HermiTux im-
plements a system call handler invoked when the syscall
instruction is executed. It redirects the execution to the inter-
nal unikernel implementation of the invoked system call (©)
on Figure 2). Interfacing with the application at the system
call level is at the core of the binary compatibility provided
by HermiTux. It means that our prototype, currently tested
on software written in C/C++/Fortran/Python, can easily be
extended to other languages and runtimes.

Vanilla HermitCore supports a small number of system
calls, and we had to significantly extend this interface in
HermiTux. In a unikernel context, developing system call
support for unmodified Linux applications might raise con-
cerns in terms of codebase size and complexity increase. It
could also be, intuitively, a very large engineering effort to
end up re-implementing Linux. Yet for our work this does
not represent a full re-implementation of the Linux system
call interface: while it is relatively large (more than 350 sys-
tem calls), applications generally use only a small subset of
that interface [58]. It has also be shown that one can support
90% of a standard distribution binaries by implementing as
few as 200 system calls [69]. To support the applications pre-
sented in the evaluation section (Section 5), our prototype
implements 83 system calls.

Unikernel Benefits & Isolation. System call latency in uniker-

nels is low as these are function calls. Despite a system call
handler optimized for the unikernel context, we observed
that in HermiTux this latency still does not approach that of
function calls: it is due to the syscall instruction that relies
on an exception.

Without assuming access to the application sources, we
rely on two techniques to offer fast system calls in Hermi-
Tux (Fastcall in Figure 2). For static binaries, we use binary
instrumentation to rewrite the syscall instructions found
in the application with regular function calls to the corre-
sponding unikernel implementations. For dynamically linked
programs, we observe that (1) most of the system calls are
made by the C library and (2) the C library interface is very
well defined so it is possible to link at runtime a program
with a shared C library that is not the one the program was
compiled against. We then use for dynamically linked pro-
grams a unikernel-aware C library we designed, which is
making direct function calls to the kernel in the place of
system calls. We call this technique library substitution. In
the spirit of HermiTux, the development effort outside of
the unikernel kernel/hypervisor should be nonexistent or
at worst minimal. A popular C library (Musl LibC) is made
unikernel-aware in a fully automated way with the help of
code transformation tools.

VEE 19, April 13-14, 2019, Providence, RI, USA

Modularization is another important benefit of unikernels.
Because of our binary compatibility goal, the system call
codebase is relatively large in HermiTux. We design the
kernel so that the implementation of each system call can
be compiled in or out at kernel build time. In addition to
memory footprint reduction, this has security benefits that
are stronger than traditional system call filtering (such as
seccomp [11]): it is not only impossible to call the concerned
system calls, but the fact that their implementation is entirely
absent from the kernel means that they cannot be used in
code reused attacks. To compile a tailored kernel for a given
application whose sources are not necessarily available, we
designed a binary analysis tool able to scan an executable
and detect the various system calls that can be made by that
program.

HermitCore forwarding filesystem calls to the host raises
obvious concerns about security/isolation. We implemented
a basic RAM filesystem, MiniFS, within HermiTux’s kernel,
disabling any dependence on the host in that regard. Building
a full-fledged filesystem is out of the scope of this work,
however MiniFS’s simple implementation is sufficient to run
with honorable performance the benchmarks used in our
performance evaluation (see Section 5), including Postmark.
MiniFS also emulates pseudo files with configurable per-
file read and write functions: we emulate /dev/zero with
a custom read function filling the user buffer with zeros,
/dev/cpuinfo with a read function populating the buffer
with Linux-like textual information about the CPU, etc.

4 Implementation

Additions and modifications to the HermitCore [31] infras-
tructure in order to build HermiTux represent a total of 10675
lines of code. Binary system call rewriting and identification
tools represent 1268 additional LoC.

HermiTux currently only supports the Intel x86-64 archi-
tecture. However its design principles also apply to other
ISAs. Although a lot of implementation work is architecture
specific (installation of a system call handler, system call
rewriting and identification, etc.), there is no fundamental
roadblock to adapt HermiTux to other ISAs.

4.1 Linux Binary Loader

Virtual Address Space Setup. The Linux ABI dictates that
the region of the address space allowed for access by user
space code ranges from 0x400000 to @x7FFFFFFFFFFF [17,
35]. While 0x400000 is arbitrarily set as the lower user level
accessible area by default linker scripts, the virtual memory
below that address is actually free to use. We locate the kernel
below at 0x200000, as the small HermiTux kernel fits in
these 2 MB. The original HermitCore kernel was previously
located at 9x800000, and we relocated it by changing the
kernel linker script and updating hardcoded references in
the kernel code. The address space of a running HermiTux

VEE 19, April 13-14, 2019, Providence, RI, USA

Previous HermitCore
kernel location

0x200000 0x800000 Ox7FFFFFFFFFFF
0x400000 OXFFFFFFFFFFFF
Reserved for Linux
Hermitux Ay kernel
Forne pplication usable address space) (available for mmap.
E E ___in Hermitux)
%ififgg?g] ’ ' . Heap SEEET Stack| mmap
Heap growth
pIc/PIE |text[data| bss ap g

N ~ 2N v
Static code & data

N~
Dynamic data
Figure 3. Virtual address space layout of HermiTux.

unikernel is illustrated in Figure 3. As one can observe, the
application now has access to close to the entire 48 bit address
space. This gives us the unique opportunity of obtaining
randomized mappings of very high entropy (higher than
Linux) for shared libraries and PIE programs.

Loading Process and Initializing Kernel. At load time,
Uhyve initializes and allocates memory for the guest. It then
loads the kernel by reading the kernel executable file and
copying each loadable ELF section at the right offset in guest
memory. The native Linux executable is also loaded follow-
ing the same principles (see (&) on Figure 2). For security
reasons the application is loaded at a random offset if it sup-
ports PIC/PIE. Its entry point address and loaded section
sizes are written in a specific location in guest memory to
be retrieved by the kernel when it boots.

Next, control is passed to the guest and the kernel ini-
tializes. During this process, the kernel memory subsystem
prepares a stack and a heap for the application in the cor-
responding region of the address space. The kernel uses
information it got from the hypervisor about the location
and sizes of the application’s loadable ELF sections (. text,
.data, etc.) in order to set the location of the stack and heap
not to overlap with these (see Figure 3). The initialization
kernel stack is located in the kernel memory region. After
the application starts running, it shares its stack with the
kernel as in unikernels system calls are common function
calls. The kernel’s dynamically allocated memory, including
heap and ISR stacks, is located in the kernel memory region.

After kernel initialization, a task is spawned to execute ap-
plication code. Before jumping to the application entry point,
the application stack must be filled with specific data for the
application to be able to initialize (B in Figure 2). Indeed,
the entry point of an application generally corresponds to
low-level library initialization. This bootstrap code accesses
the stack to recover important information concerning the
application command line arguments (argc and argv), en-
vironment variables, and ELF auxiliary vectors. The kernel
pushes these elements on the stack in reverse order: auxiliary
vectors, environment variables, argv, then argc. The default
behavior is to have the values of these elements forwarded
from the host, but it is also possible to edit/filter them, for

P. Olivier, D. Chiba, S. Lankes, C. Min and B. Ravindran

example to avoid leaking sensitive information through envi-
ronment variables. The Linux vDSO shared object purpose is
pointless in a unikernel as the application and kernel share a
single unprotected address space. The absence of the vDSO
is indicated to the C library on the stack through the ELF
auxiliary vectors.

If the binary is dynamically compiled, a dynamic loader is
first loaded and run by HermiTux’s kernel. Because of our
binary compatibility the dynamic loader comes unmodified
from a standard Linux distribution (for example 1d-1inux. so
for GLibC). The kernel adds the application binary name
within argv and the dynamic loader proceeds to load this
binary and its shared library dependencies, and performs
the relocations at runtime. On the kernel side this requires
comprehensive support for the mmap system call.

4.2 Handling Linux System Calls

System Call Handler. We implemented system call support
according to the Linux convention [43] on x86-64 [22]: they
are made using the syscall instruction. Before its invoca-
tion, a unique number identifying this system call is loaded
in the %rax register, and the system call parameters values
are set in order in %rdi, %rsi, %rdx, %r10, %r8 and %ro.

The HermiTux system call handler is simple and optimized:
according to the unikernel principle, the application lives in
protection ring 0 in an address space shared with the kernel.
Thus, many classical ‘world switch’ OS operations are not
necessary in our case (for example segment selector or stack
switches). The handler is implemented using a combination
of assembly and C. The assembly code saves all the registers
on the stack and calls a C function which retrieves these
values, and based on the value in %rax redirects control to
the corresponding system call implementation within the
kernel. On return, the assembly function restores all the
registers and sets the return value in %rax. A regular OS
would then call the sysret instruction. On the contrary,
we perform a simple jump to the address in %rcx, which
was set by the CPU to the next application instruction upon
syscall invocation. This results in an optimization as a
jump is significantly faster than sysret. Moreover, sysret
automatically switches the privilege level to ring 3 [22], and
as a unikernel we need to stay in ring 0.

System Calls Development. Vanilla HermitCore has sup-
port for a very limited number of system calls (16), and thus
applications. In HermiTux we had to implement support for
many additional system calls. Currently we support a total
of 83 system calls, 67 of these being developed on top of
the original HermitCore kernel. Some of them are partially
supported: for example, ioctl only supports the necessary
commands for LibC initialization. The total number of LoC
dedicated to the system call layer is 3265. it shows that Her-
miTux can keep a small unikernel codebase while supporting

A Binary-Compatible Unikernel

a wide range of applications as presented in the performance
evaluation section.

Basic signal support is provided by HermiTux through the
signal, rt_sigaction and kill system calls. The errno
global variable is transparently supported by HermiTux: the
C library loads for each thread the address of the Thread
Local Storage (TLS) memory region in the %f's register using
the arch_prctl system call. In TLS resides a thread descrip-
tor containing, amongst other things, errno. Multithreading
(pthreads) is provided by implementing clone support with
the CLONE_VM flag, and basic support for futex used as the
central locking/synchronization primitive in numerous mod-
ern pthread implementations. As mentioned earlier the vDSO
is disabled in HermiTux. Although it is considered insecure,
we noticed some programs called vsyscall [12] without check-
ing its presence or absence in the ELF auxiliary vectors. Our
solution in HermiTux consists in setting up page tables so
that accesses to the vsyscall page will always page fault. In
the page fault handler, we redirect the control flow on return
from the exception to the corresponding system call which
can be identified according to the faulting address (which is
by convention hardcoded). set/getpriority are supported
by mapping the Linux nice values (-20 to 20) to HermiTux
priorities (0 to 31) with an inverse proportional relationship.

The non-fixed mappings offered by our mmap implementa-
tion are fully randomized. It means that for PIC/PIE programs
we are able to offer ASLR features for program and library
code/data segments. An interesting benefit of unikernels
here is that because the application and kernel share and
can use the entire 48 bit virtual address space, we can offer a
very high entropy for these randomized mappings: it is cur-
rently of 34 bits for HermiTux which is higher than vanilla
Linux (28 bits) as well as PaX/grsecurity hardened kernels
(33 bits) [46].

The number of system calls supported by HermiTux can
be seen as relatively low compared to the full interface —
more than 400 system calls for a modern Linux kernel. How-
ever it is sufficient to support the wide range of applications
presented in the evaluation section. Moreover, implementing
more syscalls in HermiTux is principally a matter of engi-
neering. Existing legacy unikernels [24, 28] have shown that
it is possible for a unikernel to support a large number of
applications while maintaining a small codebase/footprint.

Like the majority of other unikernels, HermiTux does not
support creating a new process through fork(). It is true
that support in unikernels of multi-process applications is
an important roadblock to their widespread adoption. How-
ever, a solution have already been proposed in KylinX [80],
where new unikernels are spawned upon fork calls and
inter-unikernel IPCs are implemented. Such a solution can
also be adapted within HermiTux, which we scope out as
future work.

VEE 19, April 13-14, 2019, Providence, RI, USA

Syscall binary rewriting

] Jmp 0x200042—— (5 bytes)
i nop—— (1 byte)

nop ——— (1 byte)
tmov $3, %rdi

o ;yscall 2 (2 bytes)|
mov $2, %esi—(5 bytes)]...
mov $3, %rdi

Rewritten codeA

— VSnippet
Original code A mov %rl0, Srcx
callg 0x200457 (read)
mov $2, %esi
Jjmp 0x400aac

Figure 4. System call rewriting example.

Fast System Calls. Even if the HermiTux system call han-
dler is optimized, its execution is still slower than a regular
unikernel’s system call latency (function call) because of the
underlying mechanism behind the syscall instruction: an
exception, introducing a significant delay.

HermiTux offers two techniques to decrease such latency,
one for each type of binaries (static/dynamic) considered.
Both techniques assume no access to the application sources.

For statically linked executables we use static binary rewrit-
ing: the idea is to replace in the code each syscall instruc-
tion with a direct call to the corresponding system call im-
plementation in the kernel.

However we cannot directly replace the syscall instruc-
tion with a call because of their sizes: syscall (2 bytes
long) is smaller than call (5 bytes). The rewriting process
is illustrated on Figure 4 and works as follows: we overwrite
each syscall along with one or more instructions after it
(@ on Figure 4) with a jmp instruction ®), jumping to a
snippet of assembly code © that performs the following
operations: (1) copy %r10 into %rcx: this is necessary due to
the difference in calling conventions between system calls
and function calls [43]; (2) Call the implementation of the
given system call within HermiTux. This is possible thanks
to our ability to identify which system call is being made
at a given address (see Section 4.3); (3) On return from the
system call function, the instructions that were overwritten
with jmp are executed (these are copied within the snippet
during the rewriting process); (4) Return control to the ad-
dress in the application code) immediately following these
instructions. Note that this technique completely bypasses
the system call handler, further reducing latency.

A small number of system calls invocations cannot be
overwritten. For example, if the syscall instruction is near
the end of a function f1 and there is no space to insert the
jmp instruction before the start of the next function f2: doing
so would break any function pointer set to f2 at runtime.
We make use of Dyninst [75] to identify such scenarios, and
as a result, this optimization only works for non-stripped
binaries.

For dynamically linked binaries, low-latency system calls
are obtained by forcing the dynamic loader to link at run-
time a custom C library we developed, in which systems
calls are common function calls to the kernel. As the spirit of

VEE 19, April 13-14, 2019, Providence, RI, USA

HermiTux is to avoid any effort outside of unikernel kernel
and hypervisor development, this C library is created by au-
tomatically replacing all system calls made by a mainstream
C library, Musl, by function calls to HermiTux’s kernel. This
is done in a fully automated way: in the C library most sys-
tem calls are made through standardized macros. We use the
Coccinelle [34, 53] code transformation tool to replace each
macro invocation with a call to a wrapper generated within
the C library. This wrapper takes as parameters the system
call number and parameters, and simply uses an array of
function pointers, indexed by system call numbers, to invoke
the system call implementation within the kernel. The code
initializing that array is generated after kernel compilation
when the address of each syscall implementation is known.
The use of Coccinelle gives a very robust, future-proof and
comprehensive method to create a unikernel-aware C library
in a fully automated way: with a simple semantic patch of less
than 80 lines describing the code transformations needed, we
are able to update 97.5% of the 500+ system call invocations
within the entire library. We also confirmed the success of
this method over different versions of Musl released multiple
years apart. The same technique can be adapted to other C
Libraries such as GLibC.

4.3 Other Unikernel Benefits & MiniFS

Kernel Size Reduction, System Call-based Modularity.
In addition to fast system calls, unikernel benefits include
small codebase and memory/disk footprint, as well as the
ability to customize a kernel to contain only what is needed
by an application (modularity). HermiTux targets support
for native Linux binaries while still providing such benefits.
We significantly reduced the size and footprint of the kernel
through the combination two straightforward techniques.
First, we added support in the Uhyve hypervisor to load a
kernel binary compressed using gzip. The kernel size can
further be reduced through the use of the strip utility.

Vanilla HermitCore is not modular. We modularized Her-
miTux to include or exclude at kernel compile time coarse
grain functionalities such as network support. Moreover, as
we implemented support for new system calls for binary
compatibility, we realized that the system calls codebase was
growing to reach a relatively large portion of the total kernel
code: it currently represents about 20% of the number of
LoC in the kernel (excluding LWIP), and is expected to grow
larger as new system calls are implemented to support more
applications. Thus, we added the possibility to compile a ker-
nel containing only the implementation of selected system
calls, i.e. only the ones needed by a given application. This
is achieved by placing each system call implementation into
its own compile unit (C source file) and using preprocessor
macros to enable or disable system calls invocation from the
system call handler. At link time, the base kernel object files
are linked with the selected system calls’ object files.

P. Olivier, D. Chiba, S. Lankes, C. Min and B. Ravindran

To tailor a HermiTux kernel for a particular application,
we need to be able to identify which system calls can be made
by the application, for which we assume only the binary is
available (no sources). One option would include running the
application under the strace utility. However, this solution
is highly dependent on the code coverage of the sample test
runs. For HermiTux, we need to be able to identify all of the
system calls being made by an application, since excluding
the wrong one could lead to a crash at runtime.

For static executables we choose to statically analyze the
binary and find, for each syscall invocation, what is at
that point the value in the %rax register (containing the sys-
tem call identifier). Generally it is loaded with an immediate
value right before the syscall instruction. However the
value may come from another register or follows a more
complicated path prior to the syscall instruction. We use
Dyninst [75] to analyze the control flow of the program start-
ing from the syscall instruction and going backward until
we find the value we are looking for. This technique works
well for applications compiled against the Musl C library:
we were able to determine all system calls being made in a
large set of applications. For GLibC, we found one call site
where the value that was loaded in %rax came from mem-
ory, making it impossible to identify statically. Looking at
the corresponding C code allows to easily determine that
it was in fact a read system call. To tackle such scenarios,
we created a lookup table that returns the system calls be-
ing made by library functions that contain such statically
unidentifiable system calls. These cases are extremely rare
(just one for all applications we tested) and requires minimal
human effort (a quick source code inspection). Moreover, the
source code within the GLibC behind them does not change
very often. This system call identification is combined with
our tailored kernel building technique in a fully automated
process. Concerning dynamically compiled programs, it is
possible to identify the system calls needed by first analyzing
which functions from library dependencies are called and
then running our system call identification tool on these
functions within the libraries.

These lightening techniques are efficient: a stripped and
compressed HermiTux kernel without network support, with
full system call support (minus the network-related ones) has
an on-disk size of 57 KB (versus 2.9 MB for the full version).

MiniFS. We implemented MiniFS within HermiTux’s ker-
nel. It adheres to the standard UNIX filesystem interface,
supporting the classical functions open, read, write, etc.
As a RAM filesystem, files data and metadata are allocated
in memory mapped areas. A trusted system administrator
can specify at load time some files to be imported from the
host (for example data files to be processed by the applica-
tion or shared library dependencies to be loaded at runtime).
A small number of pseudo files are emulated by MiniFS:
/dev/{null|zero|random|urandom} and simple versions

A Binary-Compatible Unikernel

of /proc/{cpuinfo|meminfo}. This is sufficient to run the
programs presented in the evaluation, and MiniFS pseudo
file support can easily be extended by writing additional
custom per-pseudo-file read/write functions.

Developer Tools. HermiTux supports GDB debugging. We
leveraged code from Ukvm [64] to implement a GDB re-
mote stub [65] in Uhyve. A HermiTux application and ker-
nel can be debugged transparently from a GDB client in
the host. The code was adapted for HermiTux in multiple
points. In particular, the stub needs to access guest mem-
ory from the hypervisor, we developed a specific guest to
host address translation method: contrary to solo5/ukvm,
HermiTux/Uhyve guest virtual address space is not directly
mapped. We also implemented guest and host code to trap
to GDB in the case of an unrecoverable exception/page fault
within the guest. Regular debugging features are supported
such as breakpoints, single-step execution, memory/register
inspection, etc. We also implemented a simple profiler in
HermiTux: with a configurable frequency, Uhyve injects an
interrupt within the guest, and the corresponding handler
samples the guest instruction pointer %rip. Samples are gath-
ered by Uhyve at the end of the execution and written to a
file on the host. We developed an analysis tool taking this
file as input, reading the DWARF debugging metadata in
both the kernel and the application, and outputting the most
time-consuming functions/lines of code.

5 Evaluation

The objective of the performance evaluation is to answer the
following questions: First, can HermiTux run native Linux
binaries while still keeping the benefits of unikernels such as
low disk/memory footprints and fast boot time? (Section 5.1).
Second, as we focus on native/legacy executables, can Her-
miTux execute binaries that are written in different languages,
stripped, obfuscated, compiled with full optimizations and dif-
ferent compilers/libraries? (Section 5.2). Finally, how does Her-
miTux’s performance compare with Linux, containers and other
unikernel models? (Section 5.3);

We evaluate the performance of HermiTux over multi-
ple macro-/micro-benchmarks, comparing it to a Linux VM,
Docker [45], and two unikernels models focusing on compat-
ibility with existing applications: OSv [28] and Rumprun [24].
Please note that on the contrary to HermiTux, both are not
binary compatible with Linux. Macro-benchmarks include
C/Fortran/C++/Python NPB [3, 62], PARSEC [6], Python
Performance Benchmark Suite [66] and Postmark [25] bench-
marks. Micro-benchmarks include redis-benchmark, a SQLite
unikernel, and LMbench [44] to measure system call latency.

Experiments were run on a server with an Intel Xeon E5-
2637 (3.0 Ghz, 64 GB RAM), running Ubuntu Server 16.04
with Linux v4.4.0 as the host. OSv and Rumprun uniker-
nels versions are the latest available on their respective git

VEE 19, April 13-14, 2019, Providence, RI, USA

repositories and run on top of Qemu [5] 2.5.0 with KVM ac-
celeration. The Linux VM is also an Ubuntu 16.04 distribution.
Unless otherwise stated, the compilers used are GCC/G++
v6.3.0 and the -03 level of optimizations is used.

5.1 Footprint Reduction & Boot Time

Image Size. We compared the sizes of the unikernel on-disk
images for minimal Linux VMs, HermiTux, OSv, Rumprun
and Docker for a simple "hello world" program. We also
include numbers for MirageOS [40] for information. For
Linux we choose a stripped-down Ubuntu 16.04 distribution
from Vagrant repository, and of a distribution designed to
be minimal: Tiny Core Linux. For Docker we measured the
downloaded image size for Ubuntu 16.04. We measured the
binary image size for classical unikernels, and the sum of
application and kernel sizes for HermiTux. Results are in
Figure 5. As one can observe HermiTux offers the lowest
image size, being significantly smaller than Ubuntu (650x)
and Docker (96x) images. It is also 23x and 3x smaller than
OSv and rump images, respectively. Please note that in some
situations the actual disk size of container images can be
reduced with the use of layered filesystems.

Boot and Destruction Time. These metrics are critical for
unikernels [39, 41, 49], in situations where reactivity and/or
elasticity is required. We measured the total execution time of
a dummy application whose main function returns directly:
such time encompasses both boot and destruction latencies.
We measured time from the moment the unikernel/container
management tool is invoked (Uhyve for HermiTux, docker
for Docker, Capstan for OSv and Rumprun for Rump) until
the control is passed back to the terminal after the appli-
cation’s execution. We also measured boot and destruction
time of a minimal Linux VM. Results are on Figure 5. Once
again HermiTux gives the best results as it benefits from
the minimalist design of both Uhyve and the OS layer: the
sum of boot and destruction times is one to two orders of
magnitude faster than Docker, OSv and Rump. The slow
startup/halt latency for these is mainly due to the long setup
and teardown of the heavyweight Qemu/KVM for OSv and
Rump, and the Docker management engine.

Memory Usage. A low memory footprint is one of the pro-
mises of the unikernel model. We determined the lowest
amount of RAM required for a hello world application to
execute within a minimal Linux VM, in HermiTux, OSv and
Rumprun. For Docker, we measured the memory usage of
a container running the program using docker stats. Re-
sults are presented on Figure 5. The minimalist design of
HermiTux allows it to offer a low memory footprint: 9MB.
Rumprun also exhibits a similarly small memory. On the
contrary, OSv’s memory footprint is 8 times higher than
with HermiTux. This is due to the additional libraries and
systems software present in OSv’s unikernel image.

VEE 19, April 13-14, 2019, Providence, RI, USA

P. Olivier, D. Chiba, S. Lankes, C. Min and B. Ravindran

Strong isolation (EPT)

| | Binary compatible with Linux | \ Not Binary compatible with Linux \

1000 100 e 100
N Binary Size w Boot + Destruction time | & RAM
§ 100 F) “E’ 10 =3 usage
< [S ()
© it orT 1 2 10
N t, ©0 = 1%
%) 10 : " o= : b -
> I:l i, 0§ 01 |:| S |:|
< i = i 5 =5
hEJ 1 = D [80_01 D = qg) 1 " " X ey
> \;\~ 6\\ INIISANG © > @ & R & & ISP Ul SN
\sooo < &S V“\\@Q’Oo& o\)& Qd‘ QK‘Q o° @0@ é\@Q o(\’kh = \><\ «OO \2’\& O Q~° @\gb N

Figure 5. Binary size, boot time and memory usage comparison for a stripped-down Ubuntu distribution (Ubuntu), Tiny Core
Linux (TCore), HermiTux (HTux), OSv, Rump, MirageOS and Docker (note the logscale on the y-axis).

Table 1. System call-based modularity efficiency.

Program Number of K.emel .te‘xt

system calls size reduction
Minimal 5 21.87 %
Hello world 10 19.84 %
PARSEC Blackscholes 15 17.05 %
Postmark 26 14.36 %
Sqlite 31 11.34 %
Full syscalls support 64 00.00 %

System Call Level Modularization. We analyzed a set of
applications with our system call identification tool and com-
piled a set of HermiTux kernels, each tailored for an appli-
cation by supporting only the system calls made by that
application. Table 1 presents the number of system calls
made and the savings in terms of kernel code segment size
reduction brought by the tailored kernel over a kernel with
full system calls support. We chose the code segment size
for metric as reducing its size enhances security: indeed, this
segment is mapped with executable rights and is a potential
target of code reuse attacks. In Table 1, minimal represents a
kernel for an application with minimal system call usage: its
main returns directly. Results show that compiling a tailored
kernel can lead to a significant reduction in the kernel code
size, for example it is more than 17% for Blackscholes. More
system call intensive applications see a smaller size reduc-
tion: 11% for SQLite. We expect these numbers to grow as
support for more system calls is added to HermiTux.

These experiments show that HermiTux offers low image
sizes, RAM usage, boot time, and a modular kernel codebase,
while being binary-compatible with Linux applications.

5.2 Application Support: Compilation Scenarios

To demonstrate the generality of HermiTux, we compiled
NPB BT class A under different configurations. We varied
the compiler (GCC and LLVM [33]), the C library (Musl
and GLibC), and the language the benchmark is written
in: NPB has C [62] and Fortran [3] implementations. Two

| Zz Linux ZIN
KN HermiTux

WA

GCC/GCC/MusIGCC/ Clang Clang Gfortran
Musl stripped GlibC obfuscated

=
o
o

NPB IS Class A
execution time (s)
18]
o

o

Figure 6. Linux and HermiTux NPB BT class A execution
time for various compilation scenarios.

additional configurations include (1) a stripped and (2) ob-
fuscated binary. Obfuscation is typically used in scenarios
where proprietary software is involved. It was achieved us-
ing Obfuscator-LLVM [23], an open-source tool applying
obfuscation passes on the LLVM Intermediate Representa-
tion. We activated altogether these obfuscation techniques:
instruction substitution, bogus control flow insertion, and
control flow flattening. -03 optimization level was enabled
for all configurations.

Execution times for Linux and HermiTux are very similar,
as presented in Figure 6: the maximum difference is a 1.5%
slowdown for Clang non obfuscated. One can also observe
that compiling with LLVM brings about 15% performance im-
provement, and that the combination of obfuscation options
we chose leads to a 146% slowdown. Such a slowdown is
comparable for Linux and HermiTux, and it is to be expected
due to the obfuscation overhead. Varying the C library and
the language does not impact the performance of such a
compute-/memory-intensive workload.

5.3 General Performance

Memory- and Compute-bound Benchmarks. We ran a
set of benchmarks from NPB (BT/IS/EP), PARSEC (Swaptions
and StreamCluster), and Python Performance Benchmark
(Nbody). Note that HermiTux is able to run other programs
from the benchmark suites, which results are not presented
here for space reasons. To support Python, HermiTux runs
the Micropython [47] lightweight interpreter. Results are

A Binary-Compatible Unikernel

1 HermiTux
E= Docker

F WU TR ¢

BIT EIP IS Stream Svs;ap NBE)dy
(Fortran) (C) (C) cluster tions (Python)

(C++) (C++)

= Osv
Rump

N
ANNNN

Exec. time nor-
SSSNSSNN

malized to Linux
=

o

Figure 7. NPB/PARSEC exec. time normalized to Linux.

=
o
N

PN ZZ1 Linux
X1 HermiTux

N
N
N
\
& }c(’ }é’ >

Benchmark_<Number of threads>

LA
AN

Execution time in
seconds (log. scale)
=
Q.
AANNNNNNN

ANNNNNNNN]
L)
AANNNNNNN]

ﬂg PINIAN

N 2 N oYX
\9/\9/\9/ Q\O/Q\ /Q\O/

Figure 8. Multithreaded benchmarks results.

presented on Figure 7 where execution times are normalized
to the execution time of Linux: 1 on the y-axis represents
Linux’s execution time. OSv and Rump do not support For-
tran or Micropython.

HermiTux performs similarly to Linux: the average differ-
ence between HermiTux and Linux execution time over all
benchmarks is 2.7% (including NPB/PARSEC/Python bench-
marks not shown here because of space reasons). The over-
head observed for HermiTux is slightly higher for a few
benchmarks (for example IS). The reason is the very short
runtime of this tests: a few seconds. In these cases, the bench-
mark is so short that I/O, in the form of printing to the stan-
dard output, becomes a significant source of latency (for our
tests HermiTux such I/O is forwarded to the host).

Both Docker and OSv also present very similar results
compared to Linux. It is also the case for Rump, however
one can observe a significant slowdown (50%) for Swaptions.
Rump lacking profiling tools, we were not able to pinpoint
the exact reason for this degradation. One explanation could
be that Rump toolchain is slightly older: it uses g++ v5.4.0
whereas all the other systems make use of the host g++ v6.3.0.

Multithreading and SMP. As unikernels do not support
multiprocess applications, multithreading support is impor-
tant to leverage multiple cores. We ran the mutlithreaded
OpenMP version of NPB CG, LU and MG class B, using Intel
Libiomp. We compared the execution time of HermiTux ver-
sus Linux for each program given 1, 2 and 4 threads (and as
many VCPUs for HermiTux). Note that OSv does not support
OpenMP [52] and the Rumprun unikernel does not support

VEE 19, April 13-14, 2019, Providence, RI, USA

50000
45000
40000
35000
30000
25000
20000
15000
10000
5000
0

ESET
OGET

Requests/sec

HermiTux Linux Osv Rump Docker

Figure 9. Redis performance.

SMP [60]. Results are presented in Figure 8. Once again, Her-
miTux exhibits identical performance compared to Linux:
the average difference among these tests is 2.1%. Each bench-
mark scales similarly in HermiTux and Linux while given
more threads and cores.

Network Performance. To assess HermiTux’s network per-
formance, we used Redis. Redis is a widely used key-value
store server, and a perfect target for unikernel deployment
in particular because of its security requirements as a server
application. We ran Redis within HermiTux, a Linux KVM
VM, a Docker container, and we compiled it for Rump and
OSv. We bridged the virtual connections to the host physical
network so that each VM is accessible from outside the host,
and ran the redis-benchmark on an external machine on
the local network. For that benchmark we used the following
parameters: the number of clients was set to 10, the number
of requests to 100000, and the data size to 10 bytes.

On Figure 9 we present the results, the rate in requests per
second for Redis’s GET and SET operations. As one can see,
HermiTux’s performance are slightly lower (18%) than Linux:
this is due to multiple factors, including the un-optimized net-
work driver and TCP/IP stack (LWIP) used with HermiTux
that cannot compete with Linux’s highly optimized network
stack and virtual drivers. Rump’s slowdown is relatively sim-
ilar to the slowdown of HermiTux, while OSv is slightly
better (5% slowdown). Docker’s performance is marginally
better than Linux, possibly because of a more direct access to
the host network [18]. Note that Virtio is not yet supported
in HermiTux and the enabling such paravirtualized drivers
should bring performance gains.

System Call Latency. We used LMbench3 [44] to measure
system call latency in HermiTux, for null (getppid), read
and write. LMbench reports the execution time of a loop
calling 100000 times the corresponding system call. Figure 10
shows the results for native Linux, HermiTux’s system call
handler, a static binary running in HermiTux with binary-
rewritten system calls, and a dynamic binary running in
HermiTux with our substituted unikernel-aware C library.
The system call latency is on average 5.6x lower in Her-
miTux (handler) compared to Linux. It is due to multiple

VEE 19, April 13-14, 2019, Providence, RI, USA

0.03
—~ 0.03 = Onull (getppid)
‘g’ = Sread
£ 0.02 % M write
c 0.02 =
2 —
g o0.01 =
ai

0.01 =

0 = E%]ﬂ]]]ﬂ =D

Hermitux Hermitux Lib.
Rewrite Substitution

Linux Hermitux
(native) Handler

Figure 10. LMbench system call latency.

factors, including a simple and optimized handler implemen-
tation (for example there is no sysret in HermiTux) and
a simpler implementation for the system calls themselves,
speeding up their processing. Binary-rewriting the invoca-
tions of syscall in static binaries gives a 2.3x reduction
over the regular handler in HermiTux: this is mainly due
to the suppression of the interrupt overhead induced by
the syscall instruction. Finally, substituting a unikernel-
aware C library for dynamic programs brings a 5.7x latency
reduction compared to HermiTux’s handler: in that case sys-
tem calls are common function calls. This is faster than our
binary-rewriting technique (2.3x) because of the additional
instructions this technique needs to execute.

Filesystem and Database Benchmarks. Postmark [25] rep-
resents the filesystem activity of a mail server, which is also
a good application case for HermiTux. The benchmark is
configured with the number of files set to 5 000, file size to
128 KB, read/write size to 4 KB, and the number of transac-
tions to 20 000. Under this configuration, the total amount of
data read and written are 1.3 and 1.9 GB, respectively. This
means that with Linux, the entire data set falls into the page
cache: this is voluntary as we want to stress the filesystem
processing code rather than to have the disk be the bottle-
neck. Docker, OSv and Rump are also given enough memory
to absorb the entire data set (we confirmed by experiment
that OSv uses in-memory file access buffering, and Rump
uses the rumpfs RAM filesystem). We also used a simple
SQLite unikernel in which we measure the execution time
of populating a local in-memory database with 2 millions
records (with 1 integer and 1 128-bytes string fields).
Results are presented in Figure 11, where execution times
are normalized to Linux’. Concerning Postmark, Docker’s
overhead is the lowest (1.3X), followed by HermiTux’s (1.6X)
demonstrating the relative efficiency of MiniFS. OSv and
Rump have poor filesystem performance (more than 10X).
Concerning SQLite, each system performs closely to Linux:
all slowdowns are below 6%. Indeed no filesystem operation
is involved as for our test we use an in-memory database.
These experiments show that HermiTux can bring the
low footprint, fast boot time, and low system call latency of

P. Olivier, D. Chiba, S. Lankes, C. Min and B. Ravindran

XY HermiTux
E=3 Docker
[OSv

ez Rump

101_

Exec. time norma-
lized to Linux

100 NNV =

: ~ —, 177771
Postmark

SQLite

Figure 11. Execution times for the Postmark and SQLite
benchmarks.

unikernels and be binary-compatible without a significant
performance impact for a wide range of applications.

5.4 Miscellaneous Features

HermiTux’s debugger and profiler were thoroughly validated.
In unikernels the kernel and application live in the same,
unprotected address space, so debugging and profiling both
entities can be realized in concert [61]. Concerning GDB,
both the application and kernel symbol files can be loaded
using add-symbol-file and indicating the starting virtual
address for each entity. We provide a GDB wrapper that
makes debugging an application running under HermiTux
no different from a regular application in Linux. We also
validated our profiler by comparing its results for the NPB
benchmarks with perf running in Linux. The orders of most
time consuming functions reported are similar, and in terms
of percentage of time spent in each of these the difference
between HermiTux profiler and perf averages 2.06%. Our
profiler was configured at a frequency of 10 samples per
second (negligible performance degradation). We also vali-
dated HermiTux’s checkpoint/restart feature by running it
successfully over the NPB benchmarks.

6 Related Works

Rumprun [24] and OSv [28] are two unikernels focusing
on compatibility with existing/legacy applications. Rump
allows components of the NetBSD kernel to be used as li-
braries compiled with an application to create a unikernel.
OSv [28] is designed from scratch, providing a specialized
API for cloud applications, and supporting an unmodified
Linux ABIL However, applications have to be recompiled as
relocatable shared-objects. Consequently, both Rump and
OSv require source code to be available and the build process
of applications has to be extended to suit these unikernel
models’ requirements. With LightVM [41], authors show that
the performance of unikernels are similar/better compared
to containers and argue that porting to a unikernel requires
significant effort. They propose Tinyx, a system which al-
lows automated building of a stripped-down Linux kernel.
HermiTux tackles the same problem by running unmodified

A Binary-Compatible Unikernel

Linux executables on top of a unikernel layer whereby foot-
print and attack surface are significantly reduced compared
to the Linux kernel (even a stripped down version). Red Hat
recently announced working on a unikernel version of Linux,
UKL [59], showing that there is a strong demand for more
compatibility from unikernels, as well as the validity of a
model in which the porting effort is on the kernel devel-
oper rather than the application programmer. UKL requires
the application sources and thus it is not binary compati-
ble. Moreover, even in a unikernel form, it is unclear if a
heavyweight kernel such as Linux can achieve memory/disk
footprints and attack surface that are as low as HermiTux’.

Graphene [68] is a LibOS running on top of Linux, ca-
pable of executing unmodified, multi-process applications.
Graphene’s security can be enhanced with Intel SGX [70], but
this involves significant overhead (up to 2x). Google recently
open-sourced Gvisor [19], a Go framework addressing con-
tainer security concerns by providing more isolation. While
binary compatibility comes for free in containers, we show
that it is also doable in unikernels. Unikernels such as Hermi-
Tux are an interesting alternative to containers and software
LibOSes as they benefit from the strong isolation enforced
by hardware-assisted virtualization. In [77], the authors note
that unikernels may run as processes as opposed to virtual
machines for enhanced performance and compatibility with
developer tools, without a fundamental loss of isolation.
While these arguments are very compelling, we believe that
HermiTux is an interesting alternative in scenarios where
strong isolation (EPT) is needed, for example when consid-
ering vulnerabilities such as Meltdown [36], ret2usr [27],
ret2dir [26], etc. Dune [4] uses hardware-assisted virtualiza-
tion to provide a process-like abstraction, and implements
in particular a sandboxing mechanism for native Linux bina-
ries. It is important to note that its isolation model is quite
different from HermiTux: Dune either redirects system calls
to the host kernel or blocks them, which limits compatibility
when blocking or decreases isolation when redirecting.

In [69], the authors analyze the Linux API usage and clas-
sify system calls by popularity. Such information can be used
to prioritize system call development in HermiTux. A system
call binary identification technique is also mentioned, but
few implementation details are given, and authors report
that identification fails for 4% of the call sites.

7 Conclusion

HermiTux runs native Linux executables as unikernels by
providing binary compatibility, relieving application pro-
grammers from the effort of porting their software. In this
model, not only can unikernel benefits be obtained for free
in unmodified applications, but it is also possible to run pre-
viously un-portable software. HermiTux achieves this goal
with, in most cases, negligible to acceptable overhead com-
pared to Linux, and performs generally better than other

VEE 19, April 13-14, 2019, Providence, RI, USA

unikernels (OSv, Rump) for unikernel-critical metrics. Her-
miTux is available online under an open-source license:
https://ssrg-vt.github.io/hermitux/.

Acknowledgments

This work is supported in part by ONR under grants N00014-
16-1-2104, N00014-16-1-2711, and N00014-16-1-2818.

This research and development was supported by the Ger-
man Federal Ministry of Education and Research under Grant
01TH16010C (Project ENVELOPE).

References

[1] Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing
memory density by using KSM. In Proceedings of the linux symposium.
Citeseer, 19-28.

Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre

Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan

O’keeffe, Mark Stillwell, and others. 2016. SCONE: Secure Linux

Containers with Intel SGX.. In OSDI, Vol. 16. 689-703.

David H Bailey, Eric Barszcz, John T Barton, David S Browning,

Robert L Carter, Leonardo Dagum, Rod A Fatoohi, Paul O Freder-

ickson, Thomas A Lasinski, Rob S Schreiber, and others. 1991. The

NAS parallel benchmarks. The International Journal of Supercomputing

Applications 5, 3 (1991), 63-73.

Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David

Mazieres, and Christos Kozyrakis. 2012. Dune: Safe User-level Access

to Privileged CPU Features.. In Osdi, Vol. 12. 335-348.

[5] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator..
In USENIX Annual Technical Conference, FREENIX Track. 41-46.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques. ACM, 72-81.

[7] SoérenBleikertz. 2011. How to run Redis natively on Xen. (2011). https://
openfoo.org/blog/redis-native-xen.html. Online, accessed 11/27/2017.

[8] Alfred Bratterud, Alf-Andre Walla, Harek Haugerud, Paal E Engelstad,
and Kyrre Begnum. 2015. IncludeOS: A minimal, resource efficient
unikernel for cloud services. In Proceedings of the 7th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom
2015). IEEE, 250-257.

[9] Cloudozer LLP. 2017. LING/Erlang on Xen website. (2017). http:
//erlangonxen.org/. Online, accessed 11/20/2017.

[10] Christian S Collberg, John H Hartman, Sridivya Babu, and Sharath K
Udupa. 2005. SLINKY: Static Linking Reloaded.. In USENIX Annual
Technical Conference, General Track. 309-322.

[11] Jonathan Corbet. 2009. Seccomp and sandboxing. LWN. net, May 25
(2009).

[12] Jonathan Corbet. 2011. On vsyscall and the vDSO. (2011). https:
//lwn.net/Articles/446528/, Online, accessed 08/05/2018.

[13] Intel Corp. 2018. Intel Clear Containers. (2018). https://clearlinux.org/
documentation/clear-containers. Online, accessed 08/04/2018.

[14] Vittorio Cozzolino, Aaron Yi Ding, and Jorg Ott. 2017. FADES: Fine-
Grained Edge Offloading with Unikernels. In Proceedings of the Work-
shop on Hot Topics in Container Networking and Networked Systems
(HotConNet’17). ACM, 36-41.

[15] Will Dietz and Vikram Adve. 2018. Software multiplexing: share
your libraries and statically link them too. Proceedings of the ACM on
Programming Languages 2, OOPSLA (2018), 154.

[16] Bob Duncan, Andreas Happe, and Alfred Bratterud. 2016. Enterprise
10T security and scalability: how unikernels can improve the status
Quo. In IEEE/ACM 9th International Conference on Utility and Cloud
Computing (UUC 2016). IEEE, 292-297.

[2

—

E

—

[4

=

https://ssrg-vt.github.io/hermitux/
https://openfoo.org/blog/redis-native-xen.html
https://openfoo.org/blog/redis-native-xen.html
http://erlangonxen.org/
http://erlangonxen.org/
https://lwn.net/Articles/446528/
https://lwn.net/Articles/446528/
https://clearlinux.org/documentation/clear-containers
https://clearlinux.org/documentation/clear-containers

VEE 19, April 13-14, 2019, Providence, RI, USA

[17] ELF 2015. Executable and Linking Format (ELF). (2015).
http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-AMD64/
LSB-Core-AMD64/elf-amd64.html. Online, accessed 11/24/2017.

[18] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015.
An updated performance comparison of virtual machines and linux
containers. In Performance Analysis of Systems and Software (ISPASS),
2015 IEEE International Symposium On. IEEE, 171-172.

[19] Google. 2018. Gvisor Github webpage. (2018). https://github.com/
google/gvisor, Online, accessed 05/03/2018.

[20] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan
Haller, and Manuel Costa. 2017. Strong and efficient cache side-channel
protection using hardware transactional memory. In USENIX Security
Symposium. 217-233.

[21] Hacker News 2017. Unikernels are Secure. (2017). https://news.
ycombinator.com/item?id=14736909. Online, accessed 11/27/2017.

[22] Intel Corporation. 2017. Intel 64 and IA-32 Architectures Software
Developer Manual. (2017).

[23] Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie Michielin. 2015.
Obfuscator-LLVM - Software Protection for the Masses. In Proceedings
of the IEEE/ACM 1st International Workshop on Software Protection
(SPRO’15), Brecht Wyseur (Ed.). IEEE, 3-9. DOI: http://dx.doi.org/10.
1109/SPRO.2015.10

[24] Antti Kantee and Justin Cormack. 2014. Rump Kernels No OS? No
Problem! USENIX; login: magazine (2014).

[25] Jeffrey Katcher. 1997. Postmark: A new file system benchmark. Technical
Report. Technical Report TR3022, Network Appliance.

[26] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D
Keromytis. 2014. ret2dir: Rethinking Kernel Isolation.. In USENIX
Security Symposium. 957-972.

[27] Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D Keromytis.
2012. kGuard: Lightweight Kernel Protection against Return-to-User
Attacks.. In USENIX Security Symposium, Vol. 16.

[28] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. 2014. OS v -
Optimizing the Operating System for Virtual Machines. In Proceedings
of the 2014 USENIX Annual Technical Conference (ATC’14). 61.

[29] Michal Krél and Ioannis Psaras. 2017. NFaaS: named function as
a service. In Proceedings of the 4th ACM Conference on Information-
Centric Networking. ACM, 134-144.

[30] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri
Volchkov, Florian Schmidt, Kenichi Yasukata, Michio Honda, and Fe-
lipe Huici. 2017. Unikernels Everywhere: The Case for Elastic CDNs. In
Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE’17). ACM, 15-29.

[31] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore:
a unikernel for extreme scale computing. In Proceedings of the 6th
International Workshop on Runtime and Operating Systems for Super-
computers (ROSS 2016). ACM.

[32] S.Lankes, S. Pickartz, and J. Breitbart. 2017. A Low Noise Unikernel
for Extrem-Scale Systems. Springer International Publishing, Cham,
73-84. DOL: http://dx.doi.org/10.1007/978-3-319-54999-6_6

[33] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society,
75.

[34] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 years of automated
evolution in the Linux kernel. In 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18). 601-614.

[35] Linux Kernel Contributors 2017. Linux kernel documentation:

x86_64 memory map. (2017). http://elixir.free-electrons.com/linux/

v4.14.2/source/Documentation/x86/x86_64/mm.txt, Online, accessed

11/24/2017.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,

(36

—

P. Olivier, D. Chiba, S. Lankes, C. Min and B. Ravindran

and Mike Hamburg. 2018. Meltdown. ArXiv e-prints (Jan. 2018).
arXiv:1801.01207

[37] Wei Liu. 2013. Improving Scalability of Xen: the 3000 Domains Experi-
ment. Collaboration Summit. (2013). https://events.static.linuxfound.
org/images/stories/slides/Ifcs2013_liu.pdf

[38] LWIP 2017. LWIP Website. (2017). https://savannah.nongnu.org/
projects/lwip/. Online, accessed 12/12/2017.

[39] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, David J Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, and others. 2015. Jitsu: Just-
In-Time Summoning of Unikernels.. In Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’15).
559-573.

[40] A Madhavapeddy, R Mortier, C Rotsos, DJ Scott, B Singh, T Gazagnaire,
S Smith, S Hand, and J Crowcroft. 2013. Unikernels: library operating
systems for the cloud.. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’13). ACM, 461-472.

[41] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) Than Your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles (SOSP ’17). ACM,
New York, NY, USA, 218-233. DOI:http://dx.doi.org/10.1145/3132747.
3132763

[42] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and
the Art of Network Function Virtualization. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’'14). USENIX Association, Berkeley, CA, USA, 459-473. http:
//dl.acm.org/citation.cfm?id=2616448.2616491

[43] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. 2013.
System V Application Binary Interface. AMD64 Architecture Processor
Supplement, Draft v0 99 (2013).

[44] Larry W McVoy, Carl Staelin, and others. 1996. Imbench: Portable Tools
for Performance Analysis.. In USENIX annual technical conference. San
Diego, CA, USA, 279-294.

[45] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal 2014, 239 (2014), 2.

[46] Daniel Micay. 2018. Linux ASLR Comparison. (2018). https://gist.
github.com/thestinger/b43b460cfccfade51b5a2220a0550¢35, Online,
accessed 12/12/2018.

[47] Micropython Contributors. 2018. Micropython webpage. (2018). https:
//micropython.org/, Online, accessed 08/05/2018.

[48] Newlib 2017. Newlib Website. (2017). https://sourceware.org/newlib/.
Online, accessed 12/12/2017.

[49] Vlad Nitu, Pierre Olivier, Alain Tchana, Daniel Chiba, Antonio Bar-
balace, Daniel Hagimont, and Binoy Ravindran. 2017. Swift Birth and
Quick Death: Enabling Fast Parallel Guest Boot and Destruction in the
Xen Hypervisor. In Proceedings of the 13th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments (VEE ’17). ACM,
New York, NY, USA, 1-14. DOI:http://dx.doi.org/10.1145/3050748.
3050758

[50] OSv Contributors. 2013. OSv - execve(2) support. (2013). https://github.
com/cloudius-systems/osv/issues/43, online, accessed 12/10/2018.

[51] OSv Contributors 2014. Porting native applications to OSv: problems
you may run into. (2014). https://github.com/cloudius-systems/osv/
wiki/Porting-native-applications-to-OSv. Online, accessed 05/02/2018.

[52] OSv contributors. 2016. OSv Issues: Thread-local storage doesn’t work
in PIE. (2016). https://github.com/cloudius-systems/osv/issues/352,
Online, accessed 04/21/2018.

[53] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.
2008. Documenting and Automating Collateral Evolutions in Linux De-
vice Drivers. In Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (Eurosys "08). ACM, New York,

http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-AMD64/LSB-Core-AMD64/elf-amd64.html
http://refspecs.linuxfoundation.org/LSB_4.1.0/LSB-Core-AMD64/LSB-Core-AMD64/elf-amd64.html
https://github.com/google/gvisor
https://github.com/google/gvisor
https://news.ycombinator.com/item?id=14736909
https://news.ycombinator.com/item?id=14736909
http://dx.doi.org/10.1109/SPRO.2015.10
http://dx.doi.org/10.1109/SPRO.2015.10
http://dx.doi.org/10.1007/978-3-319-54999-6_6
http://elixir.free-electrons.com/linux/v4.14.2/source/Documentation/x86/x86_64/mm.txt
http://elixir.free-electrons.com/linux/v4.14.2/source/Documentation/x86/x86_64/mm.txt
http://arxiv.org/abs/1801.01207
https://events.static.linuxfound.org/images/stories/slides/lfcs2013_liu.pdf
https://events.static.linuxfound.org/images/stories/slides/lfcs2013_liu.pdf
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
http://dx.doi.org/10.1145/3132747.3132763
http://dx.doi.org/10.1145/3132747.3132763
http://dl.acm.org/citation.cfm?id=2616448.2616491
http://dl.acm.org/citation.cfm?id=2616448.2616491
https://gist.github.com/thestinger/b43b460cfccfade51b5a2220a0550c35
https://gist.github.com/thestinger/b43b460cfccfade51b5a2220a0550c35
https://micropython.org/
https://micropython.org/
https://sourceware.org/newlib/
http://dx.doi.org/10.1145/3050748.3050758
http://dx.doi.org/10.1145/3050748.3050758
https://github.com/cloudius-systems/osv/issues/43
https://github.com/cloudius-systems/osv/issues/43
https://github.com/cloudius-systems/osv/wiki/Porting-native-applications-to-OSv
https://github.com/cloudius-systems/osv/wiki/Porting-native-applications-to-OSv
https://github.com/cloudius-systems/osv/issues/352

A Binary-Compatible Unikernel

NY, USA, 247-260. DOI:http://dx.doi.org/10.1145/1352592.1352618
Russell Pavlicek. 2018. Containers 2.0: Why unikernels
will rock the cloud. (2018). https://techbeacon.com/
containers-20-why-unikernels-will-rock-cloud. Online, accessed
08/05/2018.

Max Plauth, Lena Feinbube, and Andreas Polze. 2017. A Performance
Survey of Lightweight Virtualization Techniques. In Proceedings of
the 6th European Conference on Service-Oriented and Cloud Computing
(ICN 2017). Springer, 34-48.

Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and
Galen C. Hunt. 2011. Rethinking the Library OS from the Top Down.
In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS

VEE 19, April 13-14, 2019, Providence, RI, USA

isolation of library OSes for multi-process applications. In Proceedings
of the Ninth European Conference on Computer Systems (EuroSys’14).
ACM, 9.

Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E
Porter. 2016. A study of modern Linux API usage and compatibility:
what to support when you’re supporting. In Proceedings of the Eleventh
European Conference on Computer Systems. ACM, 16.

Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In Proceedings
of the USENIX Annual Technical Conference (ATC 2017). 8.

Unikraft 2017. Xen Website - Unikraft. (2017). https://www.
xenproject.org/help/wiki/80-developers/207-unicore.html. Online, ac-
cessed 11/27/2017.

XVI). ACM, New York, NY, USA, 291-304. DOI: http://dx.doi.org/10. [72] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,
1145/1950365.1950399 John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna.

[57] Pthread Embedded 2017. Pthread Embedded Website. (2017). http: 2017. Ramblr: Making Reassembly Great Again. (2017).
//pthreads-emb.sourceforge.net/, Online, accessed 12/12/2017. [73] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Dis-
[58] Anh Quach, Rukayat Erinfolami, David Demicco, and Aravind Prakash. assembling.. In USENIX Security Symposium. 627-642.
2017. A Multi-OS Cross-Layer Study of Bloating in User Programs, Ker- [74] Adam Wick. 2012,. The HaLVM: A Simple Platform for Simple Plat-

nel and Managed Execution Environments. In Proceedings of the 2017 forms. Xen Summit. (2012,).

—

=

Workshop on Forming an Ecosystem Around Software Transformation
(FEAST).

Ali Raza. 2018. UKL: A Unikernel Based on Linux. https://next.redhat.
com/2018/11/14/ukl-a-unikernel-based-on-linux/, Online, accessed
12/12/2018. (2018).

Rump contributors. 2016. Rumpkernel FAQ. (2016). https://github.
com/rumpkernel/wiki/wiki/Info:-FAQ, Online, accessed 04/21/2018.
Florian Schmidt. 2017. uniprof: A Unikernel Stack Profiler. In Pro-
ceedings of the ACM Special Interest Group on Data Communication
Conference (Posters and Demos) (SIGCOMM’17). ACM, 31-33.
Sangmin Seo, Gangwon Jo, and Jaejin Lee. 2011. Performance charac-
terization of the NAS Parallel Benchmarks in OpenCL. In IEEE Inter-
national Symposium on Workload Characterization (ISWC 2011). IEEE,
137-148.

Giuseppe Siracusano, Roberto Bifulco, Simon Kuenzer, Stefano Sal-
sano, Nicola Blefari Melazzi, and Felipe Huici. 2016. On the Fly TCP
Acceleration with Miniproxy. In Proceedings of the 2016 Workshop on
Hot topics in Middleboxes and Network Function Virtualization (HotMid-
dlebox 2016). ACM, 44-49.

Solo 5 2017. The Solo5 Unikernel. (2017). https://github.com/Solo5/
solo5. Online, accessed 11/25/2017.

Richard Stallman, Roland Pesch, Stan Shebs, and others. 1988. Debug-
ging with GDB. Free Software Foundation 675 (1988).

[66] Victor Stinner. 2017. The Python Performance Benchmark Suite. (2017).

http://pyperformance.readthedocs.io/, Online, accessed 08/04/2018.

[67] Josh Triplett. 2015. Using the KVM APL (2015). https://Ilwn.net/

Articles/658511/. Online, accessed 11/25/2017.

[68] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain,

William Jannen, Jitin John, Harry A Kalodner, Vrushali Kulkarni,
Daniela Oliveira, and Donald E Porter. 2014. Cooperation and security

[75] Chadd C Williams and Jeffrey K Hollingsworth. 2004. Interactive

binary instrumentation. In Second International Workshop on Remote
Analysis and Measurement of Software Systems (RAMSS).

D. Williams and R. Koller. 2016. Unikernel Monitors: Extend-
ing Minimalism Outside of the Box. In 8th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 16). USENIX Association,
Denver, CO, USA. https://www.usenix.org/conference/hotcloud16/
workshop-program/presentation/williams

Dan Williams, Ricardo Koller, Martin Lucina, and Nikhil Prakash. 2018.
Unikernels As Processes. In Proceedings of the ACM Symposium on
Cloud Computing (SoCC °18). ACM, New York, NY, USA, 199-211. DOI:
http://dx.doi.org/10.1145/3267809.3267845

Bruno Xavier, Tiago Ferreto, and Luis Jersak. 2016. Time provisioning
Evaluation of KVM, Docker and Unikernels in a Cloud Platform. In
Proceedings of the 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID 2016). IEEE, 277-280.

Xen Website. 2018. Google Summer of Code Project, TinyVMI: Porting
LibVMI to Mini-OS. (2018). https://blog.xenproject.org/2018/09/05/
tinyvmi-porting-libvmi-to-mini-os-on-xen-project-hypervisor/, On-
line, accessed 10/30/2018.

Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba
Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018.
KylinX: A Dynamic Library Operating System for Simplified and Effi-
cient Cloud Virtualization. In Proceedings of the 2018 USENIX Annual
Technical Conference.

ChongChong Zhao, Daniyaer Saifuding, Hongliang Tian, Yong Zhang,
and ChunXiao Xing. 2016. On the performance of intel sgx. In Web
Information Systems and Applications Conference, 2016 13th. IEEE, 184-
187.

http://dx.doi.org/10.1145/1352592.1352618
https://techbeacon.com/containers-20-why-unikernels-will-rock-cloud
https://techbeacon.com/containers-20-why-unikernels-will-rock-cloud
http://dx.doi.org/10.1145/1950365.1950399
http://dx.doi.org/10.1145/1950365.1950399
http://pthreads-emb.sourceforge.net/
http://pthreads-emb.sourceforge.net/
https://next.redhat.com/2018/11/14/ukl-a-unikernel-based-on-linux/
https://next.redhat.com/2018/11/14/ukl-a-unikernel-based-on-linux/
https://github.com/rumpkernel/wiki/wiki/Info:-FAQ
https://github.com/rumpkernel/wiki/wiki/Info:-FAQ
https://github.com/Solo5/solo5
https://github.com/Solo5/solo5
http://pyperformance.readthedocs.io/
https://lwn.net/Articles/658511/
https://lwn.net/Articles/658511/
https://www.xenproject.org/help/wiki/80-developers/207-unicore.html
https://www.xenproject.org/help/wiki/80-developers/207-unicore.html
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
http://dx.doi.org/10.1145/3267809.3267845
https://blog.xenproject.org/2018/09/05/tinyvmi-porting-libvmi-to-mini-os-on-xen-project-hypervisor/
https://blog.xenproject.org/2018/09/05/tinyvmi-porting-libvmi-to-mini-os-on-xen-project-hypervisor/

	Abstract
	1 Introduction
	2 Background and Motivation
	3 System Design
	4 Implementation
	4.1 Linux Binary Loader
	4.2 Handling Linux System Calls
	4.3 Other Unikernel Benefits & MiniFS

	5 Evaluation
	5.1 Footprint Reduction & Boot Time
	5.2 Application Support: Compilation Scenarios
	5.3 General Performance
	5.4 Miscellaneous Features

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

