
Intra-Unikernel Isolation with Intel Memory
Protection Keys

Mincheol Sung
Virginia Tech, USA
mincheol@vt.edu

Pierre Olivier∗
The University of Manchester, United Kingdom

pierre.olivier@manchester.ac.uk

Stefan Lankes
RWTH Aachen University, Germany
slankes@eonerc.rwth-aachen.de

Binoy Ravindran
Virginia Tech, USA

binoy@vt.edu

Abstract
Unikernels are minimal, single-purpose virtual machines.
This new operating system model promises numerous bene-
fits within many application domains in terms of lightweight-
ness, performance, and security. Although the isolation be-
tween unikernels is generally recognized as strong, there
is no isolation within a unikernel itself. This is due to the
use of a single, unprotected address space, a basic principle
of unikernels that provide their lightweightness and perfor-
mance benefits. In this paper, we propose a new design that
brings memory isolation inside a unikernel instance while
keeping a single address space. We leverage Intel’s Memory
Protection Key to do so without impacting the lightweight-
ness and performance benefits of unikernels. We implement
our isolation scheme within an existing unikernel written
in Rust and use it to provide isolation between trusted and
untrusted components: we isolate (1) safe kernel code from
unsafe kernel code and (2) kernel code from user code. Eval-
uation shows that our system provides such isolation with
very low performance overhead. Notably, the unikernel with
our isolation exhibits only 0.6% slowdown on a set of macro-
benchmarks.

CCS Concepts: • Software and its engineering→ Virtual
machines; Operating systems; Memory management; • Secu-
rity and privacy → Virtualization and security; Oper-
ating systems security.

Keywords: Unikernels, Memory Protection Keys, Memory
Safety

∗Part of this work was done while Pierre Olivier was at Virginia Tech.

VEE ’20, March 17, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’20), March 17, 2020, Lausanne, Switzerland, https://doi.
org/10.1145/3381052.3381326.

ACM Reference Format:
Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravin-
dran. 2020. Intra-Unikernel Isolation with Intel Memory Protec-
tion Keys. In 16th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE ’20), March 17, 2020, Lau-
sanne, Switzerland. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3381052.3381326

1 Introduction
Unikernels have gained attention in the academic research
community, offering multiple benefits in terms of improved
performance, increased security, reduced costs, etc. As a
result, the application domains for these minimal, single-
application virtual machines are plentiful, encompassing
cloud- and edge-deployed micro-services/SaaS/FaaS-based
software [6, 21, 22, 30, 44], server applications [22, 28, 29, 44,
53], NFV [12, 29–31], IoT [12, 15], HPC [25], efficient VM
introspection/malware analysis [52], and regular desktop
applications [36, 47].
One of the fundamental principles of unikernels is the

elimination of the separation between kernel and user parts
of the address space. Thus, a unikernel instance running an
application alongside the unikernel’s Library Operating Sys-
tem (LibOS) possess a single and unprotected address space.
Because of this particularity, it is possible for unikernels
to present interesting opportunities for performance ben-
efits, such as replacing traditional system calls with regu-
lar function calls [11, 34] so that significant mode switch
overhead [45] can be avoided. However, from a security per-
spective, a single and unprotected address space makes it so
that the entire unikernel must be viewed as a single unit of
trust. Subversion of a kernel or application component will
result in the subversion of the entire unikernel with serious
consequences, such as arbitrary code execution, critical data
leaks or tampering, etc.
We argue that the current level of isolation provided by

unikernels is too coarse-grained for many scenarios. First, a
single application may be made of mutually-untrusting com-
ponents [2, 49], such as if they came from different sources
with variable security coding standards. Second, regarding
the LibOS, although some are written in a memory-safe
language [9, 24, 29, 51], they generally rely on untrusted

https://doi.org/10.1145/3381052.3381326
https://doi.org/10.1145/3381052.3381326
https://doi.org/10.1145/3381052.3381326
https://doi.org/10.1145/3381052.3381326

VEE ’20, March 17, 2020, Lausanne, Switzerland Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran

components for low level operations by using a traditional
unsafe language [9, 29, 51] or by using unsafe code blocks
for languages such as Rust. Other unikernel LibOSes are
written entirely in an unsafe language [18, 19, 25]. Third, in
scenarios where mutually untrusting components belong-
ing to the same application need to be isolated [2, 16, 49],
a computing base that is trusted from the tenant point of
view has to be established to enforce that isolation. In the
current state of the unikernel model, this Trusted Comput-
ing Base (TCB) cannot be the guest kernel as it is not itself
isolated from the application. This implies falling back on
the hypervisor to be this TCB, which is suboptimal from a
performance standpoint.
Several isolation mechanisms have been proposed in the

past to isolate an application’s untrusting components. They
operate at various levels: using hardware assisted virtualiza-
tion [3, 20], running components in different processes/using
different page tables [2, 23], or using ISA extensions such
as Intel SGX [1, 7]. None of these techniques can be easily
applied to unikernels without breaking the single address
space principle and thus not only canceling the resulting
performance benefits but also introducing non-negligible
additional performance overheads in the form of switching
costs [49].

In this paper, we propose addressing the aforementioned
unikernel security issues by providing intra-unikernel iso-
lation while maintaining the single address space feature
of this OS model. To do so, we leverage the Intel Memory
Protection Keys (MPK) [10] technology. MPK is a new hard-
ware primitive that provides per-thread permission control
over groups of pages in a single address space with negli-
gible switching overhead [35, 49], making it a compelling
candidate for use in unikernels.

We identify the various areas composing the address space
of a unikernel, i.e. the kernel’s safe/unsafe memory regions
(static data section, stack, and heap), and the user memory
regions (static data section, stack, and heap). Those areas are
isolated from each other by using MPK-based mechanisms to
enforce per-thread permissions on each memory area. Our
design principles are: it should (1) preserve a single address
space; (2) isolate the various areas of the address space; and
(3) have negligible cost.

We demonstrate our techniques on RustyHermit [24], a
unikernel written in Rust. This is done using an efficient
isolation method for intra-unikernel components that relies
on easy-to-use code annotations made by the unikernel Li-
bOS programmer. On top of that mechanism we implement
two isolation policies. First, we isolate safe from unsafe Rust
kernel code so as to limit the possibilities for an attacker
to exploit a vulnerability in the unsafe kernel code. Second,
we re-introduce kernel and user space separation by isolat-
ing kernel from user code. This is a basic requirement to
implement application components isolation mechanisms

that should be enforced by the kernel. Our design allows
protecting the trusted components of the kernel from at-
tacks leveraging vulnerabilities in untrusted ones. We also
protect kernel space from unauthorized access by subverted
user code. Our isolation techniques have a low overhead;
in particular, we still maintain the low system call latency
feature of unikernels.

2 Background and Motivation
In this section, we first describe the motivation for intra-
unikernel isolation. Next, we give some background infor-
mation about the unikernel we work with in this paper,
RustyHermit [24], as well as the programming language
it is written in (Rust) and the Intel MPK technology we use
to provide isolation.

2.1 Unikernel and Isolation
Aunikernel [29] consists of a single application compiled and
statically linked with a minimal kernel LibOS. Unikernels
are single purpose, i.e. one instance corresponds to one guest
VM running a single application on top of a hypervisor. A
unikernel instance also presents a single and unprotected
address space shared between the kernel and the application.
All the code executes with the highest privilege level (for
example, ring 0 in x86-64) and thus there is no memory
protection between kernel and user code/data in that address
space.
Such a model brings significant benefits in several do-

mains [34], in particular in terms of performance [19, 25, 34]:
due to the elimination of kernel/user separation, system calls
can be replaced with regular function calls. This significantly
reduces system call latency, as there is no longer a costly
world switch between privilege levels [25]; expensive opera-
tions such as page table switching [34] are eliminated. As a
result, unikernels have been shown to outperform traditional
OSes in system intensive workloads [11].
However, the lack of isolation within a unikernel (intra-

unikernel isolation) raises serious security concerns. Even
if it executes a unique application, viewing a unikernel in-
stance as a single and atomic unit of trust is too coarse-
grained in current scenarios: a vulnerability in a relatively
untrusted/vulnerable application component automatically
leads to the attacker taking over the entire system. In a
unikernel, this concern also include kernel components, as
there is no isolation between kernel and user space. We di-
vide intra-unikernel isolation issues into two categories: (1)
the lack of isolation between kernel and user space and (2)
the lack of isolation between trusted and untrusted kernel
components in memory-safe unikernels.
Lack of Isolation betweenKernel andUser Space. Mod-
ern applications are made of components (such as libraries)
having variable degrees of trustworthiness/potential for vul-
nerabilities, manipulating data with various levels of sen-
sitivity [2]. Without isolation between these, taking over a

Intra-Unikernel Isolation with Intel Memory Protection Keys VEE ’20, March 17, 2020, Lausanne, Switzerland

vulnerable component gives the attacker control over the
entire application, including the sensitive data belonging to
other components. Consider, for example, a formally verified
cryptographic library [54] and a user-facing HTTP parsing
module. The former is unlikely to contain vulnerabilities,
but the sensitive data it manipulates (crypto keys) could be
leaked through a vulnerability in the latter (such as CVE-
2013-2028 in NGINX) when they run in the same application.
Another example is an image manipulation library overwrit-
ing sensitive function pointers in the Global Offset Table [2].
To providemore security in these scenarios, intra-application
solutions have been proposed [2, 16, 49]. They rely on a
trusted entity to enforce an isolation policy. Due to the lack
of user/kernel separation in unikernels, that entity cannot
be the guest kernel as application code can freely access
kernel memory. Although the hypervisor could play that
role, it would be suboptimal from a performance point of
view (more VMEXITs). It would also lead to an increase in
the trusted computing base (hypervisor), which is a security
concern. In conclusion, to support isolation of components
within applications, it is necessary to bring back user/kernel
separation in unikernels.
Lack of Isolation between Trusted and Untrusted Ker-
nel Components. Several unikernels’ OS layers are written
in memory safe languages [9, 24, 29, 51]. This offers strong
security guarantees compared to unikernels written in un-
safe languages such C/C++ [18, 19, 25, 34]. However, even
memory-safe unikernels rely on untrusted components to
realize the low-level operations that are unavoidable in an
OS context: the use of inline assembly and the need to deref-
erence raw pointers. This is realized either with an unsafe
language for those components [9, 29, 51] or with the use
of unsafe code blocks [24] in a language such as Rust. Once
again, without intra-unikernel isolation, a vulnerability in an
unsafe kernel component leads to the subversion of the en-
tire system, in effect negating the benefits of using a memory
safe language.
In the rest of this paper we focus on RustyHermit [24],

a unikernel written in Rust, although our design could eas-
ily be adapted to other unikernels that use C for low-level
operations. One of the main reasons we chose RustyHermit
for our implementation is the fact that, contrary to other
memory-safe unikernels, it does not restrict the application
code to the same language as the LibOS (such as OCaml for
MirageOS, Erlang for LING, and Haskell for HaLVM), which
is a significant compatibility advantage.
Listing 1 shows an unsafe code snippet extracted from

RustyHermit’s source code. These functions manage per-
core variables using the GS x86-64 segment register, plus a
relative offset depending on the variable. Examples of per-
core variables are the CPUID, scheduling data structures,
and task state segments. Practical addressing relative to the
GS register can only be done using inline assembly, i.e. it

impl<T> PerCoreVariableMethods<T> {
#[inline]
default unsafe fn get(&self) -> T {

let value: T;
asm!("movq %gs:($1), $0"

: "=r"(value) : "r"(self.offset())
:: "volatile");

return value;
}
#[inline]
default unsafe fn set(&self, value: T) {

asm!("movq $0, %gs:($1)"
:: "r"(value), "r"(self.offset())
:: "volatile");

}
}

Listing 1. Per-core variable get/set methods.

should be placed within an unsafe code block. If we assume
that, through a bug, the attacker has control over the self
parameter, then the set function can be used to perform
arbitrary memory writes (note that self.offset() returns
a value deterministically computed from the value of self).
Similarly, if we additionally assume that the attacker can
exploit a bug to return the value of the get function, then it
becomes an arbitrary memory read.

To conclude, in addition to kernel/user separation, there is
also the need to bring isolation between safe and unsafe ker-
nel components into memory-safe unikernels. Furthermore,
neither type of isolation should come at the cost of degraded
performance, nor should they negate the performance benefits
of unikernels such as fast system calls, fast context switches,
and the like.

In the rest of this section we give some background infor-
mation on RustyHermit, kernel development in Rust, and
the Intel MPK, the technology used in this paper to provide
intra-unikernel isolation.

2.2 Rust

Rust is attracting attention as a system programming lan-
guage because of the memory safety guarantees provided by
its compiler. Furthermore, the absence of a garbage collector
allows Rust to avoid much runtime overheads[13]. Instead of
collecting unused memory in the runtime, Rust is designed
to rely on comprehensive safety checking at compilation
time; there are also runtime safety checks when the compile-
time checks are not sufficient [24]. The concept of ownership
ensures that all objects are safely handled with minimal run-
time overhead. Thanks to Rust’s memory safety and high
performance, operating systems like RustyHermit [24], The-
seus [5], TockOS [27] and Redox [14] were written in Rust.
Rust basically prohibits dereferencing raw pointers for

memory safety. It is, however, inevitable for the kernel to
access unchecked raw pointers, such as when accessing the
page table. In some cases, the kernel has to call assembly,

VEE ’20, March 17, 2020, Lausanne, Switzerland Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran

such as when executing start-up code directly. To support
those cases, Rust also provides an unsafe code region that
is not checked by the Rust compiler or runtime. As Rust’s
memory safety is not guaranteed in the unsafe block by the
compiler, developers have to write vulnerability-free codes
by themselves.
2.3 RustyHermit
The unikernel RustyHermit is completely written in Rust and
does not depend on any C code. One of Rust’s major advan-
tages for kernel developers is that it splits the runtime into
an operating-system-independent library and an operating-
system-dependent library. By implementing Rust’s global
memory allocator, the alloc library, multiple data structures
become available and usable in kernel space. These include
smart pointers as well as basic data structures like linked
lists, binary heaps, ring buffers, and maps. Only a target
specification file that specifies processor type, pointer width,
etc. is required to compile these libraries. Consequently, ker-
nel developers are able to reuse existing, well-tested code
from the Rust community, which simplifies development and
increases the robustness of the kernel.

Additionally, RustyHermit is a full 64-bit kernel, support-
ing x86-64 processors, SIMD instructions like AVX, thread
local storage, and symmetric multiprocessing. RustyHermit
is completely integrated into the Rust compiler infrastruc-
ture. One part of the Rust infrastructure is Cargo, which
is Rust’s package manager and coordinates the build pro-
cess of Rust binaries. The main difference from the typical
C/C++ build process is that the package manager does not
install binaries, headers, static or shared libraries. It instead
downloads the source code, compiles it with the same com-
piler flags, and links it directly to the executable. The Rust
community calls such packages crates. By fully integrating
RustyHermit into the Rust toolchain, cargo can be used to
define the dependencies for the application. In principle, ev-
ery published crate in a repository (e.g., crate.io) can be used
to build executables based on the library operating system.
The only requirement is that the crate must not directly call
the host OS and bypass Rust’s standard runtime.

Besides the support for pure Rust binaries, it is also possi-
ble to develop C/C++ applications on top of the Rust kernel.
For this purpose, the C library newlib [32] is used to create
the interface between C/C++ applications and the kernel.

In addition, RustyHermit comes with the lightweight hy-
pervisor uhyve, which is also completely written in Rust and
uses KVM to accelerate the virtualization. RustyHermit is
able to delegate operating system services like filesystem
access to the host system by hypercalls. The technique is
outlined in [34]. RustyHermit is composed of about 20k LoC,
including 650 lines of unsafe code [24].
2.4 Intel Memory Protection Keys (MPK)
Intel Memory Protection Keys is a new hardware feature pro-
viding per-thread permission control over groups of pages

1 1 0 0 0 1 0 0…

pkey PERM

0 R/W

1 RO

… R/W

14 R/W

15 N/A

0 1 1 1 0 0 0 0…PKRU (Core B)

pkey PERM

0 R/W

1 R/W

… R/W

14 N/A

15 RO

PKRU (Core A)

pkey 1 pkey 0pkey 14pkey 15

pkey 1 pkey 0pkey 14pkey 15

1 1 1 1 …

1 1 1 1 …

1 1 1 1 …

0 1 1 0 …

…

0 1 1 0 …

Group
15

Group
14

52th 49th

0x3C7000

0x3C6000

0x3C5000

0x3A4000

0x3A3000

Figure 1. Intel Memory Protection Key.

without requiring modification of page tables at a small per-
formance cost. Four previously-unused bits of each page
table entry (the 62nd to the 59th on x86-64) are exploited
by MPK [10, 35]. Since MPK exploits four bits of the page
table entry, it supports up to 15 protection keys (we opted
to reserve key 0).
MPK controls per-thread permission on groups of pages

with the notation (WD, AD), where WD isWrite Disable and
AD is Access Disable. The possible states are are read/write
(0,0), read-only (1,0), or no-access (x,1). Each core has a PKRU
register (32 bits) containing a permission value. The value
of the PKRU register defines the permission of the thread
currently running on that core for each group of pages con-
taining a protection key in their page table entries. Figure 1
illustrates MPK’s operation. A thread running on a core 𝐴
has the no-access permission on the pages of group 15 and
read-write on those of group 14. On the other hand, a thread
running on core 𝐵 can not access the pages of group 14 and
can only read the pages of group 15.

Unlike page-table-level permission, MPK provides thread-
local memory permission. Furthermore, the cost of switching
the PKRU value is quasi-negligible [49]. We believe MPK
is most suitable for providing isolation within a unikernel
without harming the principle of unikernels.

3 Assumptions and Threat Model

We define a unikernel application to be a collection of soft-
ware components, i.e. pieces of code. These are compiled and
linked together to form a unikernel binary, executed at run-
time on top of a hypervisor in a VM representing a unikernel
instance. The software components can either be trusted or
untrusted. We assume no vulnerability in trusted compo-
nents, which in practice denotes the use of a memory-safe
language or verification techniques for these components.
We assume that untrusted components can contain mem-
ory vulnerabilities such as buffer overflows, which can be
exploited by an attacker aiming at hijacking the unikernel’s
control flow, leaking or tampering with sensitive data, etc.

We assume a unikernel model inwhich the LibOS ismainly
implemented in a memory-safe language, examples of which
include MirageOS [29], RustyHermit [24], LING [9], as well
as HaLVM [51]. A unikernel is composed of application and

https://crate.io

Intra-Unikernel Isolation with Intel Memory Protection Keys VEE ’20, March 17, 2020, Lausanne, Switzerland

static mut KMSG: KmsgSection = KmsgSection {
buffer: [0; KMSG_SIZE + 1],

};

pub fn kmsg_write_byte(byte: u8) {
let index = BUFFER_INDEX.fetch_add(1, SeqCst);
unsafe {

let buffer = &mut KMSG.buffer[index % KMSG_SIZE];
write_byte(buffer, byte);

}
}

Listing 2. Example of unsafe kernel code.

kernel code. In this paper we aim to provide user/kernel sepa-
ration so we simply see the entire application as an untrusted
component, independently of application-specific character-
istics such as the language it is written in or the level of skill
of the application’s programmer. In addition, we divide the
kernel code into trusted and untrusted components. Trusted
kernel components represent pieces of code written with
a memory-safe language, i.e., offering strong security guar-
antees. Untrusted kernel components correspond to code
written either in memory-unsafe languages [9, 29, 51] or in
unsafe Rust code blocks [24]. To summarize, a unikernel is
composed of (1) untrusted application code, (2) untrusted
kernel components, and (3) trusted kernel components.
We assume that there is no vulnerability in the trusted

kernel code, as memory safety is also guaranteed by Rust
compiler. We trust the hardware to behave correctly and
assume that there are no side channels.

4 Design of Intra-unikernel Isolation

This section goes through the design of our intra-unikernel
isolation technique. We follow the design objectives: (1)
preservation of a single address space, (2) isolation of var-
ious memory areas, and (3) negligible cost.

4.1 Data considered to isolate

We have a general security principle: untrusted code should
access only what it needs to operate correctly. Listing 2 shows
an example of unsafe kernel code in RustyHermit. The func-
tion write_byte in kmsg_write_byte stores the input byte
on the KMSG buffer. As write_byte writes the input at the
destination decided by a raw pointer, it should be called in an
unsafe code block. In this example, write_byte accesses the
KMSG buffer through the local variable buffer. Therefore,
the call to write_byte, the buffer KMSG, and the variable
buffer should all be isolated.
Kernel code is comprised of safe components and unsafe

components. Isolating unsafe kernel functions and variables
requires separate .data/.bss sections for static data, stacks
for function calls, and heaps for dynamic memory allocation.
Thus, we create an isolated data section, isolated stack, and
isolated heap for the unsafe components. For the user/kernel

.
text

.
data

.
bss

…
user
heap

user
stack

kernel
heap growth

stack growth

.safe
data

safe
heap

safe
stack

.isolated
data

isolated
heap

isolated
stack

User Memory
(pkey of USER)

Safe Kernel Memory
(pkey of SAFE)

Unsafe Kernel Memory
(pkey of UNSAFE)

Figure 2. Virtual address space layout for intra-unikernel
isolation.

isolation, we isolate all the sections of user memory by cre-
ating another isolated .data/.bss section, isolated stack, and
isolated heap for the user application. Figure 2 shows the
virtual address space layout of safe sections for the safe
kernel components, isolated sections for the unsafe kernel
components, and user sections for the user application.

4.2 Isolation with MPK
We leverage Intel MPK for intra-unikernel isolation. As pre-
viously described, MPK provides per-thread permissions for
groups of pages according to their protection keys (pkeys).
We set a pkey of UNSAFE on pages of the isolated data section,
stack, and heap. On the other hand, pages for the safe kernel
memory sections have a pkey of SAFE and pkey of USER for
the user memory.
We switch the current thread’s permission for the pkey

SAFE to “No Access” right before calling an unsafe function.
Right after the function returns, the permission is switched
back to “Read Write” to end the isolation. An example in
Listing 3 shows that the permission for the SAFE memory
region is set to No Access before executing the unsafe ker-
nel code (raw pointer dereference, unsafe function call, and
inline assembly) by setting a value of 0b0...01100 (SAFE
pkey is 1: 2nd, 3rd bits are set to 1s for No Access) in the
PKRU register. After the function returns, the permission is
set back to Read-Write by writing a value of 0b0...00000 to
the PKRU. Therefore, MPK prohibits the thread from access-
ing the SAFE memory region (whose PTEs contain the pkey
of SAFE) while executing the UNSAFE function. If a thread
executing untrusted code (unsafe kernel or user application
code) tries to access the safe memory region, a protection
key page fault occurs and terminates process execution.

4.3 Unsafe Kernel Isolation
There are unsafe code blocks containing unsafe function calls,
raw pointer dereference operations, and inline assembly in
kernel code. Some of them need to access global variables
or local variables in the stack frame of their caller function.
Therefore, we create separate sections for static data isola-
tion, a stack for unsafe function calls, and a heap for any
dynamic memory allocation required by the unsafe func-
tions. Those isolated memory regions are protected from the
user application by MPK with the UNSAFE pkey.

VEE ’20, March 17, 2020, Lausanne, Switzerland Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran

unsafe { // pkey of SAFE is 1
pkey_safe_NO_ACCESS(); // MPK_WRPKRU(0b0...01100)
*ptr = some_data; // Raw pointer dereference
unsafe_function(ptr); // Unsafe function call
asm!("NOP"::::); // Inline Assembly
pkey_safe_READ_WRITE(); // MPK_WRPKRU(0b0...00000)

}

Listing 3. Example of isolating unsafe kernel code: raw
pointer dereference, unsafe function call, and inline assembly.
MPK_WRPKRU writes a value of 32bit on PKRU register.

Static Data Isolation. Unsafe functions in kernel may need
to access global variables.We define global variables accessed
by the unsafe kernel code as unsafe global variables. We place
the unsafe global variables into a separate memory section
(.isolated_data section in Figure 2). On the other hand,
global variables that are only used by safe kernel code should
be located in the safe data section, which unsafe kernel code
is not able to access. We minimize the number of global
variables in the unsafe data section by including only those
needed, so a compromised thread in the unsafe kernel code
can only access a very limited part of memory.
In the real kernel code, there are some global variables

that are needed by both safe and unsafe code. We also put
those shared global variables in the unsafe data section. As
our objective is minimizing the number of global variables
accessed by the unsafe code, all the rest of global variables are
protected by the unsafe code. Although having a separate
.bss section for uninitialized global variables is useful to
reduce the size of binary, we keep the variables in the data
section to ease design complexity while still attaining the
reasonably small size of a unikernel.
Stack Isolation. An unsafe function should not share its
function call stack frame with a safe function. We create a
separate stack isolated by MPK pkey for unsafe functions,
shown as .isolated_stack in Figure 2. When an unsafe
function is called, we switch the value of the stack pointer
register (%rsp in x86-64) with the address of the isolated
stack.
By default, an unsafe function is strictly isolated, so it is

unable to access the safe stack frames. In real kernel code,
however, an unsafe function may try to access its caller’s
stack frames through local variables. If the caller is a safe
function, the access should be managed carefully. In this case,
we only allow accesses to the shared stack frame between the
safe caller and the unsafe callee, meaning the unsafe callee
function is still not able to access the rest of the caller’s stack
frames.
Heap Isolation. An isolated heap is required for unsafe
code to allocate memory dynamically. We create a separate
heap (isolated heap in Figure 2) and a memory allocation
function (unsafe_allocate) for it. The unsafe_allocate
function assigns available virtual and physical addresses
and maps them while writing the pkey of UNSAFE to the

corresponding page table entries. Consequently, a thread
with inaccessible permissions for the safe memory region can
still access the memory allocated by the unsafe_allocate
function while executing the unsafe code.

4.4 User Application Isolation

The entire user part of the address space is assumed to be
untrusted. For that reason, we separate the entire memory
of the application from the kernel memory as the tradi-
tional monolithic kernel model does. However, separation
is done by MPK, for which the domain switch operation, a
simple update of the PKRU value, is much faster than tradi-
tional user/kernel separationmethods involving costly world
switch interrupts. Consequently, it fundamentally follows
the main principle of unikernels: a single address space.
As the entire user application is treated as a set of un-

trusted components, all the memory sections are separated:
.data/.bss, user stack, and user heap (Figure 2). A thread run-
ning a user application code should not be able to access
either kernel memory regions, safe or unsafe. The border
between user and kernel is quite distinct: a thread enters
the kernel when system calls are called and exits the kernel
when the system calls return.

User application memory also comprises user static data
(.data, .bss, etc.), user stack, and user heap like those of the
kernel. We can reuse most of the design choices used for the
safe/unsafe kernel isolation.

5 Implementation

We implement a prototype on top of RustyHermit to demon-
strate our techniques. We can leverage Rust’s features such
as Rust Macros [38] to provide developers with a convenient
way to use our isolation mechanism on the existing kernel
source code.

5.1 Protection Keys and MPK Permission

Isolating safe/unsafe and kernel/user memory requires two
MPK protection keys. The protection key of 1 is used for
the safe kernel memory region permission, while 2 is used
for the unsafe kernel memory regions. As the user applica-
tion is the most untrusted component, it is not protected
by any protection key. Table 1 summarizes PKRU values
that determine permissions for the groups of pages by the
protection keys. A thread running with a PKRU value of
0x00 is the most trusted entity at that point. However, when
the thread executes an unsafe kernel code block, its PKRU
is set to contain 0xC (0b0000_1100). This PKRU value pro-
hibits the thread from accessing the group of pages of pkey 1,
which corresponds to the safe memory regions. In the same
way, 0x3C (0b0011_1100) in the PKRU register prevents the
thread from accessing both safe (pkey 1) and unsafe (pkey
2) kernel memory regions, providing the isolation of kernel
from user memory.

Intra-Unikernel Isolation with Intel Memory Protection Keys VEE ’20, March 17, 2020, Lausanne, Switzerland

Table 1. PKRU values for memory regions: when a thread executes each code, PKRU is set to the corresponding value. For
example, before a thread executes the user code, PKRU is set to contain 0x3C (No Access on both safe and unsafe kernel
memory regions) such that access to kernel memory by that thread is prohibited.

Memory Region Unused 26 bits (pkey 3 ∼15) UNSAFE (pkey 2) SAFE (pkey 1) Reserved (pkey 0) Hex Value
Kernel (safe) 0b00000000000000000000000000 00 00 00 0x00
Kernel (unsafe) 0b00000000000000000000000000 00 11 00 0xC
User 0b00000000000000000000000000 11 11 00 0x3C

5.2 Unsafe Kernel Isolation

Rust unsafe code [39] provides additional features such as
raw pointer dereferences, inline assembly, Rust intrinsic func-
tions, and unsafe function calls, as well as the use of static
mutable global variables. As the Rust compiler does not guar-
antee memory safety in the unsafe code blocks, kernel de-
velopers should carefully use unsafe code at their own risk.
However, all unsafe code can contain potential memory vul-
nerabilities. Accessing a static mutable global variable, for
example, may expose a data race, but does not have memory
vulnerabilities.
Rust Macro. Rust macros provide a handy way of reusing
multiple lines of code [23]. As explained in Sections 4.2, 4.3,
and 4.4, there are several steps involved in safe/unsafe and
kernel/user isolation of global and local variables, and func-
tions. All the procedures can be packed into an easy-to-use
macro for better programmability. Listing 4 provides an ex-
ample of a macro that isolates an unsafe function introduced
in Listing 2. Macro isolated_function wraps the unsafe
function call and expands to multiple steps that isolate the
function. For a global variable accessed by the unsafe func-
tion, macro unsafe_global_var locates the global variable
in the isolated data section.
Isolated Kernel Data Section. We wrote a linker script to
specify the isolated data section (labeled .unsafe_section)
at a certain address. When RustyHermit boots, the pkey of
UNSAFE is set for the corresponding page table entries of the
section. To allocate global variables in the .isolated_data
section, we leverage Rust’s attribute (#[link_section]) to
dedicate variables to that specific section [37]. To ease use of
that attribute, we provide the unsafe_global_var macro,
which wraps the definition of a global variable with the
#[link_section] attribute. Developers should explicitly
wrap the definition of a global variable that is accessed by un-
safe kernel code with the unsafe_global_var macro. List-
ing 4 shows how the global variable KMSG is wrapped with
the unsafe_global_var macro (at line #2). The macro adds
the attribute #[link_section] before the definition of the
target global variable (at line #21).
Isolated Kernel Stack. We create a separate stack with
the protection key of UNSAFE apart from the stack for safe
kernel functions. This isolated stack is used when calling
an unsafe kernel function such as write_byte in Figure 2.

Switching the stack pointer for the unsafe function to use
the isolated stack frame can be done by switching the value
of %rsp register by inline assembly. We provide a macro
(isolate_function) to expand lines of inline assembly be-
cause isolating an unsafe function requires: (1) saving the
current stack pointer; (2) switching the stack pointer to the
isolated stack; (3) changing MPK permission to No Access
on the safe kernel memory; (4) calling the unsafe function;
(5) restoring the MPK permission to Read Write on the safe
memory; and (6) restoring the stack pointer to the safe stack.
It only works, however, for an unsafe function that does

not need to access its caller’s stack frame. Some functions
get references to local variables of the caller as function
parameters and access them. To cover this case, we also pro-
vide a macro (isolate_function_weak) with extra steps
for sharing the caller’s stack frame. The macro that disal-
lows accessing the caller’s stack frame is, by contrast, named
isolate_function_strong. It is also possible that an un-
safe function needs to access data in a frame of one of the
caller functions (e.g., caller’s caller and so on). We provide
share and unsharemacros for making local variables in the
remote stack frames accessible/inaccessible to the unsafe
function.
Placing annotations represents some effort on the pro-

grammer side. However, we consider it to be relatively low:
in our effort to isolate RustyHermit safe/unsafe code and
user/kernel space, less than 2% of the codebase was touched.
It is also straightforward: a simple keyword to place. Finally,
that process is guided: any overlooked variable will be iden-
tified at runtime with a MPK fault.
Isolated Kernel Heap. We create an isolated heap for un-
safe functions to allocate memory dynamically. Instead of
implementing a new memory allocation function for the
isolated heap, we reuse the existing allocation function for
the safe kernel heap. The memory allocation function maps
a virtual-physical address by writing the physical address
and page flags to the corresponding page table entries. The
unsafe allocation function additionally sets a protection key
of unsafe on the page table entries.
Raw Pointer Accesses, Inline Assembly. Dereferencing
raw pointers and using inline assembly allows access to
arbitrary locations in memory, so such techniques should be
isolated in a way that does not change the stack. We thus

VEE ’20, March 17, 2020, Lausanne, Switzerland Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran

1 /********* Macro usage example *********/
2 unsafe_global_var!(
3 static mut KMSG: KmsgSection = KmsgSection {
4 buffer: [0; KMSG_SIZE + 1],});
5

6 unsafe fn write_byte<T>(buffer: *mut T, byte: T) {
7 volatile_store(buffer, byte);
8 }
9

10 pub fn kmsg_write_byte(byte: u8) {
11 let index = BUFFER_INDEX.fetch_add(1, SeqCst);
12 unsafe {
13 let buffer = &mut KMSG.buffer[index % KMSG_SIZE];
14 isolate_function!(write_byte(buffer, byte));
15 }
16 }
17

18 /********* Macro definition below *********/
19 macro_rule! unsafe_global_var! {
20 (static $name:ident: $var_type:ty = $val:expr) => {
21 #[link_section = ".unsafe_data"]
22 static $name: $var_type = $val;
23 };
24 }
25

26 macro_rule! isolate_function {
27 ($f:ident($($x:tt)*)) => {{
28 asm!("mov %rsp, $0;" // Store stack pointer
29 "mov $1, %rsp;" // Switch to isolated stack
30 "mov $2, %eax;" // N/A perm on SAFE memory
31 "xor %ecx, %ecx;"
32 "xor %edx, %edx;"
33 "wrpkru;" // Write %eax on PKRU
34 "lfence"
35 : "=r"(current_rsp)
36 : "r"(isolated_stack),"r"(UNSAFE_PERMISSION)
37 : "eax", "ecx", "edx" : "volatile");
38

39 $f($($x)*); // Actual function call
40

41 asm!("mov $0, %eax;" // R/W perm on SAFE memory
42 "xor %ecx, %ecx;"
43 "xor %edx, %edx;"
44 "wrpkru;"
45 "lfence;"
46 "mov $1, %rsp" // Restore stack pointer
47 :: "r"(SAFE_PERMISSION),"r"(current_rsp)
48 : "eax", "ecx", "edx" : "volatile");
49 }};
50 }

Listing 4. Isolation of unsafe kernel code using Rust macros.
Usage example of the macros in the kernel code and the
definitions of the macros.

implemented two macros for developers: isolation_start
and isolation_end. The first macro, isolation_start, is
used to indicate that the isolation starts, so it switches the

MPK permission to No Access on the safe memory regions.
The other one, isolation_end, is used to indicate the end of
isolation, and it restores the MPK permission to Read-Write.
Kernel developers should add isolation_start before a
raw pointer deference or inline assembly to start isolation
and isolation_end after them to finish isolation.
Non-isolated Function. There is a small amount of unsafe
kernel code that cannot be isolated by our techniques. For
example, the spinlock code has a few unsafe functions that
are used by both safe and unsafe kernel code. Introducing
isolation on the functions may cause deadlock. Functions
such as lgdt or load_cs also cannot be isolated because
they are called early in the boot process. We also do not
isolate x86 I/O port instructions such as in and out because
these functions manipulate device memory. Functions such
as wrmsr and rdmsr are not isolated because they access
machine-specific registers. It is worth noting that all of these
unprotected unsafe code blocks are very small, most rep-
resenting just a few instructions and extremely unlikely to
represent vulnerabilities.

5.3 Copy between Safe/Unsafe Kernel Code
RustyHermit requires BIOS and boot loader data to be lo-
cated in a fixed memory address. Accessing this data is done
by unsafe functions because it is accessed via a raw pointer,
and this data should also be isolated. However, we cannot ap-
ply our isolation mechanism to it, since RustyHermit stores
it at a fixed address. To protect the data, we provide a copy
mechanism. When a thread accesses the data (e.g., an eight-
byte variable in a data structure), only eight bytes are copied
to a per-core memory buffer (unsafe_storage). The thread
then accesses unsafe_storage through an unsafe function.
If the thread writes new data to unsafe_storage, it should
be synced so it is copied back to the original data structure.
These operations are protected by threads concurrently run-
ning on the other cores. This is because unsafe_storage is
restricted to that core only by using %gs-relative addressing
(i.e., each core contains a different base address in the %gs
register).
The memory copy function is itself unsafe because it re-

quires raw pointers for source and destination. We maintain
a whitelist of memory addresses to limit arbitrary memory
access by the copy function.
In addition to the unikernel-specific areas, per-core data

is accessed by the copy mechanism. The per-core data is
accessed by the unsafe functions (we introduce get and set
methods presented in Listing 1), so it should be isolated. It is
not suitable to locate the per-core data in the isolated data
section because per-core data contains important data such
as a pointer to the scheduler.

5.4 User Application Isolation
Isolating the user memory region is simpler than the unsafe
kernel isolation because the application does not share global

Intra-Unikernel Isolation with Intel Memory Protection Keys VEE ’20, March 17, 2020, Lausanne, Switzerland

pub extern "C" fn sys_rand() -> u32 {
return kernel_function!(__sys_rand());

}

Listing 5.A system call calling an internal function wrapped
by the kernel_function macro.

variables with the kernel. In consequence, their border is
distinct and the MPK permissions should only be switched
for system calls.
System Calls. System calls are the gate between user and
kernel so MPK permissions and stack should be switched
before making a system call and after returning from it. To
avoid modifying the Rust standard library, we modified the
definition of system call. Each system call calls internal calls
(e.g., sys_rand calls __sys_rand in Listing 5) and the inter-
nal function is wrapped with a kernel_function macro.
What the kernel_function macro does is similar to the

isolate_function for unsafe kernel isolation. It expands
into a few lines of inline assembly, and switches the MPK
permission and the stack pointer to the user stack.

6 Security Evaluation
Unikernels such as RustyHermit are still an emerging tech-
nology and are not widely used in production. It was thus
difficult to find known vulnerabilities we could use to vali-
date our unikernel isolation scheme. As a result, we provide
unikernel applications with handcrafted attack scenarios
and demonstrate that our isolation technique successfully
thwarts those attacks. We present 2 scenarios, respectively
demonstrating (1) user vs. kernel space isolation and (2) safe
and unsafe kernel code isolation.
User vs. Kernel Space Isolation. In this scenario, we as-
sume the application is external-facing (a web server, for
example) and contains a memory corruption-based vulnera-
bility that a remote attacker uses to perform arbitrary mem-
ory reads/writes. Examples are CVE-2013-2028 for NGINX
and CVE-2014-0226 for Apache. In an unprotected unikernel,
due to the lack of user/kernel isolation, the attacker would
then be able to use the vulnerability to freely tamper with
or leak sensitive kernel data. This could be used to break
security mechanisms enforced by the kernel, such as Address
Space Layout Randomization (ASLR).
We reproduced this scenario by writing a simple uniker-

nel application that accesses the kernel data segment. In
an unprotected unikernel, an attacker could freely read and
write kernel data. Our user application isolation scheme can
prohibit this attack. As the user application is running with
the MPK permission USER, which disallows to access the ker-
nel memory (including the kernel data section). When the
write operation is issued, an MPK fault occurs and uniker-
nel execution is terminated. Our system also displays some
information about the fault, such as the instruction pointer
at the time and the faulty address, in order to help a system
administrator investigate the attack.

Unsafe Kernel Isolation. In this scenario, we assume that
an attacker is able to hijack the control flow of the unikernel
application and divert it to trigger the execution of buggy
unsafe kernel code through a system call. Depending on
the vulnerability in the kernel code, the attacker could then
tamper/leak kernel data, escalate privileges, execute arbi-
trary code, etc. Examples of vulnerable kernel code called
through system calls with specific parameters are numerous,
with specific examples being CVE-2013-1763 and CVE-2016-
10229.

We reproduced such a scenario by assuming an attacker
is able to manipulate the parameters of the per-core kernel
variable access methods presented in Listing 1. This would
give the attacker arbitrary memory read/write capabilities.
The safe/unsafe kernel isolation method we implemented
prevents malicious calls to set/get methods from access-
ing memory that is not allowed, i.e. the majority of kernel
memory.When the unsafe kernel code tries to access the inac-
cessible memory regions, an MPK fault terminates unikernel
execution and provides the instruction pointer at that point
as well as the faulty address.
Discussion: Other Attack Scenarios. An attack scenario
against our system would be unsafe code tampering with the
PKRU. A possible mitigation against such an attack would
be to use binary analysis/rewriting to validate/sanitize any
use of the WRPKRU instruction, as done in ERIM [49]. An
attacker could also try to bypass such checks by using Re-
turn Oriented Programming (ROP) to jump to code snippets
manipulating the PKRU. A classical mitigation used in all
modern systems against ROP is ASLR. Although they are cur-
rently not implemented in RustyHermit, both static analysis
and ASLR can be integrated without any runtime overhead.
There is also a possibility of information leaks or data-

oriented attacks due to unused registers not being saved
and scrubbed upon safe/unsafe code switches. We chose not
to do so for performance reasons, as it is certain that sav-
ing and restoring registers, for example with the xsaveopt
instruction, will increase the domain switch latency.

7 Performance Evaluation

We conducted a performance evaluation to demonstrate our
design principles: providing isolation withminimal overhead.
The objective of the performance evaluation is to answer the
following questions: First,what are the overheads of switching
across isolated safe and unsafe kernel code and across isolated
kernel/user code? Second, what is the performance impact
of such isolation on real applications? Third, how does our
scheme perform in a multi-threaded environment? We chose
vanilla RustyHermit as a baseline and compare our prototype
against it. Our experimental setup has an Intel Xeon Silver
4110 CPU (2.10GHz, eight physical cores) with 64KB of L1
cache, 1024KB of L2 cache per core, and 11MB of L3 cache.
The setup has 192GB of main memory and runs Ubuntu

VEE ’20, March 17, 2020, Lausanne, Switzerland Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran

0.00

0.50

1.00

1.50

2.00

0

100

200

300

400

500

1 2 4 8 16 32 64 128 256 512 1KB 2KB 4KB

S
lo

w
d

o
w

n
 (

%
)

T
im

e
 (

u
s
)

Size (bytes)

Isolated (us)

Vanilla (us)

Slowdown (%)

Figure 3. Cost of isolated write_bytes call.

18.04 with Linux 4.15 (needed for MPK support). Rust’s cargo
version is 1.40.0.
7.1 Unsafe Kernel Isolation
In this section, we evaluate the unsafe kernel isolation. We
aim to measure the overhead of calling an unsafe kernel func-
tion isolated by our techniques. This is because isolating un-
safe kernel functions may contain the possible overhead (e.g.,
MPK permission switching, stack switching, data copying)
compared to vanilla ones. We chose examples of some unsafe
kernel functions and implemented a micro-benchmark to
measure the time cost of the isolated unsafe kernel functions.
Write_bytes. write_bytes is an unsafe function writing
byte to an arbitrary address. We isolate write_bytes with
isolate_function_strong macros and call it one million
times, then calculate the time cost of a single function call.
The result, presented in Figure 3, contains the total cost of
the unsafe function call, composed of: switching the kernel
stack and the MPK permission, the actual function call, and
restoring the stack and the MPK permission. We change
the write size from 1 byte to 4KB. For each size, we iterate
one million times and calculate the slowdown caused by the
unsafe function isolation. With small writes, the isolated
write_bytes is four times slower than the vanilla one. This
is because the majority of the overhead comes from our
isolation mechanism. However, as the write size increases,
the cost of calling write_bytes dominates the overall cost
and the isolation overhead becomes negligible. In particular,
our prototype introduces a 6% slowdown when writing 4KB
at a time.
Per-core Variable Get and Set Methods. We also evalu-
ated the cost of the core_id and set_core_scheduler func-
tions to measure the per-core variable get and set methods
(Percore.get and Percore.set). Introduced in Figure 1,
Percore.get and Percore.set could be used as attack vec-
tors to gain arbitrary memory read/write capabilities. Their
usage as potential attack vectors means they should be iso-
lated. In addition, they are invoked by kernel functions such
as core_id and set_core_scheduler, which are frequently
called in the kernel code. This makes them appealing as can-
didates for our unsafe kernel isolation as well. To do this, we
created a micro-benchmark that iteratively calls core_id to
invoke Percore.get and set_core_scheduler to invoke

Table 2. PerCoreVariable get and set methods called by
core_id and set_core_scheduler, respectively.

Caller function Unsafe function Cost (µs)
Isolated Vanilla

core_id Percore.get 0.202 0.017
set_core_scheduler Percore.set 0.367 0.020

Percore.set. We measure the time cost of a hundred mil-
lion calls, calculate the cost of one function call, and compare
the isolated one to the vanilla one. Table 2 shows the results
of the experiment. First, we observe the performance differ-
ence between Percore.get and Percore.set on both the
isolated and the vanilla benchmarks. set_core_scheduler
generally costs more than core_id because memory reads
are faster than writes. When comparing the isolated func-
tions to the vanilla ones, the isolated functions take longer
due to the cost of memory copies introduced by the copy
mechanism (Section 5.3): it introduces additional memory
copy overhead besides the unsafe kernel isolation overhead
(MPK permission switching, stack switching). Percore.get/
set copies the original per-core values to the unsafe memory
region, which is followed by the unsafe read/write operation
(Listing 1) being performed on the unsafe memory region.
Finally, the updated data is copied back to the original per-
core data location. This additional overhead explains the
performance degradation for the isolated Percore.get/set
methods.

7.2 User Application Isolation
We evaluated user application isolation by measuring the
cost of system calls, as they are a bridge between kernel and
user space. To do so, we implemented micro-benchmarks
written in both Rust and C and compare them. They exhibit
null calls and getpid calls, the latter involving data copying.
In addition to vanilla RustyHermit, we also evaluated system
calls in Linux running on KVM. For Linux-KVM,we tested on
an Ubuntu 17.10 distribution using Linux 4.13. We compiled
all of the code with optimization level 3.
Null System Call. We evaluated a null system call to mea-
sure the pure system call latency. This call does nothing
other than return, allowing us to measure the pure overhead
of our user application isolation mechanism. For Linux, we
use the getpid system call. We call this null system call a
hundred million times and calculate the average cost for
one function call. Note that we disabled vDSO for Linux in
order to avoid potential user-mode system calls. Figure 4A
represents the cost of the null system call in the Rust and C
applications. The isolated null system call in the Rust appli-
cation takes 0.19 µs while the vanilla one takes 0.002 µs. This
difference comes from the user application isolation mecha-
nism that we provide. The vanilla system call only has the
overhead of function call. However, the isolated system call
introduces: (1) accessing the Task structure through the per-
core scheduler (which can be accessed by Percore.get and

Intra-Unikernel Isolation with Intel Memory Protection Keys VEE ’20, March 17, 2020, Lausanne, Switzerland

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Rust C

T
im

e
 (

u
s
)

(A) null system call

Isolated Vanilla Linux-KVM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Rust C

T
im

e
 (

u
s
)

(B) getpid system call

Isolated Vanilla Linux-KVM

Figure 4. System call evaluation.

also introduces the overhead mentioned in Section 7.1) to get
the user stack address, (2) switching the MPK permission and
stack pointer. Furthermore, the compiler loses optimization
possibilities due to the use of the macros that we provide.
Nonetheless, the system call isolated by the user application
isolation mechanism is approximately three times faster than
getpid on Linux (0.58 µs). This demonstrates that we can
provide isolation while still maintaining the low system call
latency feature of unikernels.

In the C application, all of the system call results are a bit
slower (the isolated system call takes 0.21 µs, the vanilla ver-
sion takes 0.005 µs, and the Linux version takes 0.61 µs). The
user application isolation overhead still dominates the over-
all cost of the system call and reduces compiler optimization
possibilities.
Getpid. This function is provided for user applications and
invokes the sys_getpid system call. sys_getpid also con-
tains unsafe/safe switches and the copy mechanism used
for the per-core data. Thus, the cost of the getpid function
can represent the overall overhead of the user application
isolation mechanism. As in the null system call experiment,
we set a micro-benchmark to make the call a hundred million
times and calculate the average cost for one function call.
Figure 4B presents the results of getpid on our prototype,
vanilla RustyHermit, and Linux. We tested both Rust and C
applications.

In all cases, the system call from the Rust application out-
performs that of the C application, as with the null system
calls. In addition, the cost gap between Rust and C is similar
to that for the null system call. The memory copy overhead
is the main factor in the performance degradation of our pro-
totype, as the PID of the task is stored in the Task structure
that is referenced by the current pointer in the per-core
scheduler. Accessing the per-core scheduler is performed
via Percore.get, which introduces the additional memory
copy.

With our scheme, the getpid system call is still 2x faster
than it is on Linux, demonstrating that our technique pre-
serves unikernel benefits.
Sbrk. We measured sbrk (only used by C applications) la-
tency for evaluation of the user application isolation. We
call sbrk with a parameter of 16 (an increment of 16). sbrk

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Isolated Vanilla Linux-KVM

T
im

e
 (

u
s
)

(a) Time cost of sbrk

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

T
o

ta
l
e

x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Threads

(b)Multi-threaded getpid

Figure 5. Evaluation of sbrk and multi-threaded getpid.

calls sys_sbrk, which does not include expensive per-core
variable methods such as Percore.get and Percore.get.
However, our user application isolation introduces the over-
head of the MPK switch and the stack switch. Despite this,
sbrk with our user application isolation still outperforms
the Linux one significantly, as shown in Figure 5a.
Multi-threading. To demonstrate that our intra-unikernel
isolation method works in multi-threaded environments, we
created a Rust benchmark launching up to 8 threads and
parallelizing an iteration of ten million getpid calls. We
could observe that our intra-unikernel worked with multi-
threading and scaled with the number of threads (Figure 5b).
7.3 Real Applications
To measure the overall performance impact of our system,
we evaluated our prototype with macro-benchmarks. We
used memory/compute intensive benchmarks from various
suites including NPB [41], PARSEC [4], and Phoenix [40].1
The results are shown in Figure 6, illustrating that the av-
erage slowdown imposed by the intra-unikernel isolation
compared with the vanilla unikernel is only 0.6%.

We also counted the number of unsafe/safe switches and
user/kernel switches and summarize them in Table 3. Re-
member that one unsafe function call corresponds to two
unsafe/safe switches (from safe to unsafe switch on entry and
unsafe to safe switch on return) and one system call corre-
sponds to two user/kernel switches. Especially, phoenix-pca
has a total of 27,246 switches and switches at a rate of 1,238
per second, which is system intensive. The evaluation demon-
strates that our system introduces negligible performance
overhead for real applications.

8 Related Works
Unikernels. Since their invention in 2013 [29], unikernels
have grown in popularity in academia. These single-purpose,
minimal VMs offer benefits in addition to the already men-
tioned performance gains. They are lightweight [43], offering
subsecond boot time and very low disk/memory footprints.
This is due to the simplicity of unikernel LibOSes and the fact
that in a unikernel instance, the kernel embeds only what
1Note that some applications from these suites are not supported due to the
limited compatibility of RustyHermit.

VEE ’20, March 17, 2020, Lausanne, Switzerland Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran

Table 3. Number of unsafe/safe switches and user/kernel
switches invoked by benchmarks.

Benchmark Unsafe/safe
switches

User/kernel
switches

npb-cg 5218 272
npb-is 4294 106
npb-ep 4370 116
npb-mg 4606 158
phoenix-kmeans 6882 1580
phoenix-pca 19402 7844
whetstone 3758 14
dhrystone 3734 10
livermore 13118 1574
linpack 3878 38

0
20
40
60
80

100
120
140
160
180
200

T
im

e
 (

s
e
c
)

Benchmarks

Isolated Vanilla

Figure 6. Macro benchmarks.

is needed for the application it runs. Lower footprints trans-
late into cost reductions for the cloud tenant and superior
consolidation (increased revenue) for the provider. Fast boot
times make unikernels good candidates for scale-out/elastic
deployments [33]. The potential application domains for
unikernels are plentiful, as listed in the introduction.
The isolation between unikernel instances running on a

host is strong as they are virtual machines, and they are con-
sidered superior to containers [30] in that regard. However,
in this paper we show that the lack of intra-unikernel isola-
tion is a security issue and addressed that concern. To our
knowledge, we are the first to propose an intra-unikernel
isolation system.

The performance benefits of unikernels come at least par-
tially from the sharing of a single and unprotected address
space [19, 25, 34]. That concept was originally pioneered by
single-address-space OSes that appeared in the 90s following
the appearance of 64-bit virtual addressing, such as Opal [8]
or Nemesis [26]. We demonstrated that using a lightweight
isolation mechanism such as MPK can bring security benefits
while keeping a low latency for system calls.

Although some unikernels such as Rumprun [18], OSv [19],
and HermitCore/HermiTux [25, 34] are entirely written in
unsafe languages (C/C++), others usememory safe languages.
These include MirageOS [29] written in OCaml, LING [9]
in Erlang, HaLVM [51] in Haskell, and RustyHermit [24] in

Rust. However, even those rely on memory unsafe languages
or unsafe code blocks to implement the low level operations
that an OS needs to support. Using our isolation scheme, we
show that the safe part of the kernel can be isolated from
the unsafe regions.
Software Components Isolation. Beyond the traditional
user/kernel split, the decomposition of software into trusted
and untrusted components has been studied in several past
works, at the application [2, 23, 49] and OS [46–48, 50] levels.
LibOSes such as Graphene [47, 48] adopt the Exokernel OS
model and bring as many kernel components as possible in
user space, reducing the size of the interface with the kernel
for more isolation. In VPFS [50], the filesystem service is split
between two isolated components, a small and trusted com-
puting base performing security-critical operations and an
untrusted code base reusing most of the code of an existing
legacy file system. In Proxos [46], the system call interface
is partitioned into trusted and untrusted operations. Con-
figuration rules allow routing the application’s system calls
either to a trustedmicro kernel or to an untrusted commodity
OS. Occlum [42] runs a LibOS within an Intel SGX enclave
and offers isolation for multiple tasks inside that enclave by
leveraging Intel MPX [17] (deprecated in recent Intel CPUs).
Among the fine-grained isolation works focusing on the

application level [2, 23, 49], SandCrust is relatively close to
our work. It isolates safe from unsafe Rust code by running
unsafe code in a separate process, which is not doable in a
unikernel without breaking the single address space princi-
ple. To our knowledge, we are the first to apply fine-grained
isolation to unikernels. Due to the peculiarities of this OS
model, we face specific challenges such, as the need to keep
a single address space to preserve a low system call latency
and the need to reintroduce user/kernel space isolation.

9 Conclusion
The lack of intra-unikernel isolation is a serious security
concern. We designed an isolation scheme for components
within a unikernel instance. Relying on the Intel MPK tech-
nology allows us to keep the single address space feature
of unikernels and thus maintain their performance benefits.
We demonstrated an overhead as low as 0.6% for macro-
benchmarks. The code is available online at the following
URL: https://ssrg-vt.github.io/libhermitMPK.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Nadav
Amit, for their insightful comments. Special thanks goes to
Chungha Sung, Joshua Bockenek, and other colleagues for
their feedback. This work was supported in part by the US
Office of Naval Research under grants N00014-18-1-2022,
N00014-16-1-2104, and N00014-16-1-2711.

References
[1] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre

Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan

https://ssrg-vt.github.io/libhermitMPK

Intra-Unikernel Isolation with Intel Memory Protection Keys VEE ’20, March 17, 2020, Lausanne, Switzerland

O’Keeffe, Mark L. Stillwell, David Goltzsche, David Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (Savannah,
GA, USA) (OSDI’16). USENIX Association, Berkeley, CA, USA, 689–703.
http://dl.acm.org/citation.cfm?id=3026877.3026930

[2] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E. Locasto, Ja-
son Reeves, Sean W. Smith, and Anna Shubina. 2013. ELFbac: Using the
Loader Format for Intent-Level Semantics and Fine-Grained Protection.
Technical Report TR2013-727. Dartmouth College, Computer Science,
Hanover, NH. http://www.cs.dartmouth.edu/reports/TR2013-727.pdf

[3] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-
ières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access
to Privileged CPU Features. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
12). USENIX, Hollywood, CA, 335–348. https://www.usenix.org/
conference/osdi12/technical-sessions/presentation/belay

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques. ACM, 72–81.

[5] Kevin Boos and Lin Zhong. 2017. Theseus: A State Spill-free Operating
System. In Proceedings of the 9th Workshop on Programming Languages
and Operating Systems (Shanghai, China) (PLOS’17). ACM, New York,
NY, USA, 29–35. https://doi.org/10.1145/3144555.3144560

[6] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E Engelstad,
and Kyrre Begnum. 2015. IncludeOS: A minimal, resource efficient
unikernel for cloud services. In Proceedings of the 7th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom
2015). IEEE, 250–257.

[7] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt,
Matthias Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza.
2016. Securekeeper: confidential zookeeper using intel sgx. In Proceed-
ings of the 17th International Middleware Conference. ACM, 14.

[8] Jeff Chase, Hank Levy, Miche Baker-Harvey, and Eld Lazowska. 1992.
Opal: a single address space system for 64-bit architecture address
space. In [1992] Proceedings Third Workshop on Workstation Operating
Systems. IEEE, 80–85.

[9] Cloudozer LLP. 2017. LING/Erlang on Xen website. http://erlangonxen.
org/. Online, accessed 11/20/2017.

[10] Jonathan Corbet. 2015. Memory protection keys. Linux Weekly News
(2015). https://lwn.net/Articles/643797/.

[11] Glauber Costa and Don Marti. 2014. Redis On OSv. http://blog.osv.io/
blog/2014/08/14/redis-memonly/.

[12] Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. 2017. FADES: Fine-
Grained Edge Offloading with Unikernels. In Proceedings of the Work-
shop on Hot Topics in Container Networking and Networked Systems
(HotConNet’17). ACM, 36–41.

[13] Cody Cutler, M Frans Kaashoek, and Robert T Morris. 2018. The
benefits and costs of writing a {POSIX} kernel in a high-level lan-
guage. In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18). 89–105.

[14] Developers. 2019. Redox - Your Next(Gen) OS. https://www.redox-
os.org.

[15] Bob Duncan, Andreas Happe, and Alfred Bratterud. 2016. Enterprise
IoT security and scalability: how unikernels can improve the status
Quo. In IEEE/ACM 9th International Conference on Utility and Cloud
Computing (UUC 2016). IEEE, 292–297.

[16] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor:
Intra-process isolation for high-throughput data plane libraries. In
2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19).
489–504.

[17] Intel. 2013. Introduction to Intel(R) Memory Protection Exten-
sions. https://software.intel.com/en-us/articles/introduction-to-intel-
memory-protection-extensions.

[18] Antti Kantee and Justin Cormack. 2014. Rump Kernels No OS? No
Problem! USENIX; login: magazine (2014).

[19] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. 2014. OS v -
Optimizing the Operating System for Virtual Machines. In Proceedings
of the 2014 USENIX Annual Technical Conference (ATC’14). 61.

[20] Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure
and efficient multi-variant execution using hardware-assisted process
virtualization. In 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 431–442.

[21] Michał Król and Ioannis Psaras. 2017. NFaaS: named function as
a service. In Proceedings of the 4th ACM Conference on Information-
Centric Networking. ACM, 134–144.

[22] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri
Volchkov, Florian Schmidt, Kenichi Yasukata, Michio Honda, and Fe-
lipe Huici. 2017. Unikernels Everywhere: The Case for Elastic CDNs. In
Proceedings of the 13th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE’17). ACM, 15–29.

[23] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and
Hermann Härtig. 2017. Sandcrust: Automatic Sandboxing of Unsafe
Components in Rust. In Proceedings of the 9th Workshop on Program-
ming Languages and Operating Systems (Shanghai, China) (PLOS’17).
ACM, New York, NY, USA, 51–57. https://doi.org/10.1145/3144555.
3144562

[24] Stefan Lankes, Jens Breitbart, and Simon Pickartz. 2019. Exploring
Rust for Unikernel Development. In Proceedings of the 10th Workshop
on Programming Languages and Operating Systems (Huntsville, ON,
Canada) (PLOS’19). ACM, New York, NY, USA, 8–15. https://doi.org/
10.1145/3365137.3365395

[25] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore:
a unikernel for extreme scale computing. In Proceedings of the 6th
International Workshop on Runtime and Operating Systems for Super-
computers (ROSS 2016). ACM.

[26] Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. 1996. The
design and implementation of an operating system to support dis-
tributed multimedia applications. IEEE journal on selected areas in
communications 14, 7 (1996), 1280–1297.

[27] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming
a 64kB Computer Safely and Efficiently. In Proceedings of the 26th
Symposium on Operating Systems Principles (Shanghai, China) (SOSP
’17). ACM, New York, NY, USA, 234–251. https://doi.org/10.1145/
3132747.3132786

[28] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, David J Scott, Richard Mortier, Amir
Chaudhry, Balraj Singh, Jon Ludlam, et al. 2015. Jitsu: Just-In-Time
Summoning of Unikernels.. In Proceedings of the 12th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI’15).
559–573.

[29] AMadhavapeddy, R Mortier, C Rotsos, DJ Scott, B Singh, T Gazagnaire,
S Smith, S Hand, and J Crowcroft. 2013. Unikernels: library operating
systems for the cloud. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’13). ACM, 461–472.

[30] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. 2017. My VM is Lighter (and Safer) Than Your Container. In
Proceedings of the 26th Symposium on Operating Systems Principles
(Shanghai, China) (SOSP ’17). ACM, New York, NY, USA, 218–233.
https://doi.org/10.1145/3132747.3132763

http://dl.acm.org/citation.cfm?id=3026877.3026930
http://www.cs.dartmouth.edu/reports/TR2013-727.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://doi.org/10.1145/3144555.3144560
http://erlangonxen.org/
http://erlangonxen.org/
https://lwn.net/Articles/643797/
http://blog.osv.io/blog/2014/08/14/redis-memonly/
http://blog.osv.io/blog/2014/08/14/redis-memonly/
https://www.redox-os.org
https://www.redox-os.org
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1145/3365137.3365395
https://doi.org/10.1145/3365137.3365395
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3132747.3132763

VEE ’20, March 17, 2020, Lausanne, Switzerland Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran

[31] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and
the Art of Network Function Virtualization. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation
(Seattle, WA) (NSDI’14). USENIX Association, Berkeley, CA, USA, 459–
473. http://dl.acm.org/citation.cfm?id=2616448.2616491

[32] Newlib 2017. Newlib Website. https://sourceware.org/newlib/. Online,
accessed 12/12/2017.

[33] Vlad Nitu, Pierre Olivier, Alain Tchana, Daniel Chiba, Antonio Bar-
balace, Daniel Hagimont, and Binoy Ravindran. 2017. Swift Birth
and Quick Death: Enabling Fast Parallel Guest Boot and Destruc-
tion in the Xen Hypervisor. In Proceedings of the 13th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments (Xi’an, China) (VEE ’17). ACM, New York, NY, USA, 1–14.
https://doi.org/10.1145/3050748.3050758

[34] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy
Ravindran. 2019. A Binary-Compatible Unikernel. In Proceedings of
the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE’19).

[35] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim.
2019. libmpk: Software Abstraction for Intel Memory Protection Keys
(Intel MPK). In 2019 USENIX Annual Technical Conference (USENIX
ATC19). 241–254.

[36] Donald E. Porter, Silas Boyd-Wickizer, JonHowell, ReubenOlinsky, and
Galen C. Hunt. 2011. Rethinking the Library OS from the Top Down.
In Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (Newport
Beach, California, USA) (ASPLOS XVI). ACM, New York, NY, USA,
291–304. https://doi.org/10.1145/1950365.1950399

[37] The Rust Project. 2019. Application Binary Interface - The Rust Refer-
ence. https://doc.rust-lang.org/reference/abi.html#the-link_section-
attribute.

[38] The Rust Project. 2019. Macros - The Rust Programming Language.
https://doc.rust-lang.org/1.29.0/book/first-edition/macros.html.

[39] The Rust Project. 2019. unsafe Rust - The Rust Programming Language.
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html.

[40] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. 2007. Evaluatingmapreduce formulti-core and
multiprocessor systems. In High Performance Computer Architecture,
2007. HPCA 2007. IEEE 13th International Symposium on. Ieee, 13–24.

[41] Sangmin Seo, Gangwon Jo, and Jaejin Lee. 2011. Performance charac-
terization of the NAS Parallel Benchmarks in OpenCL. In IEEE Inter-
national Symposium on Workload Characterization (IISWC 2011). IEEE,
137–148.

[42] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi
Xu, and Yubin Xia. 2020. Occlum: Secure and Efficient Multitasking
Inside a Single Enclave of Intel SGX. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[43] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,
Christina Delimitrou, Robbert Van Renesse, and HakimWeatherspoon.
2019. X-Containers: Breaking Down Barriers to Improve Performance
and Isolation of Cloud-Native Containers. In Proceedings of the 24th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’19).

[44] Giuseppe Siracusano, Roberto Bifulco, Simon Kuenzer, Stefano Sal-
sano, Nicola Blefari Melazzi, and Felipe Huici. 2016. On the Fly TCP
Acceleration with Miniproxy. In Proceedings of the 2016 Workshop on
Hot topics in Middleboxes and Network Function Virtualization (HotMid-
dlebox 2016). ACM, 44–49.

[45] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call
Scheduling with Exception-less System Calls. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation
(Vancouver, BC, Canada) (OSDI’10). USENIX Association, Berkeley,

CA, USA, 33–46. http://dl.acm.org/citation.cfm?id=1924943.1924946
[46] Richard Ta-Min, Lionel Litty, and David Lie. 2006. Splitting interfaces:

Making trust between applications and operating systems configurable.
In Proceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 279–292.

[47] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain,
William Jannen, Jitin John, Harry A Kalodner, Vrushali Kulkarni,
Daniela Oliveira, and Donald E Porter. 2014. Cooperation and security
isolation of library OSes for multi-process applications. In Proceedings
of the Ninth European Conference on Computer Systems (EuroSys’14).
ACM, 9.

[48] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A
practical library OS for unmodified applications on SGX. In Proceedings
of the USENIX Annual Technical Conference (ATC 2017). 8.

[49] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Peter
Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process
Isolation with Memory Protection Keys. USENIX Security Symposium
(2019).

[50] Carsten Weinhold and Hermann Härtig. 2008. VPFS: Building a vir-
tual private file system with a small trusted computing base. In ACM
SIGOPS Operating Systems Review, Vol. 42. ACM, 81–93.

[51] Adam Wick. 2012. The HaLVM: A Simple Platform for Simple Plat-
forms. Xen Summit.

[52] Xen Website. 2018. Google Summer of Code Project, TinyVMI: Porting
LibVMI to Mini-OS. https://blog.xenproject.org/2018/09/05/tinyvmi-
porting-libvmi-to-mini-os-on-xen-project-hypervisor/, Online, ac-
cessed 10/30/2018.

[53] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba
Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018.
KylinX: A Dynamic Library Operating System for Simplified and Effi-
cient Cloud Virtualization. In Proceedings of the 2018 USENIX Annual
Technical Conference.

[54] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan
Protzenko, and Benjamin Beurdouche. 2017. HACL*: A verified
modern cryptographic library. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
1789–1806.

http://dl.acm.org/citation.cfm?id=2616448.2616491
https://sourceware.org/newlib/
https://doi.org/10.1145/3050748.3050758
https://doi.org/10.1145/1950365.1950399
https://doc.rust-lang.org/reference/abi.html#the-link_section-attribute
https://doc.rust-lang.org/reference/abi.html#the-link_section-attribute
https://doc.rust-lang.org/1.29.0/book/first-edition/macros.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
http://dl.acm.org/citation.cfm?id=1924943.1924946
https://blog.xenproject.org/2018/09/05/tinyvmi-porting-libvmi-to-mini-os-on-xen-project-hypervisor/
https://blog.xenproject.org/2018/09/05/tinyvmi-porting-libvmi-to-mini-os-on-xen-project-hypervisor/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Unikernel and Isolation
	2.2 Rust
	2.3 RustyHermit
	2.4 Intel Memory Protection Keys (MPK)

	3 Assumptions and Threat Model
	4 Design of Intra-unikernel Isolation
	4.1 Data considered to isolate
	4.2 Isolation with MPK
	4.3 Unsafe Kernel Isolation
	4.4 User Application Isolation

	5 Implementation
	5.1 Protection Keys and MPK Permission
	5.2 Unsafe Kernel Isolation
	5.3 Copy between Safe/Unsafe Kernel Code
	5.4 User Application Isolation

	6 Security Evaluation
	7 Performance Evaluation
	7.1 Unsafe Kernel Isolation
	7.2 User Application Isolation
	7.3 Real Applications

	8 Related Works
	9 Conclusion
	References

