
LibrettOS: A Dynamically Adaptable Multiserver-Library OS∗

Ruslan Nikolaev, Mincheol Sung, Binoy Ravindran

Bradley Department of Electrical and Computer Engineering, Virginia Tech
{rnikola,mincheol ,binoy}@vt.edu

Abstract

We present LibrettOS, an OS design that fuses two
paradigms to simultaneously address issues of isolation,
performance, compatibility, failure recoverability, and run-
time upgrades. LibrettOS acts as a microkernel OS that runs
servers in an isolated manner. LibrettOS can also act as a
library OS when, for better performance, selected applica-
tions are granted exclusive access to virtual hardware re-
sources such as storage and networking. Furthermore, ap-
plications can switch between the two OS modes with no
interruption at run-time. LibrettOS has a uniquely distin-
guishing advantage in that, the two paradigms seamlessly
coexist in the same OS, enabling users to simultaneously ex-
ploit their respective strengths (i.e., greater isolation, high
performance). Systems code, such as device drivers, net-
work stacks, and �le systems remain identical in the two
modes, enabling dynamic mode switching and reducing de-
velopment and maintenance costs.

To illustrate these design principles, we implemented a
prototype of LibrettOS using rump kernels, allowing us to
reuse existent, hardened NetBSD device drivers and a large
ecosystem of POSIX/BSD-compatible applications. We use
hardware (VM) virtualization to strongly isolate di�erent
rump kernel instances from each other. Because the orig-
inal rumprun unikernel targeted a much simpler model for
uniprocessor systems, we redesigned it to support multi-
core systems. Unlike kernel-bypass libraries such as DPDK,
applications need not be modi�ed to bene�t from direct
hardware access. LibrettOS also supports indirect access
through a network server that we have developed. Instances
of the TCP/IP stack always run directly inside the address
space of applications. Unlike the original rumprun or mono-
lithic OSes, applications remain uninterrupted even when

∗©2020 Copyright held by the owner/author(s). Publication rights
licensed to ACM. This is the author’s version of the work. It is
posted here for your personal use. Not for redistribution. The de�ni-
tive Version of Record was published in Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE ’20), March 17, 2020, Lausanne, Switzerland
http://dx.doi.org/10.1145/3381052.3381316.

The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation
thereon.

network components fail or need to be upgraded. Finally, to
e�ciently use hardware resources, applications can dynam-
ically switch between the indirect and direct modes based
on their I/O load at run-time. We evaluate LibrettOS with
10GbE and NVMe using Nginx, NFS, memcached, Redis, and
other applications. LibrettOS’s performance typically ex-
ceeds that of NetBSD, especially when using direct access.

Keywords: operating system, microkernel, multiserver, net-
work server, virtualization, Xen, IOMMU, SR-IOV, isolation

1 Introduction

Core components and drivers of a general purpose mono-
lithic operating system (OS) such as Linux or NetBSD typ-
ically run in privileged mode. However, this design is of-
ten inadequate for modern systems [13, 30, 43, 50, 62]. On
the one hand, a diverse and ever growing kernel ecosys-
tem requires better isolation of individual drivers and other
system components to localize security threats due to the
increasingly large attack surface of OS kernel code. Bet-
ter isolation also helps with tolerating component failures
and thereby increases reliability. Microkernels achieve this
goal, speci�cally in multiserver OS designs [13, 30, 33].1 On
the other hand, to achieve better device throughput and
resource utilization, some applications need to bypass the
system call and other layers so that they can obtain exclu-
sive access to device resources such as network adapter’s
(NIC) Tx/Rx queues. This is particularly useful in recent
hardware with SR-IOV support [63], which can create vir-
tual PCIe functions: NICs or NVMe storage partitions. Li-
brary OSes and kernel-bypass libraries [77, 84] achieve this
goal. Multiserver-inspired designs, too, can outperform tra-
ditional OSes on recent hardware [54, 56].

Microkernels, though initially slow in adoption, have gai-
ned more traction in recent years. Google’s Fuchsia OS [24]
uses the Zircon microkernel. Intel Management Engine [37]
uses MINIX 3 [30] since 2015. A multiserver-like network-
ing design was recently revisited by Google [56] to improve
performance and upgradability when using their private

1As microkernels are de�ned broadly in the literature, we clarify that
we consider multiserver OSes as those implementing servers to isolate core
OS components, e.g., MINIX 3 [30].

1

http://dx.doi.org/10.1145/3381052.3381316

PCIe bus (NIC)PCIe bus (NIC)

HTTP
(Nginx)

Network
Server

key-value
(Redis)

P
C

I e
 b

u
s

(N
V

M
e

s t
o

r a
g

e)
P

C
I e

 b
u

s
(N

V
M

e
s t

o
r a

g
e)

DB
(mySQL)

ntp

ssh

JDKpython

rsyslog

NFS

Figure 1. Server ecosystem example.

(non-TCP) messaging protocol. However, general-purpose
application and device driver support for microkernels is
limited, especially for high-end hardware such as 10GbE+.

Kernel-bypass techniques, e.g., DPDK [84] and
SPDK [77], are also increasingly gaining traction, as
they eliminate OS kernels from the critical data path,
thereby improving performance. Unfortunately, these
techniques lack standardized high-level APIs and require
massive engineering e�ort to use, especially to adapt to
existing applications [89]. Additionally, driver support in
kernel-bypass libraries such as DPDK [84] is great only
for high-end NICs from certain vendors. Re-implementing
drivers and high-level OS stacks from scratch in user space
involves signi�cant development e�ort.

Oftentimes, it is overlooked that “no one size �ts all.” In
other words, no single OS model is ideal for all use cases.
Depending upon the application, security or reliability re-
quirements, it is desirable to employ multiple OS paradigms
in the same OS. In addition, applications may need to switch
between di�erent OS modes based on their I/O loads. In
Figure 1, we illustrate an ecosystem of a web-driven server
running on the same physical or virtual host. The server
uses tools for logging (rsyslog), clock synchronization (ntp),
NFS shares, and SSH for remote access. The server also runs
python and Java applications. None of these applications
are performance-critical, but due to the complexity of the
network and other stacks, it is important to recover from
temporary failures or bugs without rebooting, which is im-
possible in monolithic OSes. One way to meet this goal is
to have a network server as in the multiserver paradigm,
which runs system components in separate user processes
for better isolation and failure recoverability. This approach
is also convenient when network components need to be
upgraded and restarted at run-time [56] by triggering an ar-
ti�cial fault.

Core applications such as an HTTP server, database, and
key-value store are more I/O performance-critical. When
having a NIC and NVMe storage with SR-IOV support (or
multiple devices), selected applications can access hardware
resources directly as in library OSes or kernel-bypass li-
braries – i.e., by bypassing the system call layer or inter-
process communication (IPC). Due to �nite resources, PCIe

devices restrict the number of SR-IOV interfaces – e.g., the
Intel 82599 adapter [38] supports up to 16 virtual NICs, 4
Tx/Rx queues each; for other adapters, this number can be
even smaller. Thus, it is important to manage available
hardware I/O resources e�ciently. Since I/O load is usu-
ally non-constant and changes for each application based
on external circumstances (e.g., the number of clients con-
nected to an HTTP server during peak and normal hours),
conservative resource management is often desired: use
network server(s) until I/O load increases substantially, at
which point, migrate to the library OS mode (for direct ac-
cess) at run-time with no interruption. This is especially
useful for recent bare metal cloud systems – e.g., when one
Amazon EC2 bare metal instance is shared by several users.

In this paper, we present a new OS design – LibrettOS
– that not only reconciles the library and multiserver OS
paradigms while retaining their individual bene�ts (of bet-
ter isolation, failure recoverability, and performance), but
also overcomes their downsides (of driver and application
incompatibility). Moreover, LibrettOS enables applications
to switch between these two paradigms at run-time. While
high performance can be obtained with specialized APIs,
which can also be adopted in LibrettOS, they incur high en-
gineering e�ort. In contrast, with LibrettOS, existing appli-
cations can already bene�t from more direct access to hard-
ware while still using POSIX.

We present a realization of the LibrettOS design through
a prototype implementation. Our prototype leverages rump
kernels [42] and reuses a fairly large NetBSD driver collec-
tion. Since the user space ecosystem is also inherited from
NetBSD, the prototype retains excellent compatibility with
existing POSIX and BSD applications as well. Moreover, in
the two modes of operation (i.e., library OS mode and multi-
server OS mode), we use an identical set of drivers and soft-
ware. In our prototype, we focus only on networking and
storage. However, the LibrettOS design principles are more
general, as rump kernels can potentially support other sub-
systems – e.g., NetBSD’s sound drivers [18] can be reused.
The prototype builds on rumprun instances, which execute
rump kernels atop a hypervisor. Since the original rumprun
did not support multiple cores, we redesigned it to support
symmetric multiprocessing (SMP) systems. We also added
10GbE and NVMe drivers, and made other improvements to
rumprun. As we show in Section 5, the prototype outper-
forms the original rumprun and NetBSD, especially when
employing direct hardware access. In some tests, the pro-
totype also outperforms Linux, which is often better opti-
mized for performance than NetBSD.

The paper’s research contribution is the proposed OS
design and its prototype. Speci�cally, LibrettOS is the �rst
OS design that simultaneously supports the multiserver and
library OS paradigms; it is also the �rst design that can dy-
namically switch between these two OS modes at run-time
with no interruption to applications. Our network server,
designed for the multiserver mode, accommodates both
paradigms by using fast L2 frame forwarding from appli-

2

cations. Finally, LibrettOS’s design requires only one set of
device drivers for both modes and mostly retains POSIX/BSD
compatibility.

Our work also con�rms an existent hypothesis that ker-
nel bypass is faster than a monolithic OS approach. How-
ever, unlike prior works [7, 56, 64], we show this without
resorting to optimized (non-POSIX) APIs or specialized de-
vice drivers.

2 Background

For greater clarity and completeness, in this section, we dis-
cuss various OS designs, microkernels, and hypervisors. We
also provide background information on rump kernels and
their practical use for hypervisors and bare metal machines.

2.1 Multiserver and Library OSes

Traditionally, monolithic OSes run all critical components
in a privileged CPU mode within a single kernel address
space that is isolated from user applications running in
an unprivileged mode. The isolation of systems software
components such as device drivers in separate address
spaces is the fundamental principle behind the microker-
nel model [1, 27, 30, 52], which provides stronger security
and reliability [22, 31, 46] guarantees to applications com-
pared to the classical monolithic kernel designs. To support
existing applications and drivers, microkernel systems ei-
ther implement emulation layers [26] or run a multiserver
OS [13, 20, 29, 30, 33] on top of the microkernel. In the multi-
server design, servers are typically created for speci�c parts
of the system, such as device drivers and network and stor-
age stacks. Applications communicate with the servers us-
ing IPC to access hardware resources.

The system call separation layer between user applica-
tions and critical components in monolithic OSes is some-
what arbitrary, chosen for historical reasons such as rough
correspondence to the POSIX standard. However, more ker-
nel components can be moved into the application itself,
bringing it closer to the hardware. This concept was ini-
tially proposed by Tom Anderson [3], later implemented
in the exokernel model [15], and named the “library OS.”
This model is often advocated for performance reasons and
OS �exibility [6]. Subsequent works pointed out the secu-
rity bene�ts of the library OS model [66, 85, 86] due to the
strong isolation provided by the reduced interactions be-
tween the application and the privileged layer. Specialized
library OSes such as unikernels [10, 43, 45, 50, 55, 90] do
not isolate OS components from applications and are de-
signed to run just a single application in virtualized envi-
ronments typical of cloud infrastructures. As unikernels are
application-oriented, they may provide a signi�cant reduc-
tion in software stacks compared to full-�edged OSes.

2.2 NetBSD, rump kernels, and rumprun
Rump kernels are a concept introduced and popularized by
Antti Kantee [42] and the larger NetBSD [59] community.
NetBSD is a well known monolithic OS; along with FreeBSD
and OpenBSD, it is one of the most popular BSD systems
in use today. NetBSD provides a fairly large collection of
device drivers, and its latest 8.0 version supports state-of-
the-art 10GbE networking, NVMe storage, and XHCI/USB
3.0. Unlike in other OSes, NetBSD’s code was largely re-
designed to factor out its device drivers and core compo-
nents into anykernel components. As shown in Figure 2, a
special rump kernel glue layer enables execution of anyker-
nels outside of the monolithic NetBSD kernel. For example,
using POSIX threads (pthreads), rump kernels can run anyk-
ernels in user space on top of existing OSes. In fact, NetBSD
already uses rump kernels to facilitate its own device driver
development and testing process, which is done much easier
in user space.

ca
lls

lib
c
lib
c

anykernel

rumprun (*)rumprun (*)

fu
nc
tio
n

rump glue code (**)rump glue code (**)

rump kernel

TCP/IP

NIC

VFS

NVMe

USB

XHCI
P
ro
gr
am

P
ro
gr
am

Figure 2. Rump software stack, (*) indicates components
substantially and (**) partially modi�ed in LibrettOS.

Rump kernels may serve as a foundation for new OSes, as
in the case of the rumprun unikernel. As shown in Figure 2,
systems built from rump kernels and rumprun are, e�ec-
tively, library OSes. In contrast to NetBSD, rumprun-based
systems substitute system calls with ordinary function calls
from libc. The original rumprun, unfortunately, lacks SMP
support.

Rump kernels were also used to build servers as in the
rump �le system server [41]. However, prior solutions sim-
ply rely on user-mode pthreads, targeting monolithic OSes.
The design of such servers is very di�erent from a more
low-level, microkernel-based architecture proposed in this
paper.

2.3 Linux-based Library OSes
We also considered Linux Kernel Library (LKL) [67], which
is based on the Linux source. However, LKL is not as �exible
as rump kernels yet. Additionally, rump kernels have been
upstreamed into the o�cial NetBSD repository, whereas
LKL is still an uno�cial fork of the Linux source branch.
rump kernels also support far more applications at the mo-
ment.

3

System API Generality TCP Driver Paradigms Dynamic Direct Failure
Stack Base Switch Access Recovery

DPDK [84] Low-level Network 3rd party Medium N/A No Yes No
SPDK [77] Low-level Storage N/A NVMe N/A No Yes No
IX [7] Non-standard Network App DPDK Library OS No Almost No
Arrakis [64] POSIX/Custom Network App Limited Library OS No Yes No
Snap [56] Non-standard Network unavailable Limited Multiserver No No Yes
VirtuOS [62] POSIX/Linux Universal Server Large Multiserver No No Yes
MINIX 3 [30] POSIX Universal Server Limited Multiserver No No Yes
HelenOS [13] POSIX Universal Servers Limited Multiserver No No Yes
Linux POSIX/Linux Universal Kernel Large Monolithic No No No
NetBSD [59] POSIX/BSD Universal Kernel Large Monolithic No No No
LibrettOS POSIX/BSD Universal App Large Multiserver, Yes Yes Yes

(NetBSD) Library OS

Table 1. Comparison of LibrettOS with libraries and frameworks as well as monolithic, multiserver, and library OSes.

Unikernel Linux (UKL) [69] uses the unikernel model for
Linux by removing CPU mode transitions. UKL is in an
early stage of development; its stated goals are similar to
that of rumprun. However, it is unclear whether it will even-
tually match rump kernels’ �exibility.

Aside from technical issues, due to incompatibility,
Linux’s non-standard GPLv2-only license may create le-
gal issues2 when linking proprietary3 or even GPLv3+4

open-source applications. Since licensing terms cannot be
adapted easily without explicit permission from all numer-
ous Linux contributors, this can create serious hurdles in
the wide adoption of Linux-based library OS systems. In
contrast, rump kernels and NetBSD use a permissive 2-BSD
license.

2.4 Hypervisors and Microkernels

Hypervisors are typically used to isolate entire guest OSes
in separate Virtual Machines (VMs). In contrast, microker-
nels are typically used to reduce the Trusted Computing Base
(TCB) of a single OS and provide component isolation us-
ing process address space separation. Although hypervisors
and microkernels have di�erent design goals, they are inter-
related and sometimes compared to each other [26, 28].
Moreover, hypervisors can be used for driver isolation in
VMs [17], whereas microkernels can be used as virtual ma-
chine monitors [16].

The original uniprocessor rumprun executes as a par-
avirtualized (PV) [88] guest OS instance on top of the Xen
hypervisor [4] or KVM [44]. Recently, rumprun was also
ported [14] to seL4 [46], a formally veri�ed microkernel,

2This is just an opinion of this paper’s authors and must not be inter-
preted as an authoritative legal advice or guidance.

3Due to imprecise language, Linux’s syscall exception falls into a gray
legal area when the system call layer is no longer present or clearly de�ned.

4Without the syscall exception, GPLv3+ is incompatible with GPLv2
(GPLv2+ only) [83]. Moreover, most user-space code has moved to GPLv3+.

where rumprun instances execute as ordinary microkernel
processes. The seL4 version of rumprun still lacks SMP sup-
port, as it only changes its platform abstraction layer.

2.5 PCI Passthrough and Input-Output
Memory Management Unit (IOMMU)

VMs can get direct access to physical devices using their
hypervisor’s PCI passthrough capabilities. IOMMU [2, 39]
hardware support makes this process safer by remapping in-
terrupts and I/O addresses used by devices. When IOMMU
is enabled, faulty devices are unable to inject unassigned
interrupts or perform out-of-bound DMA operations. Sim-
ilarly, IOMMU prevents VMs from specifying out-of-bound
addresses, which is especially important when VM appli-
cations are given direct hardware access. We use both PCI
passthrough and IOMMU in the LibrettOS prototype to ac-
cess physical devices.

2.6 Single-Root I/O Virtualization (SR-IOV)

To facilitate device sharing across isolated entities such as
VMs or processes, self-virtualizing hardware [68] can be
used. SR-IOV [63] is an industry standard that allows split-
ting one physical PCIe device into logically separate vir-
tual functions (VFs). Typically, a host OS uses the device’s
physical function (PF) to create and delete VFs, but the PF
need not be involved in the data path of the VF users. SR-
IOV is already widely used for high-end network adapters,
where VFs represent logically separate devices with their
own MAC/IP addresses and Tx/Rx hardware bu�ers. SR-
IOV is also an emerging technology for NVMe storage,
where VFs represent storage partitions.

VFs are currently used by VMs for better network perfor-
mance, as each VM gets its own slice of the physical device.
Alternatively, VFs (or even the PF) can be used by the DPDK

4

library [84], which implements lower layers of the network
stack (L2/L3) for certain NIC adapters. High-throughput
network applications use DPDK for direct hardware access.

2.7 POSIX and Compatibility

Although high-throughput network applications can bene-
�t from custom APIs [7], POSIX compatibility remains crit-
ical for many legacy applications. Moreover, modern server
applications require asynchronous I/O beyond POSIX, such
as Linux’s epoll_wait(2) or BSD’s kqueue(2) equivalent.
Typically, library OSes implement their own APIs [7, 64].
Some approaches [34, 85] support POSIX but still run on top
of a monolithic OS with a large TCB. LibrettOS provides full
POSIX and BSD compatibility (except fork(2) and pipe(2) as
discussed in Section 4.2), while avoiding a large TCB in the
underlying kernel.

2.8 Summary

Table 1 summarizes OS design features and compares Li-
brettOS against existing monolithic, library, and multiserver
OSes. Since LibrettOS builds on NetBSD’s anykernels, it in-
herits a very large driver code base. Applications do not
generally need to be modi�ed as the user space environ-
ment is mostly compatible with that of NetBSD, except for
scenarios described in Section 4.2. LibrettOS supports two
paradigms simultaneously: applications with high perfor-
mance requirements can directly access hardware resources
as with library OSes (or DPDK [84] and SPDK [77]), while
other applications can use servers that manage correspond-
ing resources as with multiserver OSes. Similar to MINIX
3 [30], HelenOS [13], VirtuOS [62], and Snap [56], LibrettOS
supports failure recovery of servers, which is an important
feature of the multiserver OS paradigm. Additionally, Li-
brettOS’s applications can dynamically switch between the
library and multiserver OS modes at run-time.

In Section 6, we provide a detailed discussion of the past
and related work and contrast them with LibrettOS.

3 Design
One of the de�ning features of LibrettOS is its ability to use
the same software stacks and device drivers irrespective of
whether an application accesses hardware devices directly
or via servers. In this section, we describe LibrettOS’s archi-
tecture, its network server, and dynamic switching capabil-
ity.

3.1 LibrettOS’s Architecture

Figure 3 presents LibrettOS’s architecture. In this illus-
tration, Application 1 runs in library OS mode, i.e., it ac-
cesses hardware devices such as NVMe and NIC directly
by running corresponding drivers in its own address space.

libc

TCP/IP

NIC

Application 1, libOS
(direct access)

FS

NVMe

libc

TCP/IP

VIF

Application 2
(uses servers)

NIC

Network
Server

μ-kernel or hypervisorkernel or hypervisor
(Xen, seL4, etc)

PCIe bus (PF or VF through SR-kernel or hypervisorIOV)

IPC

PCI passthrough (with IOMMU)

M:N
scheduler M:N

scheduler

scheduler

rumprunrumprun rumprun

Figure 3. LibrettOS’s architecture.

Since an OS typically runs several applications, hardware
resources need to be shared. In this model, devices are
shared using hardware capabilities such as SR-IOV which
splits one NVMe device into partitions and one NIC into
logically separate NICs with dedicated Tx/Rx bu�ers. We
assume that the NIC �rmware does not have fatal security
vulnerabilities – i.e., it prevents applications from adversely
a�ecting one another. (VF isolation is already widely used
by guest VMs where similar security concerns exist.)

While some high-end NICs expose VFs using SR-IOV, the
total number of VFs is typically limited, and only a small
number of applications that need faster network access will
bene�t from this hardware capability. When there are no
available VFs for applications, or their direct exposure to ap-
plications is undesirable due to additional security require-
ments, we use network servers. As in library OS mode,
Application 2’s data (see Figure 3) goes through libc sock-
ets and the entire network stack to generate L2 (data link
layer) network frames. However, unlike Application 1, the
network frames are not passed to/from the NIC driver di-
rectly, but rather relayed through a virtual interface (VIF).
The VIF creates an IPC channel with a network server where
frames are additionally veri�ed and rerouted to/from the
NIC driver.

LibrettOS is mostly agnostic to the kind of hypervisor
or microkernel used by rumprun. For easier prototyping
while preserving rich IPC capabilities and microkernel-like
architecture, we used Xen, which runs rumprun instances in
VMs. Unlike KVM, Xen has a microkernel-style design and
does not use any existing monolithic OS for the hypervisor
implementation. Since rumprun has already been ported to
the seL4 microkernel [14], and our core contributions are
mostly orthogonal to the underlying hypervisor, the Libret-
tOS design principles can be adopted in seL4 as well.

Scheduling in LibrettOS happens at both the hypervi-
sor and user application levels. The hypervisor schedules
per-VM virtual CPUs (VCPUs) as usual. Whereas the orig-
inal rumprun implemented a simple non-preemptive N : 1
uniprocessor scheduler, we had to replace it entirely to sup-

5

port SMP – i.e., multiple VCPUs per instance. Each rumprun
instance in LibrettOS runs its own M : N scheduler that ex-
ecutes M threads on top of N VCPUs.

LibrettOS does not have any speci�c restrictions on the
type of hardware used for direct access; we tested and eval-
uated both networking and storage devices. We only im-
plemented a network server to demonstrate indirect access.
However, storage devices and �le systems can also be shared
using an NFS server. The NFS rumprun instance runs on top
of an NVMe device initialized with the ext3 �le system and
exports �le system shares accessible through network. In
the long term, an existing rump kernel-based approach [41]
for running �le systems in the user space of monolithic OSes
can be adopted in the rumprun environment as well.

LibrettOS does not currently support anything outside of
the POSIX/BSD APIs. Admittedly, POSIX has its downsides
– e.g., copying overheads which are undesirable for high-
performance networking. Nonetheless, LibrettOS already
eliminates the system call layer, which can open the way for
further optimizations by extending the API in the future.

3.2 Network Server
Due to �exibility of rump kernels, their components can
be chosen case by case when building applications. Unlike
more traditional OSes, LibrettOS runs the TCP/IP stack di-
rectly in the application address space. As we discuss be-
low, this does not compromise security and reliability. In
fact, compared to typical multiserver and monolithic OSes,
where buggy network stacks a�ect all applications, Libret-
tOS’s network stack issues are localized to one application.

The network server IPC channel consists of Tx/Rx ring
bu�ers which relay L2 network frames in mbufs through a
virtual network interface (VIF) as shown in Figure 4. We use
a lock-free ring bu�er implementation from [61]. When re-
laying mbufs, the receiving side, if inactive, must be noti�ed
using a corresponding noti�cation mechanism. For the Xen
hypervisor, this is achieved using a virtual interrupt (VIRQ).

Since a stream of packets is generally transmitted without
delays, the number of such noti�cations is typically small.
The sending side detects that the receiving side is inactive
by reading a corresponding shared (read-only) status vari-
able denoted as threads, which indicates how many threads
are processing requests. When this variable is zero, a VIRQ
is sent to wake a worker thread up.

The network server side has a per-application handler
which forwards mbufs to the NIC driver. Frames do not
need to be translated, as applications and servers are built
from the same rump kernel source base.

An important advantage of this design is that an applica-
tion can recover from any network server failures, as TCP
state is preserved inside the application. The network server
operates at the very bottom of the network stack and sim-
ply routes inbound and outbound mbufs. However, rout-
ing across di�erent applications requires some knowledge
of the higher-level protocols. We support per-application

libc

TCP/IP

VIF

mbuf
exchange

rumprun
VIRQ

1

Network
Server

NIC driver

handler 2

rumprun

Rx

Rx:threads

Tx

Rx

Tx

handler 1

mbuf
exchange

Application
1

libc

TCP/IP

VIF

rumprun

Application
2

Tx:threads

Rx:threads

Tx:threads

VIRQ
2

Figure 4. Network server.

Portmap Table

Network Sever Application

libc

TCP/UDP

Packet forward service

Portmap Table

RO-Mapped Pages

Portbind Hypercall

Xen

R
EA

D

Figure 5. Portmap table.

routing based on TCP/UDP ports. When applications re-
quest socket bindings, the network server allocates corre-
sponding ports (both static and dynamic) by issuing a spe-
cial portbind hypercall as shown in Figure 5 which updates
a per-server 64K port-VM (portmap) table in the hypervi-
sor. We store the portmap in the hypervisor to avoid its
loss when the network server is restarted due to failures.
While this mechanism is speci�c to the network server, the
added code to the hypervisor is very small and is justi�ed
for omnipresent high-speed networking. Alternatively, the
portmap table can be moved to a dedicated VM.

Since packet routing requires frequent reading of the
portmap entries, we read-only map the portmap pages into
the network server address space, so that the network server
can directly access these entries.

The network server does not trust applications for se-
curity and reliability reasons. We enforce extra metadata
veri�cation while manipulating ring bu�ers. Since applica-
tions may still transmit incorrect data (e.g., spoof MAC/IP
source addresses), either automatic hardware spoo�ng de-
tection must be enabled, or address veri�cation must be en-
forced by verifying MAC/IP addresses in outbound frames.
Similarly, ports need to be veri�ed by the server.

Although, unlike POSIX, invalid packets may be gener-
ated by (malicious) applications at any point, they can only
appear in local (per-application) ring bu�ers. When the net-
work server copies packets to the global medium, it veri�es
MAC, IP, and port metadata which must already be valid for
a given application. Races are impossible as prior users of
the same MAC, IP, and port must have already transmitted
all packets to the global medium and closed their connec-
tions.

We also considered an alternative solution based on the

6

netfront/netback model [4] used by Xen. The netback driver
typically runs in an OS instance with a physical device
(Driver Domain). The netfront driver is used by guest OSes
as a virtual NIC to establish network connectivity through
the netback driver. Rumprun already implements a very
simple netfront driver so that it can access a virtual NIC
when running on top of the Xen hypervisor. However,
it lacks the netback driver that would be required for the
server. This model is also fundamentally di�erent from
our approach: transmitted data must traverse additional OS
layers on the network server side and all tra�c needs to
go through network address translation (NAT) or bridging,
as each application (VM instance) gets its own IP address.
While the Xen approach is suitable when running guest
OSes, it introduces unnecessary layers of indirection and
overheads as we show in Section 5.3.

3.3 Dynamic Mode Switch

LibrettOS’s use of the same code base for both direct and
server modes is crucial for implementing the dynamic mode
switch. We implement this feature for networking, which is
more or less stateless. As NVMe’s emerging support for SR-
IOV becomes publicly available, our technique can also be
considered for storage devices. However, storage devices
are more stateful and additional challenges need to be over-
come.

Figure 6 shows LibrettOS’s dynamic switching mecha-
nism for the network server. LibrettOS is the only OS that
supports this mechanism. Moreover, applications do not
need to be modi�ed to bene�t from this feature. As we fur-
ther discuss in Section 5, dynamic switching does not incur
large overhead, and switching latency is small (56-69ms).

Network
Server

IP 2

IP 1 MAC/IP 2

VF

IP 1

Application
1

IP 2

IF

Application
2

IF
Uses server

Dynamic
switch

Direct access
only

VIF 1 VIF 2

IP 3

Application
3

IF

Figure 6. Dynamic switching mechanism.

The biggest challenge for dynamic switching is that ap-
plication migration must be completely transparent. When
using direct access (VF), we need a dedicated IP address for
each NIC interface. On the other hand, our network server
shares the same IP address across all applications. A com-
plicating factor is that once connections are established, IP
addresses used by applications cannot be changed easily.

To allow dynamic switching, we leverage NetBSD’s sup-
port for multiple IPs per an interface (IF). Unlike hard-
ware Rx/Tx queues, IPs are merely logical resources; they
are practically unlimited when using NAT. A pool of avail-
able IPs is given to a server, and addresses are recycled

as connections are closed. When launching an application
that needs dynamic switching (Application 2), the network
server allocates an IP address that will be used by this ap-
plication. Applications use virtual interfaces (VIF) which
are initially connected to the network server (i.e., similar to
Application 1). The network server adds the IP to the list of
con�gured addresses for its IF (PF or VF).

As I/O load increases, an application can be decoupled
from the network server to use direct access for better
throughput and CPU utilization. The NIC interface used by
the network server deactivates application’s IP (which re-
mains unchanged throughout the lifetime of an application).
The application then con�gures an available NIC interface
(typically, VF) with its dedicated IP. Changing IP on an in-
terface triggers ARP invalidation. A following ARP probe
detects a new MAC address for the interface-assigned IP.
These events are masked from applications, as they typi-
cally use higher-level protocols such as TCP/IP. No pause-
and-drain is needed, and on-the-�y requests are simply ig-
nored because TCP automatically resends packets without
ACKs.

When running in this mode, all tra�c from the NIC in-
terface (direct access) is redirected through VIF, as all appli-
cation socket bindings belong to this VIF. This special VIF
is very thin: mbufs are redirected to/from IF without copy-
ing, i.e., avoiding extra overhead. When the load decreases,
applications can return to the original state by performing
the above steps in the reverse order. If applications always
use direct access (Application 3), VIFs are not needed, i.e.,
all tra�c goes directly through IF.

Dynamic switching helps conserve SR-IOV resources, i.e.,
it enables more e�ective use of available hardware resources
across di�erent applications. Policies for switching (e.g., for
managing resources, security, etc.) are beyond the scope of
this paper, as our focus is on the switching mechanism. In
our evaluation, users manually trigger dynamic switching.

4 Implementation
While NetBSD code and its rump kernel layer are SMP-
aware (except rump kernel bugs that we �xed), none of the
existing rumprun versions (Xen PV, KVM, or seL4) support
SMP.

4.1 E�ort

We redesigned low-level parts of rumprun (SMP BIOS
initialization, CPU initialization, interrupt handling) as
well as higher-level components such as the CPU sched-
uler. Our implementation avoids coarse-grained locks
on performance-critical paths. Additionally, the original
rumprun was only intended for paravirtualized Xen. Thus,
we added support for SMP-safe, Xen’s HVM-mode event
channels (VIRQs) and grant tables (shared memory pages)
when implementing our network server. We implemented

7

Component Description LOC

SMP support SMP BIOS init/trampoline, 2092
M:N scheduler, interrupts

HVM support Xen grant tables and VIRQ 1240
PV clock SMP-safe Xen/KVM clock 148
Network server mbuf routing, 1869

dynamic switching
Xen Network server registrar 516
NetBSD, network Network server forwarder 51
NetBSD, kqueue EVFILT_USER support 303
NetBSD, rump Race conditions in SMP 45
NetBSD, glue New drivers (NVMe, ixgbe) 234
NFS, rpcbind, Porting from NetBSD, 154
and mountd avoiding fork(2)

Total: 6652

Table 2. Added or modi�ed code.

the Xen HVM interrupt callback mechanism by binding it to
the per-CPU interrupt vectors as it is implemented in Linux
and FreeBSD. The HVM mode uses hardware-assisted virtu-
alization and is more preferable nowadays for security rea-
sons [53]. Moreover, it has better IOMMU support when us-
ing device PCI passthrough. We also �xed race conditions
in the rump layer, and added NVMe and 10GbE ixgbe driver
glue code which was previously unavailable for rumprun.
Additionally, we ported a patch that adds support for the
EVFILT_USER extension in kqueue(2), which is required
by some applications and supported by FreeBSD but is, for
some reason, still unsupported by NetBSD.

Since rumprun does not currently support preemption,
we designed a non-preemptive, lock-free M:N scheduler
with global and per-VCPU queues. A lock-free scheduler
has an advantage that, it is not adversely a�ected by pre-
emption which still takes place in the hypervisor. (When the
hypervisor de-schedules a VCPU holding a lock, other VC-
PUs cannot get the same lock and make further progress.)
Lock-free data structures for OS schedulers were already ad-
vocated in [45].

In Table 2, we present the e�ort that was required to
implement our current LibrettOS prototype. Most changes
pertain to rumprun and the network server implementation,
whereas drivers and applications did not require substantial
changes.

4.2 Limitations

In our current prototype, applications cannot create pro-
cesses through fork(2), as its implementation would require
complex inter-VM interactions which Xen is not designed
for. We consider such an implementation to be realistic
for microkernels such as seL4. Each application, however,
can already support virtually unlimited number of threads.

Processor 2 x Intel Xeon Silver 4114, 2.20GHz
Number of cores 10 per processor, per NUMA node
HyperThreading OFF (2 per core)
TurboBoost OFF
L1/L2 cache 64 KB / 1024 KB per core
L3 cache 14080 KB
Main Memory 96 GB
Network Intel x520-2 10GbE (82599ES)
Storage Intel DC P3700 NVMe 400 GB

Table 3. Experimental setup.

Moreover, typical applications that rely on fork [82] can be
con�gured to use the multi-threading mode instead.

We did not implement POSIX’s IPCs such as pipe(2), but
Xen-based mechanisms can be used with no restrictions.

As fork(2) is not currently supported, we did not consider
sharing socket �le descriptors or listen(2)/accept(2) hando�
across processes. This may create additional challenges in
the future. We believe that the problem is tractable, but re-
quires modi�cation of the network stack. Also, Rx/Tx ring
bu�ers will have to be created per connection rather than
per process to allow sharing per-socket/connection bu�ers
across processes while not violating process isolation re-
quirements.

As previously mentioned, we did not develop policies for
dynamic switching as our focus was on mechanism. Sec-
tion 5 uses a simple policy wherein a user triggers an event.

5 Evaluation

We evaluate LibrettOS using a set of micro- and macro-
benchmarks and compare it against NetBSD and Linux.
Both of these baselines are relevant since LibrettOS is di-
rectly based on the NetBSD code base, and Linux is a
popular server OS. LibrettOS typically has better perfor-
mance, especially when using direct mode. Occasionally,
Linux demonstrates better performance since it currently
has more optimizations than NetBSD in its drivers and net-
work stack, especially for 10GbE+, as we further discuss in
Section 5.1.

In the evaluation, we only consider standard POSIX com-
patible applications, as compatibility is one of our impor-
tant design goals. Since kernel-bypass libraries and typical
library OSes [7, 77, 84] are not compatible with POSIX, they
cannot be directly compared. Moreover, kernel-bypass li-
braries require special TCP stacks [40] and high engineer-
ing e�ort to adopt existing applications [89]. Likewise, com-
parison against existing multiserver designs [30, 56] is chal-
lenging due to very limited application and device driver
support.

Table 3 shows our experimental setup. We run Xen
4.10.1, and Ubuntu 17.10 with Linux 4.13 as Xen’s Dom0

8

(for system initialization only). We use the same version of
Linux as our baseline. Finally, we use NetBSD 8.0 with the
NET_MPSAFE feature5 enabled for better network scalabil-
ity [58]. LibrettOS uses the same NetBSD code base, also
with NET_MPSAFE enabled. We set the maximum trans-
mission unit (MTU) to 9000 in all experiments to follow gen-
eral recommendations [51] for the optimal 10GbE perfor-
mance. We measure each data point 10 times and present
the average; the relative standard deviation is mostly less
than 1%.

LibrettOS not only outperforms NetBSD, but also outper-
forms Linux in certain tests. This is despite the fact that
NetBSD can be slower than Linux. LibrettOS’s advantage
comes from its superior multiserver-library OS design and
better resource management (compared to NetBSD).

5.1 NetBSD and Linux performance

Since neither the original rumprun nor other unikernels
support 10GbE+ or NVMe physical devices, one of our goals
is to show how this cutting-edge hardware works in Libret-
tOS.

Although NetBSD, Linux, and rumprun’s 1GbE are
known to be on par with each other [14], 10GbE+ network-
ing puts more pressure on the system, and we found occa-
sional performance gaps between NetBSD and Linux. How-
ever, they are mostly due to speci�c technical limitations,
most of which are already being addressed by the NetBSD
community.

One contributing factor is the network bu�er size.
NetBSD uses mbuf chains; each mbuf is currently limited
to 512 bytes in x86-64. In contrast, Linux has larger (frame-
sized) sk_bu� primitives. Since 512-byte units are too small
for 10GbE+ jumbo frames, we increased the mbuf size to
4K; this improved performance by ≈10% on macrobench-
marks. mbuf cannot be increased beyond the 4K page size
easily without bigger changes to the network stack, but this
is likely to be addressed by the NetBSD community sooner
or later.

Another contributing factor is the use of global SMP
locks by NetBSD. Since NET_MPSAFE was introduced very
recently, and the e�ort to remove the remaining coarse-
grained locks is still ongoing, Linux’s network stack and
network drivers may still have superior performance in
some tests which use high-end 10GbE+ networking.

We also found that the adaptive interrupt moderation
option in NetBSD’s ixgbe driver adversely a�ected perfor-
mance in some tests such as NetPIPE (e.g., NetBSD was only
able to reach half of the throughput). Thus, we disabled it.

5NET_MPSAFE, recently introduced in NetBSD, reduces global SMP
locks in the network stack. By and large, the network stack is the only
major place where global locks still remain. The ongoing e�ort will elimi-
nate them.

5.2 Sysbench/CPU

To verify our new scheduler and SMP support, we ran the
Sysbench/CPU [80] multi-threaded test which measures the
elapsed time for �nding prime numbers. Overall, LibrettOS,
Linux, and NetBSD show roughly similar performance.

5.3 NetPIPE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.25 1 4 16 64 256

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

Message Size (KB)

Linux
LibrettOS-Direct

LibrettOS-Server
NetBSD

Rumprun-PV

(a) Throughput

 0

 20

 40

 60

 80

 100

 0.25 1 4 16 64 256

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Message Size (KB)

(b) CPU utilization (1 CPU is 100%)

Figure 7. NetPIPE (log2 scale).

To measure overall network performance, we use Net-
PIPE, a popular ping pong benchmark. It exchanges a �xed
size message between servers to measure the latency and
bandwidth of a single �ow. We evaluate Linux, LibrettOS
(direct access mode), LibrettOS (using our network server),
NetBSD, and the original rumprun with the netfront driver.
On the client machine, Linux is running for all the cases. We
con�gure NetPIPE to send 10,000 messages from 64 bytes
to 512KB. Figure 7(a) shows the throughput for di�erent
message sizes. LibrettOS (direct access) achieves 7.4Gbps
with 256KB. It also has a latency of 282µs for 256KB mes-
sages. LibrettOS (network server) achieves 6.4Gbps with
256KB, and the latency of 256KB messages is 326µs. Linux
achieves 6.5Gbps with 256KB messages and the latency of
318.9µs. NetBSD reaches 6.4Gbps in this test with the la-
tency of 326µs. The original rumprun with the netfront
driver reaches only 1.0Gbps with 256KB messages and has
a large latency of 1,983µs.

Overall, all systems except the original rumprun have

9

comparable performance. With smaller messages (<
256KB), LibrettOS-Direct can be a bit faster than Linux or
NetBSD. We attribute this improvement to the fact that
for smaller messages, the cost of system calls is non-
negligible [76]. In LibrettOS, all system calls are replaced
with regular function calls. Even LibrettOS-Server avoids
IPC costs, as the server and application VMs typically run
on di�erent CPU cores.

 0

 1

 2

 3

 4

 5

4 8 16 32 64 128 256 512

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Block Size (KB)

LibrettOS Linux NetBSD

Figure 8. NFS server.

LibrettOS-Direct is more e�cient not just on throughput
but, more importantly, on CPU utilization (Figure 7(b)). The
saved CPU resources can be used in myriad ways – e.g.,
running more applications, obtaining higher overall perfor-
mance. For LibrettOS-Server, there is a 1.8x gap in overall
CPU consumption due to an extra layer where packets are
transferred from an application to the server. The same ar-
gument applies to other experiments in this section – e.g.,
dynamic switching.

5.4 NFS Server
To evaluate NVMe storage, we run an NFS server mac-
robenchmark by using Sysbench/FileIO [80] from the client.
We measure mixed �le I/O composed of page cache and stor-
age I/O because users bene�t from the page cache in gen-
eral. We mount an NVMe partition initialized with the ext3
�le system and export it through the NFS server. For Li-
brettOS, we use direct NIC and NVMe access. We mount
the provided NFS share on the client side and run the Sys-
bench test with di�erent block sizes (single-threaded). Fig-
ure 8 shows that for all block sizes, LibrettOS outperforms
both NetBSD and Linux. LibrettOS is 9% consistently faster
than both of them. This is because, LibrettOS avoids the
system call layer which is known to cause a non-negligible
performance overhead [76].

5.5 Nginx HTTP Server
To run a network-bound macrobenchmark, we choose Ng-
inx 1.8.0 [60], a popular web server. We use the Apache
Benchmark [81] to generate server requests from the client
side. The benchmark is set to send 10,000 requests with var-
ious levels of concurrency on the client side. (In this bench-
mark, concurrency is the number of concurrent requests.)

Figure 9 shows the throughput with di�erent concurrency
levels and �le sizes. LibrettOS (direct access and server)
is always faster than NetBSD. Except very large blocks
(128KB), LibrettOS-Direct also outperforms Linux. Partic-
ularly, for 8KB/50, LibrettOS (direct access) is 66% faster
than NetBSD and 27% faster than Linux. Even LibrettOS-
Server outperforms Linux in many cases due to its opti-
mized, fast IPC mechanism. We note that LibrettOS is able
to outperform Linux even though the original NetBSD is
slower than Linux in this test. We generally attribute this
improvement to the fact that LibrettOS removes the system
call layer. Furthermore, compared to NetBSD, LibrettOS im-
proves scheduling and resource utilization. For very large
blocks (128KB), NetBSD’s network stack current limitations
outweigh other gains.

We also evaluated dynamic switching when running Ng-
inx. In Figure 10, LibrettOS-Hybrid represents a test with
runtime switching from the server to direct mode and back
to the server mode (the concurrency level is 20). Overall,
Nginx spends 50% of time in the server mode and 50% in the
direct mode. LibrettOS-Hybrid’s average throughput shows
bene�ts of using this mode compared to LibrettOS-Server,
Linux, and NetBSD. The relative gain (Figure 10) over Linux,
let alone NetBSD, is quite signi�cant in this test. We also
measured the cost of dynamic switching to be 56ms from
the server to direct mode, and 69ms in the opposite direc-
tion.

5.6 Memcached
We also tested LibrettOS’s network performance with mem-
cached [57], a well-known distributed memory caching sys-
tem, which caches objects in RAM to speed up database ac-
cesses. We use memcached 1.4.33 on the server side. On the
client side, we run memtier_benchmark 1.2.15 [71] which
acts as a load generator. The benchmark performs SET and
GET operations using the memcache_binary protocol. We
use the default ratio of operations 1:10 to ensure a typi-
cal, read-dominated workload. In Figure 11, we present the
number of operations per second for a small and large block
sizes and using a di�erent number of threads (1-20). Each
thread runs 10 clients, and each client performs 100,000 op-
erations.

LibrettOS-Direct and Linux show similar overall perfor-
mance. LibrettOS-Server reveals a runtime overhead since it
has to run a server in a separate VM. Finally, NetBSD shows
the worst performance as in the previous test.

5.7 Redis
Finally, we ran Redis, an in-memory key-value store used
by many cloud applications [70]. We use Redis-server 4.0.9
and measure the throughput of 1,000,000 SET/GET opera-
tions. In the pipeline mode, the Redis benchmark sends re-
quests without waiting for responses which improves per-
formance. We set the pipeline size to 1000. We measure

10

the performance of Redis for various number of concurrent
connections (1-20). We show results for the SET/GET oper-
ation (128 bytes); trends for other sizes are similar. Libret-
tOS’s GET throughput (Figure 12) is close to Linux, but the
SET throughput is smaller. NetBSD reveals very poor per-
formance in this test, much slower than that of LibrettOS
and Linux. We suspect that the current Redis implementa-
tion is suboptimal for certain BSD systems, which results in
worse performance that we did not observe in other tests.

5.8 Failure Recovery and Software Up-
grades

LibrettOS can recover from any faults occurring in its
servers, including memory access violations, deadlocks, and
interrupt handling routine failures. Our model assumes that
failures are localized to one server, i.e., do not indirectly
propagate elsewhere. Applications that use our network
server do not necessarily fail: the portmap state is kept in
the hypervisor, and if recovery happens quickly, TCP can
still simply resend packets without timing out (applications
keep their TCP states). Additionally, when upgrading the
server, an arti�cial fault can be injected so that an applica-
tion can use a newer version of the server without restarting
the application itself.

To demonstrate LibrettOS’s failure recovery (or transpar-
ent server upgrades), we designed two experiments. In the
�rst experiment, an application has two jobs: one uses net-
working (Nginx) and the other one accesses a �le system.
When LibrettOS’s network server fails, the Nginx server is
unable to talk to the NIC hardware, and we report outage
that is observable on the client side. This failure, nonethe-
less, does not a�ect the �le system job. In Figure 13(a), we
show the corresponding network and �le system transfer
speeds. After rebooting the network server, Nginx can again
reach the network, and clients continue their data transfers.
In the other test, Figure 13(b), we run two applications. Ng-
inx uses direct access while Redis uses our network server.
We show that a failure of Nginx does not a�ect Redis. Then
we also show that a network server failure does not impact
Nginx.

6 Related Work
LibrettOS’s design is at the intersection of three OS research
topics: system component isolation for security, fault-tole-
rance, and transparent software upgrades (multiserver OS);
application-specialized OS components for performance,
security, and software bloat reduction (library OS); and ker-
nel bypassing with direct hardware access to applications
for performance.

Isolation of system software components in separate ad-
dress spaces is the key principle of the microkernel model [1,
13, 27, 30, 33, 36, 52]. Compared to the classical mono-
lithic OS design, microkernels provide stronger security

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

4KB

LibrettOS-Direct
LibrettOS-Server

Linux
NetBSD

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60

8KB

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

16KB

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50 60

32KB

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Concurrency

64KB

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60

Concurrency

128KB

Figure 9. Nginx HTTP server.

 0
 50

 100
 150
 200
 250
 300
 350
 400

8 16 32

A
b

s
o

lu
te

 T
h

ro
u

g
h

p
u

t
(M

B
/s

)

File Size (KB)

LibrettOS-Direct
LibrettOS-Server

NetBSD

 0

 10

 20

 30

 40

 50

8 16 32G
a

in
 (

%
 o

f
N

e
tB

S
D

’s
)

File Size (KB)

LibrettOS-Hybrid
Linux

Figure 10. Dynamic switch (Nginx).

and reliability guarantees [22, 31, 46]. With microkernels,
only essential functionalities (scheduling, memory manage-
ment, IPC) are implemented within the kernel. L4 [52]
is a family of microkernels, which is known to be used
for various purposes. A notable member of this family
is seL4 [46], a formally veri�ed microkernel. Multiserver
OSes such as MINIX 3 [30], GNU Hurd [8], Mach-US [79],
and SawMill [20] are a specialization of microkernels where
OS components (e.g., network and storage stacks, device
drivers) run in separate user processes known as “servers.”

11

 0

 50000

 100000

 150000

 200000

 250000

 0 5 10 15 20

O
p
e
ra

ti
o
n
s
 /
 s

Threads (each runs 10 clients)

32 bytes

LibrettOS-Direct
LibrettOS-Server

 0

 50000

 100000

 150000

 200000

 0 5 10 15 20

Threads (each runs 10 clients)

8KB

Linux
NetBSD

Figure 11. Memcached (distributed object system).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

M
ill

io
n
 t
ra

n
s
a
c
t
/
s

Concurrency

128 bytes (Set)

LibrettOS-Direct
LibrettOS-Server

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 5 10 15 20

M
ill

io
n
 t
ra

n
s
a
c
t
/
s

Concurrency

128 bytes (Get)

Linux
NetBSD

Figure 12. Redis key-value store.

 0
 200
 400
 600
 800

 1000
 1200

 0 5 10 15 20 25 30T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (sec)

NIC
FS

(a) Single application (Nginx)

 0
 200
 400
 600
 800

 1000
 1200

 0 10 20 30 40 50T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (sec)

Nginx (Direct)
Redis (Server)

(b) Multiple applications

Figure 13. Failure recovery and transparent upgrades.

Decomposition and isolation have proved to be bene�-
cial for various layers of system software in virtualized en-
vironments: hypervisor [75], management toolstack [11],
and guest kernel [62]. Security and reliability are partic-
ularly important in virtualized environments due to their
multi-tenancy characteristics and due to the increased re-
liance on cloud computing for today’s workloads. In the
desktop domain, Qubes OS [73] leverages Xen to run ap-
plications in separate VMs and provides strong isolation for
local desktop environments. LibrettOS also uses Xen to play
the role of the microkernel. However, the LibrettOS design
is independent of the microkernel used and can be applied
as-is to other microkernels supporting virtualization, with
potentially smaller code bases [46, 78, 87].

The network stack is a crucial OS service, and its reliabil-
ity has been the subject of multiple studies based on micro-
kernels/multiserver OSes using state replication [12], par-
titioning [35], and checkpointing [21]. Several user-space

network stacks such as mTCP [40], MegaPipe [25], and
OpenOnload [65] have been designed to bypass the OS and
avoid various related overheads. While it is not their pri-
mary objective, such user-space network stacks do provide
a moderate degree of reliability: since they do not reside in
the kernel, a fault in the network stack will not a�ect the
applications that are not using it.

In its multiserver mode, LibrettOS obtains the security
and reliability bene�ts of microkernels by decoupling the
application from system components such as drivers that
are particularly prone to faults [23, 32] and vulnerabili-
ties [9].

IX [7] and Arrakis [64] bypass traditional OS layers to im-
prove network performance compared to commodity OSes.
IX implements its own custom API while using the DPDK
library [84] to access NICs. Arrakis supports POSIX but
builds on top of the Barrel�sh OS [5], for which device
driver support is limited. LibrettOS gains similar perfor-
mance bene�ts when using direct hardware access (library
OS) mode, while reducing code development and mainte-
nance costs as it reuses a very large base of drivers and soft-
ware from a popular OS, NetBSD. Additionally, in contrast
to LibrettOS, these works do not consider recoverability of
OS servers.

Certain aspects of the multiserver design can be em-
ployed using existing monolithic OSes. VirtuOS [62] is a
fault-tolerant multiserver design based on Linux that pro-
vides strong isolation of the kernel components by running
them in virtualized service domains on top of Xen. Snap [56]
implements a network server in Linux to improve perfor-
mance and simplify system upgrades. However, Snap uses
its private (non-TCP) protocol which cannot be easily inte-
grated into existent applications. Moreover, Snap is limited
to networking and requires re-implementing all network
device drivers.

On-demand virtualization [47] implements full OS migra-
tion, but does not speci�cally target SR-IOV devices. In con-
trast, LibrettOS allows dynamic device migrations.

To optimize I/O in VMs, researchers have proposed the
sidecore approach [19, 48] which avoids VM exits and of-
�oads the I/O work to sidecores. Since this approach is
wasteful when I/O activity reduces, Kuperman et al. [49]
proposed to consolidate sidecores from di�erent machines
onto a single server.

Exokernel [15] was among the �rst to propose compiling
OS components as libraries and link them to applications.
Nemesis [72] implemented a library OS with an extremely
lightweight kernel. Drawbridge [66], Graphene [85], and
Graphene-SGX [86] are more recent works that leverage
the security bene�ts of library OSes due to the increased
isolation resulting from the lesser degree of interaction be-
tween applications and the privileged layer. Bascule [6]
demonstrated OS-independent extensions for library OSes.
EbbRT [74] proposed a framework for building per-app-
lication library OSes for performance.

Library OSes specialized for the cloud – unikernels [10,

12

43, 45, 50, 55, 90] – have also emerged in recent years.
They are dedicated to running in the cloud and are a prac-
tical implementation of the library OS model where the hy-
pervisor plays the role of the exokernel. In its library OS
mode, LibrettOS builds upon and reaps the bene�ts of this
model. Additionally, LibrettOS gains the same bene�ts of
multiserver OSes such as failure recovery. LibrettOS is also
the �rst SMP design that runs unikernels with unmodi�ed
drivers that belong to the hardened NetBSD driver code
base.

Red Hat has recently initiated an e�ort, which is in its
early stage, to create a Linux unikernel (UKL) [69]. UKL
promises to resolve the problem of maintaining a large
base of drivers and specialized I/O stacks (e.g., DPDK [84],
SPDK [77], and mTCP [40]). UKL’s long-term goal of replac-
ing DPDK and SPDK by using unikernelized applications is
already achieved in the LibrettOS design, which also encap-
sulates a more powerful multiserver/library OS design.

7 Conclusion

We presented LibrettOS, an OS design that unites two fun-
damental models, the multiserver OS and the library OS, to
reap their combined bene�ts. In essence, LibrettOS uses a
microkernel to run core OS components as servers for better
isolation, reliability, and recoverability. For selected appli-
cations, LibrettOS acts as a library OS such that these ap-
plications are given direct access to I/O devices to improve
performance. We also support dynamic runtime switching
between the two modes. In LibrettOS’s unique design, not
only most OS code stays identical as an application switches
between di�erent modes of operation, more importantly,
the application does not have to be modi�ed either.

We built a prototype of the LibrettOS design based on
rump kernels. LibrettOS is compatible both in terms of BSD
and POSIX user-space applications, and also in terms of the
large driver code base of the NetBSD kernel. Our proto-
type implementation necessitated a signi�cant redesign of
the rumprun environment which executes rump kernels, in
particular, the implementation of SMP support. To demon-
strate the multiserver paradigm, we implemented a network
server based on direct L2 frame forwarding. We evaluated
this prototype and demonstrated successful recovery from
OS component failures (and transparent server upgrades) as
well as increased I/O performance compared to NetBSD and
Linux, especially when using direct access.

Finally, although kernel-bypass advantages are widely
discussed in the literature, unlike prior works [7, 56, 64], Li-
brettOS is the �rst to achieve greater performance with ordi-
nary POSIX applications and out-of-the-box device drivers.

Availability

LibrettOS is available at: https://ssrg-vt.github.io/
librettos

Acknowledgements

We would like to thank the anonymous reviewers and our
shepherd Dilma Da Silva for their insightful comments and
suggestions, which helped greatly improve this paper. We
also thank Pierre Olivier for his comments and suggestions.

This research is based upon work supported by the O�ce
of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA). The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the o�cial policies or endorsements, either expressed or im-
plied, of the ODNI, IARPA, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

This research is also based upon work supported by the
O�ce of Naval Research (ONR) under grants N00014-16-1-
2104, N00014-16-1-2711, and N00014-18-1-2022.

References
[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard

Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel
foundation for UNIX development. 1986.

[2] AMD, Inc. AMD I/O Virtualization Technology (IOMMU) Speci�ca-
tion, 2016. http://developer.amd.com/wordpress/media/2013/
12/48882_IOMMU.pdf.

[3] T. E. Anderson. The case for application-speci�c operating systems.
In [1992] Proceedings Third Workshop on Workstation Operating Sys-
tems, pages 92–94, April 1992.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew War�eld. Xen and
the Art of Virtualization. In Proceedings of the 19th ACM Symposium
on Operating Systems Principles, SOSP’03, pages 164–177, 2003.

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Har-
ris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,
and Akhilesh Singhania. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 29–44. ACM, 2009.

[6] Andrew Baumann, Dongyoon Lee, Pedro Fonseca, Lisa Glendenning,
Jacob R. Lorch, Barry Bond, Reuben Olinsky, and Galen C. Hunt.
Composing OS Extensions Safely and E�ciently with Bascule. In
Proceedings of the 8th European Conference on Computer Systems, Eu-
roSys’13, pages 239–252, 2013.

[7] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. IX: A protected dataplane op-
erating system for high throughput and low latency. In Proceedings
of the 11th USENIX Symposium on Operating System Design and Im-
plementation, OSDI’14, 2014.

[8] T. Bushnell. Towards a new strategy for OS design, 1996. http:
//www.gnu.org/software/hurd/hurd-paper.html.

[9] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-
dovich, and M. Frans Kaashoek. Linux Kernel Vulnerabilities: State-
of-the-art Defenses and Open Problems. In Proceedings of the 2nd
Asia-Paci�c Workshop on Systems, APSys’11, 2011.

13

https://ssrg-vt.github.io/librettos
https://ssrg-vt.github.io/librettos
http://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
http://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
http://www.gnu.org/software/hurd/hurd-paper.html
http://www.gnu.org/software/hurd/hurd-paper.html

[10] Cloudozer LLP. LING/Erlang on Xen, 2018. http://erlangonxen.
org/.

[11] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,
Tim Deegan, Peter Loscocco, and Andrew War�eld. Breaking Up is
Hard to Do: Security and Functionality in a Commodity Hypervi-
sor. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles, SOSP’11, pages 189–202, 2011.

[12] Francis M. David, Ellick M. Chan, Je�rey C. Carlyle, and Roy H.
Campbell. CuriOS: Improving Reliability Through Operating System
Structure. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, pages 59–72, 2008.

[13] Martin Decky. HelenOS: Operating System Built of Microser-
vices, 2017. http://www.nic.cz/files/nic/IT_17/Prezentace/
Martin_Decky.pdf.

[14] Kevin Elphinstone, Amirreza Zarrabi, Kent Mcleod, and Gernot
Heiser. A Performance Evaluation of Rump Kernels As a Multi-server
OS Building Block on seL4. In Proceedings of the 8th Asia-Paci�cWork-
shop on Systems, APSys’17, pages 11:1–11:8, 2017.

[15] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel: An Operating
System Architecture for Application-Level Resource Management. In
Proceedings of the 15th ACM Symposium on Operating Systems Princi-
ples, SOSP’95, pages 251–266, New York, NY, USA, 1995. Association
for Computing Machinery.

[16] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar
Back, and Stephen Clawson. Microkernels meet recursive virtual ma-
chines. In Proceedings of the 2nd USENIX Symposium on Operating
Systems Design & Implementation, OSDI’96, pages 137–151, 1996.

[17] Keir Fraser, H. Steven, Rolf Neugebauer, Ian Pratt, Andrew War�eld,
and Mark Williamson. Safe hardware access with the Xen virtual
machine monitor. In Proceedings of the 1st Workshop on Operating
System and Architectural Support for the on-demand IT InfraStructure,
OASIS’04, 2004.

[18] Free Software Foundation, Inc. GNU Hurd: New Driver Frame-
work, 2017. http://www.gnu.org/software/hurd/community/
gsoc/project_ideas/driver_glue_code.html.

[19] Ada Gavrilovska, Sanjay Kumar, Himanshu Raj, Karsten Schwan,
Vishakha Gupta, Ripal Nathuji, Radhika Niranjan, Adit Ranadive, and
Purav Saraiya. High-Performance Hypervisor Architectures: Virtu-
alization in HPC Systems. HPCVirt’07, 2007.

[20] Alain Ge�aut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin El-
phinstone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and
Lars Reuther. The SawMill multiserver approach. In Proceedings of
the 9th ACM SIGOPS European Workshop, pages 109–114, 2000.

[21] Cristiano Giu�rida, Lorenzo Cavallaro, and Andrew S. Tanenbaum.
We Crashed, Now What? In Proceedings of the Sixth International
Conference on Hot Topics in System Dependability, HotDep’10, pages
1–8, 2010.

[22] Cristiano Giu�rida, Anton Kuijsten, and Andrew S. Tanenbaum.
Enhanced Operating System Security Through E�cient and Fine-
grained Address Space Randomization. In Proceedings of the 21st
USENIX Conference on Security Symposium, Security’12, 2012.

[23] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel
Aul, Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and
Galen Hunt. Debugging in the (very) large: ten years of implemen-
tation and experience. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles, SOSP’09, pages 103–116, 2009.

[24] Google. Fuchsia Project, 2019. http://fuchsia.dev/.
[25] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Rat-

nasamy. MegaPipe: A New Programming Interface for Scalable Net-
work I/O. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 135–148, 2012.

[26] Steven Hand, Andrew War�eld, Keir Fraser, Evangelos Kotsovinos,
and Dan Magenheimer. Are virtual machine monitors microkernels
done right? In Proceedings of the 10th Workshop on Hot Topics in
Operating Systems, HotOS’05, 2005.

[27] Per Brinch Hansen. The nucleus of a multiprogramming system.
Communications of the ACM, 13(4):238–241, 1970.

[28] Gernot Heiser, Volkmar Uhlig, and Joshua LeVasseur. Are virtual-
machine monitors microkernels done right? SIGOPS Operating Sys-
tems Review, 40(1):95–99, January 2006.

[29] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S. Tanenbaum. The architecture of a fault-resilient operating
system. In Proceedings of 12th ASCI Conference, ASCI’06, pages 74–
81, 2006.

[30] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S. Tanenbaum. Reorganizing UNIX for Reliability. In Proceed-
ings of the 11th Asia-Paci�c Conference on Advances in Computer Sys-
tems Architecture, ACSAC’06, pages 81–94, 2006.

[31] Jorrit N Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S Tanenbaum. Fault isolation for device drivers. In Dependable
Systems & Networks, 2009. DSN’09. IEEE/IFIP Int. Conference, pages
33–42, 2009.

[32] Jorrit N Herder, David C Van Moolenbroek, Raja Appuswamy,
Bingzheng Wu, Ben Gras, and Andrew S Tanenbaum. Dealing with
driver failures in the storage stack. In Dependable Computing, 2009.
LADC’09. 4th Latin-American Symposium on, pages 119–126, 2009.

[33] Dan Hildebrand. An Architectural Overview of QNX. In USENIX
Workshop on Microkernels and Other Kernel Architectures, pages 113–
126, 1992.

[34] Jon Howell, Bryan Parno, and John R. Douceur. How to Run POSIX
Apps in a Minimal Picoprocess. In Proceedings of the 2013 USENIX
Annual Technical Conference, ATC’13, pages 321–332, 2013.

[35] Tomas Hruby, Cristiano Giu�rida, Lionel Sambuc, Herbert Bos, and
Andrew S Tanenbaum. A NEaT Design for Reliable and Scalable Net-
work Stacks. In Proceedings of the 12th International on Conference on
emerging Networking EXperiments and Technologies, pages 359–373,
2016.

[36] Galen C. Hunt, James R. Larus, David Tarditi, and Ted Wobber. Broad
New OS Research: Challenges and Opportunities. In Proceedings of
the 10th Conference on Hot Topics in Operating Systems - Volume 10,
HotOS’05, pages 15–15, 2005.

[37] Intel. Management Engine, 2019. http://www.intel.com/
content/www/us/en/support/products/34227/software/
chipset-software/intel-management-engine.html.

[38] Intel Corporation. Intel 82599 10 GbE Controller Datasheet,
2019. http://www.intel.com/content/dam/www/public/us/en/
documents/datasheets/82599-10-gbe-controller-datasheet.
pdf.

[39] Intel Corporation. Intel’s Virtualization for Directed I/O, 2019. http:
//www.intel.com/content/dam/www/public/us/en/documents/
product-specifications/vt-directed-io-spec.pdf.

[40] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. mTCP: A Highly
Scalable User-level TCP Stack for Multicore Systems. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’14, pages 489–502, 2014.

[41] Antti Kantee. Rump File Systems: Kernel Code Reborn. In Proceedings
of the 2009 USENIX Annual Technical Conference, ATC’09, 2009.

[42] Antti Kantee. Flexible operating system internals: The design and im-
plementation of the anykernel and rump kernels. In Ph.D. thesis, De-
partment of Computer Science and Engineering, Aalto University, 2012.

[43] Antti Kantee and Justin Cormack. Rump Kernels No OS? No Problem!
USENIX; login: magazine, 2014.

[44] Avi Kivity. KVM: the Linux virtual machine monitor. In 2007 Ottawa
Linux Symposium, pages 225–230, 2007.

[45] Avi Kivity, Dor Laor Glauber Costa, and Pekka Enberg. OSv - Opti-
mizing the Operating System for Virtual Machines. In Proceedings of
the 2014 USENIX Annual Technical Conference, ATC’14, page 61, 2014.

[46] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. seL4: Formal Veri�cation of an OS Kernel. In Pro-
ceedings of the 22nd ACM Symposium on Operating Systems Principles,
SOSP’09, pages 207–220, 2009.

[47] Thawan Kooburat and Michael Swift. The Best of Both Worlds with
On-demand Virtualization. In Proceedings of the 13th Workshop on
Hot Topics in Operating Systems, HotOS’11, Berkeley, CA, USA, 2011.
USENIX Association.

[48] Sanjay Kumar, Himanshu Raj, Karsten Schwan, and Ivan Ganev. Re-
architecting VMMs for Multicore Systems: The Sidecore Approach.

14

http://erlangonxen.org/
http://erlangonxen.org/
http://www.nic.cz/files/nic/IT_17/Prezentace/Martin_Decky.pdf
http://www.nic.cz/files/nic/IT_17/Prezentace/Martin_Decky.pdf
http://www.gnu.org/software/hurd/community/gsoc/project_ideas/driver_glue_code.html
http://www.gnu.org/software/hurd/community/gsoc/project_ideas/driver_glue_code.html
http://fuchsia.dev/
http://www.intel.com/content/www/us/en/support/products/34227/software/chipset-software/intel-management-engine.html
http://www.intel.com/content/www/us/en/support/products/34227/software/chipset-software/intel-management-engine.html
http://www.intel.com/content/www/us/en/support/products/34227/software/chipset-software/intel-management-engine.html
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf

WIOSCA’07, 2007.
[49] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel

Gordon, and Dan Tsafrir. Paravirtual remote i/o. In Proceedings
of the 21st International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS’16, pages 49–
65, New York, NY, USA, 2016. ACM.

[50] Stefan Lankes, Simon Pickartz, and Jens Breitbart. HermitCore: a
unikernel for extreme scale computing. In Proceedings of the 6th In-
ternational Workshop on Runtime and Operating Systems for Super-
computers, ROSS 2016, 2016.

[51] Breno Henrique Leitao. Tuning 10Gb network cards on Linux. In
2009 Ottawa Linux Symsposium, pages 169–184, 2009.

[52] Jochen Liedtke. Toward real microkernels. Communications of the
ACM, 39(9):70–77, 1996.

[53] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown. ArXiv e-prints, January 2018.

[54] Jing Liu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
File Systems as Processes. In Proceedings of the 11th USENIXWorkshop
on Hot Topics in Storage and File Systems, HotStorage’19, 2019.

[55] A Madhavapeddy, R Mortier, C Rotsos, DJ Scott, B Singh, T Gazag-
naire, S Smith, S Hand, and J Crowcroft. Unikernels: library oper-
ating systems for the cloud. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’13, pages 461–472, 2013.

[56] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius,
Xi Wang, and Amin Vahdat. Snap: A Microkernel Approach to Host
Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP’19, pages 399–413, 2019.

[57] Memcached Contributors. Memcached, 2019. http://memcached.
org/.

[58] NetBSD Contributors. The NetBSD Project: Announcing NetBSD 8.0,
2018. http://www.netbsd.org/releases/formal-8/NetBSD-8.
0.html.

[59] NetBSD Contributors. The NetBSD Project, 2019. http://netbsd.
org/.

[60] NGINX Contributors. Nginx: High Performance Load Balancer, Web
Server, Reverse Proxy, 2019. http://nginx.org/.

[61] Ruslan Nikolaev. A Scalable, Portable, and Memory-E�cient Lock-
Free FIFO Queue. In Proceedings of the 33rd International Symposium
on Distributed Computing, DISC 2019, volume 146 of LIPIcs, pages
28:1–28:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[62] Ruslan Nikolaev and Godmar Back. VirtuOS: An Operating System
with Kernel Virtualization. In Proceedings of the 24th ACMSymposium
on Operating Systems Principles, SOSP’13, pages 116–132, 2013.

[63] PCI-SIG. Single Root I/O Virtualization and Sharing Speci�cation,
2019. http://pcisig.com/specifications/iov/.

[64] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Ar-
rakis: The Operating System is the Control Plane. In Proceedings of
the 11th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’14, pages 1–16, 2014.

[65] Steve Pope and David Riddoch. OpenOnload A User-
level Network Stack, 2008. http://www.openonload.org/
openonload-google-talk.pdf.

[66] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,
and Galen C. Hunt. Rethinking the Library OS from the Top Down.
SIGARCH Comput. Archit. News, 39(1):291–304, March 2011.

[67] O. Purdila, L. A. Grijincu, and N. Tapus. LKL: The Linux kernel li-
brary. In 9th RoEduNet IEEE International Conference, pages 328–333,
June 2010.

[68] Himanshu Raj and Karsten Schwan. High performance and scalable
I/O virtualization via self-virtualized devices. In Proceedings of the
16th International Symposium on High Performance Distributed Com-
puting, HPDC’07, pages 179–188, 2007.

[69] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drep-

per, Richard Jones, Orran Krieger, Renato Mancuso, and Larry Wood-
man. Unikernels: The Next Stage of Linux’s Dominance. In Proceed-
ings of the 17th Workshop on Hot Topics in Operating Systems, Ho-
tOS’19, pages 7–13, New York, NY, USA, 2019. ACM.

[70] Redis Contributors. Redis, 2019. http://redis.io/.
[71] Redis Labs. Memtier Benchmark, 2019. http://github.com/

RedisLabs/memtier_benchmark/.
[72] Dickon Reed and Robin Fairbairns. Nemesis, The Kernel-Overview.

1997.
[73] Joanna Rutkowska and Rafal Wojtczuk. Qubes OS architecture. In-

visible Things Lab Tech Rep, 54, 2010.
[74] Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and

Jonathan Appavoo. EbbRT: A Framework for Building per-
Application Library Operating Systems. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, pages 671–688, USA, 2016. USENIX Association.

[75] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen,
Binyu Zang, and Jinming Li. Deconstructing Xen. In The Network
and Distributed System Security Symposium, NDSS’17, 2017.

[76] Livio Soares and Michael Stumm. FlexSC: �exible system call
scheduling with exception-less system calls. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design & Implementation,
OSDI’10, pages 1–8, 2010.

[77] SPDK Contributors. Storage Performance Development Kit (SPDK),
2019. http://spdk.io/.

[78] Udo Steinberg and Bernhard Kauer. NOVA: a microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th European
Conference on Computer Systems, EuroSys’10, pages 209–222, 2010.

[79] J. Mark Stevenson and Daniel P. Julin. Mach-US: UNIX on generic
OS object servers. In Proceedings of the USENIX 1995 Technical Con-
ference, TCON’95, pages 119–130, 1995.

[80] Sysbench Contributors. SysBench 1.0: A System Performance Bench-
mark, 2019. http://github.com/akopytov/sysbench/.

[81] The Apache Software Foundation. ab - Apache HTTP server bench-
marking tool, 2019. http://httpd.apache.org/docs/2.2/en/
programs/ab.html.

[82] The Apache Software Foundation. Apache HTTP server, 2019. http:
//httpd.apache.org/.

[83] The Free Software Foundation. GPL-Compatible Free Software Li-
censes, 2019. http://www.gnu.org/licenses/license-list.en.
html#GPLCompatibleLicenses.

[84] The Linux Foundation. Data Plane Development Kit (DPDK), 2019.
http://dpdk.org/.

[85] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain,
William Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni,
Daniela Oliveira, and Donald E. Porter. Cooperation and Security
Isolation of Library OSes for Multi-process Applications. In Proceed-
ings of the 9th European Conference on Computer Systems, EuroSys’14,
pages 9:1–9:14, 2014.

[86] Chia-Che Tsai, Donald E. Porter, and Mona Vij. Graphene-SGX: A
Practical Library OS for Unmodi�ed Applications on SGX. In Proceed-
ings of the 2017 USENIX Annual Technical Conference, ATC’17, pages
645–658, 2017.

[87] Alexander Warg and Adam Lackorzynski. L4Re Runtime Environ-
ment, 2018. http://l4re.org/.

[88] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and
performance in the Denali isolation kernel. In Proceedings of the 5th
USENIX Symposium on Operating Systems Design & Implementation,
OSDI’02, pages 195–209, 2002.

[89] Irene Zhang, Jing Liu, Amanda Austin, Michael Lowell Roberts, and
Anirudh Badam. I’m Not Dead Yet!: The Role of the Operating System
in a Kernel-Bypass Era. In Proceedings of the 17th Workshop on Hot
Topics in Operating Systems, HotOS’19, pages 73–80, New York, NY,
USA, 2019. ACM.

[90] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang,
Huiba Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai
Chen. KylinX: A Dynamic Library Operating System for Simpli�ed
and E�cient Cloud Virtualization. In Proceedings of the 2018 USENIX
Annual Technical Conference, ATC’18, 2018.

15

http://memcached.org/
http://memcached.org/
http://www.netbsd.org/releases/formal-8/NetBSD-8.0.html
http://www.netbsd.org/releases/formal-8/NetBSD-8.0.html
http://netbsd.org/
http://netbsd.org/
http://nginx.org/
http://pcisig.com/specifications/iov/
http://www.openonload.org/openonload-google-talk.pdf
http://www.openonload.org/openonload-google-talk.pdf
http://redis.io/
http://github.com/RedisLabs/memtier_benchmark/
http://github.com/RedisLabs/memtier_benchmark/
http://spdk.io/
http://github.com/akopytov/sysbench/
http://httpd.apache.org/docs/2.2/en/programs/ab.html
http://httpd.apache.org/docs/2.2/en/programs/ab.html
http://httpd.apache.org/
http://httpd.apache.org/
http://www.gnu.org/licenses/license-list.en.html#GPLCompatibleLicenses
http://www.gnu.org/licenses/license-list.en.html#GPLCompatibleLicenses
http://dpdk.org/
http://l4re.org/

	Introduction
	Background
	Multiserver and Library OSes
	NetBSD, rump kernels, and rumprun
	Linux-based Library OSes
	Hypervisors and Microkernels
	PCI Passthrough and Input-Output Memory Management Unit (IOMMU)
	Single-Root I/O Virtualization (SR-IOV)
	POSIX and Compatibility
	Summary

	Design
	LibrettOS's Architecture
	Network Server
	Dynamic Mode Switch

	Implementation
	Effort
	Limitations

	Evaluation
	NetBSD and Linux performance
	Sysbench/CPU
	NetPIPE
	NFS Server
	Nginx HTTP Server
	Memcached
	Redis
	Failure Recovery and Software Upgrades

	Related Work
	Conclusion

