
Edge Computing –
the Case for Heterogeneous-ISA ContainerMigration

Antonio Barbalace, Mohamed L. Karaoui, WeiWang, Tong Xing, Pierre Olivier, Binoy Ravindran∗
University of Edinburgh, Virginia Tech, Stevens, Stevens, University of Manchester, Virginia Tech

abarbala@ed.ac.uk,karaoui@vt.edu,wwang88@stevens.edu,txing1@stevens.edu,pierre.olivier@manchester.ac.uk,binoy@vt.edu

Abstract
Edge computing is a recent computing paradigm that brings
cloud services closer to the client. Among other features, edge
computing offers extremely low client/server latencies. To
consistently provide such low latencies, services need to run
on edge nodes that are physically as close as possible to their
clients. Thus, when a client changes its physical location, a
service should migrate between edge nodes to maintain prox-
imity. Differently from cloud nodes, edge nodes are built with
CPUsof different Instruction SetArchitectures (ISAs), hence a
server program natively compiled for one ISA cannotmigrate
to another. This hinders migration to the closest node.

We introduce H-Container, which migrates natively-com-
piled containerized applications across compute nodes featur-
ing CPUs of different ISAs. H-Container advances over exist-
ing heterogeneous-ISA migration systems by being a) highly
compatible – no source code nor compiler toolchain modifi-
cations are needed; b) easily deployable – fully implemented
in user space, thus without anyOS or hypervisor dependency,
and c) largely Linux compliant – canmigrate most Linux soft-
ware, including server applications and dynamically linked
binaries. H-Container targets Linux, adopts LLVM, extends
CRIU, and integrates with Docker. Experiments demonstrate
that H-Container adds no overhead on average during pro-
gram execution, while between 10ms and 100ms are added
during migration. Furthermore, we show the benefits of H-
Container in real scenarios, proving for example up to 94%
increase in Redis throughput when unlocking heterogeneity.

CCSConcepts: •Computersystemsorganization→Het-
erogeneous (hybrid) systems; • Software and its engi-
neering→Operating systems.

Keywords: Edge, Heterogeneous ISA, Containers, Migration
ACMReference Format:
Antonio Barbalace, Mohamed L. Karaoui, Wei Wang, Tong Xing,

∗A.Barbalace,M. L. Karaoui,W.Wang equally contributed to thework.A. Bar-
balace performed part of this work when at Stevens Institue of Technology.

VEE ’20, March 17, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your per-
sonal use. Not for redistribution. The definitive Version of Record was
published in 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE ’20), March 17, 2020, Lausanne, Switzerland,
https://doi.org/10.1145/3381052.3381321.

Pierre Olivier, Binoy Ravindran. 2020. Edge Computing – the Case
for Heterogeneous-ISA Container Migration. In 16th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE ’20), March 17, 2020, Lausanne, Switzerland. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3381052.
3381321

1 Introduction
Edge computing [73, 75] is an emerging computing paradigm
that advocates moving computations typically performed by
centralized cloud computing services onto distributed com-
pute nodes physically closer to the end user or data produc-
tion source – at the edge. In addition to relieving the data
center from compute load, and the network from data traffic,
edge servers’ physical proximity to clients ensures the lowest
latencies. Thus, edge computing’s application domains are
plentiful: mobile computation offload, failure resilience, IoT
privacy [35, 73], real-time analytics [30, 57], cognitive assis-
tance [74], just-in-time instantiation [59], gaming [14, 27], etc.
In this context, the need for runtime software migration

betweenmachines has been identified as a critical feature [30,
35, 57, 61, 85]. Software applications may need to migrate be-
tween edge nodes for numerous reasons: following a mobile
user to maintain low-latency, offloading congested devices,
proactively leaving a node that may fail in a near future, etc.
Although stateless applications can be easily restarted be-
tweennodes, statefulonesgenerallycannot– theymust imple-
ment persistence support (cf. Redis), which requires (costly)
application-specific software rewriting, thus migration is a
better option as it support any application. Moreover, studies
have shownmigration to be faster than restarting [50, 68].

Differently from the cloud, computers at the edge arewildly
heterogeneous [31, 41, 51, 85], ranging frommicro/nano/pico
clusters [22,67,87] to routingdevices [59,62,82].They include
from server to embedded computers with CPUs of diverse
Instruction Set Architectures (ISAs): not only x86 [42], but
also ARM [38, 49, 52], with other ISAs announced [37, 77, 91].
This heterogeneity was recognized by major software play-
ers, such as Docker, which now support multi-ISA deploy-
ments [4, 63, 63, 66]. The ISA-heterogeneity is a colossal bar-
rier to agile migration of software at the edge: a (stateful)
service natively compiled for an ISA is unable to migrate to
a machine of a different ISA. The intuition behind this paper
is that enabling heterogeneous-ISA migration maximizes the
number of potentialmigration targets and increases the chances
of optimal placement for latency-sensitive services.

https://doi.org/10.1145/3381052.3381321
https://doi.org/10.1145/3381052.3381321
https://doi.org/10.1145/3381052.3381321

VEE ’20, March 17, 2020, Lausanne, Switzerland Antonio Barbalace, Mohamed L. Karaoui, WeiWang, Tong Xing, Pierre Olivier, Binoy Ravindran

With these prospects, computing resources at an edge node
are rather constrained compared to the abundance in the
cloud. Furthermore, similarly to the cloud, the edge is also
multi-tenant. Therefore, when deploying services at the edge,
a formof virtualization is necessary.However, in such context
a lightweight virtualization technology is more compelling
than traditional Virtual Machines (VM) [35]. Containers are
a form of lightweight OS-level virtualization, offering near-
native performance [12], fast invocation latencies and low
memory footprints. Because of these characteristics, they are
increasingly popular at the edge [21, 36, 57, 81, 93].
Containers can migrate at runtime across homogeneous

nodes in production environments [28], but not on hetero-
geneous-ISA ones – a requirement of the edge. In fact, run-
time cross-ISA migration has been studied [6, 15, 20, 23, 32,
34, 48, 64, 86] for OS-level processes [6], unikernel virtual
machines [64], or Java applications [32]. Unfortunately, these
works suffer from fundamental flaws making them unlikely
to be used in production. First, they require access to the ap-
plication’s sources which is not acceptable inmany scenarios,
e.g., when using proprietary software. Second, they rely on
complex and experimental systems software demanding the
install of either a custom kernel [6], hypervisor [64], or lan-
guage VM [32]. These are only compatible with a handful of
machines and unlikely provide stability and security. Third,
they implement application’s state transfer techniques that
may not handle all application’s residual dependencies [16]
such as socket descriptors – thus, they may not support appli-
cations such as servers. Finally, dynamically linked binaries,
more widespread than static ones [84], are not supported.
H-Container. This paper focuses onmaximizing the perfor-
mance of latency-sensitive stateful services at the edge by
proposingH-Container, aneasily-deployable systemenabling
the migration of containers between machines of different
ISAs to enhance the flexibility of edge applications. Focus-
ing on the popular x86-64 and arm64 ISAs, we enhance the
Linux’s Checkpoint Restart In User space (CRIU) tool, used as
the underlying mechanism behind Docker containers’ migra-
tion technology, with cross-ISA transformation mechanisms.
We integrate H-Container into Docker, allowing the migra-
tion of containers between hosts of different ISAs. In addition
to being the standard tool container migration is built upon,
CRIU is the de facto software used to capture a process state
and in particular the kernel part of that state. This includes
among other things socket descriptors and network stack
state, enabling support for server applications. Finally, H-
Container support migrating across ISAs applications that
were originally dynamically compiled.

Contrary to existing work on heterogeneous-ISA migra-
tion, H-Container is easily deployable: it leverages Interme-
diate Representation (IR) lifting tools [25] to instrument an
applicationwith the requiredmetadata allowing cross-ISAmi-
gration, thuswedonot require access to the edgeapplication’s

source code. The modifications to stock CRIU are minimal
and most of the migration processing is realized by exter-
nal user-space tools we developed. We successfully tested
H-Container on numerous machines including x86-64 and
arm64 servers, embedded systems, and AWS EC2 instances.
We evaluate and demonstrate the benefits of H-Container.
For example we show that in latency-sensitive scenarios, mi-
grating a RedisEdge instance between edge nodes of different
ISAs can yield a 23% to 94% throughput increase compared
to scenarios where migration is not possible due to the ISA
difference. The paper makes the following contributions:
• The design of H-Container, a highly compatible, easily de-
ployable, and largely Linux compliant system for container
migration between heterogeneous-ISAs computer nodes. It
introduces a new deployment model featuring cloud soft-
ware repositories storing IR binaries (vs. native);
• The implementation of H-Container on top of the CRIU
checkpointing tool and IR lifting software to instrument an
applications for cross-ISAmigration without source code;
• The overhead and performance evaluation of H-Container.
This paper is organized as follows. Section 2 presents our

motivations, and Section 3 lays out background information
about software migration and executable binary transfor-
mation. We state our systemmodel in Section 4. The design
principlesofH-Containerarepresented inSection5, the imple-
mentation in Section 6. We evaluate H-Container in Section 7
and present related works in Section 8. Section 9 concludes.

2 Motivation

Edge data centers distinguish from cloud ones for the re-
marked heterogeneity in terms of computing hardware, re-
sources, form factors, processor classes and ISAs [31, 41, 51,
85]. If home routers are ARM-based, enterprise ones are x86-
powered.While even ifmicro/nanoclusters [22, 87]aremostly
equipped with x86 servers, ARM servers for the edge are
emerging [38, 49, 52] – ARM pico clusters exist already [67].
Such heterogeneity makes that in many scenarios, for a given
application, the closest node to the end-user (say, an ARM
home router) has a different ISA from the machine the ap-
plication currently runs on (e.g., an x86-64 server). Sticking
to the same ISA for the target machine is thus sub-optimal
towards the objective of reducing latency.
Why bringing services as-close-as-possible to the end-user?

We demonstrate that even small changes in latency can crit-
ically impact the performance of applications using edge ser-
vices. We use the Redis server, a prime example of edge appli-
cation [70], serving small key/value pairs (a few bytes) as an
example of latency-sensitive application. We ran this server
on two machines representing edge nodes, an Intel x86-64
2.5GHz Atom C2758 microserver and a librecomputer LeP-
otato arm64 1.5GHz single board computer. A third machine,
the edge client, is connected to both edge nodes on the same
LAN. The base latency between the client and the edge nodes

Heterogeneous-ISA Container Migration VEE ’20, March 17, 2020, Lausanne, Switzerland

0 1 2 3 4 5 6 7 8 9 10
0

10000

20000

30000

40000

50000

60000
Atom microserver
Potato board

Latency delay (ms)

R
e

d
is

G
E

T
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

< ~3ms > ~3ms
(home router, ARM ISA) (small-scale data center, x86 ISA)

Figure 1. Redis throughput when
varying client-server network latency.

0.1

1

10

100

1000

0 50 100

T
im

e
(s

)

Size (GB)

Redis Save Redis Load

CRIU Dump CRIU Restore

Figure 2. Redis
persistence vs CRIU.

is less than 500µs on such a setup.We use Linux’s Traffic Con-
trol, tc, to artificially increase the network latency of the NIC
on each edge node by an additional delay from 1 up to 10 ms.
Such numbers correspond to the typical latencies expected
at the edge [14]. The edge client runs the Redis benchmark.

Results are presented in Figure 1, showingGET throughput
as a function of the artificial delay added to the latency, for
both machines. Clearly, even a slight increase in latency can
significantly bring the performance down. For example,when
theAtomgoes from 1ms to 2ms latency it lossesmore thanone
third of the throughput. Moreover, the experiment becomes
very soon bounded by the latency and the difference in perfor-
mance between the x86-64 microserver (2.5 GHz) and arm64
board (1.5 GHz) is less than 10% starting at 4ms and above.
Thus, in latency-sensitive scenarios, when the application
does not require a significant computing power, it isworthmi-
grating it to low-specs platforms, such as a home router [59].
At the same time, latency-sensitive server applications

on the edge migrate between edge nodes to follow an end-
user [30, 35, 57, 61, 85].Thus, it is fundamental tomaximize the
number of edge nodes target of migration so that a server can
be as close as possible to the end-user – thus, the performance
can be maximized. Unfortunately, when dealing with (state-
ful) natively-compiled applications edge’s ISA heterogeneity
reduces the number of edge nodes targets for migration; thus,
making heterogeneous-ISAmigration an appealing feature.
Generic migration vs. ad-hoc state transfer. Applications

running at the edge are amix of stateless and stateful one. The
former, which include data filtering, triggering, etc. can sim-
ply be stopped on one node and restarted on another one, thus
migration is not strictly needed. However, stopping a stateful
service means losing all its data if it doesn’t implement persis-
tency. Only a few services do, because supporting this feature
require a non-negligible, application-specific, effort. Thus, an
application-agnostic migration mechanism is preferable. Ad-
ditionally, we observed that generic migration, especially live
migration, can be superior to ad-hoc persistency implementa-
tion. Figure 2 compares memory-to/from-disk persistence for
Redis vs. CRIU without compression, for different DB sizes.
CRIU is up to 25 times faster, andwhen enabling compression
CRIU is still faster – this is because of its trivial serialization.
To conclude,migration canbe faster thanad-hoc state transfer

mechanisms, in addition to being more generic and having
shorter downtimes.

3 Background

3.1 SoftwareMigration During Execution

The need to migrate software in execution between different
computers dates back to the first multi-computer network.
Softwarehas beenmigrated at the granularity of threads [6, 8],
processes [6, 8, 44], groups of processes [65], or entire oper-
ating systems (OS) [16]. Independently of the granularity, the
main idea beyond migration is that the entire state of the
software is moved between computers.
Migrating an OS with its running applications is a well

known technology. It relies on a virtual model of the hard-
ware, theVirtualMachine (VM), and transfer its state between
computers. Among other components, it includes the content
of the VM’s physical RAM that incorporates the OS and ap-
plications state. On the other hand, process-level migration
identifies and transfers only the state related to a specific pro-
gram. It includes its address space, CPU registers, and part of
the OS state related to the process – e.g., open file descriptors.
Container migration applies process-level migration to the
group of processes populating a container [28].

Migration mechanisms include checkpoint/restore [28], in
which a full dump of the software state is created and then
restored, and live migration [16], in which a minimal state
dump is created, moved to the target machine, and imme-
diately restored. The rest of the state is either proactively
transferred before theminimal dump [53] (pre-copy) or trans-
ferred on-demand after the restore phase [40] (post-copy).
Homogeneous-ISAMigration. In systems built with ma-
chines with processors of the same ISA, both VM and pro-
cesses/containers migration have been implemented. VM
migration is a well-mastered technology, currently imple-
mented by multiple commercial and open-source solutions.
Although process migration has been studied for a long time,
it was never fully deployed at scale in production due to the
difficulty of managing residual dependencies [16] – i.e., the
part of the OS kernel state related to the process in question.
In recent years, due to the success of containers, process mi-
gration re-gained popularity. In Linux, it is implemented by
the Checkpoint Restore In User-space (CRIU) tool [28].
Figure 3 illustrates the steps involved in CRIU process mi-

gration. Checkpoint produces a bunch of image files that are
transferred to the destination machine and used by restore. In
order toproduce suchfiles,CRIUhasfirst to stop theprocess in
a consistent state. It does so byusing the compel library,which
“infects" the target process with external code that snapshots
its resources. CRIU comes as a single binary application, criu,
which can be used to checkpoint – dump the state, and to re-
store – reload the state dump. Moreover, CRIU includes tools
tomanipulate the state dump, includingcrit. Finally, because
CRIU is a user-space tool that just checkpoints and restores

VEE ’20, March 17, 2020, Lausanne, Switzerland Antonio Barbalace, Mohamed L. Karaoui, WeiWang, Tong Xing, Pierre Olivier, Binoy Ravindran

an application, a framework to coordinate applications de-
ployment and migration among computers is usually needed.
In many cases today, Docker [9] is adopted for this purpose.

Origin Machine Des�na�on Machine

App 0

App 1

App 2

C
h
e
ckp

o
in
t

Tran
sfe

r

R
e
sto

re

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

ContainerContainer

App 0

App 1

App 2

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

Figure 3.Homogeneous-ISA container migration process.
Heterogeneous-ISA Migration. In the 80/90’s, multiple
projects studied the migration of applications in a network
of heterogeneous machines [3, 44, 78]. Such works used to
convert the entire migrated state of the application, including
data, from one ISA format to another, thus involving large
overheads. Recent works, such as HSA [72], Venkat et al. [86],
or Popcorn Linux [6], improved over the state-of-the-art by
setting a common data format, therefore reducing the amount
of state that has to be converted. BecauseHSA focuses on plat-
formswithCPUand acceleratorswewill not discuss it further.
Both Popcorn Linux and the work from Venkat et al. pro-

pose the idea of uniform address space layout and common
data format among general-purpose CPUs of different ISAs.
This implies that the ISAs considered support the same prim-
itive data types’ sizes and alignment constraints, and eventu-
ally endianess. Moreover, to preserve the validity of pointers
across migration, every function, variable, or other program
symbol, should be at the same virtual address for each ISA.
Because the same machine code cannot execute on proces-
sors of different ISAs, every program function or procedure
is compiled into the machine code of every ISA. The same
function/procedure compiled for different ISAs lives at the
same virtual address, therefore there is a .text section per
ISA and those are overlapping in the virtual address space.
Because of the uniform address space layout and data format,
migrating a thread or process between ISAs becomes nearly
as easy as migrating a thread among different CPUs on a SMP
machine – where there is no state transformation.

Because CPUs of different ISAs have different register sets,
state transformation cannot be completely avoided. Thus, pre-
vious works convert the registers state between architectures.
Popcorn Linux achieves this in kernel space [6]. Moreover,
migrating between CPUs of different ISAs may only happen
at so called migration points. Migration points are machine
instructions at which it is valid to migrate between different
ISAs: the architecture-specific state (e.g., registers) can be
transformed between ISAs because a transformation function
exists. Finally, other than the registers state, Popcorn Linux
keeps each thread’s stack in the ISA’s native format, which
is architecture dependent. Uponmigration the stack’s state
is converted in addition to the registers’ one. The code to
convert the stack is injected by the Popcorn Linux compiler.

3.2 Static Executable Binary Transformation

Earlier works on static executable binary transformation (or
transpilers) between ISAs date back to the 90’s. Latest works
on static binary analysis in the security community, together
with innovations in compilers [47] rejuvenate the topic. In this
paper, executable binaries are programs running atop an OS.
The first step in executable binary transformation is the

decompilation. Decompilation takes the executable binary
and outputs its assembly code – this is far from being triv-
ial [79, 89] because code and data can be intermixed. After the
code has been decompiled, assuming the new executable bi-
narywill runon the sameOSas theoriginal one, it is necessary
to map equivalent machine code instructions, or blocks of
them, between the two ISAs. The two ISAsmay have different
register sets or instructions for which there is no equivalence.
For those, softwarehelper functionshave tobeprovided.With
all these in place a new executable binary can be produced.

Among others, McSema/Remill [25] (simply, McSema) is a
recent software framework for binary analysis and transfor-
mation. This tool advances the state-of-the-art by decompil-
ing the executable binary into its native assembly language,
and then “lifting” the assembly language into LLVM IR,which
is more feature rich and allows for reasoning about what the
program is actually doing (cf. symbolic execution [13]).When
the application is translated into LLVM IR, by virtue of the
fact that LLVM is a cross compiler, the application can be
transpiled into any ISA supported by LLVM.

4 SystemModel

We consider a cloud and edge reference system model as
depicted in Figure 4. A team of developers implement a client-
server application. The server part of the application is de-
ployedon thecloudor edge,while the clientpart is installedon
user’s (mobile) computing device(s). The client-server appli-
cationmay execute onmultiple servers, but at least one server
should run as close as possible to the client part of the appli-
cation, i.e., on the edge. In this paper we focus on applications
featuring only a server running on the edge – not on the cloud.
The model includes a cloud repository of applications re-

siding in a cloud data center (e.g., Docker Hub), and the edge
built by multiple edge segments, each maintaining a local ap-
plications repository (e.g., Docker cache). This paper focuses
on a single edge segment. We assume that the server part
of the application is deployed as a container and it is stored
in the cloud repository. We also assume that when a client
appears on the edge, the server application is copied into an
edge-local repository; a software manager (e.g., Docker [9])
and an orchestrator (e.g., Kubernetes [39], OpenShift [76])
administer the edge-local repository and are responsible of
the deployment of the server on each different edge node.

Client applications may be shipped from the developers to
the users in any form, e.g., downloaded from a website, or a
marketplace, this is out of the scope of this paper.

Heterogeneous-ISA Container Migration VEE ’20, March 17, 2020, Lausanne, Switzerland

Server
app

Dev CloudCloud
Repository

User

Client
app

Edge Segment A Edge Segment B

Server
app

Edge Segment A
Repository

Server
app

Dev

Dev

Server
app

Edge Segment B
Repository

ISA A
ISA A

ISA B

ISA C

Client
app

v

Applica�on A

A
B

C

C
D

Mobile
Device

Edge Server

Edge ServerEdge Server

Server
app

Edge Server

Server
app

ISA
Agnos�c

Figure 4.H-Container systemmodel and architecture

5 Design Principles and Architecture

Design Principles. To fulfill the pressing demands for flex-
ibility and agility at the edge, this work is based on the fol-
lowing design principles: 1) enabling application software
to transparently execute and migrate across edge nodes of
heterogeneous ISAs; 2) offering a high-degree of portability
between edgemachines, and genericity in terms of supported
software; 3) being easy to deploy, maintain, and manage; 4)
being of minimal performance overhead.

Therefore, we designed the H-Container architecture that:
a) is fully implemented in user-space to maximize portabil-
ity, ease of maintenance and management, and avoids rely-
ing on specific kernel versions or patches; b) targets operat-
ing system-level virtualization – i.e., containers, jails, zones,
which is acclaimed to be more lightweight than virtual ma-
chines, hence with minimal overhead; c) does not require
access to the application’s source code – binaries are automat-
ically re-purposed for migration among ISA different nodes
when moved to each edge segment, thus generic and easy to
deploy; d) minimizes application’s state transformationwhen
runtime migrate between different ISA processors in order
to provide a quick and efficient migration mechanism.
Architecture. The proposed architecture builds atop the
systemmodel presented above and enables (server-like) appli-
cations migration across heterogeneous ISA processor nodes
on the edge. Specifically, our architecture enables the follow-
ing deployment scenario, with reference to Figure 4:
1. developers initially upload their edge applications on a
cloud repository A , which stores them in LLVM IR. Devel-
opers may upload executable binaries natively compiled or
in LLVM IR. Native binaries are transformed into IR;
2. when the application has to be deployed, the local-edge
segment repository pulls the IRs from the repository B and
compiles themintonativeexecutablebinariesable tomigrate
across all edge nodes of diverse ISAs in its edge segment;
3. once a server application is running on one node of an
edge segment C and the user is moving towards another
node of the same segment, the server application, running
in a container, is frozen, dumped for migration (based on
checkpoint/restart or live migration), and its state sent to

the node that is closer to the user D ;
4. when the server application state is received on the des-
tination node, it is eventually converted to the ISA of the
receivingmachine, if not converted before, and the container
is restored to continue execution.

The architecture supports both checkpoint/restore-migration
and live-migration, it is the edge segment orchestrator that
decides what migration, when and where to migrate.

H-Container introduces two key techniques to implement
such architecture: automatic executable binary transformation
into an executable binary that can migrate among different ISA
processors at runtime, and container migration across diverse
ISA processors in user-space.

5.1 Automatic Executable Binary Transformation

Previous approaches to software migration among heteroge-
neous ISA CPUs require the source code and the knowledge
of what CPU ISAs it will run on. Knowing what ISAs exist
on a single computer is trivial, but it may become a problem
on the edge, which is not under the control of the developer.
Although today it is feasible to compile an application for
all existent ISAs, because the number of ISAs is limited, the
fact that open-source processors with customizable-ISA are
having enormous success [90] questions such solution. More-
over, this is not practical for legacy applications for which
the source code may not exist anymore, or the investment to
recompile with modern toolchains and libraries is too high.
Finally, compiling from sources is not always an easy pro-
cess, as it requires the usage of a specific toolchain and the
availability of all libraries of the right version, etc.

Our architecture (Figure 4) stores applications in ISAagnos-
tic form, LLVM IR, but does not force application developers
to compile applications in LLVM IR. Therefore, we provide
the possibility to upload a natively compiled binary, and H-
Container will transform it into LLVM IR. This is depicted
in Figure 5.a. Note that LLVM IR is also a good compromise
because it doesn’t require a company to expose its own code,
which is intellectual property, to cloud/edge providers.

LLVM
IR

User provides
the LLVM IR

Na�ve
Exec

Binary

User provides
the binary

Disassem
bler

Li�er Fixer

Decompiler

Migra�on
Points

Aligner
Compiler

and
Linker

Compiler

Na�ve
Exec

Binary

Cross-ISA Migratable
Binaries

A

B
Figure 5. a) High-level design of the H-Container automatic
executable transformation infrastructure; b) breakdown of
the decompiler and compiler blocks.
Transforming the code from native to LLVM IR (Decom-

piler) is the first step of our automatic executable binary trans-
formation. The second step in Figure 5.a is to compile (Com-
piler) the code from LLVM IR into a set of different native exe-
cutable binaries for different ISA processors. For a single pro-
gram, all executable binaries comply to aunique address space
layout, thread local storage, same data format, padding, etc.

VEE ’20, March 17, 2020, Lausanne, Switzerland Antonio Barbalace, Mohamed L. Karaoui, WeiWang, Tong Xing, Pierre Olivier, Binoy Ravindran

Only the stack layout is different. Additionally, the compiler
automatically insertsmigrationpoints at functionboundaries,
and potentially outlines part of large functions to add more
migration points. This is very similar to Popcorn Linux [6]:
the entire address space has the same layout onmultiple ISAs,
all code sections of ISA A are overlayed with the ones from
ISA B and code are functionally equivalent (produce the same
output with the same input); because all symbols are at the
same address (independently if functions or variables), and
have the same size and padding executing code from ISAA or
ISA B produces the same result. However, because the stack
format is kept different for performance, it has to be rewrit-
ten at runtime. H-Container user-space runtime rewrites the
stack right after a migration request. This rewriting process
leverages metadata that were inserted by the compiler within
custom ELF sections of the binary. These metadata help to
produce a mapping of the stack state between ISAs of the live
values residing on the stack at each migration point.

5.2 HeterogeneousMigration of Containers

The heterogeneous migration of containers is designed to
capitalize on current containermigration infrastructure avail-
able in modern OSes, to avoid building just another research
toy. Applications running in a container to bemigrated across
heterogeneous ISA nodes have to bemigratable, i.e., compiled
as explained in the previous Section.

Origin Machine (ISA A) Des�na�on Machine (ISA B)

App 0

App 1

App 2

N
o
�

fy

C
h

e
ckp

o
in

t

Tran
sfo

rm

Tran
sfe

r

R
e

sto
re

App 0

App 1

App 2

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

ContainerContainer

Origin Machine (ISA A) Des�na�on Machine (ISA B)

App 0

App 1

App 2
N

o
�

fy

C
h

e
ckp

o
in

t

Tran
sfo

rm

Tran
sfe

r

R
e

sto
re

App 0

App 1

App 2

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

Image
Files
Image
Files
Image
Files
Image
Files
Image

File

ContainerContainer

A

B

Figure 6. The main steps in container migration, and their
outputs. Origin machine is of blue ISA, while destination is
yellow. Green boxes are added by H-Container.
All steps required by heterogeneous container migration

are depicted in Figure 6. The first step in heterogeneous con-
tainermigration is to “Notify” anyapplication in the container
that it has to stop – this is alike classic container migration on
homogeneous CPUs. However, heterogeneous-ISAmigration
requires that each thread of every application stops at a valid
migration point, while migration among homogeneous CPUs
can happen at any point (cf. Section 3).

When all threads of every application reach a valid migra-
tion point, they are frozen, and H-Container takes a check-
point of the container state–possiblyusingexistent tools. The
entire container state is dumped into “ImageFiles”.Differently
frommigration among homogeneous CPUs, heterogeneous
migration requires the Image Files to be transformed from

the origin ISA to the destination ISA. In the “Transform” step
H-Container rewrites each application dump so that the des-
tination machine thinks that the machine that was executing
the code before is of the exact same ISA. To minimize the
overhead of “Transform", this work implements a single ad-
dress space layout, however each thread’s stack is kept in
the machine native format. Hence, “Transform” also requires
rewriting each thread’s stack in the application dump.
“Transform” produces a new version of the “Image Files”.

This version is sent to the destination machine (“Transfer”
step) which after reception can use existent tools to restore
the “Image Files” and continue execution of the container. It
is worth noting that the transform step doesn’t have to be
executed on the origin machine (Figure 6 A), in fact it may
runon the destinationmachine aswell (Figure 6 B),wherever
the transformation step runs faster. In fact, on the edgewhere
to transform the state can be decided dynamically, based on
each node’s transformation performance.
These mechanisms can be leveraged by a heterogeneous

orchestration framework. The amount of resources on nodes,
locating the best target for migration, SLA vs. pure speed
tradeoffs, would be managed by such orchestration frame-
work. Developing orchestration policies is out of the scope
of this paper, and many related works exist (see Section 8).

6 Implementation
Our implementation of H-Container targets Linux in order to
foster adoption and benefit from the large software ecosystem
built around it, which includes support for containers. More-
over, Linux has been ported to numerous ISA CPUs, which
certainly include processors that will be deployed on the edge.
In Linux, containers are based on namespaces [45] and

control groups (cgroups) [11]. Hence, this work extends the
CRIU project tomigrate an application between computers of
diverse ISA. H-Container does not need any modification of
the OS kernel. Because we target a distributed environment
in which automatic deployment is fundamental, we exploit
Docker for deployment and orchestrate migration.

The proposed automatic executable binary transformation
infrastructure is based on the McSema project to convert a
natively compiled executable binary to LLVM IR. We also
leverage components from the open-source Popcorn Linux
compiler infrastructure to compile the LLVM IR into multiple
binaries ready for cross-ISAmigration, one for each processor
ISA the application will run on.
6.1 Executable Transformation Infrastructure
As depicted in Figure 5.a H-Container is built by two main
components: a decompiler and a compiler. Their internals are
illustrated in Figure 5.b, we describe implementation details
below. These components counts ∼750 LoC for the Decom-
piler part, mostly bash and Python, and ∼890 LoC of modifi-
cations on the Popcorn Linux compiler framework, including
libraries. Because H-Container builds uponMcSema and Pop-
corn Linux compiler, it mainly supports x86-64 and arm64 –

Heterogeneous-ISA Container Migration VEE ’20, March 17, 2020, Lausanne, Switzerland

we plan to remove such limitation in the near future.
Decompiler. H-Container exploitsMcSema for binarydisas-
sembling and lifting. In order to transformanatively compiled
executable binary into LLVM IR, McSema first disassembles
the code by using IDA Pro and then it lifts the obtained na-
tive assembly code into LLVM IR. The produced LLVM IR
can be directly recompiled into a dynamically linked binary
for x86-64 and arm64 if the original executable binary was
dynamically linked. It is worth noting that there are multiple
decompilers publicly available other thanMcSema, including
Ghidra [33], RetDec [46], rev.ng [24]. At the time of writing,
McSema is the only one that outputs LLVM IR that can be
recompiled into fully-functional x86-64 and arm64 binaries.

The third block in the decompiler is the fixer. The fixer was
developed to modify the LLVM IR generated byMcSema to
address at least two issues. The first is that the current Pop-
corn compiler requires applications to be statically linked –
more about this below. Thus, we decided to decompile dy-
namically linked binaries and recompile them as statically
linked binaries. A dynamically linked binary includes data
structures that enable library functions and symbols to be
loaded at runtime, including Global Offset Table (GOT) and
Procedure Linkage Table (PLT). The fixer substitutes calls to
the GOT and PLT with calls to external symbols (in statically
linked libraries) in the lifted LLVM IR. Because the format of
such tables are compiler/linker dependentweprovide support
for clang, GCC, Glibc, and musl. Using this technique, we ef-
fectively enabled cross-ISAmigration in programs that were
originally dynamically linked. In fact, none of the available
cross-ISA migration systems [6, 64] supports dynamically
linked binaries even though dynamic ones are more wide-
spread compared to static – 99%of the ELF executable binaries
in a modern Linux distribution are dynamically linked [84].

The secondproblem is about replicated symbols.TheLLVM
IR produced byMcSema reflects all assembly code included in
the executable binary, which comprises other than the code
of the program also library code to start the program and
terminate it. This corresponds for example to the initializa-
tion routines that are called before main(), e.g., _start(),
_start_c(), etc. Prior to recompilation, such routines, and
relative global variables, have to be removed because the
linker automatically re-adds them. The fixer takes care of this.
Compiler. H-Container doesn’t re-invent thewheel but cap-
italizes and extends the Popcorn Linux’s compiler framework
to produce multiple binaries with the same address space
layout, overlapping text sections, transformable stack frames,
and migration points. The key innovation in H-Container
is the possibility to create such multi-ISA binaries directly
from the LLVM IR. Hence, the H-Container compiler takes
the LLVM IR as input, and in a first stage it automatically
addsmigration points. For somemultithreaded programs, the
automatic insertion of migration points may induce a pro-
gram in deadlock when a thread reaches a migration point

while holding a lock while prevent another thread from ever
reaching a migration point because the latter thread waits
on the lock. Thus, we introduced the possibility to manually
add migration points anywhere in the code (a simple call to
a library functions) to avoid such scenarios.

In a second stage the compiler compiles and links the LLVM
IR into executable binaries for multiple ISAs, a list of the sym-
bols per binary is produced by the compiler, and the “Aligner”
tool creates custom linker scripts to enforce the linker to align
global symbols (function, global variables) at the same ad-
dress amongst ISAs. This tool was entirely rewritten in the
context of this work and is able to align symbols among any
number of ISAs – the original Popcorn Linux’s toolchain was
limited to two ISAs. In a final stage the LLVM IR is compiled
and linked again by using the produced linker scripts.
Additionally, H-Container reimplements the original mi-

gration library of Popcorn Linux in order to react to the notify
tool discussed above. Finally, Popcorn’s musl Libc was ex-
tended to let the C library loading code, which runs before
main(), to enforce the same virtual address space aperture
on every architecture. (Before enforced by the OS.)

6.2 HeterogeneousMigration
H-Container introduces Heterogeneous Checkpoint Restart
In User-space (HetCRIU). HetCRIU extends CRIU in order
to support the design in Figure 6, where the orange boxes
are implemented by CRIU while the green ones are added by
HetCRIU (Notify and Transform). With such modifications,
migration of a process works as follows: 1) a notification is
sent to the process that it has to stop; 2) every thread of the
process stops at a migration point, after executing stack and
registers transformation; 3) CRIU takes a snapshot of the pro-
cessandwrites thefiles to storage; 4) theextendedCRIU Image
Tool (crit) converts the dump files between architectures; 5)
the snapshot files are transferred between machines; 6) the
process is restored by CRIU and it continues execution from
the migration point. The same procedure applies also when
a container is composed by multiple processes. Operations
1) and 2) are implemented by the Notify step, while 4) by the
Transform step. We provide an additional implementation of
HetCRIU in which the functionality of 4) is integrated in 3),
therefore there is no call to the externalcrit tool,we call such
version all-in-one. The version with crit accounts for ∼1820
LoC, while the all-in-one requires additional ∼1200 LoC.
Notify Step. The “Notify” step (cf. Figure 6) is implemented
as an additional CRIU tool called popcorn-notify (or notify).
Popcorn-notify doesn’t infect the process as CRIU’s compel
does, because the process’s binary is already compiled with
migration points in place. Instead, it signals to the process
that it has to freeze at the nearest migration point by writing
a global variable in the process address space using ptrace.
Right after a thread of a process receives the notification,

it traps into the closest migration point, it executes stack and
register transformation, and freezes. This slightly changes our

VEE ’20, March 17, 2020, Lausanne, Switzerland Antonio Barbalace, Mohamed L. Karaoui, WeiWang, Tong Xing, Pierre Olivier, Binoy Ravindran

design in Figure 6 because part of the transformation happens
before the “Transform” block itself. However, this choice re-
duced themodifications to the Popcorn Linux compiler frame-
work, thus facilitating a future upgrade to a newer version.

Note that the cost of “Notify" is dominated by the process
freezing time; hence, implementing it as an external tool adds
no overheads. Therefore, the CRIU’s “Checkpoint” step was
not modified at all – thus, reducing patches to the original
source code which may have a long road to be accepted.
Transform Step. We implemented the “Transform” step (cf.
Figure 6) as an extension of crit by adding the recode op-
tion. This enables “Transform” to be called either on the origin
or destination machine. recode opens multiple dump files,
including pages, pagemap, and core; and converts these be-
tween architectures. Conversion includes the remapping of
arithmetic, floating point and miscellaneous registers con-
tent between architectures, the adjustment of VDSO, vvar,
and vsyscall areas, the fixing of the architecture name and
executable name, etc. Additionally to those, container related
modifications are required. These includes the updates of all
per-session limits (i.e., what is controllable with ulimit), and
the modifications to the thread to CPUs mappings.
Unfortunately, crit is characterized by a large overhead

due to Python initialization and file copies (see Section 7).
Hence, we implemented another version of HetCRIU that
integrates anything done in crit recode into themain CRIU
binary itself, called all-in-one.
IntegrationandDocker. HetCRIUintroduces thecriu-het
executable that extends criu with new command options.
criu-het invokes popcorn-notify first, then CRIU, and
eventuallycrit recode–dependingon theversionof “Trans-
form".HetCRIUfullysupportsCRIU’spre-dumplive-migration
by calling popcorn-notify only on the last checkpoint. Ad-
ditionally, the all-in-one version supports CRIU’s page server.

HetCRIUcomeswithanentire suiteofextensions forDocker,
which enables Docker container deployment and migration.

7 Evaluation
7.1 Experimental Setup
H-Container has been tested on a variety of ARM 64bit and
x86 64bit computers in order to assess its deployability, from
embedded platforms to servers, including AmazonWeb Ser-
vices instances [2].We report the key results on an handful of
platforms1whose hardware and software are described below.
Hardware. Other than the system described Section 2, com-
posed by two embedded-class computers, in this section we
will present results on twoother systems.One is a setupwith a
workstationandanembeddedboard.Theworkstationmounts
a single Xeon E5-2620 v4 at 2.1GHz, 8 dual-threaded cores,
16GB of RAM, and dual 1GbE connections. The embedded
board (FireFly) mounts a Rockchip RK3308with 4 Cortex-A53
cores at 1.3GHz, 4GB of RAM, and single 100MbE connection.
1Additional results are available online [88].

The other system consists of two server grade machines: the
first being a dual AMD EPYC 7451 at 2.3GHz, for a total of
48 cores and 96 threads, 256GB of RAM, dual 1GbE and dual
40GbE; the second being a dual CaviumThunderX1 at 2.0GHz,
for a total of 96 cores, with 256MB or RAM, single 1GbE (over
USB3.0) andquad40GbE.Webelieve these threeoptions cover
all the spectrum of machines that can be found at the edge.
Software. DespiteH-Container is Linuxversionneutral, just
requiring that thekernel supportCRIU,weusedLinuxUbuntu
Xenial (16.04.5 and 16.04.6) on all ARMand x86machines. The
Cavium ThunderX1 and the AMD EPYC run Linux kernel
4.15.0-45-generic; while the Rockchip RK3308 and the Intel
E5 run Linux kernel 4.4.178. H-Container is built on CRIU
version 3.11, and extends Docker version 18.09.06. Finally, we
extended the Popcorn’s runtime git commit fd578a9.

H-Container compiler’s framework has been developed us-
ing McSema/Remill (git commit 101940f and c0c0847, respec-
tively) that requires IDA Pro 7.2. Popcorn’s compiler version
commit fd578a9, which forced us to use LLVM/clang 3.7.1.
Applications’ suites we used to characterize H-Container

are discussed in each of the following sections.

7.2 Overheads Evaluation

We characterized H-Container costs on a set of benchmarks
collected from different projects. Based on previous works [1,
36, 43, 55, 56, 58, 81, 93]webelieve suchsetofbenchmarkswell
represents compute/memory workloads that can be found at
the edge. The focus on compute/memory workloads is mo-
tivated by the necessity of spotting compiler/runtime over-
heads, not OS ones. Specifically, we used NAS Parallel Bench-
marks [5] (NPB), Map-Reduce’s applications for shared mem-
ory from Phoenix [69], Linpack [26], and Dhrystone [92]. We
run theNPBbenchmarks, is, ep, ft, cg, and bt, for different data
sizes (class S, A, B, C). We run Phoenix benchmarks mm, pca,
and kmeans, with different data input sizes. In the following
we first present the decompiler-compiler tool overheads and
then the overheads introduced by our implementation(s) of
HetCRIU. Values are averages of 10 samples.
Decompiler-compilerOverheads. Allexperimentsherein
runon theCaviumThunderX1andAMDEPYC.Wefirst inves-
tigate howmuch does the decompilation and recompilation
processes cost. Hence, we run a set of experiments on both
ARM and x86 in order to identify such overheads on different
benchmarks. Figure 7 illustrates the results forPhoenixmatrix
multiplication, for which we compiled such application with-
out optimization (-O0) andwithmax optimizations (-O3)with
gcc and clang (top graph and bottom graph), we decompiled
it with the McSema-based decompiler and we recompiled it
back with the extended Popcorn compiler, by using different
optimization levels (-O0, -O1, -O2, -O3). Graphs show the exe-
cution time of the newly produced binaries over the execution
time of the original binaries, a value higher than one means
that the new binary is slower, while lower than one means

Heterogeneous-ISA Container Migration VEE ’20, March 17, 2020, Lausanne, Switzerland

0

1

2

3

mm-256-o0 mm-1024-o0 mm-4096-o0 mm-256-o3 mm-1024-o3 mm-4096-o3

ex
ec

u
�

o
n

 �
m

e
o

ve
r
n
a�

ve
-g
cc

mcsema -O0 mcsema -O1 mcsema -O2 mcsema -O3

0

1

2

3

mm-256-o0 mm-1024-o0 mm-4096-o0 mm-256-o3 mm-1024-o3 mm-4096-o3

ex
ec

u
�

o
n

 �
m

e
o

ve
r
n
a�

ve
-c
la
n
g

mcsema -O0 mcsema -O1 mcsema -O2 mcsema -O3

Figure 7. Execution time ratio of a transformed executable
versus the original one for Phoenix mm.When the original
is compiled with -O0 (first 3 clusters) and with -O3 (latter
3 clusters), varying the optimization level when recompiling
after decompilation. Top graph gcc, bottom clang.

0

0.5

1

1.5

2

2.5

3

ex
ec

u
�

o
n

 �
m

e
o

ve
r
n
a�

ve
-g
cc

-O0 -O1 -O2 -O3

0

0.5

1

1.5

2

2.5

3

ex
ec

u
�

o
n

 �
m

e
o

ve
r
n
a�

ve
-c
la
n
g

-O0 -O1 -O2 -O3

Figure 8. Execution time ratio of a transformed executable
versus the original one for npb-is and Linpack, varying the
optimization level when recompiling after decompilation.
Left graph gcc, right clang.

the new binary is faster. From the graph it is clear that inde-
pendently of the way the original binary is created, if the new
binary is produced with maximum optimization it can be as
faster as the original one, up to 6% slower, and up to 9% faster.

We then repeated the same experiment for all other micro-
benchmarks, and some of the results are reported in Figure 8.
These results confirmwhat we learn for Phoenix matrix mul-
tiplication: the decompiler-compiler tool produces executable
binaries that are as fast as the original, in this case up to 20%
faster than theoriginal, andup to 9% slower.With andwithout
migration points the observed results are the same.

Finally, we repeated all such experiments on x86 as well as
on ARM and compared to the overhead of using emulation
(QEMU 2.5) instead of H-Container– in order to highlight the
benefits of the proposed architecture that employs natively-
compiled binaries for both ISAs versus using one binary and
emulate the others. The results are reported in Figure 9.Gener-
ally, ARM execution has higher overheads than x86. However,
and more importantly, emulation is always slower than H-
Container static binary transformation, from 2.2x than native
to up to 18.9 times than native – while H-Container is up
to 70.7% faster than native, thanks to McSema and LLVM’s
optimizations. Note that the same experiments have been per-
formed for statically and dynamically compiled binaries, and
the results (averages) are similar (around 1% of difference).

0.1

1

10

ex
ec

u
�

o
n

 �
m

e
o

ve
r

n
a�

ve

H-Container-x86 H-Container-ARM QEMU-x86 QEMU-ARM

Figure 9. Execution time ratio of a binary transformed with
the decompiler-compiler infrastructure (mcsema) over the
original, and its execution on QEMU over original. For an
ARM binary running on x86 (blue and gray), and an x86
binary running on ARM (orange and yellow).

Rockchip RK3308 Intel Xeon E5 Cavium ThunderX1 AMD EPYC

1

10

100

1000

ru
n

 �
m

e
(m

s)
al
l-
in
-o
n
e

Figure 10. Popcorn notify cost on ARM (Rockchip RK3308,
Cavium ThunderX1) and x86 (Intel Xeon E5, AMD EPYC) for
different benchmarks.

Summary. The decompiler-compiler either adds trivial
overheads (up to 9%) or makes the executable faster (up to
70.7%).Therefore,H-Container isbetter thanemulation,which
may slow down execution up to 18.9 times.
HetCRIU Overheads. As edge workloads are likely to be
latency-sensitive,migrationsmustbeas fastaspossible.There-
fore, below we analyze the overheads introduced by Het-
CRIU. Specifically, we characterize the overhead of notify-
ing (popcorn-notify), and transforming the state (all-in-one,
or crit). We use the same set of benchmarks because they
are more keen in highlighting latencies than IO bound ones.
We present the results for Cavium ThunderX1, AMD EPYC,
Rockchip RK3308, and Intel Xeon E5.
A first set of experiments analyzes the cost of popcorn-

notify, i.e., the time required to stop the Popcorn binary and
transform its stack for the destination architecture. Results
on ARM and on x86 platforms are depicted in Figure 10. Note
that the results are the same independently of the level of the
integration of the CRIU extracted state’s transformation (all-
in-one, crit). The graphs show that stopping the executable
mayrequirebetweentensandhundredsofmilliseconds.More-
over, this process is slower on the slowest platform (Rockchip
RK3308), but x86 machines are equally fast. As stack transfor-
mation exhibit the same overheads as reported in [6], the rea-
sons for these overheads are rooted in the compiler that keeps
migration points only at the existent function boundaries.We
believe that with better outlining, or with automatic place-
ment of additionalmigration points, the overhead of popcorn-
notify can be further reduced, also on the ARMmachines.
A second set of experiments breaks down the two imple-

mentations of CRIU’s exported state transformation, on the

VEE ’20, March 17, 2020, Lausanne, Switzerland Antonio Barbalace, Mohamed L. Karaoui, WeiWang, Tong Xing, Pierre Olivier, Binoy Ravindran

dump_freezing dump_other dump_transform dump_mem dump_memwrite dump_rest

0 100 200 300 400 500 600

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

pca-10000
mm-4096

�me (ms)

A

0 20 40 60 80 100

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

pca-10000
mm-4096

�me (ms)

B

0 100 200 300 400 500 600

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

pca-10000
mm-4096

�me (ms)

C

0 20 40 60 80 100

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

pca-10000
mm-4096

�me (ms)

D

Figure 11. Checkpoints breakdown on Cavium ThunderX1
(A), AMD EPYC (B), Rockchip RK3308 (C), and Intel Xeon
E5 (D) for the all-in-one implementation of transform.

same set of 4 machines and the same set of benchmarks. Fig-
ure 11 reports the breakdown of the cost to do run a check-
point (dump) and converting it to the destination architecture
within the same program (CRIU). Most of these numbers are
already reported by stats file generated by CRIU, we added
"dump_transform" that accounts for transforming the state
from the origin to the destination architecture. Despite the
total dump time is mostly proportional to the total memory
to checkpoint (see "dump_memwrite"), what our code adds,
"dump_transform", is always lower than1%of the total dump–
for bothARMandx86.Thus, theHetCRIUall-in-oneoverhead
isnegligible. Pleasenote that the "dump_freezing" time,which
is the time to stop the application in vanilla CRIU, is always
lower than 0.1% because popcorn-notify stops the task(s).

When modifying CRIU is not an option, our crit recode
should be used. The overheads of checkpointingwith this tool
are reported in Figure 12. Differently from the previous one,
this option is way more expensive than using normal CRIU:
running crit recode requires from twice to 17.5 times ad-
ditional time (respectively for Phoenix matrix multiplication,
andLinpack). This is becausecrit recodeneeds to reload the
imagefilesaswell ascopying them(there isnocopywithall-in-
one). Another issue with this tool, is that because it is written
in python it has a fixed cost for loading all the imports and ter-
mination, this cost is summarized in the graphs in "crit_rest".

Summary. Stopping a Popcorn binary (notify) requires
between tens and hundreds of milliseconds. However, we
shown that by including the “Transform" step in CRIU it-
self (all-in-one), transformation time is negligible vs. CRIU
time. When patching CRIU is not possible – crit recode, an
additional overhead from 2x to 17.5x must be paid.

dump_freezing dump_other dump_mem dump_memwrite dump_rest crit_path

crit_core crit_file crit_mem crit_copy crit_rest

A
0 500 1000 1500 2000 2500

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

pca-10000
mm-4096

�me (ms)

B
0 50 100 150 200 250 300 350 400

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

pca-10000
mm-4096

�me (ms)

C
0 500 1000 1500 2000 2500 3000 3500

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

pca-10000
mm-4096

�me (ms)

D
0 50 100 150 200 250 300 350 400

linpack
dhrystone

npb-is-A
npb-is-B
npb-is-C

kmeans-1000
kmeans-10000

pca-10000
mm-4096

�me (ms)

Figure 12. Checkpoints breakdown on Cavium ThunderX1
(A), AMD EPYC (B), Rockchip RK3308 (C), and Intel Xeon
E5 (D) for the crit recode implementation of transform.

Origin
Node

Destination
Node

Client (end-user) physical location over time, latency evolving linearly

Heterogeneous
Migration

0 ms 0 ms
10 ms 10 ms

A B

C

D E

F
App App App

Figure 13.Migrating latency-sensitive service following a
moving user.

7.3 Migration of Latency-Sensitive Services

We demonstrate the usefulness of H-Container in a scenario
where a latency-sensitive service migrates between edge
nodes to stay as close as possible to a mobile end user. We
experiment with multiple services, including Redis [70], Ng-
inx [71], a compression server (Gzip), and a game server [14].
We believe these services are representative of edge applica-
tions by virtue of previous works [1, 36, 43, 55, 56, 58, 81, 93].
Further, we show that H-Container handles server applica-
tions, something not supported by previous work [6, 64].
The proposed scenario is illustrated in Figure 13. We as-

sume that along the path of the end user (the client), two close
by edge nodes are present – the origin A and the destina-
tion B , and they have different ISA. The client C is mobile,
and moves further away from origin and closer to destination.
We arbitrarily define the length of the experiment, i.e., the
time for the client to go from one node to the other, to be 1000
seconds (c.a., 16 mins). The impact on latency of the physical
distance between the client and the server is represented by
having each node artificially increase the latency of its NIC
using tc from 0ms (D) when the client is close by, up to 10ms
(E) when it is the farthest: every 100s , the latency of origin

Heterogeneous-ISA Container Migration VEE ’20, March 17, 2020, Lausanne, Switzerland

0

10

20

30

40

50

Time (s)

C
lie

n
t

si
d

e
 G

ET
 T

h
ro

u
gh

p
u

t
(k

re
q

/s
)

H-Container

No migra�on (Atom)

No migra�on (Potato)

0

5

10

15

20

25

30

35

40

45

Time (s)

C
lie

n
t

si
d

e
 G

ET
 T

h
ro

u
gh

p
u

t
(k

re
q

/s
)

3B 30B 300B 3KB

Figure 14. Redis GET throughput with and without migra-
tion (left), and migration with different payloads (right).
origin node is an Intel Atom, destination is the Potato board.

0

10

20

30

40

50

60

70

80

Time (s)

C
lie

n
t

si
d

e
 G

ET
 T

h
ro

u
gh

p
u

t
(k

re
q

/s
)

H-Container

No migra�on (E5)

No migra�on (Rockchip)

0

10

20

30

40

50

60

70

80

90

Time (s)

C
lie

n
t

si
d

e
 G

ET
 T

h
ro

u
gh

p
u

t
(k

re
q

/s
)

3B 30B 300B 3kB

Figure 15. Redis GET throughput with and without migra-
tion (left), and migration with different payloads (right).
origin node is an Intel E5, destination is the Rockchip RK3308.

is increased by 1ms and destination’s latency is decreased by
1ms . These latency values are on par with what expected at
the edge [14]. The client uses a different benchmark to sample
howmany operations it can run on the server it is currently
connected to. We used redis-benchmark for GET through-
put, apachebench for latency, to get the total compressed B/s,
and actions/s, respectively.
In fact, we experimented with three scenarios. In the first

two scenarios we assume that heterogeneous migration is
not possible, thus the server is stuck either on the origin or
destination nodes, both called “Nomigration". In the third sce-
nariowe enableH-Container, which allows servicemigration
from origin to destination F when the throughput (Redis),
latency (Nginx, Gzip), or operations (game server) fall under a
certain threshold. In such scenario the client is able to redirect
its traffic to the right node by the use of a local instance of
HAProxy [83] that uses health check rules to automatically
redirect requests to the node running the server.
Latency and Throughput. As already mentioned in Sec-
tion 2, even small variations in latency have huge impact
on performance. The left graphs in Figure 14 and 15 show
for a fixed payload size, Redis’ GET throughput for the Intel
Atom plus Potato board, and for the Intel E5 plus Rockchip
RK3308. The Intels are connected via 1GbE while the others

0

5

10

15

20

25

30

Time (s)

C
o

m
p

re
ss

io
n

 L
at

e
n

cy
 (

m
s)

H-Container

No migra�on (E5)

No migra�on (Rockchip)

0

5

10

15

20

25

30

Time (s)

C
o

m
p

re
ss

io
n

 L
at

e
n

cy
 (

m
s)

H-Container

No migra�on (AMD)

No migra�on (ThunderX1)

Figure 16. Gzip server latency for 3kB packets for Intel
E5 plus Rockchip RK3308 (left), and AMD plus Cavium
ThunderX1 (right).

via 100MbE.
In scenarios where migration is not possible, the server is

stuck on one node and the throughput either gradually de-
creases or gradually increases while the client gets further or
closer to the node in question: in these scenarios, about one
half of the experiment execution is spent under one fourth of
the maximum achievable throughput (40 000 req/s).

With H-Container, the server can migrate between nodes
and follow the client. There is a slight drop in throughput in
the middle of the experiment – i.e., the downtime caused by
the migration itself. While this throughput decreases as the
client gets further away from origin, the migration enabled
by H-Container makes that performance starts to increase
again past the migration point as the client gets closer to
destination. We computed the average throughput over the
entire experiment for the three scenarios. For the Atom plus
Potato it is 15,497req/s when the server is always on origin
and 10,907req/s when it is always on destination. For the
samemachines using H-Container the average throughput
is 19,766req/s showing an improvement of 27.5% and 81.2%
vs. no migration scenarios. When using the E5 plus Rockchip,
without migration throughput averages are 19,751req/s and
12,029req/s , while H-Container achieves 24,393req/s , i.e., an
improvement of 23.4% and 94.5% respectively.

Similar conclusions can be drawn for the other applications
andplatforms, Figure 16 shows the latencies of theGzip server.
VaryingRequestSize. ForRedis,wevaried thepayload size
from3Bto3kB.Theresultsareshownin therightgraphsofFig-
ure 14 and 15. For payloads up to 300 bytes the behavior is sim-
ilar because the experiment is bounded by latency. However,
performance starts to differ when the request size increases
to 3kB. On the origin node we observe a throughput decrease
of about 15% compared to smaller request sizes in the case
the latency is low (first 200 seconds) and the same happens
in the opposite direction. Another observation is that after
migration, the request throughput lowers on the destination
node. This is due to the network bandwidth capping the per-
formance. Indeed, both the Potato and Rockchip are equipped
with a 100MbE NIC as opposed to the Atom and E5 that use

VEE ’20, March 17, 2020, Lausanne, Switzerland Antonio Barbalace, Mohamed L. Karaoui, WeiWang, Tong Xing, Pierre Olivier, Binoy Ravindran

GbE. This asymmetry is not visible when bothmachines have
similar compute power (e.g., AMD plus Cavium ThunderX1).

That being said, even with low-cost and slow NICs, nodes
such as the Potato board are competitive in latency-sensitive
scenarios where the request size is relatively small, which is
a quite common case on the edge, e.g., game servers [29].

7.4 Limitations
H-Container strictly depends on its software components.
Thus, the current version of H-Container is also affected by
their limitations, which are mainly three. First and foremost,
McSema does not fully support FPU instructions, thus appli-
cations such as NPB FT cannot be transformed into a migrat-
able binary by our decompiler-compiler. Additionally, library
calls that pass arguments by reference (e.g., fstat) do not
work, thus we needed to patch the source code of the applica-
tions and libraries (up to ∼1900 LoC). Secondly, the Popcorn
Linux compiler framework cannot create migratable dynam-
ically linked binaries. Despite clearly a limitation, Slinky [17]
has demonstrated that statically linked binary can be treated
such as dynamically linked one, thus manageable via Docker.
Moreover, Popcorn cannot compile functions with variable
arguments, we needed to patch the sources (up to∼1100 LoC).
Third, Docker live-migration support is incomplete today.

8 RelatedWork
Migrating at the Edge. The topic of application migration
amongedgenodeshas been consideredbefore.K.Haet al. [36]
proposes VMhandoff, a set of techniques for efficient VM live
migration on the edge, while L. Ma et al. [55] looked at the
problemofmigration containerized application between edge
nodeswithDocker.A.Machenet al. [56, 58] introduceda three
layer framework to support virtual machine and container
migrations. None of such works considered that edge nodes
are intrinsically built with heterogeneous ISA CPUs – thus,
letting H-Container being the first in addressing the prob-
lem. De facto, H-Container is orthogonal to such works: any
optimization developed by previous work can be used by it.
Finally, several other papers considered migration as a

scheduling,mapping, andorchestrationproblem, including [1,
43, 81, 93]. H-Container doesn’t address these problems, but
it can exploit, or be leveraged by, such works.
RuntimeSoftwareMigration. Along listofpreviousworks
addressed the problem of how to migrate running software
between different machines. The majority of which has been
developed in the context of data centers where computers are
homogeneous. Amongst others, the most similar works to
H-Container are ZAP [65] and CRIU [28, 80], which imple-
ment checkpoint/restart of Linux processes among same ISA
processors.CRIUsupports livemigration, and it is theunderly-
ingmechanism enabling container migration via deployment
software such as Docker [18], LXC [19], etc. H-Container
extends CRIU and integrates with Docker to migrate a con-
tainer across heterogeneous ISA processors – additionally,

H-Container includes a binary executable transformation
infrastructure to support such migration.
In the past, different works have been published on the

topic of process migration among heterogeneous ISA proces-
sors [3, 44, 78]. Recently, Popcorn Linux [6, 7, 10, 54] proposes
a compiler and runtime toolset for cross-ISAmigration, recon-
sidering the same problem on emerging heterogeneous plat-
forms. More recently, HEXO [64] leverages the Popcorn com-
piler to migrate lightweight VMs (unikernels) between ma-
chines of different ISAs.H-Container differs from theseworks
by implementingmigration completely in user space, without
any dependence on a customOS kernel (Popcorn) or on a cus-
tomhypervisor (HEXO) – because such solutions are unlikely
to be easily deployable in production, H-Container is also
moreflexible as it requiresnoaccess to the application sources.

A unified address space among heterogeneous ISA proces-
sors has been also proposed byMutekH [60], which code was
not practically usable because targets an exokernel/libos, and
A. Venkat et al. [86], whose code is not publicly available.

9 Conclusion

Migrating server applications between edge nodes to main-
tainphysical proximity to amovingclient application running
on a mobile device has been demonstrated to guarantee min-
imal client-server latencies for edge computing scenarios on
homogeneous-ISA nodes. However, the edge is populated by
computers with CPUs of different ISA, which hinders server
migration to the closest node to the client – an application
compiled for an ISA cannot migrate to, nor run, on another.
This paper introduces H-Container, which enables con-

tainerized applications to migrate across heterogeneous-ISA
nodes. H-Container targets Linux and is composed of (1) a
LLVM-based decompiler-compiler transforming executable
binaries formultiple ISAexecution, aswell as a (2)CRIU-based
user-space checkpoint/restart framework to stop an applica-
tiononone ISAandresume itonanother.H-Container isbased
on a new deployment model where cloud software reposito-
ries store IR binaries. It also improves upon state-of-the-art
cross-ISA migration frameworks by being highly compatible,
easily deployable, and largely Linux compliant. Experiments
show that the executable binary transformation does not add
overheadonaverage, and that theoverhead forheterogeneous
migration is between 10ms and 100ms compared to stock
CRIU. Overall, we show that heterogeneous-ISAmigration
at the edge unlocks higher performance for latency-sensitive
applications, e.g., 94% better throughput on average on Redis.

H-Container is open-source and publicly available [88].

Acknowledgments

We thank the anonymous reviewers and our shepherd, Mark
Silberstein, for their invaluable feedback. This work was sup-
ported in part by US Office of Naval Research under grants
N00014-16-1-2104, N00014-16-1-2711, and N00014-19-1-2493.

Heterogeneous-ISA Container Migration VEE ’20, March 17, 2020, Lausanne, Switzerland

References
[1] O. I. Abdullaziz, L. Wang, S. B. Chundrigar, and K. Huang. 2018.

ARNAB: Transparent Service Continuity Across Orchestrated Edge
Networks. In 2018 IEEE Globecom Workshops (GC Wkshps). 1–6.
https://doi.org/10.1109/GLOCOMW.2018.8644091

[2] Amazon. 2018. EC2 Instances (A1) Powered by Arm-Based AWS
Graviton Processors. https://aws.amazon.com/blogs/aws/new-ec2-
instances-a1-powered-by-arm-based-aws-graviton-processors/.

[3] Giuseppe Attardi, A Baldi, U Boni, F Carignani, G Cozzi, A Pelligrini,
E Durocher, I Filotti, Wang Qing, M Hunter, et al. 1988. Techniques for
dynamic software migration. In Proceedings of the 5th Annual ESPRIT
Conference (ESPRIT’88), Vol. 1.

[4] MOhamedAwad. 2019. Arm andDocker: Better Together. https://www.
arm.com/company/news/2019/04/arm-and-docker-better-together.

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga.
1991. The NAS parallel benchmarks summary and preliminary results.
In Supercomputing ’91:Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing. 158–165. https://doi.org/10.1145/125826.125925

[6] Antonio Barbalace, Rob Lyerly, Christopher Jelesnianski, Anthony
Carno, Ho-ren Chuang, and Binoy Ravindran. 2017. Breaking the
Boundaries in Heterogeneous-ISA Datacenters. In Proceedings of the
22th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’17).

[7] Antonio Barbalace, Alastair Murray, Rob Lyerly, and Binoy Ravindran.
2014. Towards Operating System Support for Heterogeneous-ISA
Platforms. In In Proceedings of The 4thWorkshop on Systems for Future
Multicore Architectures (4th SFMA.

[8] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jeles-
nianski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and
Binoy Ravindran. 2015. Popcorn: Bridging the Programmability Gap
in heterogeneous-ISA Platforms. In Proceedings of the Tenth European
Conference on Computer Systems (EuroSys ’15). 29:1–29:16.

[9] D. Bernstein. 2014. Containers and Cloud: From LXC to Docker
to Kubernetes. IEEE Cloud Computing 1, 3 (Sep. 2014), 81–84.
https://doi.org/10.1109/MCC.2014.51

[10] Sharath K. Bhat, Ajithchandra Saya, Hemedra K. Rawat, Antonio
Barbalace, and Binoy Ravindran. [n.d.]. Harnessing Energy Efficiency
of Heterogeneous-ISA Platforms. SIGOPS Oper. Syst. Rev. 49, 2 ([n. d.]).

[11] Neil Brown. 2014. Control groups series. Linux Weekly News.
https://lwn.net/Articles/604609/.

[12] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and
software support for virtualization. Synthesis Lectures on Computer
Architecture 12, 1 (2017), 1–206.

[13] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs.. InOSDI, Vol. 8. 209–224.

[14] Sharon Choy, BernardWong, Gwendal Simon, and Catherine Rosen-
berg. 2012. The brewing storm in cloud gaming: A measurement study
on cloud to end-user latency. In Proceedings of the 11th annual workshop
on network and systems support for games. IEEE Press, 2.

[15] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. 2011. Clonecloud: elastic execution between mobile
device and cloud. In Proceedings of the sixth conference on Computer
systems. ACM, 301–314.

[16] Christopher Clark, Keir Fraser, Steven Hand, Jacob GormHansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live
migration of virtual machines. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume
2. USENIX Association, 273–286.

[17] Christian S Collberg, John HHartman, Sridivya Babu, and Sharath K
Udupa. 2005. SLINKY: Static Linking Reloaded.. In USENIX Annual
Technical Conference, General Track. 309–322.

[18] CRIU contributors. 2019. CRIU Wiki – Docker page.
https://criu.org/Docker.

[19] CRIU contributors. 2019. CRIUWiki – LXC page. https://criu.org/LXC.
[20] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, AlecWolman,

Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI:
making smartphones last longer with code offload. In Proceedings of
the 8th international conference on Mobile systems, applications, and
services. ACM, 49–62.

[21] Anirban Das, Stacy Patterson, and Mike Wittie. 2018. EdgeBench:
Benchmarking Edge Computing Platforms. In 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion
(UCC Companion). IEEE, 175–180.

[22] Dell. 2019. Micro Modular Data Centers: Taking Computing to the
Edge. https://blog.dellemc.com/en-us/micro-modular-data-centers-
taking-computing-to-edge/.

[23] Matthew DeVuyst, Ashish Venkat, and Dean M. Tullsen. 2012.
Execution Migration in a heterogeneous-ISA Chip Multiprocessor. In
Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
XVII). 261–272.

[24] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. 2017.
rev. ng: a unified binary analysis framework to recover CFGs and
function boundaries. In Proceedings of the 26th International Conference
on Compiler Construction. ACM, 131–141.

[25] Artem Dinaburg and Andrew Ruef. 2014. Mcsema: Static translation of
x86 instructions to llvm. In ReCon 2014 Conference, Montreal, Canada.

[26] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. 2003. The
LINPACK benchmark: past, present and future. Concurrency and
Computation: practice and experience 15, 9 (2003), 803–820.

[27] edgeconnex. 2019. Bringing Gaming Closer to Gamers Worldwide.
https://www.edgeconnex.com/wp-content/uploads/2019/07/EDC-
19-44-NEW-Gaming-DataSheet-V4.pdf.

[28] P EMELYANOV. [n.d.]. CRIU: Checkpoint/Restore In Userspace, July
2011.

[29] Wu-chang Feng, Francis Chang, Wu-chi Feng, and Jonathan
Walpole. 2005. A Traffic Characterization of Popular On-line
Games. IEEE/ACM Trans. Netw. 13, 3 (June 2005), 488–500.
https://doi.org/10.1109/TNET.2005.850221

[30] Matthew Furlong, Andrew Quinn, and Jason Flinn. 2019. The Case
for Determinism on the Edge. In 2nd USENIXWorkshop on Hot Topics
in Edge Computing (HotEdge 19). USENIX Association, Renton, WA.
https://www.usenix.org/conference/hotedge19/presentation/furlong

[31] J. Gedeon, F. Brandherm, R. Egert, T. Grube, and M. Mühlhäuser.
2019. What the Fog? Edge Computing Revisited: Promises, Appli-
cations and Future Challenges. IEEE Access 7 (2019), 152847–152878.
https://doi.org/10.1109/ACCESS.2019.2948399

[32] Joachim Gehweiler and Michael Thies. 2010. Thread migration and
checkpointing in java. Heinz Nixdorf Institute, Tech. Rep. tr-ri-10 315
(2010).

[33] Ghidra Contributors. 2019. GhidraWebsite. https://ghidra-sre.org/.
[34] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao,

and Xu Chen. 2012. {COMET}: Code Offload byMigrating Execution
Transparently. In Presented as part of the 10th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 12). 93–106.

[35] Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu Hu,
Brandon Amos, Rohit Upadhyaya, Padmanabhan Pillai, and Mahadev
Satyanarayanan. 2017. You can teach elephants to dance: agile vm
handoff for edge computing. In Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. ACM, 12.

[36] Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu
Hu, Brandon Amos, Rohit Upadhyaya, Padmanabhan Pillai, and
Mahadev Satyanarayanan. 2017. You Can Teach Elephants to
Dance: Agile VM Handoff for Edge Computing. In Proceedings of
the Second ACM/IEEE Symposium on Edge Computing (San Jose,

https://doi.org/10.1109/GLOCOMW.2018.8644091
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
https://www.arm.com/company/news/2019/04/arm-and-docker-better-together
https://www.arm.com/company/news/2019/04/arm-and-docker-better-together
https://doi.org/10.1145/125826.125925
https://doi.org/10.1109/MCC.2014.51
https://lwn.net/Articles/604609/
https://criu.org/Docker
https://criu.org/LXC
https://blog.dellemc.com/en-us/micro-modular-data-centers-taking-computing-to-edge/
https://blog.dellemc.com/en-us/micro-modular-data-centers-taking-computing-to-edge/
https://www.edgeconnex.com/wp-content/uploads/2019/07/EDC-19-44-NEW-Gaming-DataSheet-V4.pdf
https://www.edgeconnex.com/wp-content/uploads/2019/07/EDC-19-44-NEW-Gaming-DataSheet-V4.pdf
https://doi.org/10.1109/TNET.2005.850221
https://www.usenix.org/conference/hotedge19/presentation/furlong
https://doi.org/10.1109/ACCESS.2019.2948399
https://ghidra-sre.org/

VEE ’20, March 17, 2020, Lausanne, Switzerland Antonio Barbalace, Mohamed L. Karaoui, WeiWang, Tong Xing, Pierre Olivier, Binoy Ravindran

California) (SEC ’17). ACM, New York, NY, USA, Article 12, 14 pages.
https://doi.org/10.1145/3132211.3134453

[37] Christine Hall. 2019. Companies Pushing Open Source RISC-V Silicon
Out to the Edge. https://www.datacenterknowledge.com/hardware/
companies-pushing-open-source-risc-v-silicon-out-edge.

[38] Drew Henry. 2018. Announcing ARM Neoverse. https://www.arm.
com/company/news/2018/10/announcing-arm-neoverse.

[39] Kelsey Hightower, Brendan Burns, and Joe Beda. 2017. Kubernetes: Up
andRunning:Dive Into theFuture of Infrastructure. "O’ReillyMedia, Inc.".

[40] Michael R Hines, Umesh Deshpande, and Kartik Gopalan. 2009.
Post-copy live migration of virtual machines. ACM SIGOPS operating
systems review 43, 3 (2009).

[41] Cheol-Ho Hong and Blesson Varghese. 2019. Resource Management in
Fog/Edge Computing: A Survey on Architectures, Infrastructure, and
Algorithms. ACM Comput. Surv. 52, 5, Article 97 (Sept. 2019), 37 pages.
https://doi.org/10.1145/3326066

[42] Intel. 2018. Intelligence at the ’Edge’: the Intel Xeon D-2100 Processor.
https://www.intel.com/content/www/us/en/communications/d-
2100-processor-edge-computing-benefits-infographic.html.

[43] M. Jia, J. Cao, and W. Liang. 2017. Optimal Cloudlet Placement and
User to Cloudlet Allocation inWireless Metropolitan Area Networks.
IEEE Transactions on Cloud Computing 5, 4 (Oct 2017), 725–737.
https://doi.org/10.1109/TCC.2015.2449834

[44] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. 1988.
Fine-grained Mobility in the Emerald System. ACM Trans. Comput.
Syst. 6, 1 (Feb. 1988), 109–133. https://doi.org/10.1145/35037.42182

[45] Michael Kerrisk. 2013. Namespaces in operation, part 1: namespaces
overview. LinuxWeekly News. https://lwn.net/Articles/531114/.

[46] Jakub Křoustek and Peter Matula. 2018. Retdec: An open-
source machine-code decompiler. (2018). https://2018.pass-
the-salt.org/files/talks/04-retdec.pdf.

[47] Chris Lattner andVikramAdve. 2004. LLVM:A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEEComputer Society, 75.

[48] Gwangmu Lee, Hyunjoon Park, Seonyeong Heo, Kyung-Ah Chang,
Hyogun Lee, and Hanjun Kim. 2015. Architecture-aware automatic
computation offload for native applications. In Proceedings of the 48th
international symposium on microarchitecture. ACM, 521–532.

[49] George Leopold. 2019. Arm, Docker Partner on Cloud-to-Edge
Development. https://www.enterpriseai.news/2019/04/24/arm-
docker-partner-on-cloud-to-edge-development/.

[50] A. Lertsinsrubtavee, A. Ali, C. Molina-Jimenez, A. Sathiaseelan, and
J. Crowcroft. 2017. PiCasso: A lightweight edge computing platform. In
2017 IEEE 6th International Conference on Cloud Networking (CloudNet).
1–7. https://doi.org/10.1109/CloudNet.2017.8071529

[51] Chao Li, Yushu Xue, Jing Wang, Weigong Zhang, and Tao Li. 2018.
Edge-Oriented Computing Paradigms: A Survey on Architecture
Design and System Management. ACM Comput. Surv. 51, 2, Article
39 (April 2018), 34 pages. https://doi.org/10.1145/3154815

[52] ARM Ltd. 2019. Accelerating the transformation to a scalable cloud to
edge infrastructure. https://www.arm.com/-/media/global/products/
processors/N1%20Solution%20Overview.pdf.

[53] Peng Lu, Antonio Barbalace, and Binoy Ravindran. 2013. HSG-LM:
hybrid-copy speculative guest OS live migration without hypervisor.
In Proceedings of the 6th International Systems and Storage Conference.
ACM, 2.

[54] Robert Lyerly, Antonio Barbalace, Christopher Jelesnianski, Vincent
Legout, Anthony Carno, and Binoy Ravindran. 2016. Operating System
Process and Thread Migration in Heterogeneous Platforms. (2016).

[55] Lele Ma, Shanhe Yi, and Qun Li. 2017. Efficient Service Handoff
Across Edge Servers via Docker Container Migration. In Proceedings
of the Second ACM/IEEE Symposium on Edge Computing (San Jose,
California) (SEC ’17). ACM, New York, NY, USA, Article 11, 13 pages.

https://doi.org/10.1145/3132211.3134460
[56] Andrew Machen, Shiqiang Wang, Kin K. Leung, Bong Jun Ko, and

Theodoros Salonidis. 2016. Migrating Running Applications Across
Mobile Edge Clouds: Poster. In Proceedings of the 22Nd Annual
International Conference on Mobile Computing and Networking (New
York City, New York) (MobiCom ’16). ACM, New York, NY, USA,
435–436. https://doi.org/10.1145/2973750.2985265

[57] Andrew Machen, Shiqiang Wang, Kin K Leung, Bong Jun Ko, and
Theodoros Salonidis. 2018. Live service migration in mobile edge
clouds. IEEEWireless Communications 25, 1 (2018), 140–147.

[58] Andrew Machen, Shiqiang Wang, Kin K. Leung, Bong Jun Ko,
and Theodoros Salonidis. 2018. Live Service Migration in Mo-
bile Edge Clouds. Wireless Commun. 25, 1 (Feb. 2018), 140–147.
https://doi.org/10.1109/MWC.2017.1700011

[59] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas
Gazagnaire, David Sheets, Dave Scott, RichardMortier, Amir Chaudhry,
Balraj Singh, Jon Ludlam, et al. 2015. Jitsu: Just-in-time summoning of
unikernels. In 12th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 15). 559–573.

[60] MutekH Authors. 2016. MutekH reference manual. https:
//www.mutekh.org/doc/index.html.

[61] S. Nadgowda, S. Suneja, N. Bila, and C. Isci. 2017. Voyager: Com-
plete Container State Migration. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS). 2137–2142.
https://doi.org/10.1109/ICDCS.2017.91

[62] M. Noreikis, Y. Xiao, and A. Ylä-Jaäiski. 2017. QoS-oriented capacity
planning for edge computing. In 2017 IEEE International Conference on
Communications (ICC). 1–6. https://doi.org/10.1109/ICC.2017.7997387

[63] Christy Norman Perez and Chris Jones. 2017. The ARM to z of
Multi-Architecture Microservices. https://qconsf.com/sf2017/system/
files/presentation-slides/from_arm_to_z.pdf.

[64] Pierre Olivier, Mehrab Fazla, Stefan Lankes, Mohamed Lamine Karaoui,
Rob Lyerly, and Binoy Ravindran. 2019. HEXO: Offloading HPC
Compute-IntensiveWorkloads on Low-Cost, Low-Power Embedded
Systems. In Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC’19).

[65] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. 2002. The
Design and Implementation of Zap: A System forMigrating Computing
Environments. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 361–376.
https://doi.org/10.1145/844128.844162

[66] Adam Parco. 2019. Building Multi-Arch Images for Arm and x86 with
Docker Desktop. https://engineering.docker.com/2019/04/multi-arch-
images/.

[67] PicoCluster. 2019. PicoCenter 48. https://www.picocluster.com/
products/picocenter-48.

[68] C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino. 2018.
Virtualization and Migration at the Network Edge: An Overview. In
2018 IEEE International Conference on Smart Computing (SMARTCOMP).
368–374. https://doi.org/10.1109/SMARTCOMP.2018.00031

[69] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary R Bradski,
and Christos Kozyrakis. 2007. Evaluating MapReduce for multi-core
and multiprocessor systems.. In hpca, Vol. 7. 19.

[70] Redis Labs. 2019. RedisEdge - The Edge Computing Database for the
IoT Edge. https://redislabs.com/solutions/redisedge/.

[71] Will Reese. 2008. Nginx: the high-performance web server and reverse
proxy. Linux Journal 2008, 173 (2008), 2.

[72] Phil Rogers. 2013. Heterogeneous system architecture overview. In
Hot Chips, Vol. 25.

[73] Mahadev Satyanarayanan. 2017. The emergence of edge computing.
Computer 50, 1 (2017), 30–39.

[74] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu,
Wolfgang Richter, and Padmanabhan Pillai. 2014. Cloudlets: at
the leading edge of mobile-cloud convergence. In 6th International
Conference on Mobile Computing, Applications and Services. IEEE, 1–9.

https://doi.org/10.1145/3132211.3134453
https://www.datacenterknowledge.com/hardware/companies-pushing-open-source-risc-v-silicon-out-edge
https://www.datacenterknowledge.com/hardware/companies-pushing-open-source-risc-v-silicon-out-edge
https://www.arm.com/company/news/2018/10/announcing-arm-neoverse
https://www.arm.com/company/news/2018/10/announcing-arm-neoverse
https://doi.org/10.1145/3326066
https://www.intel.com/content/www/us/en/communications/d-2100-processor-edge-computing-benefits-infographic.html
https://www.intel.com/content/www/us/en/communications/d-2100-processor-edge-computing-benefits-infographic.html
https://doi.org/10.1109/TCC.2015.2449834
https://doi.org/10.1145/35037.42182
https://lwn.net/Articles/531114/
https://2018.pass-the-salt.org/files/talks/04-retdec.pdf
https://2018.pass-the-salt.org/files/talks/04-retdec.pdf
https://www.enterpriseai.news/2019/04/24/arm-docker-partner-on-cloud-to-edge-development/
https://www.enterpriseai.news/2019/04/24/arm-docker-partner-on-cloud-to-edge-development/
https://doi.org/10.1109/CloudNet.2017.8071529
https://doi.org/10.1145/3154815
https://www.arm.com/-/media/global/products/processors/N1%20Solution%20Overview.pdf
https://www.arm.com/-/media/global/products/processors/N1%20Solution%20Overview.pdf
https://doi.org/10.1145/3132211.3134460
https://doi.org/10.1145/2973750.2985265
https://doi.org/10.1109/MWC.2017.1700011
https://www.mutekh.org/doc/index.html
https://www.mutekh.org/doc/index.html
https://doi.org/10.1109/ICDCS.2017.91
https://doi.org/10.1109/ICC.2017.7997387
https://qconsf.com/sf2017/system/files/presentation-slides/from_arm_to_z.pdf
https://qconsf.com/sf2017/system/files/presentation-slides/from_arm_to_z.pdf
https://doi.org/10.1145/844128.844162
https://engineering.docker.com/2019/04/multi-arch-images/
https://engineering.docker.com/2019/04/multi-arch-images/
https://www.picocluster.com/products/picocenter-48
https://www.picocluster.com/products/picocenter-48
https://doi.org/10.1109/SMARTCOMP.2018.00031
https://redislabs.com/solutions/redisedge/

Heterogeneous-ISA Container Migration VEE ’20, March 17, 2020, Lausanne, Switzerland

[75] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016.
Edge computing: Vision and challenges. IEEE Internet of Things Journal
3, 5 (2016), 637–646.

[76] Grant Shipley. 2014. Learning OpenShift. Packt Publishing Ltd.
[77] SiFive. 2019. SiFive U74. https://www.sifive.com/cores/u74.
[78] Peter Smith and Norman C Hutchinson. 1998. Heterogeneous process

migration: The Tui system. Software: Practice and Experience 28, 6
(1998), 611–639.

[79] Matthew Smithson, Khaled ElWazeer, Kapil Anand, Aparna Kotha, and
Rajeev Barua. 2013. Static binary rewriting without supplemental in-
formation: Overcoming the tradeoff between coverage and correctness.
In 2013 20thWorking Conference on Reverse Engineering (WCRE). IEEE,
52–61.

[80] Radostin Stoyanov and Martin J. Kollingbaum. 2018. Efficient Live
Migration of Linux Containers. In High Performance Computing.
Springer International Publishing, 184–193.

[81] Kyoungjae Sun and Younghan Kim. 2018. Network-based VM
Migration Architecture in Edge Computing. In Proceedings of the
2018 International Conference on Information Science and System (Jeju,
Republic of Korea) (ICISS ’18). ACM, New York, NY, USA, 169–172.
https://doi.org/10.1145/3209914.3209930

[82] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella.
2017. On Multi-Access Edge Computing: A Survey of the Emerging
5G Network Edge Cloud Architecture and Orchestration. IEEE
Communications Surveys Tutorials 19, 3 (thirdquarter 2017), 1657–1681.
https://doi.org/10.1109/COMST.2017.2705720

[83] Willy Tarreau et al. 2012. HAProxy-the reliable, high-performance
TCP/HTTP load balancer.

[84] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E
Porter. 2016. A study of modern Linux API usage and compatibility:
what to support when you’re supporting. In Proceedings of the Eleventh

European Conference on Computer Systems. ACM, 16.
[85] Blesson Varghese, NanWang, Dimitrios S. Nikolopoulos, and Rajkumar

Buyya. 2017. Feasibility of Fog Computing. arXiv:cs.DC/1701.05451
[86] Ashish Venkat and DeanM. Tullsen. 2014. Harnessing ISA Diversity:

Design of a heterogeneous-ISA Chip Multiprocessor. In Proceeding of
the 41st Annual International Symposium on Computer Architecuture
(Minneapolis, Minnesota, USA) (ISCA ’14). IEEE Press, Piscataway, NJ,
USA, 121–132. http://dl.acm.org/citation.cfm?id=2665671.2665692

[87] VMware. 2019. nanoEDGE. https://www.vmware.com/content/dam/
digitalmarketing/vmware/en/pdf/products/vsan/vmw-nanoedge-
sddc-solution.pdf.

[88] SSRG VT. 2020. Popcorn Linux Project Website. http:
//www.popcornlinux.org.

[89] RuoyuWang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,
John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna.
2017. Ramblr: Making Reassembly Great Again.. In NDSS.

[90] AndrewWaterman, YunsupLee,DavidAPatterson, andKrsteAsanovic.
2011. The risc-v instruction set manual, volume i: Base user-level isa.
EECS Department, UC Berkeley, Tech. Rep. UCB/EECS-2011-62 (2011).

[91] Wave Computing. 2019. Wave Computing Unveils New Licensable
64-Bit AI IP Platform to Enable High-Speed Inferencing and Training
in Edge Applications. https://wavecomp.ai/wave-computing-
unveils-new-licensable-64-bit-ai-ip-platform-to-enable-high-
speed-inferencing-and-training-in-edge-applications/.

[92] Richard York. 2002. Benchmarking in context: Dhrystone. ARM, March
(2002).

[93] Aleksandr Zavodovski, Nitinder Mohan, Suzan Bayhan, WalterWong,
and Jussi Kangasharju. 2018. ICON: Intelligent Container Overlays.
In Proceedings of the 17th ACM Workshop on Hot Topics in Networks
(Redmond,WA, USA) (HotNets ’18). ACM, New York, NY, USA, 15–21.
https://doi.org/10.1145/3286062.3286065

https://www.sifive.com/cores/u74
https://doi.org/10.1145/3209914.3209930
https://doi.org/10.1109/COMST.2017.2705720
http://arxiv.org/abs/cs.DC/1701.05451
http://dl.acm.org/citation.cfm?id=2665671.2665692
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/vsan/vmw-nanoedge-sddc-solution.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/vsan/vmw-nanoedge-sddc-solution.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/vsan/vmw-nanoedge-sddc-solution.pdf
http://www.popcornlinux.org
http://www.popcornlinux.org
https://wavecomp.ai/wave-computing-unveils-new-licensable-64-bit-ai-ip-platform-to-enable-high-speed-inferencing-and-training-in-edge-applications/
https://wavecomp.ai/wave-computing-unveils-new-licensable-64-bit-ai-ip-platform-to-enable-high-speed-inferencing-and-training-in-edge-applications/
https://wavecomp.ai/wave-computing-unveils-new-licensable-64-bit-ai-ip-platform-to-enable-high-speed-inferencing-and-training-in-edge-applications/
https://doi.org/10.1145/3286062.3286065

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	3.1 Software Migration During Execution
	3.2 Static Executable Binary Transformation

	4 System Model
	5 Design Principles and Architecture
	5.1 Automatic Executable Binary Transformation
	5.2 Heterogeneous Migration of Containers

	6 Implementation
	6.1 Executable Transformation Infrastructure
	6.2 Heterogeneous Migration

	7 Evaluation
	7.1 Experimental Setup
	7.2 Overheads Evaluation
	7.3 Migration of Latency-Sensitive Services
	7.4 Limitations

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

