
Transactional Interference-less Balanced Tree

Ahmed Hassan Roberto Palmieri Binoy Ravindran
Virginia Tech

hassan84@vt.edu robertop@vt.edu binoy@vt.edu

Abstract
The concurrent balanced tree is one of the most well-studied data
structures since the transition to the multicore era. The last decade
witnessed the design of many concurrent, and sometimes relaxed,
versions of AVL and Red-Black trees. However, most of those de-
signs do not support transactional accesses to the tree. In this paper,
we present TxCF-Tree, a transactional balanced tree whose design
is optimized to cope with the transactional nature of its operations.
The operations of TxCF-Tree are mainly optimized by: i) having a
traversal phase that does not use any locks and/or speculation, and
deferring any lock acquisition or physical modification to the trans-
action’s commit phase; ii) isolating the structural operations (such
as re-balancing) in an optimized, interference-less housekeeping
thread; and iii) minimizing the interference between structural op-
erations and the critical path of semantic operations (i.e., additions
and removals on the tree). We evaluated TxCF-Tree against the
state-of-the-art general methodologies of designing transactional
trees and we show that the optimized design of TxCF-Tree pays
off in most of the workloads.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; E.1 [Data Struc-
tures]: Concurrent Data Structures

Keywords Balanced Trees, Transactional Memory, Semantic
Synchronization, Concurrent Data Structures

1. Introduction
With the growing adoption of multi-core processors, the design of
efficient data structures that allow concurrent accesses without sac-
rificing performance and scalability becomes more critical than be-
fore. In the last decade, different designs of the concurrent version
of the well-known data structures, such as lists, queues, stacks, and
hash tables have been proposed [11, 15, 19, 22, 23, 29, 32].

Balanced binary search trees, such as AVL [1] and Red-
Black [5] trees are data structures whose self-balancing guaran-
tees a logarithmic-time complexity for their add, remove, and
contains operations. One of the main issues in balanced trees is
the need for rotations, which are complex housekeeping operations
that re-balance the tree to ensure the aforementioned logarithmic-
time complexity. Although rotations complicate the design of effi-
cient concurrent balanced trees, many solutions have already been
proposed: some of them are lock-based [6, 8, 9], while others are
non-blocking [7, 25, 30]. Lock-based solutions are easier to design
than non-blocking algorithms, but their performance could suffer
from: i) the blocking nature of their operations; and ii) the possibil-
ity of delaying and/or stalling the lock holders (e.g., due to adverse
operating system’s scheduling). On the other hand, non-blocking
algorithms use the atomic primitives (e.g. CAS operations) in a
more efficient way in order to provide higher progress guarantees,

e.g., wait-freedom [20] or obstruction-freedom [23], which are oth-
erwise prevented in the lock-based approaches [14].

One of the main limitations of concurrent data structures is that
they do not compose. For example, atomically inserting two ele-
ments in a tree is difficult: if the method internally uses locks, is-
sues like managing the dependency between operations executed in
the same transaction, and the deadlock that may occur because of
the chain of lock operations, may arise. Similarly, composing non-
blocking operations is challenging because of the need to atom-
ically modify different places in the tree using only basic primi-
tives, such as a CAS operation. Lack of composability is a serious
limitation of the current designs, especially for legacy systems, as
it makes their integration with third-party software – often needed
for improving performance, functionality, fault-management – dif-
ficult. In this paper we focus on composable (transactional) bal-
anced trees.

Although the research has reached an advanced point in the
direction of designing concurrent trees, transactional trees have not
reached this point yet. There are two practical approaches, to the
best of our knowledge, that enable transactional accesses on a tree:
1) The first approach is Transactional Memory (TM) [28], which
natively allows composability as it speculates every memory access
inside an atomic block; 2) The second approach is Transactional
Boosting [21] (TB), which protects the transactional access to a
concurrent data structure with a set of semantic locks, eagerly
acquired before executing the operation on the concurrent data
structure.

Both TM and TB have serious limitations when used for de-
signing transactional trees. Those limitations originate from the
same reason: they are both generic, and they do not consider the
specific characteristics of the balanced trees, which instead are
heavily investigated in literature. For example, TM considers every
step in the operation, including the rotations, as low-level mem-
ory reads/writes, which clearly increases the number of false con-
flicts. On the other hand, TB uses the underlying concurrent tree
as a black-box, which i) prevents any further customization; and ii)
may nullify the internal optimizations of the concurrent tree due to
the eagerly acquired semantic locks.

Recently, a third trend, which we name Optimistic Seman-
tic Synchronization (OSS), has emerged to overcome the limita-
tions of the above approaches. Examples of this new approach
include methodologies like Consistency Oblivious Programming
(COP) [2–4], Partitioned Transactions (ParT) [33], and Optimistic
Transactional Boosting (OTB) [16, 17]. We used the word opti-
mistic because all of these solutions share a fundamental optimism.
In fact, the common idea behind the aforementioned methodolo-
gies is to split data structures’ operations into a traversal phase and
a commit phase. A transaction optimistically executes the traver-
sal phase without any locking and/or speculation, and it defers the
commit phase to the commit time of the enclosing transaction.
Unlike TM and TB, OSS only provides guidelines to design trans-
actional data structures, and it leaves all the development details to

the data structure designer, thus enabling the possibility of adding
further (data structure-specific) optimizations.

OSS is clearly less programmable than TM and TB, but it
has the potential to provide better performance and scalability,
especially when applied to complex data structures, like the case
of balanced trees. Due to their high abstraction level, none of the
methodologies listed above (COP, ParT, and OTB) discusses in
detail how they can be applied to balanced trees without nullifying
the significant body of work related to highly optimized concurrent
(non-transactional) balanced trees. As a result, the programmer can
only benefit from the general, yet inefficient, solutions as the only
available alternatives so far.

Inspired by OSS, in this paper we present TxCF-Tree, the first
balanced tree that is accessible in a transactional, rather than just
a concurrent, manner without speculating the whole traversal path
(like in TM) or nullifying the benefits of the efficient concurrent de-
signs (like in TB). TxCF-Tree offers a set of design and low-level
innovations, but roughly it can be seen as the transactional version
of the recently introduced Contention Friendly Tree (CF-Tree) [9].
The main idea of CF-Tree is to decouple the structural operations
(e.g. rotations and physical deletions) from the semantic opera-
tions (e.g. queries, logical removals, and insertions), and to exe-
cute those structural operations in a dedicated helper thread. This
separation makes the semantic operations (that need to be trans-
actional in TxCF-Tree) simple: each operation traverses the tree
non-speculatively (i.e., without instrumenting any accessed mem-
ory location); then, if it is a write operation, it locks and modifies
only one node. In an abstract way, the TxCF-Tree’s semantic oper-
ations can be seen as composed of a traversal and commit phases,
which makes CF-Tree a good candidate for being transactionally
boosted using the OSS approach.

In addition to the new transactional capabilities, TxCF-Tree
claims one major innovation with respect to the concurrent CF-
Tree, which is fundamental for targeting high performance in a
transactional (not only concurrent) data structure. Although CF-
Tree decouples the structural operations, those operations are exe-
cuted in the helper thread with the same priority as the semantic op-
erations, and without any control on their interference. With TxCF-
Tree, we make the structural operations, already decoupled as in
CF-Tree, interference-less (when possible) with respect to seman-
tic operations. This property is highly desirable because structural
operations do not alter the abstract (or semantic) state of the tree,
thus they should not force any transaction to abort. To reduce this
interference, one operation should behave differently if it conflicts
with a structural operation rather than with a semantic operation.

In the transactional context, handling the interference between
structural and semantic operations (i.e., accessing the same object
or meta-data so that an abort or a stall is triggered to preserve
correctness) is more costly than in the concurrent context because
it could result in aborting the whole transaction, which includes
multiple (possibly non-conflicting) semantic operations, and not
just one operation as in the concurrent version.

TxCF-Tree uses two new terms which help identify those false-
interleaving cases and alleviate their effect: structural lock, which
is a type of lock acquired if the needed modifications on the node do
not change its abstract (semantic) state; and structural invalidation,
which is a transactional invalidation raised only because of a struc-
tural modification on the tree rather than having actual conflicts at
the abstract level. In TxCF-Tree, transactions do not abort if they
face structural locks or false-invalidations during the execution of
their operations.

Among the other innovations, TxCF-Tree exploits the fact that
structural operations are encapsulated in a helper thread, which
uses an infinite loop to scan the tree until it finds any node that
needs to be rotated or physically removed. We propose to further

reduce the interference of this helper thread by adopting a simple
heuristic to detect if the tree is almost balanced. If so, we manage to
increase the back-off time between two helper thread’s iterations.
Our heuristic uses a simple hill-climbing mechanism that tunes the
back-off time according to the number of rotations and physical
deletions observed during the previous iterations.

Our implementation of TxCF-Tree is released as an open-source
library1. We conducted an extensive evaluation study to assess the
effectiveness of TxCF-Tree. Our experiments show that TxCF-Tree
performs better than the other transactional approaches (TB and
STM) in almost all of the cases.

2. Background
2.1 Optimistic Semantic Synchronization
We use the term Optimistic Semantic Synchronization (OSS) to
represent a set of recent methodologies that leverage the idea of
splitting the transaction execution into phases and optimistically
executing some of them without any instrumentation (also called
unmonitored phases). In this section, we briefly recall three of those
approaches: Optimistic Transactional Boosting (OTB) [16, 17];
Consistency Oblivious Programming (COP) [2–4]; and Partitioned
Transactions (ParT) [33].

OTB methodology is the optimistic version of TB. It lists three
guidelines to convert any optimistic concurrent data structure into
a transactional one. According to OTB’s first guideline, every data
structure’s operation is split into three phases: traversal, which is
executed without any instrumentation and/or locking until reach-
ing the position of interest in the data structure; validation, which
checks the validity of the unmonitored traversal’s outcome; and
commit, which acquires the necessary locks and performs the actual
modifications. OTB provides transactional capabilities by i) saving
the outcome of the traversal phase into local semantic read/write-
sets to be used during the validation and commit phases; and ii)
deferring operation’s commit phase until the commit of the whole
transaction. The unmonitored traversal phase is the actual source
of OTB’s performance gains as it clearly reduces false conflicts.
The second guideline of OTB discusses the necessary and sufficient
steps to make this transactional version semantically opaque [13].
However, opacity in this case is only preserved at the semantic
level, which means that if the data structure is only accessed using
its defined APIs, then all of its operations are semantically consis-
tent at any time of the transaction execution, even though opacity
is broken at the memory level (which is clear in OTB because of
the unmonitored traversal phase). The third guideline of OTB is to
optimize the data structure according to its specific characteristics.

COP splits the operations into the same three phases as OTB
(but under different names). However, we observe two main differ-
ences between COP and OTB. First, COP is introduced mainly to
design concurrent data structures and it does not natively provide
composability unless changes are made at the hardware level [4].
Second, COP does not use locks during the commit phase. Instead,
it enforces atomicity and isolation by executing both the validation
and commit phases using either STM [2] or HTM [3] transactions.

ParT also uses the same trend of splitting the operations into
a traversal (they call it planning) phase and a commit (they call
it update) phase, but it gives more general guidelines than OTB.
Specifically, ParT does not restrict the planning phase to be a
traversal of a data structure and it allows this phase to be any
generic block of code. Also, as a result of being more general, ParT
does not give details about handling dependent operations in the
same transaction (like OTB’s second guideline) and only defines
a generic validator object that is associated with each planning

1 http://www.hyflow.org/downloads-details.html

phase. Finally, ParT does not obligate the planning phase to be
necessarily unmonitored, as in OTB and COP. Instead, it allows
both the planning and update phases to be transactions.

Summarizing, those three approaches share a common idea:
splitting the execution into phases that are executed differently and
independently. Hence, TxCF-Tree can be seen as a solution along
the same line. However, TxCF-Tree is closer to OTB because it uses
a well-defined concurrent tree as a base for its design (which fits the
terminology of transactional boosting), and it follows the second
guideline of OTB to guarantee that the execution of the transaction
is semantically opaque.

2.2 Contention Friendly Tree
Contention Friendly Tree (CF-Tree) [9] is an efficient concurrent
lock-based tree, which finds its main innovation on decoupling
the semantic operations (i.e. search, logical deletion, and insertion)
from the structural operations (i.e. rotation and physical deletion).
The semantic operations are eagerly executed in the original pro-
cess, whereas the structural operations are deferred to be executed
in a helper thread. Briefly, in the following we report the details of
CF-Tree:

Semantic Operations: each semantic operation starts by travers-
ing the tree until it reaches a node that matches the requested key
or it reaches a leaf node (indicating that the searched node does not
exist). After that, a search operation returns immediately with the
appropriate result without any locking. For a deletion, if the node
exists and it is not marked as deleted, the node is locked and then
the deleted flag is set (only a logical deletion), otherwise the op-
eration returns false. For a successful insertion, the deleted flag is
cleared (if the node already exists but marked as deleted) or a new
node is created and linked to the leaf node (if the node does not
exist). An unsuccessful insertion simply returns false. In all of the
cases, each operation locks at most one node, which is the last node
of the traversal phase.

Rotations: re-balancing operations are isolated in a helper
thread that infinitely scans the tree seeking for any node that needs
either a rotation or a physical removal. Rotation in this case is re-
laxed, namely it uses local heights. Although other threads may
concurrently modify these heights (resulting in a temporarily un-
balanced tree), past work has shown that a sequence of localized
operations on the tree eventually results in a strictly balanced
tree [6, 27]. A rotation locks: the node to be rotated down; its
parent node; and its left or right child (depending on the type of ro-
tation). Additionally, rotations are designed so that any concurrent
semantic operation can traverse the tree without any locking and/or
instrumentation. To achieve that, the rotated-down node is cloned
and the cloned node is linked to the tree instead of the original
node.

Physical Deletion: The physical deletion is also decoupled and
executed separately in the helper thread. In addition, a node’s
deletion is relaxed by leaving a “routing” node in the tree when
the deleted node has two children (it is known that deleting a
node with two children requires modifying nodes that are far away
from each other, which complicates the operation). The physical
deletion is done as follows: both the deleted node and its parent are
locked, then the node is marked as physically removed, and finally
its left and right children are modified to be pointing at its parent.
This way, concurrent semantic operations can traverse the tree non-
speculatively without being lost.

3. Motivation
This paper is mainly motivated by the lack in literature of an ef-
ficient transactional balanced tree, which we believe is highly de-
sirable given the wide diffusion of its concurrent version. We fill
this gap by designing TxCF-Tree. As we briefly mentioned before,

TxCF-Tree is efficient because it minimizes the interference be-
tween semantic operations belonging to a transaction (e.g., insert)
and structural operations (e.g., rotations and physical deletions).
Before going into the details of the design of TxCF-Tree, in this
section we answer two important questions: why we consider CF-
Tree as the best candidate, and why we should care about the inter-
ference of the structural operations when designing a transactional
balanced tree.

3.1 Why CF-Tree as baseline?
Among the concurrent trees presented in literature, we select CF-
Tree as a candidate to be transactionally boosted because it pro-
vides the following two properties that fit the OSS principles. First,
it uses a lock-based technique for synchronizing the operations,
which simplifies the applicability of the OSS methodology. Sev-
eral approaches are used to design non-blocking trees [7, 25, 30],
which provide stronger progress guarantees than CF-Tree. How-
ever, making such trees transactional is very complex because each
transaction can access many places in the tree and all those accesses
are required to be atomic. Historically, lock-based STM algorithms
(e.g., [10, 12, 31]) were similarly shown to be more practical than
the first obstruction-free STM proposal [24]. Also, contention man-
agers play an important role to guarantee that transactions are exe-
cuted without deadlocks, and with higher levels of fairness. Second,
CF-Tree is traversed without any locking and/or speculation, al-
lowing the separation of an unmonitored traversal phase. Also, the
semantic operations (add, remove, and contains) are decoupled
from the complex structural operations (although they can interfere
with each other), like rotations and physical removals, allowing a
simple commit phase.

The other lock-based solutions [6, 8], as opposed to CF-Tree,
have neither a similar unmonitored traversal phase that scans the
tree without any instrumentation nor a similar simple commit phase
that only changes one flag or attaches one node. In addition, the
authors of [9] showed significant performance gains against other
recent lock-based tree algorithms.

3.2 On the importance of having interference-less structural
operations

Balanced trees store data according to a specific balanced topol-
ogy so that their operations can take advantage of the efficient
logarithmic-time complexity. More specifically, operations are split
into two parts: a “semantic” part, which modifies the abstract state
of the tree, and a structural part, which maintains the efficient or-
ganization of the tree. For example, consider the balanced tree in
Figure 1. The tree initially represents the abstract set {1, 2} (Figure
1(a)). If we want to insert 3, we first create a new node and link it
to the tree in the proper place (Figure 1(b)). Subsequently, the tree
is re-balanced because this insertion unbalanced a part of it (Figure
1(c)). Semantically, we can observe the new abstract set, {1, 2, 3},
right after the first step and before the re-balancing step. However,
without the re-balancing step, the tree structure itself may become
eventually skewed, and any traversal operation on the tree would
take linear time rather than logarithmic time.

Although the structural operations are important, like the afore-
mentioned rotations in our case, they represent the main source of
conflicts when concurrent accesses on the tree occur. Two indepen-
dent operations (like inserting two nodes in two different parts of
the tree) may conflict only because one of them needs to re-balance
the tree. This additional conflict generated by structural operations
can significantly slow down the performance of transactional data
structures more than their concurrent versions due to two reasons.
First, in long transactions, the time period between the tree traver-
sal and the actual modification during commit may be long enough
to generate more conflicts because of the concurrent re-balancing.

(a) Initial state (b) Insert 3 (c) Right rotation

Figure 1. An insertion followed by a right rotation in a balanced
tree.

Second, in transactional data structures, any conflict can result in
the abort and re-execution of the whole transaction, which possi-
bly includes several non-conflicting operations, unlike concurrent
operations that just re-traverse the tree if a conflict occurs.

Although CF-Tree decouples the structural operations in a ded-
icated helper thread, which forms an important step towards short-
ening the critical path of the processing (i.e. the semantic opera-
tions), it does not prevent the structural operations running in the
helper thread from interfering with the semantic operations and de-
laying/aborting them. To minimize the interference between struc-
tural and semantic operations in TxCF-Tree, we propose the fol-
lowing simple guideline:
(G-Pr) Always give the highest priority to semantic operations

over structural operations.
This guideline simply allows the semantic operations to proceed
when a conflict occurs with structural modifications. Our rationale
is that, delaying or aborting a semantic operation affects the overall
performance, whereas delaying or aborting a structural operation
only defers the step of optimizing the data structure to the near
future.

4. TxCF-Tree
In this section, we discuss how to boost CF-Tree to be transac-
tional using the OSS principles. As we mentioned in Section 3, the
key additions of TxCF-Tree over CF-Tree are: i) supporting trans-
actional accesses; and ii) minimizing the interference between se-
mantic and structural operations. For the sake of clarity, we focus
on the changes made on CF-Tree to achieve those two goals, and
we briefly mention the unchanged parts whose details can be found
in [9].

Each node in TxCF-Tree contains the same fields as CF-Tree: a
key (with no duplication allowed), two pointers to its left and right
children, a boolean deleted flag to indicate the logical state of the
node, and an integer removed flag to indicate the physical state of
the node (a value from the following: NOT-REMOVED, REMOVED, or
REMOVED-BY-LEFT-ROTATION). The node structure in TxCF-Tree
is only different in the locking fields. In CF-Tree, each node con-
tains only one lock that is acquired by any operation modifying the
node. In TxCF-Tree, each node has two different locks: a semantic-
lock, which is acquired by the operations that modify its semantic
state (either the deleted or the removed flag); and a structural-lock,
which is a acquired by the operations that modify the structure of
the tree without affecting the node itself (i.e. modifying the right or
left pointers). Each lock is associated with a lock-holder field that
saves the ID of the thread that currently holds the lock, which is
important to avoid deadlocks.

Our TxCF-Tree implements a set interface with the traditional
semantic operations: add; remove; and contains. Extending
TxCF-Tree to have key-value pairs is straightforward. However,

for clarity, we assume that the value of the node is the same as its
key.

4.1 Structural Operations
The helper thread repeatedly calls a recursive depth-first procedure
to traverse the entire tree. During this procedure, any unbalanced
node is rotated and any logically removed node is physically un-
linked from the tree. To minimize the interference of this house-
keeping procedure, we use an adaptive back-off delay after each
traversal iteration. We use a simple hill-climbing mechanism that
increases (decreases) the back-off time if the number of housekeep-
ing operations in the current iteration is less (greater) than the most
recent iteration. While acknowledging the simplicity of the adopted
heuristic, it showed effectiveness in our evaluation study. TxCF-
Tree aims at proposing this innovation as a technique that can also
be applied in other solutions, and it does not prevent the usage of
other (more complex) heuristics for tuning the back-off delay.

4.1.1 Physical Deletions
The helper thread’s goal is to physically unlink a node Nn that is
marked as deleted. To do so, both the Nn and its parent Np have to
be locked. We only acquire the structural-lock of Np because its se-
mantic state will not change. On the other hand, both the semantic-
lock and the structural-lock have to be acquired on Nn because
Nn’s removed flag, which is part of its semantic state, should be
set as REMOVED. To further minimize the interference, the locking
mechanism uses only one CAS trial. If the first CAS operation fails,
then the whole structural operation is aborted and the helper thread
resumes scanning the tree. If the locks are successfully acquired,
the node’s left and right children are modified to point back to the
parent and then Nn is unlinked by changing Np child to be Nn’s
child instead of Nn. This way the concurrent operations can still
traverse the tree, without experiencing any interruption.

4.1.2 Rotations
Rotations also use a less intrusive locking mechanism. In a right
rotation (without losing generality), three nodes are locked in CF-
Tree: the parent node Np, the node to be rotated down Nn, and
its left child Nl. In CF-Tree, rotation is done by cloning Nn and
linking the cloned node at the tree instead of Nn. Subsequently
Nn is marked as REMOVED (in case of left-rotation it is marked
as REMOVED-BY-LEFT-ROTATION). In TxCF-Tree, using the same
relaxation as physical deletion, both Np and Nl acquire only the
structural-lock because the rotated-down node Nn is the only node
that will change its semantic state (and thus needs to acquire the
semantic-lock).

While designing how to handle rotations in TxCF-Tree, we
found that there is no need to lock the parent node (i.e., Np) at
all. This is because the only change to Np is to make its left
(or right) child pointing to Nl rather than Nn. This means that
Np’s child remains not null before and after the rotation. Only
the helper thread can change it to null in a later operation by
rotating the node down or physically deleting its children. Semantic
operations, on the other hand, only concern about reading/changing
the deleted flag of a node, if the searched node exists in the tree,
or reading/changing a (null) link of a node, if the searched node
does not exist in the tree. Thus, modifying the child link of Np

cannot conflict with any concurrent semantic operation, so it is safe
to make this modification without locking. For the same reason, if
all the sub-trees of Nn and Nl are not null, then no structural locks
are acquired at all, and the only lock acquired is the semantic-lock
on Nn.

4.2 Semantic Operations
According to OSS, each operation is divided into the traversal, val-
idation, and commit phases (in this case we use the terminology in-
troduced by OTB [16]). We follow this division in our presentation
and discuss each of those three phases separately in the following
sections.

4.2.1 Traversal
The tree is traversed similarly to the sequential way, by following
the classical rules of the binary search tree. Traversal ends if we
reach the searched node or a null pointer. To be able to execute
the operation transactionally, the outcome of the traversal phase is
not immediately returned. Instead it is saved in a local semantic
read/write sets. Each entry of those sets consists of the following
three fields:

- Op-key: which is the searched key that needs to be inserted,
removed, or looked up.

- Node: which is the last node of the traversal phase. This node
is either a node whose key matches op-key (no matter if it is
marked as deleted or not) or a node whose left (right) child is
null and its item is greater (less) than op-key.

- Op-type: which is an integer that indicates the type of the oper-
ation (add, remove, or contains) and its result (successful
or unsuccessful).
Those fields are sufficient to verify (through the transaction’s

validation) that the result of the operation is not changed since the
execution of the operation and to modify the tree at commit time.
All the operations add an entry to the read-set, but only successful
add and remove operations add entries to the write-set.

Before traversal, the local write-set is scanned for detecting
read-after-write hazards. If the key exists in the write-set, the oper-
ation returns immediately without traversing the shared tree. More-
over, if an add operation is followed by a remove operation of the
same item (or vice versa), they locally eliminate each other. This
elimination saves the useless access to the shared tree in such cases.
The elimination is done only on the write-set, and the entries are
kept in the read-set so that the eliminated operations are guaran-
teed to be consistent.

4.2.2 Validation
The second phase of TxCF-Tree’s operation is the validation phase.
Validation in TxCF-Tree has two goals. The first goal is the same
as the concurrent CF-Tree, which is ensuring that the locked nodes
are still the same as they appear at the end of the traversal phase.
The second goal is to guarantee the consistency of the overall
transaction. To have a comprehensive presentation, we show first
the validation procedure in CF-Tree, and then we show how it is
modified in TxCF-Tree.

In Algorithm 1, validation in CF-Tree succeeds if the node’s
key is not physically removed and either the node’s key matches
the searched key (line 5) or its child (right or left according to the
key) is still null (line 11). Otherwise, the validation fails (lines 3
and 12).

In TxCF-Tree, this validation procedure is not enough because
it has to also ensure that the operation’s result is not changed, oth-
erwise, the transaction’s consistency is broken. As an example, in
Algorithm 2 let us assume the following invariant: y exists in the
tree if and only if x also exists. If we use the same validation as
Algorithm 1, T1 may execute line 4 first and return false. Then, let
us assume that T2 is entirely executed and committed. In this case,
T1 should abort right after executing line 5 because it breaks the
invariant. Aborting the doomed transaction T1 should be immedi-
ate and it cannot be delayed until the commit phase because it may
go into an infinite loop or raise an exception (line 6). To prevent
those cases, all of the read-set’s entries have to be validated (using

Algorithm 1 Operation’s validation in CF-Tree.
1: procedure VALIDATE(read-set-entry)
2: if node.removed ¡¿ NOT-REMOVED then
3: return false
4: else if entry.node.k = entry.k then
5: return true
6: else if entry.node.k ¿ entry.k then
7: next = node.right
8: else
9: next = node.left

10: if next = null then
11: return true
12: return false
13: end procedure

Algorithm 3 instead of Algorithm 1) after each operation as well as
during commit.

Algorithm 2 Example of semantic opacity.
1: . initially the tree is empty
2: @Atomic
3: procedure T1
4: if tree.contains(x) = false then
5: if tree.contains(y) = true then
6: . hazardous action
7: . like an infinite loop or a division by zero
8: ...
9: end procedure

10: procedure T2
11: tree.add(x)
12: tree.add(y)
13: end procedure

Moreover, if the node is physically removed or its child becomes
no longer null (which are the invalidation’s cases of CF-Tree),
this does not mean that the transaction is not consistent anymore.
It only means that the traversal phase has to continue and reach a
new node to be validated. It is worth noting that aborting the trans-
action in those cases does not impact the tree’s correctness, while
its performance will be affected. In fact, this conservative approach
increases the probability of structural operations’ interference. For
this reason we distinguish between those types of invalidations and
the actual semantic invalidations, such as those depicted in Algo-
rithm 2. The modified version of the validation is shown in Algo-
rithm 3. The cases covered in CF-Tree are considered structural-
invalidations (lines 9 and 24), and the actual invalidation cases are
considered semantic-invalidations (lines 14 and 21).

Algorithm 4 shows how to validate the read-set. For each entry,
we firstly check if the entry’s node is not locked (lines 4-9). In this
step we exploit our lock separation by checking only one of the two
locks because each operation validates either the deleted flag or the
child link. Specifically, if the node’s key matches op-key, node’s
semantic-lock is checked, otherwise the structural-lock is checked.
Moreover, if the entry’s node is locked by the helper thread, we
consider it as unlocked because the helper thread cannot change
the abstract state of the tree. The only effect of the helper thread is
to make the operation structurally invalid, which can be detected in
the next steps.

The next step is to validate the entry itself (line 10). If the entry
is semantically-invalidated, then the transaction aborts (line 18).
If it is structurally-invalidated, the traversal is continued in the
same way as CF-Tree and the entry is updated with the new node
(lines 12-16), then the node is re-validated. If the operation is a

Algorithm 3 Operation’s validation in TxCF-Tree.
1: procedure VALIDATE(read-set-entry)
2: . the variable item-existed is true if the item
3: . was in the tree during the operation’s return
4: if entry.op-type ∈ (unsuccessful add, successful remove, successful

contains) then
5: item-existed = true
6: else
7: item-existed = false
8: if entry.node.removed ¡¿ NOT-REMOVED then
9: return STRUCTURALLY-INVALID

10: else if entry.node.k = entry.k then
11: if entry.node.deleted XOR item-existed then
12: return VALID
13: else
14: return SEMANTICALLY-INVALID
15: else if entry.node.k ¿ entry.k then
16: next = node.right
17: else
18: next = node.left
19: if next = null then
20: if item-existed then
21: return SEMANTICALLY-INVALID
22: else
23: return VALID
24: return STRUCTURALLY-INVALID
25: end procedure

Algorithm 4 Read-set validation in TxCF-Tree.
1: procedure VALIDATE-READSET(read-set)
2: for all entries in the read-set do
3: while true do
4: if entry.op-item = entry.node.item then
5: lock = semantic-lock
6: else
7: lock = struct-lock
8: if lock.Locked && lockholder /∈ (myID,helperID) then
9: return false

10: result = VALIDATE(entry)
11: if result = STRUCTURALLY-INVALID then
12: newNode = CONTINUE-TRAVERSAL(entry)
13: entry.node = newNode
14: write-entry = write-set.get(entry.key)
15: if write-entry ¡¿ null then
16: write-entry.node = newNode
17: else if result = SEMANTICALLY-INVALID then
18: return false
19: else
20: break;
21: return true
22: end procedure

successful add/remove operation, the corresponding write-set entry
is also updated with the new node (line 16)2.

4.2.3 Commit
The commit phase (shown in Algorithm 5) uses the classical two-
phase locking mechanism. The nodes in the read/write sets are
locked and/or validated first (lines 5-20), then the tree is modified
(lines 23-35), and finally the locks are released (line 37).

From the commit procedure of TxCF-Tree it is worth highlight-
ing the following two points. The first point is how TxCF-Tree
solves the issue of having two dependent operations in the same
transaction. For example, if two add operations are using the same
node (e.g. assume a transaction that adds both 3 and 4 to the tree
shown in Figure 1). The effect of the first operation (add 3) should
be propagated to the second one (add 4). To achieve that, in lines

2 In our implementation, the mapping between write-set and read-set entries
is easy because they are implemented using a key-value-based map whose
key is the operation’s key.

Algorithm 5 Commit in TxCF-Tree.
1: procedure COMMIT
2: for all entries in the write-set do
3: while true do
4: . Try to acquire the lock
5: if entry.op-item = entry.node.item then
6: lock = semantic-lock
7: else
8: lock = struct-lock
9: if lockholder ¡¿ myID && !lock.acquire then

10: if lockholder ¡¿ helperID then
11: ABORT
12: else
13: continue
14: . Perform inline Validation of the entry
15: . Similar to Algorithm 4, but unlock before retrying
16: result = VALIDATE(entry)
17: ...
18: . Validate the remaining read-set entries
19: . Exactly like Algorithm 4
20: . But skips the entries that are also in the write-set
21: VALIDATE-READ-OPERATIONS(read-set)
22: . Publish write-sets
23: for all entries in the write-set do
24: if entry.op-type = remove then
25: entry.node.deleted = true
26: else . add operation
27: if entry.op-item = entry.node.item then
28: entry.node.deleted = false
29: else
30: newNode = CREATE-NODE(entry.key)
31: node = CONTINUE-TRAVERSAL(entry)
32: if node.key ¿ entry.k then
33: node.right = newNode;
34: else
35: node.left = newNode;
36: . Unlock
37: UNLOCK(write-set)
38: return true
39: end procedure

31-35 the add operation uses the node in the write-set only as a
starting point and keeps traversing the tree from this node until
reaching the new node. Also, the operations lock the added nodes
(3 and 4 in our case) before linking them to the tree. Those nodes
are unlocked together with the other nodes at the end of the commit
phase. Any interleaving transaction or structural operation running
in the helper thread cannot force the transaction to abort because all
the involved nodes are already locked. Also, the other cases of hav-
ing dependent operations, such as adding (or removing) the same
key twice and adding a key and then removing it, are solved earlier
during the operation itself (as mentioned in Section 4.2.1).

The second point is how TxCF-Tree preserves the reduced inter-
ferences between the structural and the semantic operations without
hampering the two-phase locking mechanism. The main issue in
this regard is that structural invalidations may not abort the trans-
action. Thus, a transaction cannot lock the nodes in the write-set
and then validate the nodes in the read-set because, if so, in case
of a structural invalidation, the invalidated operation (which can
be a write operation) would continue traversing the tree and reach
a new node (which is not yet locked). To solve this problem, we
use an inline validation of the entries in the write-set (line 16). The
write-set entries are both locked and validated at the same time. If
the write operation fails in its validation: 1) it unlocks the node; 2)
re-traverses the tree; 3) locks the new node; and 4) re-validates the
entry.

5. Correctness
To ensure the correctness of TxCF-Tree, we prove the following
theorem:

THEOREM 1. A history H of TxCF-Tree’s operations is opaque.

We leave the proof of this theorem to the technical report [18].
The proof outline is, in some sense, similar to that of OTB-Set [17],
the first data structure boosted using OTB methodology. Through-
out the whole proof we assumed a history that contains only TxCF-
Tree operations (which means that direct reads/writes to the mem-
ory as well as accesses that do not use the tree’s APIs are pre-
vented). We also assume that each operation contributes only with
its return value in H. We leave the general case, where we i) allow
any kind of accesses in the transaction and ii) include the progress
guarantees at memory level, as a future work.

6. Evaluation
In our experiments we compared the performance of TxCF-Tree
with the performance of TB and some STM approaches (all imple-
mented in Java). Our implementation of TB uses CF-Tree as the
underlying (black-box) tree, which makes a fair comparison. For
STM, we used Java’s Deuce framework [26]. To show that the STM
performance issue does not depend on the used protocol, we tested
three different algorithms: LSA [31]; TL2 [12]; and NOrec [10],
and we experienced almost the same performance for all of them
(which is not close to the other non-STM competitors). Thus, to
make the plots clear, we only show the curve corresponding to the
best STM algorithm in each plot.

All the experiments were conducted on a 64-core machine,
which has 4 AMD Opteron (TM) Processors, each with 16 cores
running at 1400 MHz, 32 GB of memory, and 16KB L1 data cache.
Throughput is measured as the number of semantic operations (not
transactions) per second to have consistent data points. Each plotted
data point is the average of five runs. Each run starts with a warm-
up phase of five seconds, followed by an execution phase during
which we collect the statistics.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

CFTree
TxCF-Tree

TB
STM

Figure 2. Throughput of tree-based set with 10K elements, 50%
add/remove operations, and one operation per transaction.

In Figure 2 we show the results for a scenario that mimics the
concurrent (non-transactional) case (i.e. each transaction executes
only one operation on the tree). In this experiment, all of the
overheads added by the transactional algorithms (i.e. STM, TB, and
TxCF-Tree) are not actually exploited because there is only one
operation enclosed in the executed transactions, thus we leverage
this plot to show the cost of having a transactional solution over
a pure concurrent tree. Clearly STM does not scale because it
“blindly” speculates on all the memory reads and writes. This poor
scalability of STM is confirmed in all the experiments we made.
On the other hand, both TB and TxCF-Tree scale better than STM
and close to CF-Tree (TxCF-Tree is slightly closer). This behavior
shows an overhead that is affordable in case one wants to use the
TxCF-Tree library even for just handling the concurrency of atomic
semantic operations without any transactional semantics.

Figure 3 shows the transactional case, in which we deployed
five operations per transaction for different sizes of the tree (1K,

10K, and 100K) and different read/write workloads (10%, 50% and
80% of add/remove operations). The plots do not include CF-Tree
because it only supports concurrent operations and thus it cannot
handle the execution of transactions. TxCF-Tree performs gener-
ally better than TB. The gap between the two algorithms decreases
when we increase the percentage of the add/remove operations.
This is reasonable because, the conflict level becomes higher, and
it best fits the more pessimistic approach (as TB). However, even
in the most conflicting case (having 80% add/remove operations)
TxCF-Tree still performs better (except for the last two data points
in Figure 3(i)) than TB.

Increasing the size of the tree also decreases the gap between
TxCF-Tree and TB. At first impression it appears counterintuitive
because increasing the size of the tree means generally decreasing
the overall contention, which should be better for optimistic ap-
proaches like TxCF-Tree. The reason for this behavior is that, in
the case of very low contention, most of the transactions do not
conflict with each other and both algorithms linearly scale. Then,
when the conflict probability increases, the difference between the
algorithms becomes visible. A comparison between Figure 3(g) and
Figure 3(i) (which differ only for the size of the tree) confirms this
claim. In Figure 3(g), both algorithms scale well up to 16 threads
because threads are almost non-conflicting, then TB starts to suffers
from its non-optimized design while TxCF-Tree keeps scaling. On
the other hand, in Figure 3(i) both algorithms scale until 60 threads
because the tree is large.

Summarizing, analyzing the above results we can identify two
points that allow TxCF-Tree to outperform competitors: i) having
an optimized unmonitored traversal phase that reduces false con-
flicts, and ii) having optimized validation/commit procedures that
minimize the interferences between structural and semantic opera-
tions. Both TB and TxCF-Tree gain performance by exploiting the
first point, in fact TB itself performs (up to an order of magnitude)
better than STM. However, only TxCF-Tree uses an optimized de-
sign for a balanced tree data structure, and it makes its performance
generally (much) better than TB.

In the aforementioned experiments we use two versions of
TxCF-Tree, one with the adaptive back-off time in between two
helper thread iterations (named BTxCF-Tree), and one without.
The results show that this optimization further enhances the perfor-
mance, especially in the small tree (the cases of 10% add/remove
operations). This improvement may increase if a more effective
heuristic is used.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25

1
M

 o
p
s
/s

e
c

Ops/transaction

TxCF-Tree
TB

STM

Figure 4. Throughput of tree-based set with 10K elements, 50%
add/remove operations, and 32 threads.

In Figure 4 we report the behavior of TxCF-Tree’s while chang-
ing the size of the transactions. We can observe a significant gap
between TxCF-Tree and TB for all of the tested sizes, which con-
firms our conclusion: reducing operations’ interference is important
in order to avoid unnecessary aborts.

The last experiment we report regards the capability of TxCF-
Tree to reduce interferences with structural operations. Although

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(a) 1K, 10%

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(b) 10K, 10%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(c) 100K, 10%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(d) 1K, 50%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(e) 10K, 50%

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(f) 100K, 50%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(g) 1K, 80%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(h) 10K, 80%

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

1
M

 o
p
s
/s

e
c

Number of threads

TxCF-Tree
BTxCF-Tree

TB
STM

(i) 100K, 80%

Figure 3. Throughput of tree-based set with five operations per transaction (labels indicate the size of the tree and the % of the add/remove
operations).

 0

 20

 40

 60

 80

 100

5 10 15 20 25

%
 o

f
In

te
rf

e
re

n
c
e

Ops/transaction

True
False

Figure 5. The percentage of the two interference types on a tree-
based set with 10K elements, 50% add/remove operations, and 32
threads.

breaking down TxCF-Tree’s operations to measure this gain is not
straightforward, we roughly estimated the gain by quantifying two
metrics: the true interferences count, which is simply the actual
transactional aborts count; and the false interferences count, which
is the count of the cases in which the transaction does not abort
because the tree is re-traversed instead or because the operations in
TxCF-Tree acquire only one (structural or semantic) lock. In Fig-

ure 5 the false-interferences are 25%-30% of the total interferences
for different sizes of the transactions.

7. Conclusions
We presented TxCF-Tree, the first interference-less transactional
balanced tree. Unlike the former general approaches, it uses an
optimized conflict management mechanism that reacts differently
according to the type of the operation. Our experiments justify that
the optimized design of TxCF-Tree allows it to perform better than
the general approaches.

Acknowledgments
Authors thank Vincent Gramoli for sharing the source code of CF-
Tree (which is now public) in an early stage of the development.

References
[1] G. Adelson-Velskii and E. M. Landis. An algorithm for the organiza-

tion of information. In Proceedings of the USSR Academy of Sciences,
volume 145, pages 263–266, 1963.

[2] Y. Afek, H. Avni, and N. Shavit. Towards consistency oblivious
programming. In OPODIS’11, pages 65–79.

[3] H. Avni and B. C. Kuszmaul. Improving HTM scaling with
consistency-oblivious programming. In TRANSACT, 2014.

[4] H. Avni and A. Suissa-Peleg. Brief announcement: Cop composition
using transaction suspension in the compiler. In DISC, pages 550–552,
2014.

[5] R. Bayer. Symmetric binary B-trees: Data structure and maintenance
algorithms. Acta informatica, 1(4):290–306, 1972.

[6] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical
concurrent binary search tree. In PPoPP, pages 257–268, 2010.

[7] T. Brown, F. Ellen, and E. Ruppert. A general technique for non-
blocking trees. In PPoPP, pages 329–342, 2014.

[8] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary
search tree. In PPoPP, pages 161–170, 2012.

[9] T. Crain, V. Gramoli, and M. Raynal. A contention-friendly binary
search tree. In Euro-Par, pages 229–240, 2013.

[10] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by abolishing ownership records. In PPoPP, pages 67–78, 2010.

[11] M. David. A single-enqueuer wait-free queue implementation. In
DISC, pages 132–143, 2004.

[12] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC,
pages 194–208, 2006.

[13] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In PPoPP’08, pages 175–184.

[14] R. Guerraoui and M. Kapalka. The semantics of progress in lock-
based transactional memory. In POPL, pages 404–415, 2009.

[15] T. L. Harris. A pragmatic implementation of non-blocking linked-lists.
In DISC’11, pages 300–314.

[16] A. Hassan, R. Palmieri, and B. Ravindran. Optimistic transactional
boosting. In PPoPP’14, pages 387–388.

[17] A. Hassan, R. Palmieri, and B. Ravindran. On developing optimistic
transactional lazy set. In OPODIS, pages 437–452, 2014.

[18] A. Hassan, R. Palmieri, and B. Ravindran. Transactional interference-
less balanced tree. Technical report, ECE Dept., Virginia Tech, Jan-
uary 2015. www.hyflow.org/pubs/spaa15-hassan-TR.pdf.

[19] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer, and
N. Shavit. A lazy concurrent list-based set algorithm. In OPODIS’05,
pages 3–16.

[20] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124–149, 1991.

[21] M. Herlihy and E. Koskinen. Transactional boosting: A methodology
for highly-concurrent transactional objects. In PPoPP, pages 207–216,
2008.

[22] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming,
Revised Reprint. Elsevier, 2012.

[23] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchro-
nization: Double-ended queues as an example. In ICDCS, pages 522–
529, 2003.

[24] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
transactional memory for dynamic-sized data structures. In PODC,
pages 92–101, 2003.

[25] J. H. Kim, H. Cameron, and P. Graham. Lock-free red-black trees
using cas. CCPE, pages 1–40, 2006.

[26] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency with
Java STM. In MULTIPROG, 2010.

[27] K. S. Larsen. AVL trees with relaxed balance. In IPPS, pages 888–
893, 1994.

[28] J. R. Larus and R. Rajwar. Transactional Memory. Morgan and
Claypool, 2006.

[29] M. M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In SPAA, pages 73–82, 2002.

[30] A. Natarajan, L. Savoie, and N. Mittal. Concurrent wait-free red black
trees. In SSS, pages 45–60, 2013.

[31] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with
eager validation. In DISC, pages 284–298, 2006.

[32] N. Shavit. Data structures in the multicore age. Commun. ACM, 54
(3):76–84, 2011.

[33] L. Xiang and M. L. Scott. Composable partitioned transactions. In
WTTM, 2013.

