
Integrating Transactionally Boosted Data Structures
with STM Frameworks: A Case Study on Set

Ahmed Hassan Roberto Palmieri Binoy Ravindran
Virginia Tech

hassan84@vt.edu robertop@vt.edu binoy@vt.edu

Abstract
Providing transactional collections of data structures with the
same performance of highly concurrent data structures enables
performance-competitive transactional composability. Although
Software Transactional Memory (STM) is increasingly becoming
a promising technology for designing and implementing transac-
tional applications, concurrent data structures still do not exploit
STM’s advantages. Recently, Optimistic Transactional Boosting
(OTB) has been proposed as a methodology to implement transac-
tional versions of highly concurrent data structures. OTB works in
a similar way to STM algorithms, but on the level of data struc-
ture semantics. This similarity is a motivation for finding a way
to integrate operations of transactional data structures with STM
frameworks. In this paper, we extend the design of DEUCE, a Java
STM framework, to support OTB integration. Using our extension,
programmers can include both OTB data structure operations and
traditional memory reads/writes in the same transaction, and the
framework will guarantee that both will execute safely as an atomic
block. While keeping the same simple interface and the same in-
dependence from the JVM as the original DEUCE framework, we
allow developers to easily integrate more OTB data structures. As
a case study, we show the implementation details of OTB-Set, a
transactionally boosted linked-list-based set, and we show how dif-
ferent STM algorithms like NOrec and TL2 can interact with it.
Our experiments show up to 10x improvement in the performance
of micro-benchmarks over the original DEUCE framework.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; E.1 [Data Struc-
tures]: Concurrent Data Structures

General Terms Algorithms, Performance

Keywords Optimistic Transactional Boosting, Transactional Data
Structures, STM frameworks, DEUCE

1. Introduction
In-memory transactions can be a potentially significant optimiza-
tion for managing concurrent requests on shared data structures.

[Copyright notice will appear here once ’preprint’ option is removed.]

The current widely used concurrent collections of elements (e.g.,
linked-list, skip-list, Tree) are well optimized for preserving iso-
lation of atomic operations, but they do not support transactional
access to the objects. Java’s Concurrent Collections yield high per-
formance for concurrent accesses, but require programmer-defined
synchronized blocks for demarcating transactions. Such blocks are
trivially implemented using coarse-grain locks that significantly
limit concurrency.

Software Transactional Memory (STM) [12] is increasingly be-
coming a promising technology for designing and implementing
concurrent applications. They provide a simple interface to develop
concurrent applications with strong correctness and progress guar-
antees (e.g., strong isolation, deadlock freedom). They can also
be used to implement transactional data structures and collections.
However, pure STM-based transactional collections perform infe-
rior to their optimized, concurrent (non-transactional) counterparts.
This is mainly because STM monitors all of the memory locations
accessed by a transaction, which results in false conflicts when ac-
cessing data structures. For example, if two transactions are trying
to insert two different items into a linked-list, these two insertions
are commutative, and they are supposed to be executed concur-
rently without breaking consistency. However, STM may not be
able to detect this commutativity, and can raise a false conflict,
aborting one of them. In some cases, like long linked-lists, these
false conflicts dominate any other overheads in the system.

Recent works in literature propose different ways to implement
transactional data structures other than the traditional use of STM
algorithms, either by adapting STM algorithms and/or using them
more efficiently [1, 4], or by boosting the highly concurrent data
structures to be transactional [6, 8].

Transactional boosting was firstly proposed in [8], which builds
a layer of semantic locks on top of concurrent data structures. Se-
mantic locks prevent non-commutative operations from conflicting.
This reduces false conflicts because an efficient underlying data
structure is used instead of monitoring all reads and writes with
STM. Recently, the idea of optimistic boosting (OTB) has been pro-
posed as an alternative to the original boosting [6]. Unlike the first
proposal of boosting, OTB does not use the underlying concurrent
data structures as black boxes. Instead, OTB proposes implement-
ing new transactional versions of the (highly concurrent) lazy data
structures, like lazy set [7] and priority queue [9], following the
same idea of the original concurrent versions.

All previous proposals, including boosting, do not give details
on how to integrate the proposed transactional data structures with
STM frameworks. Addressing this issue is important because it al-
lows programmers to combine operations of the efficient transac-
tional data structures with traditional memory reads/writes in the
same transaction.

In this paper, we show how to integrate transactionally boosted
data structures with the current STM frameworks. One of the

1 2014/2/10

main benefits of optimistic boosting (compared to the original pes-
simistic boosting) is that it uses the terms validation and commit in
the same way as many STM algorithms [2, 3], but in the semantic
layer. Thus, OTB allows building a system which combines both
semantic-based and memory-based validation/commit techniques
in a unified consistent framework. More specifically, we show in
this paper how to implement OTB data structures in a standard way
that can integrate with STM frameworks. We also show how to
modify STM frameworks to allow such integration while maintain-
ing the consistency and programmability of the framework.

Using the proposed integration, OTB transactional data struc-
tures are supposed to work in the context of generic transactions.
That is why the proposed integration gains the benefits of both STM
and boosting. On one hand, it uses OTB data structures with their
minimal false conflicts and optimal data structure-specific design,
which increases their performance. On the other hand, it keeps the
same simple STM interface, which increases programmability. To
the best of our knowledge, this linking between transactional data
structures and STM algorithms has not been investigated in litera-
ture before.

We use DEUCE [10] as our base framework. DEUCE is a Java
STM framework with a simple programming interface. It allows
users to define @Atomic functions for the parts of code that are re-
quired to be executed transactionally. However, like all other frame-
works, using transactional data structures inside @Atomic blocks
requires implementing pure STM versions, which dramatically de-
grades the performance. We extend the design of DEUCE to sup-
port OTB transactional data structures (with the ability to use the
original pure STM way as well). To do so, we integrate two main
components into the DEUCE agent. The first component is OTB-
DS (or OTB data structure), which is an interface to implement
any optimistically boosted data structure. The second component
is OTB-STM Context, which extends the original STM context in
DEUCE. This new context is used to implement new STM algo-
rithms which are able to communicate with OTB data structures.
The new STM algorithms should typically be an extension of the
current memory-based STM algorithms in literature.

As a case study, we implement OTB-Set, an optimistically
boosted set based on both linked-list and skip-list, inside OTB-
DS. Also, we extend two STM algorithms to communicate with
OTB-Set (NOrec [2] and TL2 [3]). We select NOrec and TL2 as
examples of STM algorithms which use different levels of lock
granularity. NOrec is a coarse-grained locking algorithm, which
uses a single global lock at commit time to synchronize transac-
tions. TL2, on the other hand, is a fine-grained locking algorithm,
which uses ownership records for each memory block. We show in
detail how to make the extended design of DEUCE general enough
to support both levels of lock granularity.

Our evaluation shows that performance is improved by up to an
order of magnitude when we use OTB-Set instead of a pure STM
set. Similar performance gain is achieved for both OTB-NOrec
and OTB-TL2, especially when false conflicts are frequent, like in
linked-list-based sets. Even if false conflicts are rare, like in skip-
lists, OTB still performs better, which indicates that the overhead
of OTB integration is dominated by the gain of boosting in most
cases.

The paper makes the following contributions:
• To the best of our knowledge, this is the first proposal to use op-

timized transactional data structures inside STM transactions.
• We extend the design of the DEUCE framework to support

integration of the optimistically boosted data structures with
STM algorithms.

• We describe in detail the design and the implementation of a
transactional linked-list-based set using the idea of OTB.

• We extend two STM algorithms in DEUCE (NOrec and TL2)
to support integration with boosted data structures.

• Through experiments, we achieve up to 10x improvement in the
performance of micro-benchmarks over the original pure STM
solutions.
The rest of the paper is organized as follows. In Section 2, we

describe the background needed on OTB. In Section 3, we describe
the design of the extended DEUCE framework. Section 4 is a case
study of integrating OTB-Set with DEUCE using both OTB-NOrec
and OTB-TL2. We evaluate our new framework in Section 5, and
conclude the paper in Section 6.

2. Background: Optimistic Transactional
Boosting

Transactional boosting was firstly proposed in [8]. To execute an
operation in a boosted data structure, abstract locks are (pessimisti-
cally) acquired on the operation’s item(s), and then an underlying
highly concurrent data structure is used as a black-box to complete
the operation. Undo (semantic) logs are used to rollback these op-
erations if the transaction aborts.

The idea of optimistic transactional boosting (OTB) has been
introduced in [6]1 as an alternative to pessimistic boosting. It gives
guidelines to implement transactional versions of the previously
implemented lazy concurrent data structures, like set [7] and pri-
ority queue [9] (instead of using lazy data structures as black boxes
as in the original boosting).

Like concurrent data structures, operations in OTB versions tra-
verse data structures without instrumentation and validate only the
nodes that are semantically involved in the logic of the operation.
For example, to insert an item in a concurrent linked-list, the list is
traversed without any instrumentation. When the traversal reaches
the place in which the new node has to be inserted, abstract locks
(or semantic locks)2 are acquired only on the predecessor and the
successor nodes, then the semantic of the list is validated, and fi-
nally the new node is physically added.

The main difference between concurrent versions and OTB
(transactional) versions is in the steps after data structure traver-
sal. Concurrent versions complete the operation immediately by
acquiring semantic locks, validating the data structure semantics,
and applying modifications on the shared data structure. On the
contrary, OTB data structures delay acquiring semantic locks and
any physical modifications on the shared data structure to commit
time. To achieve that, OTB saves any necessary information lo-
cally in the so-called semantic read-sets and semantic write-sets.
Thus, OTB uses validation and commit procedures in a similar way
to most STM algorithms [2, 3, 11], but on the semantic level. In
Section 4, we show in detail how to implement an optimistically
boosted set using this idea.

OTB data structures are expected to perform better than pure
STM data structures, because false conflicts are reduced3. Unlike
read/write sets in STM, not all memory reads and writes are saved
in the semantic read/write sets. Instead, only those reads and writes
that affect linearization of the object and consistency of the trans-
action are saved. For example, in STM-based linked-lists, all tra-
versed nodes are instrumented (while not needed) and may result
in false conflicts, especially if the linked-list is relatively long.

1 We provide more details about OTB in a technical report in the following
link: http://www.hyflow.org/pubs/ppopp_14_TR.pdf
2 Semantic locks means locks on data structure nodes, rather than the tradi-
tional STM locks on memory locations.
3 False conflicts are the conflicts that occur in memory when there is no
semantic conflict and there is no need to abort.

2 2014/2/10

http://www.hyflow.org/pubs/ppopp_14_TR.pdf

OTB has been shown to have some benefits over the original
boosting methodology. For example, OTB does not require the ex-
istence of an inverse for each operation, because operations are
not eagerly executed. Moreover, OTB can be easily integrated with
STM frameworks, because OTB uses the same terms of validation
and commit as most STM algorithms. If a transaction contains both
object-level semantic operations and memory-level transactional
reads/writes, the whole transaction can be synchronized by mon-
itoring both memory-level and semantic-level read-sets and write-
sets, as we show in our proposed framework.

3. Extension of DEUCE Framework
DEUCE [10] is a Java STM framework which provides a simple
programming interface without any additions to the JVM. It allows
programmers to define atomic blocks, and guarantees executing
these blocks atomically using an underlying set of common STM
algorithms (e.g. NOrec [2], TL2 [3], and LSA [11]). We extend
DEUCE to support calling OTB data structures’ operations along
with traditional memory reads and writes in the same transaction,
without breaking transaction consistency.

3.1 Programming Model
Our framework is designed in a way that integration between data
structures’ operations and memory accesses is completely hidden
from the programmer. For example, a programmer can write an
atomic block like that shown in Algorithm 1. In this example, all
transactions access a shared set (set1), and two shared integers
(n1 and n2) which hold the number of successful and unsuccess-
ful add operations on set1, respectively. Each thread atomically
calls method1 as a transaction using the @Atomic annotation. In
method1, both set operation (add operation) and traditional mem-
ory access (incrementing the shared integers) have to be executed
atomically as one block, without breaking consistency, atomicity,
or isolation of the transaction.

Algorithm 1 An example of using Atomic blocks in the new
DEUCE framework.

1: Set set1 = new(OTBSet)
2: integer n1 = 0
3: integer n2 = 0

4: @Atomic
5: procedure METHOD1(x)
6: if set1.add(x) == true then
7: n1++
8: else
9: n2++

10: end procedure

To execute such an atomic block, all previous proposals use
a pure STM-based implementation of set1, to allow STM frame-
works to instrument the whole transaction. Our extended frame-
work, conversely, is the first proposal that uses a more efficient
(transactionally boosted) implementation of set1, rather than an
inefficient STM implementation, and at the same time allows an
atomic execution of this kind of transaction.

3.2 Framework Design
Figure 1 shows the DEUCE framework with the proposed modifi-
cations needed to support OTB integration. For the sake of a com-
plete presentation, we briefly describe in Section 3.2.1 the original
building blocks of the DEUCE framework (the white blocks with
numbers 1-3). Then, in Section 3.2.2, we describe our additions to
the framework to allow OTB integration (gray blocks with num-
bers 4-7). More details about the original DEUCE framework can
be found in [10].

Figure 1. New design of DEUCE framework.

3.2.1 Original DEUCE Building Blocks
The original DEUCE framework consists of three layers:

Application layer. DEUCE applications do not use any new
keywords or any addition to the language. Programmers need only
to put an @Atomic annotation on the methods that they need to
execute as transactions. If programmers want to include in the
@Atomic blocks some operations that are not transactional by na-
ture, like system calls and I/O operations, DEUCE allows that by
using an @Exclude annotation. Classes marked as excluded are not
instrumented by DEUCE runtime.

DEUCE runtime layer. Given this simple application inter-
face (only @Atomic and @Exclude annotations), DEUCE runtime
guarantees that atomic methods will be executed in the context
of a transaction. To achieve that, all methods (even if they are
not @Atomic) are duplicated with an instrumented version, except
those in an excluded class. Also, @Atomic methods are modified
to the form of a retry loop calling the instrumented versions. Some
optimizations are made to build these instrumented versions. More
details about these optimizations can be found in [10].

STM context layer. STM context is an interface which allows
programmers to extend the framework with more STM algorithms.
DEUCE runtime interacts with STM algorithms using only this
interface. Thus, the context interface includes the basic methods
for any STM algorithm, like init, commit, rollback, onReadAccess,
and onWriteAccess.

3.2.2 New Building Blocks to Support OTB
The design of our framework extension has three goals: 1) keep-
ing the simple programming interface of DEUCE; 2) allowing pro-
grammers to integrate OTB data structures’ operations with mem-
ory reads/writes in the same transaction; and 3) giving develop-
ers a simple API to plug in their own OTB data structures and/or
OTB-STM algorithms. To achieve that, we added the following
four building blocks to DEUCE framework.

OTB Data Structures Delegator. In our new framework de-
sign, the application interface is extended with the ability of calling
OTB data structures’ operations. For example, in Algorithm 1, the
user should be able to instantiate set1, and call its operations from
outside the DEUCE runtime agent. At the same time, OTB data
structures have to communicate with STM algorithms to guaran-
tee consistency of the transaction as a whole. This means that OTB
data structures have to interact with both the application layer and
the DEUCE runtime layer.

To isolate the applications interface from the DEUCE runtime
agent, we use two classes for each OTB data structure. The main
class, which contains the logic of the data structure, exists in the
runtime layer (inside the DEUCE agent). The other class exists at

3 2014/2/10

the application layer (outside the DEUCE agent), and it is just a
delegator class which wraps calls to the internal class operations.

This way, the proposed extension in the applications interface
does not affect programmability. There is no need for any addition
to the language or any modifications in the JVM (like the original
DEUCE interface). Also, all synchronization overheads are hidden
from the programmer. The only addition is that the programmer
should include delegator classes in his application code and call
OTB operations through them.

OTB Data Structures. Calls from the application interface are
of two types. The first type is traditional memory reads/writes,
which are directly handled by the OTB-STM context (as described
in the next block). The second type is OTB operations, which are
handled by a new block added to DEUCE runtime, called OTB-
DS (or OTB data structures). The design of an OTB data structure
should satisfy the following three points:

• The semantics of the data structure should be preserved. For
example, set operations should follow the same logic as if they
are executed serially. This is usually guaranteed in optimistic
boosting using a validation/commit procedure as shown in [6].
As a case study, in Section 4.1, we show in detail how the
semantics of linked-list-based set are satisfied using such a
validation/commit procedure.

• Communication between OTB-DS and OTB-STM algorithms.
As shown in Figure 1, OTB data structures communicate with
STM algorithms in both directions. On one hand, when an OTB
operation is executed, it has to validate the previous memory ac-
cesses of the transaction, which requires calling routines inside
the STM context. On the other hand, if a transaction executes
memory reads and/or writes, it may need to validate the OTB
operations previously called in the transaction.

• The logic of the underlying STM algorithm, which affects the
way of interaction between OTB-DS and OTB-STM context.
For example, as we will show in detail in Section 4, OTB-
Set interacts with NOrec [2] and TL2 [3] in different ways. In
the case of NOrec, which uses a global coarse-grained lock,
acquiring semantic locks in OTB-DS may be useless because
all transactions are synchronized using the global lock. On the
contrary, TL2 uses a fine-grained locking mechanism, which
requires OTB-DS to handle fine-grained semantic locks as well.
It is worth noting that although a general way of interaction
between OTB-DS and OTB-STM can be found, this generality
may nullify some optimizations which are specific to each STM
algorithm (and each data structure). In this paper we focus on
the specific optimizations that can be achieved separately on the
two case-study STM algorithms (NOrec and TL2), and we keep
the design of a general interaction methodology that works with
all STM algorithms as a future work.

To satisfy all of the previous points, while providing a common
interface, OTB-DS implements an interface of small sub-routines.
These subroutines allow flexible integration between OTB opera-
tions and memory reads/writes.

• preCommit: which acquires any semantic locks before commit.
• onCommit: which commits writes saved in the semantic write-

sets.
• postCommit: which releases semantic locks after commit.
• validate-without-locks: which validates semantics of the data

structure without checking the semantic locks’ status.
• validate-with-locks: which validates both the semantic locks

and the semantics of the data structure.

Each OTB-STM context calls these subroutines inside its con-
texts in a different way, according to the logic of the STM algorithm
itself. If a developer designs a new OTB-STM algorithm which
needs a different way of interaction, he can extend this interface
by adding new subroutines. It is worth noting that an @Exclude an-
notation is used for all OTB-DS classes to inform DEUCE runtime
not to instrument their methods.

OTB-STM Context. As we showed in Section 3.2.1, STM
context is the context in which each transaction will execute. OTB-
STM context inherits the original DEUCE STM context to support
OTB integration. We use a different context for OTB to preserve
the validity of the applications which use the original DEUCE path
(through block 7). OTB-STM context adds the following to the
original STM context:

• An array of attached OTB data structures, which are references
to the OTB-DS instances that have to be instrumented inside the
transaction. Usually, an OTB data structure is attached when its
first operation is called inside the transaction.

• Semantic read-sets and write-sets of each attached OTB data
structure. As the context is the handler of the transaction, it has
to include all thread local variables, like the semantic read-sets
and write-sets.

• Some abstract subroutines which are used to communicate with
the OTB-DS layer. In our case study described in Section 4, we
only need two new subroutines: attachSet, which informs the
OTB-STM context to consider the set for any further instrumen-
tation, and onOperationValidate, which makes the appropriate
validation (at both memory level and semantic level) when an
OTB operation is called.

To implement a new OTB-STM algorithm (which is usually a
new version of an already existing STM algorithm like NOrec and
TL2, not a new STM algorithm from scratch), developers define an
OTB-STM context for this algorithm and do the following:

• Modify the methods of the original STM algorithm to cope with
the new OTB characteristics. Basically, init, onReadAccess,
commit, and rollback are modified.

• Implement the new subroutines (attachSet and onOperationVa-
lidate) according to the logic of the STM algorithm.

Like OTB-DS, all OTB-STM contexts have to be annotated with
@Exclude annotations.

Transactional Data Structures. This block is only used to sup-
port a unified application interface for both OTB-STM algorithms
and traditional STM algorithms. If the programmer uses a tradi-
tional (non-OTB) STM algorithm and calls an OTB-DS operation
inside the transaction, DEUCE runtime will use a traditional pure
STM implementation of the data structure to handle this operation,
and it will not use optimistic boosting anymore.

4. Integrating OTB-Set with NOrec and TL2
Following the framework design in Section 3, we show a case study
on how to integrate an optimistically boosted version of a linked-
list-based set in the modified DEUCE framework4. This is done
using the following two steps:
• Implementing OTB-Set (in Section 4.1), which inherits OTB-

DS interface and follows its guidelines. We already showed
some general guidelines on how to implement OTB-Set in [6].
But here we give more implementation details, more optimiza-

4 Skip-list-based OTB-Set is implemented in a similar way with few modi-
fications. For space limitations, we only show the linked-list version. More
details can be found in the technical report.

4 2014/2/10

tions and special cases, and more details about integration with
DEUCE5.

• Implementing OTB-STM algorithms (Sections 4.2 and 4.3),
which interact with the new OTB-Set. We use two algorithms
in this case study, NOrec and TL2. As we showed in Section 3,
we will need to implement a new OTB-STM context for both
algorithms6.

4.1 Optimistic Boosted Set
Sets are collections of items which have three basic operations:
add, remove, and contains, with the familiar meanings. No du-
plicate items are allowed (thus, add returns false if the item is al-
ready present in the structure).

All operations on different items of the set are commutative –
i.e., two operations add(x) and add(y) are commutative if x 6= y.
Moreover, two query operations on the same item are commutative
as well. Such a high degree of commutativity between operations
enables fine-grained semantic synchronization.

Linked-list-based OTB-Set is the transactional version of the
lazy concurrent linked-list-based set [7]. For each operation, the list
is traversed without any instrumentation until the involved nodes
are reached. Each operation in OTB-Set involves two nodes (which
are used during validation and commit): pred, which is the largest
item less than the searched item, and curr, which is the searched
item itself or the smallest item larger than the searched item (sen-
tinel nodes are added as head and tail of the list to handle spe-
cial cases). To save needed information about these nodes, we use
the underlying OTB-DS semantic read-sets and write-sets. In par-
ticular, each read-set entry contains the two involved nodes in the
operation and the type of the operation. Each write-set entry con-
tains the same items, and also includes the new value to be added
in case of a successful add operation. The add and remove op-
erations are not necessarily considered as writing operations, be-
cause duplicated items are not allowed in the set. This means that
both contains and unsuccessful add/remove operations are con-
sidered as read operations (which just add entries to the semantic
read-set). Only successful add and remove operations are consid-
ered read/write operations (which add entries to both the read-set
and the write-set).

Algorithm 2 shows the pseudo code of the linked-list operations.
We can isolate five steps of each operation:
• Attaching set to STM context (line 2). This is done by calling

the underlying OTB-STM context’s operation attachSet.
• Local writes check (lines 3-14). Since writes are buffered and

deferred to the commit phase, this step guarantees consistency
of further reads and writes. For example, if a transaction pre-
viously executed a successful add operation of item x, then
further additions of x performed by the same transaction must
be unsuccessful and return false. Furthermore, if a transaction
adds an item and then removes the same item, or vice versa,
operations locally eliminate each other (lines 9 and 14). This
elimination can further improve optimistic boosting’s perfor-
mance. Elimination only removes the entries from the write-set
and leaves the read-set entries as they are, to maintain transac-
tion isolation by validating the eliminated operations at commit.

• Traversal (lines 15-18). This step is exactly the same as in lazy
linked-list. It saves the overhead of all unnecessary monitoring
during traversal that otherwise would be incurred with a native
STM algorithm for managing concurrency.

5 The full implementation details are in the technical report.
6 Note that the original STM contexts of NOrec and TL2 can still be used in
our framework (using block 7 in Figure 1), but they will use an STM-based
implementation of the set rather than our optimized OTB-Set.

Algorithm 2 Linked-list: add, remove, and contains operations.
1: procedure OPERATION(x)

. Step 1: Attach set to OTB-STM context
2: OTB-STM-Context.attachSet(this)

. Step 2: search local write-sets
3: if x ∈ write-set and write-set entry is add then
4: if operation = add then
5: return false
6: else if operation = contains then
7: return true
8: else . remove
9: delete write-set entry & return true

10: else if x ∈ write-set and write-set entry is remove then
11: if operation = remove or operation = contains then
12: return false
13: else . add
14: delete write-set entry & return true

. Step 3: Traversal
15: pred = head and curr = head.next
16: while curr.item < x do
17: pred = curr
18: curr = curr.nerxt

. Step 4: Post Validation
19: OTB-STM-Context.onOTBOperationValidate()

. Step 5: Save reads and writes
20: Compare curr.item with x and check curr.deleted
21: if Successful add/remove then
22: read-set.add(new ReadSetEntry(pred, curr, operation))
23: write-set.add(new WriteSetEntry(pred, curr, operation, x))
24: return true
25: else if Successful contains then
26: read-set.add(new ReadSetEntry(pred, curr, operation))
27: return true
28: else if Unsuccessful operation then
29: read-set.add(new ReadSetEntry(pred, curr, operation))
30: return false

31: end procedure

• Validation (line 19). At the end of the traversal step, the in-
volved nodes are found in local variables (i.e., pred and curr).
At this point, to avoid breaking opacity [5], the transaction must
be post-validated to ensure that it does not see any inconsistent
snapshot. This validation is done by calling the OTB-STM con-
text method onOperationValidate, which guarantees validating
all of the attached OTB-Sets as well as making the necessary
memory-level validations.

• Saving reads and writes (lines 20-30). At this point, the trans-
action can decide on the return value of the operation (line 20).
Then, it modifies its read and write sets. Although all opera-
tions must add the appropriate read-set entry, only the success-
ful add/remove operations modify the write-set (line 23).

4.1.1 OTB-DS interface methods
OTB-Set is communicating with the context of the underlying
OTB-STM algorithm using the subroutines of the OTB-DS inter-
face. OTB-Set implements these subroutines as follows:

Validation: Transactions validate that read-set entries are se-
mantically valid. In addition, to maintain isolation, a transaction
has to ensure that all nodes in its semantic read-set are not locked
by another writing transaction during validation. As it is not always
the case (in some cases, semantic locks are not validated, as shown
in the next section), it is important to make two versions of valida-
tion:
• validate-without-locks: This method validates the read-set en-

tries in a similar way to lazy linked-list. Both pred and curr
should not be deleted, and pred should still link to curr. The
only difference is in the case of successful contains and un-
successful add, in which a simpler validation is used. In these
particular cases, the transaction only needs to check that curr
is still not deleted, since that is sufficient to guarantee that the

5 2014/2/10

returned value is still valid (recall that in lazy list, as well as in
OTB list, if the node is deleted, it must first be logically marked
as deleted, which will be detected during validation). This op-
timization prevents false invalidations, where conflicts on pred
are not real semantic conflicts.

• validate-with-locks: This version did exactly the same function
as the previous one, with the addition of a validation on the
semantic locks as well. This is achieved by implementing locks
as sequence locks (i.e., locks with version numbers). Before
validation, a transaction takes a snapshot of the locks and makes
sure that they are unlocked. After validation, it ensures that the
lock versions are still the same.
Commit: To be flexible when integrating with the STM con-

texts, commit consists of the following subroutines:

Algorithm 3 Linked-list: onCommit.
1: procedure ONCOMMIT
2: sort write-set descending on items
3: for all entries in write-sets do
4: curr = pred.next
5: while curr.item < x do
6: pred = curr
7: curr = curr.next
8: if operation = add then
9: n = new Node(item)

10: n.locked = true
11: n.next = curr
12: pred.next = n
13: else . remove
14: curr.deleted = true
15: pred.next = curr.next

16: end procedure

• preCommit: which acquires the necessary semantic locks on the
write-sets. Like lazy linked-list: any add operation only needs
to lock pred, while remove operations lock both pred and
curr. This can be easily proven to guarantee consistency, as
described in [7].

• postCommit: which releases the acquired semantic locks after
commit.

• onAbort: which releases any acquired semantic locks not yet
released when abort is called.

• onCommit: which publishes writes on the shared linked-list.
This step is not trivial, because each node may be involved
in more than one operation in the same transaction. In these
cases, the saved pred and curr of these operations may change
according to which operation commits first. For example, in
Figure 2(a), both 2 and 3 are inserted between the nodes 1 and
5 in the same transaction. During commit, if node 2 is inserted
before node 3, it should be the new predecessor of node 3, but
the write-set still saves node 1 as the predecessor of node 3.
To ensure that operations in this case are executed correctly,
three guideline points are followed (described in Algorithm 3):
1. Inserted nodes are locked until the whole commit procedure

is finished. Then they are unlocked along with the other
pred and curr nodes (line 10).

2. The items are added/removed in descending order of their
values, regardless of their order in the transaction execution
(line 2). This guarantees that each operation starts the com-
mit phase from a valid non-deleted node.

3. Operations resume traversal from the saved pred to the
new pred and curr nodes (which can only be changed by
operations in the same transaction, otherwise the transaction
will abort). Lines 4-7 encapsulate the logic for this case.

Using these three points, the issue in Figure 2(a) will be solved.
According to the first point, all nodes (1, 2, 3, 5) are locked and no
transaction can access them until commit is finished (any transac-
tion will abort if it tries to access these nodes). The second point

enforces that node 3 is inserted first. Subsequently, according to
the third point, when 2 is inserted, the transaction will resume its
traversal from node 1 (which is guaranteed to be locked and non-
deleted). It will then detect that node 3 is its new succ, and will
correctly link node 2.

The removal case is shown in Figure 2(b), in which node 5 is
removed and node 4 is inserted. Again, 5 must be removed first
(even if 4 is added earlier during the transaction execution), so
that when 4 is added, it will correctly link to 6 and not to 5. The
same procedure holds for the case of the two subsequent remove
operations.

(a) Two add operations (2 and 3). (b) add (4) and remove (5).

Figure 2. Executing more than one operation that involves the
same node in the same transaction.

4.2 Integration with NOrec
NOrec [2] is an STM algorithm which uses a single global lock
at commit time to synchronize transactions. Validation on NOrec
is incremental and value-based. Each transaction validates its read-
set after each read if it finds that the global timestamp has changed,
and then it extends its local timestamp if validation succeeds. At
commit time, the write-set is published on the shared memory.

To integrate NOrec with OTB-Set, two main observations have
to be taken into consideration. First, using a single global lock
to synchronize memory reads/writes can be exploited to remove
the overhead of the fine-grained semantic locks as well. Semantic
validation has to use the same global lock because in some cases the
validation process includes both semantic operations and memory-
level reads. As a result, there is no need to use any semantic locks
given that the whole process is synchronized using the global lock.
Second, both NOrec and OTB-Set use some kind of value-based
validation. There are no timestamps attached with each memory
block (like TL2 for example). This means that both NOrec and
OTB-Set require an incremental validation to guarantee opacity
[5]. They both do the incremental validation in a similar way, which
makes the integration straightforward.

The implementation of OTB-NOrec context subroutines is as
follows7:

init: In addition to clearing the memory-based read-set and
write-set, each transaction should clear the semantic read-sets and
write-sets of all previously attached OTB-Sets, and then it detaches
all of these OTB-Sets to start a new empty transaction.

attachSet: This procedure is called in the beginning of each set
operation (which is previously shown in Algorithm 2). It simply
checks if the set is previously attached, and adds it to the local
array of the attached sets if it is not yet attached.

onOperationValidate: As both memory reads and semantic op-
erations are synchronized and validated in the same way (using the

7 We skipped the implementation details of NOrec itself (and TL2 in the
next section), and concentrate only on the modifications we made on the
context to support OTB.

6 2014/2/10

global lock and a value based validation), this method executes the
same procedure as onReadAccess, which loops until the global lock
is not acquired by any transaction, and then it calls the validate sub-
routine.

validate: This private method is called on both onReadAccess
and onOperationValidate. It simply validates the memory-based
read-set as usual, and then validates the semantic read-sets of all
the attached OTB-Sets. This validation is done using the validate-
without-locks subroutine, which is described in Section 3.2.1, be-
cause there is no use of the semantic locks in OTB-NOrec context.
If validation fails in any step, an abort exception is thrown.

commit: There is no need to call the attached OTB-Sets’ pre-
Commit and postCommit subroutines during transaction commit.
Again, this is because these subroutines deal with semantic locks,
which are useless here. The commit routine simply acquires the
global lock, validates read-sets (both memory and semantic read-
sets) using the validate subroutine, and then starts publishing the
writes in the shared memory. After the transaction publishes the
memory-based write-set, it calls the onCommit subroutine in all of
the attached OTB-Sets, and then it releases the global lock.

rollback: Like preCommit and postCommit, there is no need to
call OTB-Set’s onAbort subroutine during the rollback.

4.3 Integration with TL2
TL2 [3], as opposed to NOrec, uses a fine-grained locking mech-
anism. Each memory block has a different lock. Reads and writes
are synchronized by comparing these locks with a global version-
clock. Also, unlike NOrec, validation after each read is not incre-
mental. There is no need to validate the whole read-set after each
read. Only the lock version of the currently read memory block is
validated. The whole read-set is validated only at commit time and
after acquiring all locks on the write-set.

Thus, the integration with OTB-Set requires validation and ac-
quisition of the semantic locks in all steps. That is why we provide
two versions of validation (with and without locks) in the layer of
OTB-DS. The implementation of OTB-TL2 context subroutines is
as follows:

init: It is extended in the same way as OTB-NOrec.
attachSet: It is implemented in the same way as OTB-NOrec.
onOperationValidate: There are two differences between OTB-

NOrec and OTB-TL2 in the validation process. First, there is no
need to validate the memory-based read-set when an OTB-Set
operation is called. This is basically because TL2 does not use an
incremental validation, and OTB-Set operations are independent
from memory reads. Second, OTB-Sets should use the validate-
with-locks subroutine instead of validate-without-locks, because
semantic locks are acquired during commit.

onReadAccess: Like onOperationValidate, this subroutine has
to call the validation-with-locks subroutines of all of the attached
sets in addition to the original memory-based validation.

commit: Unlike OTB-NOrec, semantic locks have to be consid-
ered for the attached OTB-Sets. Thus, preCommit is called for of
all the attached OTB-Sets right after acquiring the memory-based
locks, so as to acquire the semantic locks as well. If preCommit
of any set fails, an abort exception is thrown. During validation,
OTB-TL2 context calls the validate-with-locks subroutine of the at-
tached sets, instead of validate-without-locks. Finally, postCommit
subroutines are called to release semantic locks.

rollback: Unlike OTB-NOrec, onAbort subroutines of the at-
tached sets have to be called to release any semantic locks that are
not yet released.

5. Evaluation
We now evaluate the performance of the modified framework using
a set micro-benchmark. In each experiment, threads start execution

with a warm up phase of 2 seconds, followed by an execution of
5 seconds, during which the throughput is measured. Each exper-
iment was run five times and the arithmetic average is reported as
the final result.

The experiments were conducted on a 48-core machine, which
has four AMD Opteron (TM) Processors, each with 12 cores run-
ning at 1400 MHz, 32 GB of memory, and 16KB L1 data cache.
The machine runs Ubuntu Linux 10.04 LTS 64-bit.

In each experiment, we compare the modified OTB-NOrec and
OTB-TL2 algorithms (which are internally calling OTB-Set opera-
tions) with the traditional NOrec and TL2 algorithms (which inter-
nally call a pure STM version of the set).

We run two different benchmarks. The first one is the default
set benchmark in DEUCE. In this benchmark, each set operation
is executed in a transaction. This benchmark evaluates the gains
from using OTB data structures instead of the pure STM versions.
However, they do not test transactions which call both OTB op-
erations and memory reads/writes. We developed another bench-
mark (which is a modified version of the previous one) to test such
cases. In this second benchmark, as shown in Algorithm 1, each
transaction calls an OTB-Set operation (add, remove, or contains),
and increment some shared variables to calculate the number of
successful and unsuccessful operations. As a result, both OTB-Set
operations and increment statements are executed atomically. We
justify the correctness of the transaction execution by comparing
the calculated variables with the (non-transactionally calculated)
results from DEUCE benchmark.

5.1 Linked-List Micro-Benchmark
Figure 3 shows the results for a linked-list with size 512. Both
OTB-NOrec and OTB-TL2 show a significant improvement over
their original algorithms, up to an order of magnitude of improve-
ment. This is reasonable because pure STM-based linked-lists have
a lot of false conflicts, as we described earlier. Avoiding false con-
flicts in OTB-Set is the main reason for this significant improve-
ment. The gap is more clear in the single-thread case, as a conse-
quence of the significant decrease in the instrumented (and hence
logged) reads and writes. It is worth noting that in both versions
(with and without OTB), TL2 scales better than NOrec, because
NOrec is a conservative algorithm which serializes commit phases
using a single lock.

5.2 Skip-List Micro-Benchmark
Results for skip-list are shown in Figure 4. Skip-lists do not usually
have the same number of false conflicts as linked-lists. This is
because traversing a skip-list is logarithmic, and the probability of
modifying the higher levels in a skip-list is very small. That is why
the gap between OTB versions and the original STM versions is
not as large as for linked-lists. However, OTB versions still perform
better in general. OTB-NOrec is better in all cases, and it performs
up to 5x better than NOrec for a small number of threads. OTB-
TL2 is better than TL2 for a small number of threads, and it is
almost the same (or slightly worse) for a high number of threads.
Performance gain for a small number of threads is better because
false conflicts still have an effect on the performance. For higher
numbers of threads contention increases, which reduces the ratio
of false conflicts compared to the real conflicts. This reduction in
false conflicts reduces the impact of boosting, which increases the
influence of the integration mechanism itself. That’s why OTB-TL2
is slightly worse. However, plots in general show that the gain of
saving false conflicts dominates this overhead in most cases.

5.3 Integration Test Case
In this benchmark, we have six shared variables in addition to
the shared OTB-Set (number of successful/unsuccessful adds, re-

7 2014/2/10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 t

ra
n

s
/s

e
c
)

Number of threads

NOrec
TL2

OTB-NOrec
OTB-TL2

(a) 80% add/remove, 20% contains

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 t

ra
n

s
/s

e
c
)

Number of threads

NOrec
TL2

OTB-NOrec
OTB-TL2

(b) 50% add/remove, 50% contains

Figure 3. Throughput of linked-list-based set with 512 elements,
for two different workloads.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 t

ra
n

s
/s

e
c
)

Number of threads

NOrec
TL2

OTB-NOrec
OTB-TL2

(a) 80% add/remove, 20% contains

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 t

ra
n

s
/s

e
c
)

Number of threads

NOrec
TL2

OTB-NOrec
OTB-TL2

(b) 50% add/remove, 50% contains

Figure 4. Throughput of skip-list-based set with 4K elements, for
two different workloads.

moves and contains). Each transaction executes a set operation
(50% reads) and then it increments one of these six variables ac-

cording to the type of the operation and its return value. As all
transactions are now executing writes on few memory locations,
contention increases and performance degrades on all algorithms.
However, OTB-NOrec and OTB-TL2 still give better performance
than their corresponding algorithms. The calculated numbers match
the summaries of DEUCE, which justifies the correctness of the
transactions. Also, NOrec versions relatively perform like the pre-
vious case (without increment statements), compared to TL2 ver-
sions. This is because NOrec (like all coarse-grained algorithms)
works well when transactions are conflicting by nature.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 t

ra
n

s
/s

e
c
)

Number of threads

NOrec
TL2

OTB-NOrec
OTB-TL2

(a) linked-list

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 t

ra
n

s
/s

e
c
)

Number of threads

NOrec
TL2

OTB-NOrec
OTB-TL2

(b) skip-list

Figure 5. Throughput of Algorithm 1 (a test case for integrating
OTB-Set operations with memory reads/writes). Set operations are
50% add/remove and 50% contains.

6. Conclusions
We presented an extension of the DEUCE framework to sup-
port integration with transactional data structures that are imple-
mented using the idea of Optimistic Transactional Boosting. As a
case study, we implemented OTB-Set, an optimistically boosted
linked-list-based set, and showed how it can be integrated in the
modified framework. We then show how to adapt two different
STM algorithms (NOrec and TL2) to support this integration.
As a future work, this case study can be generalized with some
slight modifications and some relaxations in the STM-algorithm-
specific optimizations proposed in this paper. Performance of
micro-benchmarks using the modified framework is improved by
up to 10x over the original framework.

References
[1] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary

search tree. In Proceedings of the 17th ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming (PPoPP), pages
161–170. ACM, 2012.

[2] L. Dalessandro, M. Spear, and M. Scott. Norec: streamlining stm by
abolishing ownership records. In Proceedings of the 15th ACM SIG-

8 2014/2/10

PLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 67–78. ACM, 2010.

[3] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Pro-
ceedings of the 20th international symposium on Distributed Comput-
ing (DISC), pages 194–208. Springer, 2006.

[4] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In Pro-
ceedings of the 23rd International Symposium on Distributed Comput-
ing (DISC), pages 93–107. Springer, 2009.

[5] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), pages
175–184. ACM, 2008.

[6] A. Hassan, R. Palmieri, and B. Ravindran. Optimistic transactional
boosting. In Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and practice of parallel programming (PPoPP), Poster
paper, 2014.

[7] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. Scherer, and
N. Shavit. A lazy concurrent list-based set algorithm. Proceedings
of the 9th International Conference on Principles of Distributed Sys-
tems, pages 3–16, 2006.

[8] M. Herlihy and E. Koskinen. Transactional boosting: a methodology
for highly-concurrent transactional objects. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 207–216. ACM, 2008.

[9] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming,
Revised Reprint. Elsevier, 2012.

[10] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency with
java stm. In Third Workshop on Programmability Issues for Multi-
Core Computers (MULTIPROG), 2010.

[11] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with
eager validation. Proceedings of the 20th international symposium on
Distributed Computing (DISC), pages 284–298, 2006.

[12] N. Shavit and D. Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

9 2014/2/10

	Introduction
	Background: Optimistic Transactional Boosting
	Extension of DEUCE Framework
	Programming Model
	Framework Design
	Original DEUCE Building Blocks
	New Building Blocks to Support OTB

	Integrating OTB-Set with NOrec and TL2
	Optimistic Boosted Set
	OTB-DS interface methods

	Integration with NOrec
	Integration with TL2

	Evaluation
	Linked-List Micro-Benchmark
	Skip-List Micro-Benchmark
	Integration Test Case

	Conclusions

