
Transact ’12

On Closed Nesting in Distributed Transactional Memory

Alexandru Turcu
Virginia Tech
talex@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Mohamed Saad
Virginia Tech
msaad@vt.edu

Abstract
Distributed Software Transactional Memory (D-STM) is a recent
but promising model for programming distributed systems. It aims
to present programmers with a simple to use abstraction (trans-
actions), while maintaining performance and scalability similar to
distributed fine-grained locks. Any complications usually associ-
ated with such locks (i.e. distributed deadlock) are avoided. Build-
ing upon the previously proposed Transactional Forwarding Algo-
rithm (TFA), we add support for closed nested transactions. We
further discuss the performance implications of such nesting, and
identify the cases where using nesting is warranted and the relevant
parameters for such a decision. To the best of our knowledge, our
work contributes the first ever implementation of a D-STM system
with support for closed nested transactions and partial aborts.

Keywords distributed systems, software transactional memory,
closed nesting

1. Introduction
Transactional Memory (TM) is a promising model for program-
ming concurrency that is aiming to replace locks. Distributed locks,
the traditional solution for concurrency control in distributed sys-
tems, can often lead to problems that are much harder to debug
than their multiprocessor counterparts. Issues such as distributed
deadlocks and livelocks can significantly impact programmer pro-
ductivity, as finding and resolving the problem is not a trivial task.
Moreover, it is easy to accidentally introduce such errors. Addi-
tional difficulties arise when code composability is desired, because
locks would need to be exposed across composition layers, con-
trary to the practice of encapsulation. This makes building enter-
prise software with support for concurrency especially difficult, as
such software is usually built using proprietary third-party libraries,
without access to the libraries’ source code.

To address these problems, Distributed Software Transactional
Memory (D-STM) was proposed as an alternative concurrency
control mechanism [5]. D-STM systems can be classified by the
mobility of the transactions or data. In the more popular data-flow
model [5–7], objects are migrated between nodes to be operated
upon by the immobile transactions. Alternatively, in the control-
flow model [8], the objects are immobile and are accessed by
transactions using Remote Procedure Calls (RPC).

[Copyright notice will appear here once ’preprint’ option is removed.]

In TM, nesting is used to make code composability easy. A
transaction is called nested when it is enclosed within another
transaction. There are three types of nesting [8, 9]: flat, closed
and open. They differ based on whether the parent and children
transactions can independently abort:

Flat nesting
is the simplest type of nesting, and simply ignores the existence
of transactions in inner code. All operations are executed in the
context of the outermost enclosing transaction, leading to large
monolithic transactions. Aborting the inner transaction causes
the parent to abort as well (i.e. partial rollback is not possible),
and in case of an abort, potentially a lot of work needs to be
rerun.

Closed nesting
In closed nesting, each transaction attempts to commit individ-
ually, but inner transactions do not write to the shared memory.
Inner transactions can abort independently of their parent (i.e.
partial rollback), thus reducing the work that needs to be retried
and increasing performance.

Open nesting
In open nesting, operations are considered at a higher level of
abstraction. Open-nested transactions are allowed to commit to
the shared memory independently of their parent transactions,
optimistically assuming that the parent will commit. If how-
ever the parent aborts, the open-nested transaction needs to run
compensating actions to undo its effect. The compensating ac-
tion does not simply revert the memory to its original state, but
runs at the higher level of abstraction. For example, to compen-
sate for adding a value to a set, the system would remove that
value from the set. Although open-nested transactions breach
the isolation property, this enables increased concurrency and
performance.

Besides providing support for code composability, nested trans-
actions are attractive when transaction aborts are actively used
for implementing specific behaviors. Conditional synchroniza-
tion can be supported by aborting the current transaction if a pre-
condition is not met, and only scheduling the transaction to be re-
tried when the pre-condition is met (for example, a dequeue oper-
ation would wait until there is at least one element in the queue).
Aborts can also be used for fault management: a program may try
to perform an action, and in the case of failure, change to a different
strategy (try...erElse). In both these scenarios, performance can be
improved with nesting by aborting and retrying only the inner-most
sub-transaction.

Previous D-STM work has ignored the subject of partial aborts
and nesting. We extend the existing Java D-STM framework named
HyFlow1 and the previously proposed TFA algorithm to support
closed nesting. The resulting algorithm is named Nested Transac-

1 HyFlow is available on-line, as an open-source project, at http://hyflow.org
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tional Forwarding Algorithm (N-TFA), and is shown to be opaque
and strongly progressive. To the best of our knowledge, this work
contributes the first ever D-STM implementation with support for
closed nesting. We test our implementation through a series of
benchmarks and observe throughput improvements of up to 84%
in specific cases. However, the average performance was only 2%
higher compared to flat transactions. Thus, we identify the kinds of
workloads that are a good match for closed nesting and how various
parameters influence the gain (or loss) in throughput.

The remainder of the paper is organized as follows: Section 2
presents related work on nested transactions and the original TFA
algorithm. In Section 3, we describe our system model. N-TFA is
presented as an extension of TFA in Section 4. We analyze N-TFA
and sketch correctness and liveness proofs in Section 5. Implemen-
tation details and benchmark results are discussed in Section 6. Fi-
nally, we suggest future research directions and conclude the paper
in Sections 7 and 8, respectively.

2. Related work
2.1 Nested Transactions
Nested transactions originated in the database community and were
thoroughly described by Moss in [10]. His work focused on the
popular two-phase locking protocol and extended it to support nest-
ing. In addition to that, he also proposed algorithms for distributed
transaction management, object state restoration and distributed
deadlock detection.

One of the early works introducing nesting to Transactional
Memory was done by Moss and Hosking in [9]. They describe
the semantics of transactional operations in terms of system states,
which are tuples grouping together a transaction id, a memory
location, a read/write flag and the value read or written. They
also provide sketches for several possible HTM implementations,
which work by extending existing cache coherence protocols. Moss
further focuses on open nested transactions in [13], explaining how
using multiple levels of abstractions can help in differentiating
between fundamental and false conflicts and therefore improve
performance.

Moravan et al. [12] implement closed and open nesting upon
their earlier LogTM HTM proposal. They implement it by main-
taining a stack of log frames, similar to the activation stack, with
one frame for each nesting level. Hardware support is limited to
four nesting levels, with any excess nested transactions flattened
into the inner-most sub-transaction. Their experiments show that
closed nesting can, in certain benchmarks, perform up to 10% bet-
ter than flat nesting, but in many cases, it brings no benefit. Open
nesting was only possible to apply to a few benchmarks, but it en-
abled speedups of up to 100%.

Agrawal et al. combine closed and open nesting by introduc-
ing the concept of transaction ownership [14]. They propose the
separation of TM systems into transactional modules (or Xmod-
ules), which own data. Thus, a sub-transaction would commit data
owned by its own Xmodule directly to memory using an open-
nested model. However, for data owned by foreign Xmodules, it
would employ the closed-nesting model and would not directly
write to the memory.

As an alternative mechanism for supporting partial roll-backs,
Koskinen and Herlihy argue for using a checkpointing mechanism
instead of transaction nesting [15]. Checkpoints are a generaliza-
tion of closed nesting: transactions can be rolled back to any pre-
vious checkpoint in order to resolve conflicts. Furthermore, setting
up checkpoints and rollback can be more intelligently controlled
compared to the rigidness of closed nesting, where rollback may
only be performed to an ancestor (enclosing) function call bound-
ary. The drawback for checkpoints is the need to save/restore the

processor context and the activation stack. While C and C++ sup-
port this via the setcontext-family functions, Java by default lacks
support for this functionality.

2.2 Transactional Forwarding Algorithm
TFA[16, 17] was proposed as an extension of the Transactional
Locking 2 (TL2) algorithm [2] for D-STM. It is a data-flow based,
distributed transaction management algorithm that provides atom-
icity, consistency and isolation properties for distributed transac-
tions. TFA replaces the central clock of TL2 with independent
clocks for each node and provides a means to reliably establish
“happens before” relationships between significant events. TFA
uses optimistic concurrency control, acquiring the object-level
locks lazily at commit time.

Each node maintains a local clock, which is incremented upon
local transactions’ successful commits. An object’s lock also con-
tains the object’s version, which is based on the value of the local
clock at the time of the last modification of that object. When a lo-
cal object is accessed as part of a transaction, the object’s version
is compared to the starting time of the current transaction. If the
object’s version is newer, the transaction must be aborted.

Transactional Forwarding is used to validate remote objects and
to guarantee that a transaction observes a consistent view of the
memory. This is achieved by attaching the local clock value to
all messages sent by a node. If a remote node’s clock value is
less than the received value, the remote node would advance its
clock to the received value. Upon receiving the remote node’s reply,
the transaction’s starting time is compared to the remote clock
value. If the remote clock is newer, the transaction must undergo a
transactional forwarding operation: first, we must ensure that none
of the objects in the transaction’s read-set have been updated to a
version newer than the transaction’s starting time (early validation).
If this has occurred, the transaction must be aborted. Otherwise, the
transactional forwarding operation may proceed and advance the
transaction’s starting time.

For completeness, we illustrate TFA with an example. In Fig-
ure 1, a transaction Tk on node N1 starts at a local clock value
LC1 = 19. It requests object O1 from node N2 at LC1 = 24, and
updates N2’s clock in the process (from LC2 = 16 to LC2 = 24).
Later, at time LC1=29, Tk requests object O2 from node N3. Upon
receiving N3’s reply, since RC3 = 39 is greater than LC1 = 29,
N1’s local clock is updated to LC1 = 39 and Tk is forwarded
to start(Tk) = 39 (but not before validating object O1 at node
N2). We next assume that object O1 gets updated on node N2

at some later time (ver(O1) = 40), while transaction Tk keeps
executing. When Tk is ready to commit, it first attempts to lock
the objects in its write-set. If that is successful, Tk proceeds to
validate its read-set one last time. This validation fails, because
ver(O1) > start(Tk), and the transaction is aborted (it will retry
later — not shown in the figure).

3. System model
3.1 Base model
Since we extend upon Saad [16, 17], our work uses the same
system model (which is, in turn, based on Herlihy and Sun [5]).
Specifically, we consider a set of n nodes: {N1, N2, ...Nn}. The
nodes may communicate via message passing links. Messages may
incur communication delays. We can thus represent the network
using an undirected graph G = (N,E, c), where N is the set
of nodes, E is the set of links and c is the function defining
the communication cost. The messages transmitted through the
network are denoted by the set M .

Let O = {O1, O2, ...} be the set of objects accessed using
transactions. Every such object Oj has an unique identifier, idj .
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O1 is updated at LC=14
ver(O1)=14

RC=24 > LC=16
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and validates readset

O1 is invalid because
ver(O1)=40, was 14

Tk aborts

ver(O1)=40

ver(O2)=21

...

Figure 1. Transactional Forwarding Algorithm Example

For simplicity, we treat them as shared registers which are accessed
solely through read and write methods, but such treatment does not
preclude generality. Each object has an owner node, denoted by
owner(Oj). Additionally, they may have cached copies at other
nodes and they can change owners. A change in ownership occurs
upon the successful commit of a transaction which modified the
object.

Let T = {T1, T2, ...} be the set of all transactions. Transactions
have three possible states: active, committed and aborted. Each
transaction has an unique identifier. Any aborted transaction is
later retried using a new identifier. The read-set and write-set of
a transaction Tk are denoted with readset(Tk) and writeset(Tk),
respectively.

3.2 Nesting Model
In an approach identical to Moss and Hoskin [9], we define the
nesting semantics with respect to the system state. The system
state S is the totality of system state entries si. Each system state
entry si = (Tk, idj , w, valOj ) is a tuple aggregating the following
information:

• A transaction identifier Tk.
• An object identifier idj .
• A boolean value w denoting whether the current system state

entry represents a read or a write.
• A value valOj representing the contents of the object read or

written to memory.

For simplicity, we assume that the granularity of read/write op-
erations is at object level. Finer grained (field-level) access is how-
ever possible, and is in fact used throughout our implementation.

Let parent(Tk) denote the parent (enclosing transaction) of a
transaction Tk. If Tk is a top-level transaction, then parent(Tk) =
∅. Each transaction may only have one active child, i.e. parallel
nested transactions are outside the scope of this work.

System state entries with Tk = ∅ represent the globally com-
mitted memory. In our distributed system model, each such entry
refers to the most recently committed version of an object, Oj . By
definition, the system state must contain an entry for each location
of the globally committed memory, i.e. ∀Oj ∈ O,∃si ∈ S | si =
(Tk = ∅, idj , w = 1, valOj ).

A read operation in the context of a transaction Tk is performed
using the following procedure:

• If transaction Tk has a system state entry for object Oj , return
the value valOj of that entry. This can be either part of the read-
set or of the write-set.

• Otherwise, recursively attempt the read operation in the context
of parent(Tk).

This is guaranteed to work, as the system state must specify a value
in the globally committed memory for all possible locations. An
entry si = (Tk, idj , w = 0, valreadOj

) is added to the system
state upon reading of object Oj by transaction Tk, if it does not
already exist. Write operations simply add the appropriate entry to
the system state, si = (Tk, idj , w = 1, valwritten

Oj
).

A transaction Tk is allowed to write an object Oj if for all sys-
tem state entries (Tk2 , idj , w, valOj ) corresponding to object Oj ,
the transaction Tk2 is either Tk or an ancestor of Tk. Reads are
also allowed if w=false for all entries for which Tk2 is not Tk or
an ancestor of Tk. If a read or write operation is not allowed, but a
transaction attempts it anyway, a conflict arises. In our implementa-
tion, the Transaction Manager will resolve the conflict by aborting
all but one of the conflicting transactions.

Upon the successful commit of transaction Tk, the following
actions are performed on the system state:

• Drop all entries for transaction Tk, and also drop the entries
for parent(Tk) that access memory locations which are part of
Tk’s read and write sets.

• Add new entries for parent(Tk) corresponding to the old en-
tries of Tk. Care must be taken when setting the write flag: if
the location of the new entry was in the write-set of either Tk or
parent(Tk), the flag is set to true.

Otherwise, if the transaction is aborted, all entries corresponding to
transaction Tk are dropped from the system state.

Read and write operations do not need to be validated at the
time they occur, as the TFA algorithm uses optimistic concurrency
control. Thus, reads and writes are recorded into a per-transaction
replay-log structure that appears to mimic the set of system state
entries corresponding to the transaction in question.

4. Nested Transactional Forwarding Algorithm
In TFA, transactions are immobile. Furthermore, we also consider
that all sub-transactions of a transaction Tk are created and ex-
ecuted on the same node as Tk. Within these assumptions, it is
straightforward to implement the rules described in the previous
subsection.

Note that there are two types of commit. The original, top-level
commit model is used when a top-level transaction commits the
changes from its replay-log to the globally committed memory.
This commit is only performed after the successful validation of
all objects in the transaction’s read-set, as defined by the TFA
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algorithm [17]. If the validation fails, i.e. at least one of the objects’
version is newer than the current transaction’s starting time, the
transaction is aborted. The new merge commit model is used when
a sub-transaction commits the changes from its replay-log to the
replay-log of its parent.

A number of questions about how to apply TFA in the context
of nested transactions arise. In TFA, every transaction commit
increments the node-local clock and updates the affected objects’
lock version. Should these operations also be performed upon the
commit of a sub-transaction? Which objects should be processed
during the early-validation procedure? What is the meaning of
transaction forwarding inside a sub-transaction?

By answering these questions, we design a protocol which we
will call Nested Transactional Forwarding Algorithm (N-TFA).
Additionally, we must note that two variations of N-TFA can be
obtained based on whether merge commits are conditioned by a
read-set validation or occur unconditionally. We will call them
N-TFA with validation (N-TFA w/V) and N-TFA without valida-
tion (N-TFA w/o V), respectively.

Assume that transaction Tk opened and read an object O1.
Let Tk2 be a sub-transaction of Tk. Assume that Tk2 also reads
object O1, and moreover, Tk2 can successfully commit (O1 was
not modified by any other transaction). Intuitively, Tk2 should not
update the object’s lock version when it commits, because, the
object as seen by other transactions did not change. If the version
was updated at this point, other unrelated transactions would be
forced to unnecessarily abort due to invalid read-set even if Tk

eventually aborts (due to other objects) without changing O1 in the
globally committed memory.

In order to maintain similarity with the original TFA, all objects
will be validated against the outer-most transaction’s starting time.
While we could imagine an algorithm where sub-transaction’s start
times were used to validate objects, doing so would only add unnec-
essary complexity and would provide no real benefit. Therefore, all
transaction forwarding operations must be operated upon the start-
ing time of the root transaction.

Summarizing the previous two observations, the starting time of
sub-transactions is not used for object validity verification and the
object versions are not updated upon a sub-transaction’s commit.
Consequently, merge-commits and the start of new sub-transactions
are not globally important events and should not be recorded by
incrementing node-local clocks. If the clocks were incremented on
such events, remote nodes would need to perform the transaction
forwarding operation unnecessarily, only to find that no objects
were changed. This is undesirable as the forwarding operation bears
the overhead of validating all objects in the transaction’s read-
set. Additionally, since no global objects are changed at merge-
commits, no locks need to be acquired for such commits.

Early validation is the process that checks for the consistency of
all objects in a transaction’s read-set before advancing the transac-
tion’s starting time. If early validation was performed on only the
objects in the current sub-transaction (say, Tk2), a situation may
arise when an object in a previous sub-transaction (say, Tk1) be-
comes inconsistent. In such a case, the parent transaction’s clock
would be advanced, thereby erasing any evidence that Tk1’s object
is inconsistent. Thus, early validation must process all objects en-
countered to date by the outer-most enclosing transaction and all of
its children.

In case one or more objects are detected as invalid, the upper-
most transaction that contains an invalid object and all of its chil-
dren should be aborted. In TFA, it was sufficient to stop the valida-
tion procedure when the first invalid object is observed. However,
with N-TFA, all objects within the root transaction must be vali-
dated (ideally in parallel) in order to determine the best point to
roll back to.

N1
executing
txn Tk

N2
O1 is updated
before Tk2 begins

Tk2 requests O1 Tk3 operates on O1, 
which is cached locally

Sub-txn Tk1
does some work 
and commits

x

O1 is updated again 
after being sent to Tk

Sub-txn Tk2

Sub-txn Tk3 nested
inside Tk2

o

An op. by Tk2 triggers 
O1 early validation

O1 validation fails

Tk2 and Tk3 
are aborted, and 

execution is rolled back 
to the start of Tk2, which executes again.

Figure 2. Nested Transactional Forwarding Algorithm Example

Let’s now look at an example of N-TFA (Figure 2). The top-
level transaction Tk is executing on node N1. A sub-transaction Tk1

executes and commits successfully. Next, another sub-transaction
Tk2 opens an object O1, which is located on node N2. Tk2 spawns
a further sub-transaction, Tk3 which operates on O1. Assume that at
this point sub-transaction Tk3 performs an operation that attempts
to validate O1 (such as an early validation or a merge-commit)
and this validation fails. Under TFA, this would abort the root
transaction Tk, including the work done by sub-transaction Tk1.
N-TFA on the other hand only aborts as many sub-transactions are
needed to resolve the conflict. In this case, only Tk2 and Tk3 need to
abort. The transaction will be rolled back to the beginning of Tk2,
such that the next operation performed is retrieving a new copy of
the previously invalid object, O1.

5. Analysis
5.1 N-TFA Properties
N-TFA maintains the properties of the original TFA, in particular,
opacity and strong progressiveness. The proofs are straightforward
extensions to the original TFA proofs, and were omitted here for
space reasons (but are available in our technical report [23]).

Opacity [18] is a correctness criterion proposed for memory
transactions. A transactional memory system is opaque if the fol-
lowing conditions are met:

• Committed transactions appear to execute sequentially, in their
real-time order.

• Any modifications done by aborted or live transactions to the
shared state are never observed by any other transaction.

• All transactions observe a consistent view of the system at all
times.

Theorem 5.1. N-TFA ensures opacity.

Strong Progressiveness is TFA’s progress property. On a trans-
actional memory system, strong progressiveness implies the fol-
lowing:

• A transaction without any conflicts must commit.
• Among a set of transactions conflicting on a single shared

object, at least one of them must commit.

Theorem 5.2. N-TFA ensures strong progressiveness.

5.2 Effect on performance
There are two possible performance benefits of N-TFA over the
original TFA. First, N-TFA introduces the possibility of partial
rollback, when a conflicting sub-transaction can be retried by itself,
without aborting its parent. This implies that less work needs to be
retried and should lead to increased performance.

On Closed Nesting in Distributed Software Transactional Memory 4 2011/12/8



A second possible performance benefit due to N-TFA w/V is the
fact that conflicts can be detected earlier. Under TFA, objects are
validated at commit time and when remote commits are detected by
comparing local and remote clock values. N-TFA w/V additionally
validates the objects at sub-transaction commit time. In order to
reason whether this can lead to any performance benefit, we need
to consider several questions:

• In what cases is the number of validations performed under TFA
too small and thus the additional validations of N-TFA would
improve performance?

• In what cases TFA performs enough validations such that any
extra validations are not warranted for?

• Is the cost of the validation operation small enough to warrant
introducing extra validations?

Intuitively, if commits occur often in the system, early valida-
tions are also frequent, thus negating the possible benefits of N-
TFA. This is linked to the proportion of read-only transactions in
the workload: greater the number of read-only transactions, greater
should be the benefit of N-TFA w/V. It is still unclear whether N-
TFA w/V is to be preferred at all when compared to N-TFA w/o
V.

Other parameters are less straightforward to reason about. Such
parameters that may have effects are: number of objects loaded by
a sub-transaction, amount of processing done by a sub-transaction,
depth of nesting, number of children a parent transaction may
have, etc. The effects of these parameters can however be evaluated
experimentally.

6. Experimental evaluation
We implemented N-TFA in order to quantify the performance im-
pact of closed nesting in the distributed STM environment. We also
seek to identify the kinds of workloads that are most appropriate
for using closed nesting instead of flat transaction.

6.1 Implementation details
We implemented N-TFA by extending HyFlow, the Java Dis-
tributed STM framework proposed by Saad [19], which in turn is
based on the Deuce STM [20]. HyFlow’s architecture is modular,
allowing pluggable support for lookup protocols, transactional syn-
chronization and recovery mechanisms, contention management
policies, cache coherence protocols, and network communication
protocols. HyFlow doesn’t require compiler or JVM support, and
presents to the programmer a clean interface based on annotations.

In order to support nesting, we inserted an additional layer of
logic between the code of a parent transaction and the code of
its sub-transactions. This extra logic handles the partial rollback
mechanism and the merge-commits. It was designed to be flexible
and to provide support for all three types of nesting: flat, closed
and open. While it supports flat nesting and could, in theory, be
automatically inserted for every function call within a transaction,
doing so would unnecessarily degrade performance.

Instead, we chose to manually insert this logic only in those lo-
cations where spawning sub-transactions is desirable. The down-
side of this approach, at least for now, is that the programmer
must acknowledge the difference between regular function calls
and closed-nested sub-transactions and write his or her code ac-
cordingly. Regular function calls must pass a transactional context
variable as an additional parameter (compared to non-transactional
code). Methods that spawn sub-transactions do not need any ex-
tra parameters, but must include the code implementing the extra
logic mentioned above. (Modifying the automatic instrumentation
present in both Deuce STM and HyFlow to support this behavior is
future work.)
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Figure 3. Performance change by benchmark.

6.2 Experimental settings
The performance of N-TFA was experimentally evaluated using a
set of distributed benchmarks consisting of two monetary applica-
tions (bank and loan) and three micro-benchmarks (linked list, skip
list, and hash table). We record the throughputs obtained when run-
ning the benchmarks with the same set of parameters under both
closed and flat nesting, and we report on the relative difference
between them. Most of our figures relay two values: the average
and the maximum. The average value represents multiple runs of
the experiment under increasing number of nodes, while the max-
imum settles on the number of nodes that gives the best results in
favor of closed nesting. Unfortunately, we cannot compare our re-
sults with any competitor D-STM, as none of the two competitor
D-STM frameworks that we are aware of support closed nesting or
partial aborts [21, 22].

We targeted the effect of several parameters:

• Ratio of read-only transactions to total transactions (denoted in
figure legends with %) was already discussed in Section 5.2.

• Length of transaction in milliseconds (L) is used in some tests
to simulate transactions that perform additional expensive pro-
cessing and therefore take longer time.

• Number of objects (o) is used to control the amount of con-
tention in the system. The meaning of this number is benchmark-
dependent.

• Number of calls (c) controls the number of operations per-
formed per test. In closed-nested tests, this directly controls the
number of sub-transactions.

Our experiments were conducted using up to 48 nodes. Each
node is an AMD Opteron processor clocked at 1.9GHz. We used
the Ubuntu Linux 10.04 server operating system and a network with
1ms end-to-end link delay. Each node spawns transactions using up
to 16 parallel threads, resulting in a maximum of 768 concurrent
transactions. While this number may not seem high, we focused on
high-contention scenarios by only allowing a low number of objects
in the system.

6.3 Experimental results
Our experiments have shown that N-TFA w/V performs consis-
tently worse than N-TFA w/o V. The cost of object validations is too
great to justify introducing more validations than absolutely neces-
sary, even when all objects are validated in parallel. Thus, from this
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Figure 6. Linked-list micro-benchmark. First group varies read-ratio for
short transactions. In the second group, transaction length is varied.
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Figure 7. Hash-table micro-benchmark. First group shows increasing
number of calls on hash-tables with 7 buckets. Second group shows the ef-
fect of increasing transaction length. Third group shows increasing number
of calls on hash-tables with 11 buckets.

10

5

0

5

10

15

20
%

 s
pe

ed
up

 c
lo

se
d 

vs
 fl

at

L 10 o 7 % 10 c 3

L 10 o 7 % 20 c 3

L 10 o 7 % 40 c 3

L 10 o 7 % 50 c 3

L 10 o 7 % 60 c 3

L 10 o 7 % 80 c 3

L 10 o 7 % 90 c 3

L 80 o 7 % 20 c 3

L 80 o 7 % 50 c 3
L 80 o 7 % 80 c 3

L 10 o 7 % 20 c 5

L 10 o 7 % 50 c 5

L 10 o 7 % 80 c 5

Results: hashtable-%

Average
Maximum

Figure 8. Hash-table read-ratio plot. First group shows the effect of
increasing read-ratio on short transactions with 3 calls. Second group shows
the effect of the same parameter on longer transactions. Third group targets
transactions with 5 calls.

point on, we will only discuss N-TFA without validation and will
refer to it as simply N-TFA. All results we present refer to N-TFA
w/o V.

The results of our experiments are shown in Figures 3-11. Fig-
ure 3 shows a summary view of the improvement for each of our
benchmarks. Figures 4-10 provide details on each of the bench-
marks. Finally, Figure 11 looks at the scalability of N-TFA.

The performance of closed nesting varies significantly com-
pared to flat nesting (see Figure 3). The single worst slowdown
recorded was 42%, while the best speedup was 84%. Across all ex-
periments, closed nesting illustrated 2% (on average) faster than flat
nesting. However, the performance improvements depend strongly
on the workload. Within our benchmarks, closed nesting performed
worst for Skip-list (10.4% average slowdown) and best for Bank
(15.3% average speedup).

These results lead us to believe that in workloads where each
transaction accesses many different objects (like in Linked-list and
Skip-list), closed nesting will be slower than flat transactions. On
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Figure 9. Skip-list micro-benchmark. Shows the effect of increasing read-
ratio on tests with one, two and three operations performed in a transaction,
respectively.
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Figure 10. Skip-list micro-benchmark. Shows the effect of increasing
transaction length. First group contains transactions with 2 calls. For the
second group, the number of calls is 3. The last group has 80% reads.

20

0

20

40

60

80

100

%
 s

pe
ed

up
 c

lo
se

d 
vs

 fl
at

n 4 n 12

n 24
n 36

n 48

n 4
n 12

n 24

Results: by-n

Average
Maximum

Figure 11. Effect of number of nodes participating in the experiment.
First group shows the Bank benchmark with 16 threads/node. Second group
shows the Skip-list micro-benchmark, with 4 threads/node.

the other hand, in workloads where transactions access few objects
(like Bank, Loan and Hash-table), greater benefit can be obtained
from closed nesting.

The most reliable parameter to influence the behavior of closed
nesting appears to be the number of calls. In both Hash-table
(Figure 7 groups 1 and 3) and Skip-List (Figure 9 between groups),
we observe that the best performance is achieved with around 2-5
calls per transaction (workload dependent), after which it declines.

The other parameters that we observed (read ratio and transac-
tion length) did not lead to any consistent trends. In some cases,
increased read-ratio lead to better performance (e.g. Loan in Fig-
ure 5 group 2 and Hash-table with c = 5, o = 7 in Figure 8
group 3). Other cases showed a sweet spot in the middle of the
range (Hash-table with c = 3, o = 7 in Figure 8 groups 2 and
3). Yet other cases show the opposite effects: performance nega-
tively correlated with read-ratio on Skip-list (see Figure 10 groups
1 and 3), or worst performance in the middle of the range (Skip-list
in Figure 10 group 2, Bank in Figure 4 group 2 and, most obvi-
ously, Linked-list in Figure 6 group 1). Transaction length has a
similar unpredictable influence: negative correlation on Bank (Fig-
ure 4 group 1) and Hash-table (Figure 7 group 2), middle range
peak on Loan (Figure 5 group 1) and middle range dip on Skip-list
(Figure 10 group 1).

The number of objects parameter was only varied in one bench-
mark (Hash-table), so we cannot formulate any trends. This pa-
rameter did not apply in other benchmarks such as as Linked-list
and Skip-list. In our particular case we observe that closed nesting
seems to benefit somewhat from the reduced contention enabled by
more hash buckets (Figure 7 between groups 1 and 3).

From the experiment to evaluate closed nesting’s scalability
(Figure 11), we observe that the performance drops with increasing
nodes until about 19 concurrent transactions per object (as seen
on Bank in group 1: 12 nodes × 16 threads / 10 objects). After
that threshold, closed nesting performs increasingly better than flat
nesting.

7. Future Work
An important direction for future work is to improve average-case
performance. One possible approach is to consider checkpoints
for performing partial aborts [15]. Checkpoints may prove more
flexible than closed nesting: it may be possible to tune (manually
or automatically) the locations of inserted checkpoints and thereby
improve the performance gained from partial aborts.

Another direction of future work is to reduce the incidence of
conflicts across the board by allowing transactions to read from
older versions of objects – i.e., combining multi-version (dis-
tributed) concurrency control with closed nesting.

8. Conclusions
We presented N-TFA, an extension of the Transactional Forward-
ing Algorithm that implements closed nesting in a Distributed Soft-
ware Transactional Memory system. N-TFA guarantees opacity
and strong progressiveness. We implemented N-TFA in the HyFlow
D-STM framework, thus providing (to the best of our knowledge)
the first-ever D-STM implementation to support closed nesting.
Our N-TFA implementation, although is on average only 2% faster
than flat transactions, enables up to 84% speedup in certain cases.

We determined that closed nesting best applies for simple
transactions that access few objects. The number of simple sub-
transactions is important for the performance of closed-nesting,
and we found that N-TFA performs best with 2-5 sub-transactions.
N-TFA scales better than TFA, although the performance dips at
around 19 concurrent transactions per object.
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