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Abstract—The last two decades witnessed the success of many efficient designs of concurrent data structures. A large set of them
has a common base principle: each operation is split into a read-only traversal phase, which scans the data structure without locking or
monitoring, and a read-write commit phase, which atomically validates the output of the traversal phase and applies the needed
modifications to the data structure. In this paper we introduce Optimistic Transactional Boosting (OTB), an optimistic methodology for
extending those designs in order to support the composition of multiple operations into one atomic execution by building a single
traversal phase and a single commit phase for the whole atomic execution. As a result, OTB-based data structures are optimistic and
composable. The former because they defer any locking and/or monitoring to the commit phase of the entire atomic execution; the
latter because they allow the execution of multiple operations atomically. Additionally, in this paper we provide a theoretical model for
analyzing OTB-based data structures and proving their correctness. In particular, we extended a recent approach that models
concurrent data structures by including the two notions of optimism and composition of operations.

Index Terms—Composability, Transactional Memory, Concurrent Data Structures, Linearizability.
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1 INTRODUCTION

The increasing ubiquity of multi-core processors motivated the
development of data structures that can exploit the hardware par-
allelism of those processors. The current widely used concurrent
collections of elements (e.g., Linked-List, Skip-List, Tree) are well
optimized for high performance and ensure isolation of atomic
operations, but they do not compose. For example, it is hard to
modify the efficient concurrent linked-list designs [1] to allow
an atomic insertion of two elements: if the add method internally
uses locks, as in [2], issues like managing the dependency between
operations executed in the same atomic block of code, and avoid-
ing executions with deadlock due to the chain of lock acquisitions,
may arise. Similarly, composing non-blocking operations, as those
in [3], is challenging because of the need to atomically modify
different places of the data structure using only basic primitives,
such as CAS operations. Lack of composability is a limitation of
well-known data structure designs, especially for legacy systems,
as it makes their integration with third-party software difficult. In
this paper we focus on providing high performance composable
data structures.

Transactional Memory (TM) [4], [5] is a programming
paradigm that leverages the transaction abstraction to ensure
atomicity of a block of code, and it can be used for providing data
structures with composable operations. However, monitoring all of
the memory locations accessed by a transaction while executing
data structure operations results in a significant overhead, mainly
due to the occurrence of false conflicts. For example, if two
transactions attempts to insert two different elements into a linked-
list, these two insertions are usually commutative (i.e., they can be
executed concurrently without affecting their correctness). How-
ever, TM inherently cannot detect this commutativity property
because it is not able to capture the semantics of the data structure
itself, and can raise a false conflict, restarting the execution of one

• Authors are with the Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, 24060. Dr. Ahmed Hassan is currently
affilieted with University of Alexandria in Egypt.

• E-mails: {hassan84,robertop,peluso,binoy}@vt.edu.

of them. As a result, TM-based data structures perform inferior to
their optimized, concurrent counterparts. Although this overhead
exists for both Software Transactional Memory (STM) [6] and
Hardware Transactional Memory (HTM) [4], in this paper we
focus on software solutions.

Figure 1 shows an example of a false conflicts occurring in a
sorted linked-list. By relying on almost all TM implementations
(except some, such as [7], [8]), if a transaction t1 attempts to
insert 55 in the linked-list, it has to keep track of all the memory
locations associated with the traversed nodes (gray nodes in the
figure). Assume now that a concurrent transaction t2 successfully
inserts 4 by modifying the link of node 2 to point to node 4
instead of node 5. In this case, t1 cannot successfully complete
its execution because the tracked nodes 2 and 5 experienced a
change made by t2 and therefore t1 should be restarted. This is a
false conflict because the insertion of 55 should not be affected
by the concurrent insertion of 4 (i.e., the two operations are
commutative). In some cases, like long linked-lists, these false
conflicts dominate any other overheads in the system.

Importantly, most of the efficient concurrent (non-composable)
linked-lists, such as fine-grained and lock-free linked-lists [1], do
not suffer from this false conflict because they are able to exploit
data structure semantics.

Fig. 1. An example of false conflicts in a sorted linked-list.

In this paper, we provide a methodology for boosting the
efficient concurrent data structure designs to be composable while
preserving their high performance. To do so, we identify two main
challenges to address: i) maximizing the number of optimizations
in the concurrent version that are not nullified in the composable
version due to the generality of the proposed methodology; ii)
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providing a theoretical model for such methodology that helps in
analyzing the composable versions of a concurrent data structure
and formally proving its correctness. The two challenges listed
above form the main objectives of this paper.

Regarding the first objective, we present Optimistic Transac-
tional Boosting (OTB), an optimistic methodology for converting
concurrent data structures into composable ones. In OTB, data
structure operations belonging to the same atomic block of code
do not acquire locks and modify the shared data structure at
encounter time, as a typical concurrent data structure design would
do. Instead, they populate their changes into local logs during their
execution, deferring lock acquisitions and modifications until the
execution of the whole atomic block is completed. This way, OTB
combines the benefits of the optimized design of concurrent data
structures; of the custom validation of the composable execution,
which aims at verifying the semantics of the data structure itself,
as introduced in [9]; and of the optimistic concurrency control of
transactional memory.

Following OTB’s guidelines, in this paper we show the design
and implementation of two different abstract data types: set, which
is implemented internally using linked-list; and priority queue,
which is implemented using heap and skip-list. Our experimental
results show a significant improvement in the performance of
OTB-based data structures over existing (non-optimized) compos-
able implementations (up to 2× better). Solutions attempting to
overcome the limitations tackled by OTB are outlined in Section 3.
Among them, OTB finds inspiration from Herlihy and Koskinen’s
Transactional Boosting (TB) methodology [9]. This is because
TB converts concurrent data structures to composable (also called
transactional) ones by providing a semantic layer on top of
existing concurrent data structures. TB has well-known downsides
that limit its applicability (detailed later), while OTB overcomes
them by using a more optimistic design.

Our second main contribution is a theoretical framework for
proving the correctness of OTB-based data structures. In this paper
we did not limit ourselves to provide a formal correctness proof for
the presented OTB data structures. Instead, given the essence of
OTB, which is proposing guidelines to produce new composable
data structures, and the complexity that is always associated with
proving their correctness, we decided to formulate a model to
help designers reason about the correctness of composable data
structures. Specifically, we extend a recent approach that models
concurrent data structures [10], [11], and incrementally we ex-
tended such a model to be suitable for OTB-based data structures.
This second contribution of the paper does not simply enrich
the discussion about OTB, but it represents an equally important
step forward towards proving the correctness of concurrent and
composable data structures.

The rest of the paper is organized as follows. Section 2 details
the OTB methodology. Section 3 compares OTB with the other
solutions in literature. Section 4 shows how to use OTB to boost
different concurrent data structures with different characteristics.
Section 5 introduces the theoretical model for OTB-based data
structures. We evaluate OTB-Based data structures in Section 6
and conclude in Section 7.

2 OPTIMISTIC TRANSACTIONAL BOOSTING

Without loss of generality, we define a concurrent data structure
as an abstract data type accessed by a set of primitive operations
in the form of:

ret OP(arg)

where arg and ret abstract the operation’s arguments and return
values, respectively. Importantly, these primitive operations are
assumed to be linearizable on the concurrent data structure.

Optimistic Transactional Boosting (OTB) is a methodology
for boosting concurrent data structures to be composable, which
means adding the ability to perform more than one of its primitive
operations as a single atomic execution. To do that, OTB offers
the following new operation to application programmers, which
we name composite:

rets[] Composite-OP(n, ops[], args[])

This composite operation includes the invocation of a number of n
primitive operations. The arrays ops[] and args[] define those
n operations with their arguments, and the array rets[] stores
the return values of those operations. These arrays are assumed
to be ordered thus, for instance, the triple ops[0], args[0], and
rets[0] depicts the type, arguments, and return value of the first
invoked primitive operation; and so forth for all the remaining
n-1 primitive operations. For example, considering the concur-
rent linked-list-based set described in Section 4.1, the operation
Composite-OP(2, {“add”, “remove”}, {3, 5}) atomically
executes two primitive operations, which are inserting the element
3 into the set and removing the element 5 from it, and returns an
array of their return values.

Throughout the paper, we often use the term “transaction”
to refer to the Composite-OP operation because, similar to
the transaction abstraction, Composite-OP provides atomic
execution of multiple primitive operations. However, under our
assumptions any other operation different from the primitive
operations of the underlying concurrent data structure is not
allowed to be invoked; otherwise, the overall correctness might
not be guaranteed. Furthermore, our assumptions do not allow
a Composite-OP operation to include primitive operations on
different data structures. Extending the programming model to
allow non-primitive operations to be executed atomically along
with primitive operations, and to include operations on multiple
data structures in a single Composite-OP operation is left as
future work. An initial design of such extended programming
model has been already presented in [12].

2.1 Methodology
OTB’s key observation is that a large set of concurrent data
structures (e.g., [1], [2], [13]) has a common feature: data structure
operations have an unmonitored traversal step, in which the shared
data structure is traversed without locking or instrumenting any
access of its nodes. To guarantee consistency, this unmonitored
traversal is followed by a validation step after acquiring the appro-
priate locks (to preserve the data structure semantics) and before
modifying the shared data structure. We call this set optimistic
data structures due the optimism in their operation’s traversal
steps. OTB modifies the design of this class of data structures
to support the composition of their operations. Basically, the OTB
methodology can be summarized in three main guidelines.
(G1) Each primitive operation is divided into three steps:

- Traversal. This step scans the data structure, and computes
the operation’s results (i.e., its postcondition) and what
it depends on (i.e., its precondition). This requires us to
define what we call semantic read-set and semantic write-
set, which are private sets shared by all primitive operations
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of a composite operation. The semantic read-set maintains
information of the nodes that need to be monitored in
order to preserve the correct linearization of each primitive
operation of a composite operation. On the other hand, the
semantic write-set is used to record the modifications that
should be applied to the shared data structure to make each
primitive operation permanent in memory. Note that, we
use the term “semantic” because, as opposed to classical
TM processing, our semantic read-/write-sets do not store
the memory locations read and written during the operation
execution; they rather store information needed to preserve
the data structure semantics and its linearization.

- Validation. This step checks the validity of the precon-
ditions. Specifically, the entities stored in the semantic
read-set are validated to ensure that all invoked primitive
operations are correctly linearized.

- Commit. This step performs the modifications on the shared
data structure. Unlike concurrent data structures, this step
is not done at the end of each primitive operation. Instead,
it is deferred to a single commit step of the enclosing
Composite-OP operation. All information needed for
performing this step are maintained in the semantic write-
sets during the traversal step. To publish the write-sets, a
classical two-phase locking is used. This locking mech-
anism done over the semantic write-set preserves data
structure semantics in case of concurrent updates, and also
prevents conflicts at the memory level.

(G2) Data structure design is adapted to support linearizable
Composite-OP operations. OTB provides the following
guidelines to guarantee that a Composite-OP operation,
which consists of n primitive operations, is linearizable.
(G2.1) Each primitive operation scans the local semantic

write-set first, before accessing the shared data struc-
ture. This is important to include the effect of the ear-
lier (not yet published) primitive operations in the same
Composite-OP operation.

(G2.2) The semantic read-set is validated during the commit
step of the Composite-OP operation (which combines
the commit steps of all its primitive operations). This
step is needed to guarantee that each Composite-OP
operation observes a consistent state of the system before
commit. Optionally, the semantic read-set is also validated
after the traversal step of each primitive operation. This
validation has two goals. First, it allows the detection
of inconsistencies at encounter time rather than at com-
mit time, which might positively impact performance.
Second, it may be needed if stronger guarantees than
linearizability are required, such as opacity [14] or LS-
linearizability [15].

(G2.3) During the commit step of a Composite-OP op-
eration, locks on all entries of the semantic write-set are
acquired before performing any physical modification on
the shared data structure.

(G2.4) Modifications required by primitive operations are
applied during the commit step of the enclosing
Composite-OP operation in the same order as they ap-
peared in the Composite-OP operation itself. In case the
outcome of a primitive operation influences the subsequent
primitive operations recorded in the semantic write-set, the
entries of those operations are updated accordingly.

(G2.5) Results of all primitive operations have to be vali-

dated, even if the original (concurrent) operation does not
make any validation (like contains operation in set, as
we show in Section 4.1). The goal of validation in these
cases is to ensure that each operation’s result is still the
same at the commit step of the enclosing Composite-OP
operation.

(G3) Data structure design is adapted for more optimizations.
Each data structure can be further optimized according to
its own semantics and implementation. For example, in set,
if an item is added and then deleted in a Composite-OP
operation, both operations eliminate each other and can be
completed without physically modifying the shared data
structure itself.

Unlike the first two guidelines, which are general for any
optimistic data structure, the way to deploy the third guideline
varies from one data structure to another. It gives a hint to the
developers that now data structures are no longer used as a
black box, and further optimizations can be applied to improve
performance. It is worth to note that the generality of the first
two guidelines does not entail that they can be applied “blindly”
without being aware of the specific data structure’s semantics and
how it is linearized. In fact OTB performs better than the naive
TM-based data structures mainly because it exploits semantics.
We believe OTB’s guidelines make a clear separation between
the general outline that can be applied to any optimistic data
structure (like validation in G2.2, and commit in G2.4, even if
the validation/commit mechanisms themselves vary from one data
structure to another) and the optimizations that are related to the
specific data structure implementation.

2.2 OTB Interface

We now develop the aforementioned guidelines to produce a set of
APIs that can be used to implement a Composite-OP operation.
Although the implementation of those APIs still depends on
the semantics of each data structure, they allow developers to
follow a more rigorous procedure while designing new OTB data
structures. Moreover, these APIs can be used as an abstraction for
different implementations, which allows for a better reusability
and maintenance of the code. For example, replacing the linked-
list implementation of OTB-set with a tree implementation would
require minimal changes in the application’s source code thanks
to the new APIs. In Section 4, we introduce case studies on how
to use those APIs to develop OTB sets and priority queues.

We present the APIs in the same order they should be invoked
to implement a Composite-OP operation. The first step when
such an operation is called is to execute the traversal phases of its
primitive operations in sequence. Those traversal phases should
implement the following interface:

ret PRIMITIVE-OP-TRAVERSAL(OP, arg,
read-set, write-set)

According to G1 and G2.1, PRIMITIVE-OP-TRAVERSAL
has three steps: scanning the semantic write-set, traversing the
data structure (similar to the concurrent version), and then
recording the primitive operation’s postconditions in the se-
mantic read/write-sets. That is why it is required to pass
the operation’s semantic read/write-sets as (by-reference) argu-
ments. According to guideline G2.2, an optional forth step in
PRIMITIVE-OP-TRAVERSAL is the post-validation of the se-
mantic read-set, which implements the following interface:
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bool VALIDATE(read-set)

After executing the traversal phases of all the primitive oper-
ations, the commit procedure of the enclosing Composite-OP
operation is invoked, using the following interface:

ret COMPOSITE-OP-COMMIT(read-set, write-set)

As dictated by guidelines G2.2–G2.5, this procedure starts by
acquiring locks over entities in the semantic write-set. After
that, the semantic read-set is validated (using the same afore-
mentioned interface), then the semantic write-set is published,
and finally locks are released. To avoid deadlock, any failure
during the lock acquisition implies aborting and retrying the whole
Composite-OP operation (by releasing all acquired locks).
Also, any failure during validation (either after traversal or at com-
mit) forces the Composite-OP operation to restart its execution
from the beginning.

3 RELATED WORK

3.1 Transactional Boosting
Transactional Boosting (TB) [9] is a methodology to convert
concurrent data structures to transactional ones by deploying a
semantic layer that prevents non-commutative operations from
operating concurrently. TB has downsides that limit its applica-
bility. Those downsides are raised because in TB: i) the abstract
lock acquisition and modifications in memory are eager (i.e., they
happen encounter time), and ii) the technique uses the underlying
concurrent data structure as a black box. Although the latter helps
in analyzing the transactional version and prove its correctness
without the need to know how the concurrent version is designed,
optimizations in the original concurrent data structures may be
nullified. In addition to that, TB requires the existence of an
inverse operation for each primitive operation in order to rollback
its execution in case the transaction is aborted.

3.2 Optimistic Semantic Synchronization
A set of recent methodologies leverage the same idea of OTB:
dividing the transaction execution into phases and optimistically
executing some of them without any instrumentation (also called
unmonitored phases). We use the term Optimistic Semantic Syn-
chronization (OSS) to refer this set of methodologies. The word
optimistic is because all of these solutions share a fundamental
optimism by having the above unmonitored phases. In this section,
we overview some of those approaches.

Consistency Oblivious Programming (COP) [16], [17], [18]
splits the operations into the same three phases as OTB (but under
different names). We observe two main differences between COP
and OTB. First, COP is introduced mainly to design concurrent
data structures and it does not inherently provide composability
unless changes are made at the hardware level [18]. Second, COP
does not use locks at commit. Instead, it enforces atomicity and
isolation by executing both the validation and commit phases using
STM [16] or HTM [17] transactions.

Partitioned Transactions (ParT) [19] also uses the same trend
of splitting the operations into a traversal (called planning) phase
and a commit (called update) phase, but it gives more general
guidelines than OTB. Specifically, ParT does not restrict the
planning phase to be a traversal of a data structure and it allows
this phase to be any generic block of code. Also, ParT does
not obligate the planning phase to be necessarily unmonitored,

as in OTB and COP. Instead, it allows both the planning and
update phases to be transactions. ParT’s generality is also its major
obstacle: at the beginning of the completion phase, an application-
specific validator has to be defined by the programmer to validate
the output of the planning phase.

3.3 Other Related Approaches

In addition to OSS, other works proposed different ways to imple-
ment transactional data structures other than the traditional use of
TM algorithms. One direction is to adapt STM algorithms to allow
the programmer to control the semantics of the data structures.
Examples of trials in this direction include elastic transaction [8],
open nesting [20], [21], and early release [22]. However, those
approaches are focused on adapting TM frameworks more than
designing composable data structures. That is why it becomes
the obligation of the programmer to (practically) design and
(theoretically) model complex data structures implemented using
those approaches.

Another direction is to use TM as support to design libraries
of data structures. Examples in this direction include transactional
predication [23], and speculation friendly red-black tree [24]. The
main downside of those approaches is that they address specific
data structures, namely maps in the former and trees in the latter.
OTB aims at providing a more general methodology.

In [25], Spiegelman et al. presented a library of transactional
data structure implementations. Although this work shares many
OTB’s motivating factors and design principles, it lacks providing
a general methodology and optimization guidelines to enable the
composability of other data structures.

3.4 Contrasting OTB with Existing Solutions

OTB-based composable data structures generally perform better
than those implemented using TM. This is because, unlike the
classical meaning of read-sets and write-sets in STM (and also
HTM, if we consider the L1 cache as an internal read-set and
write-set, which is the case in [26]), not all memory reads and
writes are saved in the semantic read-sets and write-sets. Instead,
only those reads and writes that affect the linearization of the data
structure are saved. This avoids suffering from false conflicts.

Fig. 2. Execution flow of: concurrent data structures; Transactional
Boosting (TB); and OTB. In both TB and OTB, the upper part is called
n time (for the n primitive operations included in the Composite-OP
operation), and then the lower part is called once to commit the
Composite-OP operation.
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To compare OTB with TB, Figure 2 shows the execution flow
of concurrent (optimistic) data structures, TB, and OTB. Con-
current (non-composable) data structures yield high performance
because they traverse the data structure without instrumentation,
and they only acquire locks (or use CAS operations in case of
lock-free data structures) at late phases. To add composability,
TB acquires semantic locks while executing the data structure
operation (i.e., eagerly), and saves the inverse operations in an
undo-log to rollback the execution in case of abort. Then, it
uses the underlying concurrent data structure as a black box
without any modifications. (In both TB and OTB, dark blocks
in Figure 2 are the same as the concurrent versions, while white
blocks are added/modified.) At commit time, the only task to be
accomplished is to release semantic locks because operations have
already been applied eagerly.

In contrast to TB, OTB acquires semantic locks only while
committing the whole atomic execution of Composite-OP (i.e.,
lazily), and uses the underlying data structure as a white box.
Similar to concurrent optimistic data structures, OTB traverses
data structures without instrumentation. However, it differs from
them in three aspects: i) lock acquisition and actual writes are
shifted to commit time; ii) the validation procedure is modified to
satisfy the new composability requirements; and iii) the necessary
information is saved in local semantic read-sets and write-sets.

Thus, OTB gains the following benefits over TB. First, it
does not require well defined commutativity rules or inverse
operations. Second, it uses highly concurrent collections as white
boxes to design new composable versions of each concurrent (non-
composable) data structure. This allows for further optimizations
with some re-engineering overhead.

4 OTB DATA STRUCTURES

In this section we present two types of optimistically boosted data
structures: set and priority queue. These were specifically chosen
as they represent two different categories:

- Commutable Objects. In set, operations are commutative at
the level of element keys. In other words, two operations are
commutative if they access two different keys in the set.

- Non-commutable Objects. In priority queue, operations are com-
mutative at the level of the whole data structure. This means
that, even if two operations access two different elements in the
queue, they cannot execute in parallel. In fact, any removeMin
operation is non-commutative with another removeMin oper-
ation as well as any add operation of elements that are smaller
than the removed minimum.

4.1 Set

Set is a collection of elements accessed using three primitive op-
erations: bool add(int), bool remove(int), and bool
contains(int), with their familiar meanings [1]. No dupli-
cate elements are allowed, therefore add (respectively, remove)
returns false if the element is already (respectively, is not) present
in the structure. All primitive operations on different elements
of the set are commutative – i.e., two operations add(x) and
add(y) are commutative if x 6= y. Moreover, two contains
operations on the same element are commutative as well. Such
a high degree of commutativity between primitive operations
enables fine-grained semantic synchronization.

4.1.1 Concurrent Set
The first step towards implementing OTB-Set is to select a concur-
rent (non-composable) version of set that efficiently implements
its primitive (add, remove, and contains) operations. Here
we overview lazy linked-list [2] as our candidate concurrent
version, and in the following sections we show how to design its
composable version using OTB. It is worth noting that in addition
to the linked-list-based OTB-Set presented here, we also used OTB
to boost skip-list-based and tree-based OTB-Set. Details about
these versions can be found in [27], [28], [29].

Lazy linked-list [2] is an efficient implementation of concur-
rent set. For write operations, the list is traversed without any
locking until the involved nodes are locked. If those nodes are still
valid after locking, the write takes place and then the nodes are
unlocked. A marked flag is added to each node for splitting the
deletion phase into two steps: the logical deletion phase, which
simply sets the flag to indicate that the node has been deleted, and
the physical deletion phase, which changes the references to skip
the deleted node. This flag prevents traversing a chain of deleted
nodes and returning an incorrect result.

Among the existing concurrent linked-list implementations,
we selected the lazy linked-list because, in addition to its ef-
fectiveness, it provides the following properties that fit the OTB
principles. First, it uses a lock-based technique for synchronizing
the operations, which simplifies the applicability of the OTB
methodology. Second, its operations start with traversing the data
structure without any locking or instrumentation, allowing the
separation of an unmonitored traversal phase as required by OTB.

4.1.2 Non-Optimized OTB-Set
One of the main advantages of OTB is that it uses the underlying
(optimistic) data structure as a white-box, which allows for more
data structure-specific optimizations. In general, decoupling the
boosting layer from the underlying concurrent data structure is a
trade-off. Although, on the one hand, considering the underlying
data structure as a black-box means that there is no need to
re-engineer its implementation; on the other hand, it does not
allow customizing its implementation and thus exploiting the
new composable specification of OTB, especially when the re-
engineering is an affordable task. For this reason, as showed in
Section 2, we decided to split the re-engineering efforts (required
by OTB) into two steps: one general (concluded in OTB guidelines
G1 and G2); and one more specific per data structure (concluded
in G3).

In this section, we follow guidelines G1 and G2 to
design the composable, yet non-optimized, version of lazy
linked-list by implementing the three APIs introduced in
Section 2.2: PRIMITIVE-OP-TRAVERSAL, VALIDATE, and
COMPOSITE-OP-COMMIT. We discuss them separately in Al-
gorithms 1, 2, and 3, respectively.

In Algorithm 1, as mentioned in Section 2.2,
PRIMITIVE-OP-TRAVERSAL is split into four parts:
- Local writes check. Since writes are buffered, each operation on

an element α checks the last operation in the semantic write-
set on α, and returns the corresponding result. In case there is
no previous operation on α in the semantic write-set, then the
operation starts traversing the linked-list.

- Traversal. This step is the same as in the concurrent version of
lazy linked-list.

- Logging the reads and writes. Similar to the concurrent version
of lazy linked-list, each primitive operation on OTB-Set involves
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Algorithm 1 OTB-Set: PRIMITIVE-OP-TRAVERSAL
1: procedure PRIMITIVE-OP-TRAVERSAL(op, x, read-set, write-set)

. Step 1: search local write-sets
2: if x ∈ write-set then
3: ret = write-set.get-ret(op,x)
4: if op is add or remove then
5: write-set.append(op,x)
6: return ret

. Step 2: Traversal
7: pred = head and
8: curr = head.next
9: while curr.item < x do

10: pred = curr
11: curr = curr.next

. Step 3: Save reads and writes
12: read-set.add(new ReadSetEntry(pred,curr,op))
13: if op is add or remove then
14: write-set.add(new WriteSetEntry(pred,curr,op,x))

. Step 4: Post Validation
15: if ¬ VALIDATE(read-set) then
16: ABORT
17: else
18: if successful operation return true else false

19: end procedure

two nodes at commit time: pred, which is the node storing the
largest element less than the searched one, and curr, which
is the node storing the searched element itself or the smallest
element larger than the searched one. Information about these
nodes are logged into semantic read-set and write-set with
the purpose of using them at commit time. In particular, each
semantic read-set or write-set entry contains the two involved
nodes in the operation and the type of the operation. The
semantic write-set entry contains also the new element to be
inserted in case of a successful add operation.

- Post-Validation. At the end of the traversal step of a primitive
operation, the involved nodes are stored in local variables
(i.e., pred and curr). At this point, according to G2.2, the
semantic read-set is validated to ensure that the execution of
Composite-OP does not observe an inconsistent snapshot.

Algorithm 2 shows the VALIDATE procedure (used in both
post-validation and commit-time-validation). The validation of
each semantic read-set entry is similar to the one in the concurrent
version of lazy linked-list: both pred and curr should not be
deleted, and pred should still be linked to curr (lines 6-8).
According to G2.5 of OTB guidelines, contains operation has
to perform the same validation as add and remove, although
it is not needed in the concurrent version. This is because any
modification made by other Composite-OP operations after
invoking the contains operation and before committing the
enclosing Composite-OP operation may invalidate the returned
value of the operation, breaking the linearizability of the enclosing
Composite-OP operation.

To enforce isolation, validation also ensures that its accessed
nodes are not locked by another Composite-OP operation dur-
ing validation. This is achieved by implementing locks as sequence
locks (i.e., locks with version numbers). Before the validation, the
versions of the locks are recorded if they are not acquired. If some
are already locked, the validation fails (lines 2-5). Finally, the
validation procedure ensures that the actual locks’ versions match
the previously recorded versions (lines 9-12).

Algorithm 3 shows the Composite-OP-COMMIT operation
on OTB-Set. If all primitive operations in Composite-OP are
read-only (i.e., contains), there is nothing to do during commit
(line 2). Otherwise, according to point G2.3, the appropriate locks
are first acquired using CAS operations. Like the concurrent

Algorithm 2 OTB-Set: VALIDATE.
1: procedure VALIDATE(read-set)
2: for all entries in read-sets do
3: get snapshot of involved locks
4: if one involved lock is locked then
5: return false
6: for all entries in read-sets do
7: if pred.deleted or curr.deleted or pred.next 6= curr then
8: return false
9: for all entries in read-sets do

10: check snapshot of involved locks
11: if version of one involved lock is changed then
12: return false
13: return true

14: end procedure

version of lazy linked-list, any add operation only needs to lock
pred, while remove operations lock both pred and curr.

After the lock acquisition, the VALIDATE procedure is called
in the same way as the above Post-Validation to ensure that
the semantic read-set is still consistent. If not, the execution of
Composite-OP is aborted.

The commit procedure ends by publishing writes to the shared
linked-list, and then releasing the acquired locks. This step is
not straightforward because each node may be involved in more
than one primitive operation. In this case, the semantic write-set
entries (i.e., pred and curr) of these operations should be updated
accordingly (lines 17-19 and 23-27)

Algorithm 3 OTB-Set: Composite-OP-COMMIT.
1: procedure COMMIT
2: if write-set.isEmpty then
3: return
4: for all entries in write-set do
5: if CAS Locking pred (or curr if remove) failed then
6: ABORT
7: if ¬ VALIDATE(read-set) then
8: ABORT
9: for all entries in write-sets do

10: curr = pred.next
11: while curr.item < x do
12: pred = curr
13: curr = curr.next
14: if operation = add then
15: n = new Node(item)
16: n.locked = true; n.next = curr; pred.next = n
17: for all entries in write-set do
18: if entry.pred = pred then
19: entry.pred = n
20: else . remove
21: curr.deleted = true
22: pred.next = curr.next
23: for all entries in write-set do
24: if entry.pred = curr then
25: entry.pred = pred
26: else if entry.curr = curr then
27: entry.curr = curr.next
28: for all entries in write-sets do
29: unlock pred (and curr if remove)

30: end procedure

4.1.3 Optimized OTB-Set
In this section we show some optimizations for the linked-list-
based version presented in Section 4.1.2. More optimizations on
both this version and the other (skip-list-based and tree-based)
versions can be found in [27], [28], [29].

Unsuccessful add and remove. The add and remove op-
erations are not necessarily considered as writing operations, be-
cause duplicated elements are not allowed in the set. For example,
if an add operation returns false, it means that the element
to insert already exists in the set. To commit such operation,
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it is just required to check that the element still exists in the
set, which allows unsuccessful add operations to be treated as
successful contains operations. This way, the commit operation
of Composite-OP does not have to acquire any lock for this
primitive operation. The same idea can be applied on the unsuc-
cessful remove operation which can be treated as an unsuccessful
contains operation during commit.

Accordingly, in OTB-Set both contains and unsuccessful
add/remove operations are treated as read-only operations,
which add entries only to the semantic read-set and do not acquire
any lock during commit. Only successful add and remove
operations are considered update operations because they add
entries to both the semantic read-set and the write-set, and thus
they acquire locks during commit.

Eliminating operations. To handle read-after-write hazards,
each primitive operation starts by checking the semantic write-
set of the enclosing Composite-OP operation before traversing
the linked-list. During this step, for improving OTB performance,
if some primitive operation in a Composite-OP adds an element
α and some subsequent operation of the same Composite-OP
removes the same element α (or vice versa), we allow those
operations to locally eliminate each other. This elimination is
done by removing both entries from the semantic write-set, which
means that the two operations will not make any physical mod-
ification on the linked-list. No entry in the semantic read-set is
locally eliminated because, this way, the commit time-validation
can still be performed on those operations in order to preserve
Composite-OP’s correctness.

4.2 Priority Queue

Priority queue is a collection of elements whose keys are
totally ordered and duplicates are allowed. It provides three
primitive operations: bool add(int), int min(), and int
removeMin(), with the familiar meanings [1]. In addition to
the well-known heap implementation of priority queue, skip-
list has also been proposed for implementing concurrent priority
queue [1]. The only difference in semantics between the two
implementations is that the former allows duplicate elements,
while the latter forbids them. Although both implementations have
the same logarithmic complexity, skip-list does not need periodic
re-balancing, which is more suited for concurrent execution.
Generally, cooperative operations, such as re-balancing, increase
the possibility of conflict and decrease concurrency.

4.2.1 TB-based Priority Queue
Herlihy and Koskinen’s TB-based priority queue uses a concurrent
heap-based priority queue [30]. A global readers/writer lock is
used on top of this priority queue to maintain its semantics.
An add operation acquires a read lock, while getMin and
removeMin operations acquire a write lock. Thus, all add
operations will be concurrently executed because they are seman-
tically commutative. Global locking is mandatory here, because
the removeMin operation is not commutative with either another
removeMin operation or an add operation of an element with a
smaller key.

Algorithm 4 shows the flow of TB-based priority queue’s
operations (more details are in [9]). It is important to notice that
the inverse of the add operation is not defined by most priority
queue implementations. This is one of the drawbacks of TB,
which cannot be implemented without defining an inverse for each

operation. A work-around to this problem is to encapsulate each
node in a holder class with a boolean deleted flag to mark
rolled-back add operations (line 4). The removeMin operation
keeps polling the head until it reaches a non-deleted element (lines
8-10). This adds greater overhead to the boosted priority queue.

Algorithm 4 TB-based priority queue.
1: procedure ADD(x)
2: readLock.acquire
3: concurrentPQ.add(x)
4: undo-log.append(holder(x).deleted = true)
5: end procedure

6: procedure REMOVEMIN
7: writeLock.acquire
8: x = concurrentPQ.removeMin()
9: while holder(x).deleted = true do

10: x = concurrentPQ.removeMin()
11: undo-log.append(add(x))

12: end procedure

TB uses the underlying priority queue as a black box, whose
internal design can use any structure other than heap (as long as it
carries out the same semantics). This means that, the gains from
using skip-list (if used) might be nullified by the eager semantic
lock acquisition policy. For example, since TB does not open the
black box, if the underlying concurrent priority queue uses fine-
grained locking to enhance performance, this optimization will
be nullified by the coarse-grained semantic locking when non-
commutative operations execute concurrently. OTB, on the other
hand, inherits these benefits of using skip-list, and avoids eager
coarse-grained locking. Since skip-list does not have a re-balance
phase, we can use it to implement an OTB-based priority queue.
However, before we show this version, we quickly describe how
to extend TB to implement semi-optimistic heap-based priority
queue in the following section.

4.2.2 Semi-Optimistic Heap Implementation

A semi-optimistic implementation of a heap-based priority queue
is achieved by using the following three optimizations on top
of the TB implementation (these optimizations are illustrated in
Algorithm 5):

i) The add operations are not pessimistically executed until the
first removeMin or getMin operation has occurred. Before
that, all add operations are saved in a local semantic write-
set. Once the first removeMin or getMin operation occurs,
the write lock is acquired and all the add operations stored
in the semantic write-set are published before executing the
new removeMin operations. If only add operations occur,
they are published at commit time after acquiring the read
lock. This way, semi-optimistic boosting attempts to acquire
the lock only once (either for read or for write).

ii) Since the global lock holder cannot be aborted, there is no
need to keep the operations in the semantic write-set any-
more. This is because, no operation takes effect on the shared
priority queue while the global lock is taken. Moreover, this
optimization leads to another advantage, which is relaxing
the obligation to define an inverse operation for the add
operation. This way, the overhead of encapsulating each node
in a holder class is avoided.

iii) There is no need for thread-level synchronization after acquir-
ing the write lock, because it guarantees an exclusive access
to the underlying priority queue. This means that sequential,
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rather than concurrent, add, getMin, and removeMin
operations can be used.

Algorithm 5 Semi-optimistic heap-based priority queue.

1: procedure ADD(x)
2: if lock holder then
3: PQ.add(x)
4: else
5: redo-log.append(x)
6: end procedure

7: procedure REMOVEMIN
8: Lock.acquire
9: for entries in redo-log do

10: PQ.add(entry.item)
11: x = PQ.removeMin()

12: end procedure

The same idea of our enhancements has been used before in the
TML algorithm [31] for memory-based transactions. In TML, a
transaction keeps reading without any locking and defers acquiring
the global lock until the first write occurs (which maps to the first
removeMin operation in our case). Then, it blocks any other
transaction from committing until it finishes its execution.

Although these optimizations diminish the effect of global
locking, this priority queue implementation still cannot be consid-
ered as optimistic because removeMin and getMin operations
acquire the global write lock before committing (this is why we
call it a “semi-optimistic” approach). In the next section we show
how implement an OTB-based priority queue using a skip-list.

4.2.3 Skip-List OTB Implementation
In this section, we show how OTB guidelines can be used to
design a composable version of the concurrent skip-list-based
priority queue presented in [1]. As we mentioned earlier, the only
difference in semantics between this version and the heap-based
version is that this version does not allow duplicate elements.

Unlike previously done for OTB-Set, we now skip the non-
optimized version of the OTB priority queue and we discuss the
optimized version (OTB-PQ hereafter) directly. OTB-PQ extends
OTB-Set to support the priority queue’s three primitive operations
(i.e., add, min, and removeMin) rather than OTB-Set’s prim-
itive operations. To do that, we extend our skip-list-based OTB-
Set, presented in [28], in order to preserve the logarithmic time
complexity of operations. However, in the rest of this section, to
simplify the presentation we assume that OTB-PQ extends the
exact linked-list-based OTB-Set presented in Section 4.1.

Slight modifications are made on the extended OTB-Set to
ensure priority queue properties. Specifically, each thread saves
a local variable, called lastRemovedMin, which refers to the
last element removed by the Composite-OP operation. It is
mainly used to identify the next element to be removed if the
Composite-OP operation calls another removeMin operation
(note that all these primitive operations do not physically change
the underlying list until the commit step of Composite-OP
is called). Thus, this variable is initialized as the sentinel head
of the list. Additionally, each thread saves a local sequential
priority queue, in addition to the local semantic read-/write-sets,
to simplify the handling of read-after-write cases.

Algorithm 6 shows the PRIMITIVE-OP-TRAVERSAL
procedure of OTB-PQ. The other two procedures,
VALIDATE and COMPOSITE-OP-COMMIT, just call their
corresponding procedures in the underlying OTB-Set. As for
PRIMITIVE-OP-TRAVERSAL, if the primitive operation is
an add operation, it calls PRIMITIVE-OP-TRAVERSAL
of the underlying OTB-Set’s add operation (i.e., shown in
Algorithm 1). If it is a successful add, it saves the added element

in the local sequential priority queue (line 4). If the operation
is a removeMin, it compares the minimum elements in both
the local and shared priority queues and removes the lowest
(line 11). Whether the minimum is selected from the local or
the shared priority queue, Composite-OP has to validate that
the shared minimum is not changed later by any concurrent
Composite-OP operation. To achieve that, lines 12 and 18
call PRIMITIVE-OP-TRAVERSAL of the underlying list’s
contains and remove operations, respectively, in order to
implicitly add this shared minimum to the local semantic read-set
(to be validated later).

Before returning the minimum, a further validation is invoked
to ensure that the shared minimum is still linked by its pred
(lines 14 and 20). Then, lastRemovedMin is updated (line 22).
A similar procedure (not shown in Algorithm 6) is used for the
getMin operation.

Algorithm 6 OTB-PQ: PRIMITIVE-OP-TRAVERSAL
1: procedure PRIMITIVE-OP-TRAVERSAL(op,x,read-set,write-set)
2: if op = ADD then
3: if list.PRIMITIVE-OP-TRAVERSAL(ADD,x,read-set,write-set) then
4: localPQ.add(x)
5: return true
6: else
7: return false
8: else if op = REMOVEMIN then
9: localMin = localPQ.getMin()

10: sharedMin = lastRemovedMin.next
11: if localMin < sharedMin then
12: if ¬ list.PRIMITIVE-OP-TRAVERSAL(CONTAINS, sharedMin,

read-set, write-set) then
13: Abort
14: if lastRemovedMin.next 6= sharedMin then
15: Abort
16: return localPQ.removeMin()
17: else
18: if¬ list.PRIMITIVE-OP-TRAVERSAL(REMOVE, sharedMin, read-

set, write-set) then
19: Abort
20: if lastRemovedMin.next 6= sharedMin then
21: Abort
22: lastRemovedMin = sharedMin
23: return sharedMin

24: end procedure

Using this approach, a Composite-OP operation accessing
(list-based) OTB-PQ does not acquire any lock until its commit
phase. Unfortunately, the same approach cannot be easily used
in a heap-based implementation because of its complex and
cooperative re-balancing mechanism.

One of the main advantages of this optimistic implementation
is that the getMin operation does not acquire any locks. It is
worth noting that, even with our enhancements on the heap-based
implementation, TB enforces getMin to acquire a write lock,
thereby becoming a blocking operation, even for commutative
add or getMin operations.

5 MODELING OTB-BASED DATA STRUCTURES

As mentioned in the introduction of this paper, proving the
correctness of concurrent and composable data structures, as OTB,
is a hard task, always done manually by designers without a formal
support. In this section we present a theoretical framework (or
model) to help designers in proving correctness of OTB-based
data structures1.

1. For completeness, we included in the supplemental material a manual
correctness proof (i.e., a proof that has not be derived using the framework
proposed in this section) for the OTB data structures presented in Section 4.
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In Section 5.1 we introduce some definitions and formalisms
that will be used subsequently while developing the model. Note
that, these definitions do not contradict the terminology used
during the explanation of OTB in the previous sections; however
they are necessary to be introduced at this stage to provide a
sound theoretical ground to prove the correctness of OTB-based
data structures. The new presented framework has been designed
upon a baseline framework to prove correctness of concurrent
(non-composable) data structure called Single Writer and Multiple
Readers (SWMR), which is overviewed in Section 5.2. In Sec-
tion 5.3 we detail our new framework, which can be used to prove
correctness of a class of OTB-based data structures that prevents
concurrent execution of writer’s commit phases. In Section 5.4 we
provide an initial proposal towards having a general model suited
for OTB-based data structures by relaxing the above assumptions.

5.1 Definitions

We provide a formal definition of a data structure for the purpose
of producing a model to prove its correctness. We define a data
structure as a set of shared variables X = {x1, x2, . . . xi, . . . }
where operations can be invoked on. When applying our model to
OTB data structures, the same definition of an operation holds for
both primitive operations and Composite-OP operations.

An operation execution (or just operation) O, is a sequence
of StepsO = s1O · s2O · ... · snO, where: s1O is the invocation of
the operation, i.e., invokeO , and snO is the operation’s return,
i.e., returnO(vret). A dummy return(void) step is added for
any operation that does not have an explicit return value. Any
other step is either readO(xi) or writeO(xi, vw) (those steps
comply with their common meaning)2. Steps are assumed to be
executed atomically. An operation is called read-only if it does not
execute any write step; otherwise it is called update. A sequential
execution of a data structure ds is a sequence of non-interleaving
operations on ds. A concurrent execution µ is a sequence of
interleaved steps of different operations.

The history H of a concurrent execution µ on a data structure
ds, H|µ, is the subsequence of µ with only the invoke and the
return steps. A pending operation in H is an operation with no
return step. With complete(H) we indicate the sub-history of
H that has no pending operations. We say that two operations
are concurrent if the return step of one does not precede the
invoke step of the other one. A history H is sequential if no two
operations in H are concurrent.

Any data structure ds has a sequential specification, which
corresponds to the set of all the allowed sequential histories on
ds. A history H is linearizable [32] if it can be extended (by
appending zero or more return steps) to some history H ′ that
is equivalent (i.e., has the same operations and return steps) to a
legal (i.e., satisfies the sequential specification) sequential history
S such that non-interleaving operations in H ′ appear in the same
order in S.

The shared state s of a data structure is defined at any time by
the values of its shared variables, and it is selected from a set of
shared states S . Each operation has a local state l, selected from a
set of local states Lop, which is defined by the values of its local
variables. The sets S and Lop contain initial states S0 and ⊥op,

2. We define later in Section 5.3 two more steps called S′ and S′′ that
represent lock acquisition/release. Unlike read and write steps, those steps
appear only at the commit phase of an update operation and cannot appear
anywhere else, as we detailed later.

respectively. A step in the execution of each operation represents a
transition function on S and Lop that changes the shared state of
the data structure and the local state of the operation from 〈l, s〉
to 〈l′, s′〉. At any point of a concurrent execution µ, if we have
n pending operations, we will have n local states (one for each
operation) and one shared state s.

Given a data structure ds and an operation O in a concurrent
execution µ on ds, we define pre-stateO as the shared state of
ds right before invokeO , and post-stateO as the shared state
of ds right after returnO(vret) . We also say that a shared state
is sequentially reachable if it can be reached by some sequential
execution of ds.

5.2 Background: the SWMR model
Lev-Ari et al. in [10] proposed an initial step towards having a
general model for proving the correctness of concurrent (non-
composable) data structures. This model considers data structures
that allow concurrency among read operations only, thus we
name it single writer and multiple readers (SWMR) hereafter.
The SWMR model focuses on two safety properties, roughly
summarized here: validity, which guarantees that no “unexpected”
behaviors (e.g., access to an invalid address or a division by zero)
can occur in all the steps of a concurrent execution; and regularity,
an extension of the classical regularity model on registers [33]
that guarantees that each read-only operation is consistent (i.e.,
linearized) with all the write operations. A recent extension of
SWMR allows concurrent writers [11] (thus, we name it MWMR
hereafter). The appealing advantage of those two models is that
they allow the programmer to use general and well-defined terms
to prove validity, regularity, and linearizability [32] of any con-
current data structure. In the subsequent sections, we adapt those
models to better fit the notion of OTB-based data structure.

The single writer multiple reader (SWMR) model assumes
concurrent executions on a data structure ds where the steps of
two update operations in any concurrent execution µ on ds do not
interleave. Conversely, a multiple writer multiple reader (MWMR)
model is the one that allows such an interleaving. In the following
we report the definition of base condition and base point as defined
in the SWMR model of [10]. Note that, unlike in [10], in our
models those definitions apply to all operation and not only to
read-only operations.
- Base condition. Given a local state l of an operation O on a

data structure ds, a base condition φ for l is a predicate over
the shared state of ds where every sequential execution of O
starting from a shared state s such that φ(s) = true reaches
l. A base condition for a step si (named also φi) is the base
condition for the local state right before the execution of si.

- Base point. An execution of a step si, with a local state l, in a
concurrent execution µ has a base point if there is a sequentially
reachable post-state s such that the base condition φi(s) holds.

The combination of the two definitions makes an interesting
conclusion: if an execution of a step si in an operation O has a
base point in a concurrent execution µ, this means that there is a
sequentially reachable post-state from whichO can start and reach
si with the same local state l. That also means that the execution
of si in µ would have been the same as performed in a sequential
execution. Accordingly, if every step in every concurrent execution
of ds has a base point, then we say that ds is valid. Informally, that
means that ds is never subject to “bad behaviors” (e.g., division
by zero or null-pointer accesses) because every step observes a
sequentially reachable local state.
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The SWMR model names a data structure ds as regular if, for
each history H and every read-only operation ro in H (if any),
the sub-history composed of all write operations in H and ro is
linearizable. Leveraging the definition of base point, a concurrent
execution µ is regular if, for every read-only operation ro in µ,
the base points of ro’s return step is the post-state of either an
update operation executed concurrently with ro in µ or the last
update operation that ended before ro’s invoke step in µ. Those
candidate base points are called regularity base points.

5.3 The Single Writer Commit (SWC) Model
In this section we present the Single Writer Commit (SWC) model,
an adapted version of the SWMR model in which both read-only
and update operations run concurrently with the restriction that
only the writing phases of update operations (i.e., commit phases)
are executed sequentially. Note that, this restriction needs to be
relaxed in order to meet OTB-based data structures’ design; more
details are in Section 5.4.

Figure 3 shows an example of an execution under the SWC
model with five update operations, uo1, . . . , uo5, and one read-
only operation ro. In this example, the commit phases of all
the update operations do not interleave, even if the operations
themselves interleave. The read-only operation ro is concurrent
with uo3, uo4, and uo5. In particular, it interleaves with the
commit phases of uo3 and uo4, while its commit phase only
interleaves with uo4.
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Fig. 3. An example of a concurrent execution (a) that can be executed
using our model by converting it to a single writer commit scenario (b).

Algorithm 7 shows a practical (and simple) data structure
implementation under the SWC model: a linked-list with three
operations readLast, insertLast, and removeLast (which
gives the semantics of stacks). The head of the list is assumed
to be constant (i.e., the widely used sentinel node). Although all
the executions of readLast (respectively insertLast) are read-
only (respectively update), some execution of removeLast (those
that return at line 27) are read-only and some others (those that
return at line 38) are update. Unlike the SWMR model, SWC does
not categorize operations in a concurrent execution µ as read-
only or update a priori, but rather it assigns the operation’s type
considering its actual execution in µ, which therefore increases the
level of concurrency. Accordingly, in Algorithm 7, removeLast is
not treated as an update operation when the linked-list is empty.

Figure 4(a) shows how we model an operation in a OTB-based
data structure. Any operation O is split into two sequences of

steps: OT = s1 · ... · sm; and OC = sm+1 · ... · sn. The sequence
OT represents the traversal phase, which does not contain any
write step. The sequence OC represents the commit phase, which
always ends with returnO(vret) and can contain both read and
write steps. Given that a data structure under the SWC model
allows concurrent traversal phases and a single commit phase at a
time, the transition from the shared traversal phase to the exclusive
commit phase is represented by an auxiliary steps S′, and the end
of the commit phase is represented by another auxiliary step S′′.
For example, S′ and S′′ can represent an acquisition and a release
of a global lock as in Algorithm 7. We do not assume the presence
of such a transition in read-only operations, thus, in those cases,
S′ and S′′ are just dummy steps that do nothing. Excluding the
auxiliary steps, the commit phase of a read-only operation O is
OC = returnO(vret).
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Fig. 4. a) Splitting the operation to support concurrent MWMR execution
with single writer commit (SWC). OT is the traversal phase; OC is the
commit phase. I:invoke, r:read, w:write, R:return, L:lock, U:unlock. b)
Unsuccessful trials are part of the overall traversal phase in our model.

Based on OTB’s guideline (G2.2), the commit phase starts by
a validation mechanism to ensure that the output of the traversal
phase remains valid until the transition to the exclusive commit
mode; otherwise the traversal phase is re-executed. To include
this re-execution mechanism in our model, we define for each
operation O on a data structure ds a variable u that represents
the number of unsuccessful trials (u ∈ {0, 1, ...,∞})3. The value
of u is determined according to the concurrent execution µ that
includes O. Every unsuccessful trial resets the local state of the
operation to the initial ⊥ state before starting the next trial. The
commit phases of all the unsuccessful trials are clearly not allowed
to write on the shared data structure because of their inconsistent
local state. As shown in Figure 4(b), the traversal phase of the
operation O includes all those unsuccessful trials t1 · t2 · ... · tu,
and the commit phase of O is only the successful commit phase of
the last trial (tu+1

C ).
In Algorithm 7, the commit phase of readLast is always

successful (in fact, the operation itself is wait-free [34]). Thus,
it is easy to identify the traversal phase (the whole execution
before line 7), and the commit phase (the return step at line 7).
Identifying insertLast’s phases is more difficult because it may
have unsuccessful commit phases. According to our definitions,
the traversal phase of an operation O with u unsuccessful trials
is a concatenation of u executions of lines 10–18 in which the
condition of line 16 is false, followed by one execution until right
before line 15. The commit phase is formed by lines 15–20 in

3. For an operation O, if it is possible to have an execution with u =∞, in
practice it entails that the operation is not wait-free.
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Algorithm 7 A linked list with three operations implemented under the SWC model.

1: procedure READLAST
2: last←⊥
3: next← read(head.next) . φ1 : true
4: while next 6=⊥ do
5: last← next
6: next← read(last.next) . φ2 : head

∗
=⇒ last

7: return(last) . φ3 : head
∗
=⇒ last

8: end procedure

9: procedure INSERTLAST(n)
10: last←⊥
11: next← read(head.next) . φ4 : true
12: while next 6=⊥ do
13: last← next
14: next← read(last.next) . φ5 : head

∗
=⇒ last

15: lockAcquire(gl)
16: if read(last.next) 6=⊥ or last.deleted then . φ6 : head

∗
=⇒ last

17: lockRelease(gl)
18: go to 10
19: write(last.next, n)
20: lockRelease(gl)
21: end procedure

22: procedure REMOVELAST
23: last←⊥
24: secondlast = read(head) . φ7 : true
25: next← read(head.next) . φ8 : true
26: if next =⊥ then
27: return . φ9 : head.next =⊥
28: while next 6=⊥ do
29: secondLast = last
30: last← next
31: next← read(last.next) . φ10 : head

∗
=⇒ last

32: lockAcquire(gl)
33: if read(last.next) 6=⊥ or last.deleted then . φ11 : head

∗
=⇒ last

34: lockRelease(gl)
35: go to 23
36: write(last.deleted, true)
37: write(secondlast.next, ⊥)
38: lockRelease(gl)

39: end procedure

which the condition of line 16 is true. The phases of the read-only
(respectively update) executions of removeLast are determined
similar to readLast (respectively insertLast).

The definitions of base conditions, base points, and validity
are similar to the SWMR model, but in the SWC model they
are defined for both read-only and update operations. However,
the definitions of regularity base point and regularity need to be
refined. Specifically, in the SWMR model, update operations are
linearizable because they are executed sequentially. However, in
the SWC model, this is not trivially guaranteed because an update
operation may be invalidated before performing its exclusive
commit phase. To avoid that, in our model we first define a new
state for each update operation uo, called pre-commit-stateuo,
which represents the local state of uo after the auxiliary step s′

and before the first real step in the commit phase, sm+1. Then, we
guarantee the linearization of the update operations as follows.

Definition 1. (Executions under SWC) In a concurrent execution
µ with k update operations whose commit phases are sequential,
those k operations are totally ordered according to the order of
their commit phases {u1 ≺c u2 ≺c ... ≺c uk}. A dummy u0
operation is added such that post-stateu0 is S04. A concurrent
execution µ is under the SWC model if update operations have
sequential commit phases, and for every update operation ui in µ,
post-stateui−1 is a base point for pre-commit-stateui .

Hereafter, we focus on those executions under the SWC model
according to Definition 1. Theorem 1 shows that in those execu-
tions, update operations are linearizable (the complete proofs of
all the presented theorems are in the supplemental material).

Theorem 1. Given a concurrent execution µ with k completed
update operations, and the corresponding history of those k
operations Hk|µ, if µ is under SWC model, all the post-states
of the k operations are sequentially reachable, and Hk|µ is
linearizable.

The intuition of the proof is that the operation that commits
first trivially produces a sequentially reachable state. Based on
Definition 1, at commit time each operation observes the post-
state of the operation right before it. Then, by induction, all op-

4. This dummy operation is added only to cover the case of the initial state.

erations produce sequentially reachable states. Therefore, update
operations are linearized according to their commit phases order.

Based on Theorem 1, in any concurrent execution µ with k
completed update operations, we can identify k + 1 sequentially
reachable shared states that would be the candidate base points
for each step in µ. Those points are the post-states of the k
completed update operations, in addition to the initial state S .
Next, we refine the definition of regularity base points as follows:

Definition 2. (Regularity base points under SWC) A base point
bp of a step si in a read-only operation ro of a concurrent
execution µ under the SWC model is a regularity base point if bp
is the post-state of either an update operation whose commit phase
is executed concurrently with ro in µ or of the update operation
whose commit phase is the last one completed before ro’s invoke
step in µ (the initial state is the default).

This definition simply restricts the candidate regularity base
points of any read-only operation to be the post-state of the
operations with interleaving commit phases rather than those of the
interleaving update operations. For example, in Figure 3 the post-
state of uo3 and uo4 are candidate regularity base points for ro’s
steps, while uo5 is excluded because its commit phase starts after
ro’s return point (uo5 is not excluded in the original regularity in
[10]). Also, the definition uniquely identifies one update operation
among those committed before ro (uo2 in our example). uo1 is
excluded because its commit phase is not the last one before ro’s
invocation. Because the commit phases of update executions do
not interleave, this candidate regularity base point for ro’s steps
is always deterministic.

Finally, we define the meaning of regular execution under
SWC in Theorem 2. Intuitively, the theorem states that a concurrent
execution is regular if i) every step in every read-only operation
and in the traversal phase of every update operation is valid (i.e.,
all operations execute without any “unexpected” behavior); and ii)
the history of the update operations plus one read-only operation
is linearizable (recall that Theorem 1 already proves that the set
of the update operations is linearizable).

Theorem 2. A concurrent execution µ under the SWC model is
regular if:

1) In the traversal phase of every operation in µ, every step has
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a base point with some base condition.
2) The pre-commit-state of every read-only operation in µ

has a regularity base point with some base condition.

Definition 3. (Regular data structures under SWC) A data
structure ds is regular if every concurrent execution on ds is
regular under the SWC model.

We applied SWC on the data structure in Algorithm 7 by:
defining the appropriate base conditions, which are listed to the
right of each operation, and using Definition 3 and Theorem 2 to
prove that this data structure is regular through Theorem 3.

Theorem 3. The linked-list in Algorithm 7 is regular.

5.4 Applying SWC to OTB-Based data structures
The SWC model is an initial step towards our main goal, which
is modeling OTB-based data structure. In this section, we discuss
the missing steps towards reaching that goal and how we address
them. Those steps can be summarized as follows:
- In order to model a concurrent data structure using SWC, its

sequential specification has to be defined. As we discussed
in Section 2, an OTB-based data structure is a composable
version of an existing concurrent data structure. While the
sequential specification of the latter (i.e., concurrent) is assumed
to be given, the sequential specification of the former (i.e.,
composable) is not defined.

- Under SWC model, the commit phases of update operations
are assumed to be sequential, while operations in OTB-based
data structures allow concurrent commit phases protected by
the two phase locking, as stated by guideline G2.3. To model
OTB-based data structures, the assumption of having sequential
commit phases has to be relaxed.

- SWC can be used to prove that a concurrent data structure
is regular, while an extension to SWC is needed to prove
linearizability in addition to regularity.

In Section 5.4.1, we address the first point by introducing a
formal way to define the sequential specification of composable
OTB-based data structures. In Sections 5.4.2 and 5.4.3 we infor-
mally discuss how to exploit the recent MWMR model [11] to
address the last two points. The formal adaptation of SWC is left
as a future work.

5.4.1 Sequential Specification of Composable OTB-based
data structures
As introduced in Section 2, a composable OTB-based data struc-
ture can be seen as a concurrent data structure with a single
Composite-OP operation instead of a set of primitive opera-
tions. This way, no modification is needed in SWC to model the
composable version. The challenge is therefore shifted to define
the sequential specification of this composable data structure. In
Lemma 1, we introduce a formal way to inherently define this
sequential specification based on the sequential specification of
the concurrent data structure boosted by OTB.

We first introduce the following terms that are used in the
lemma: ds concurrent represents the concurrent data structure
boosted using OTB; ds composable represents the correspond-
ing composable version; P represents a primitive operation on
ds concurrent; C represents the Composable-OP operation
on ds composable; C.P is an array that represents (in order) the
primitive operations of C; and C.size is the size of C.P .

Lemma 1. For every sequential history H = < P1, ..., Pn > in
the sequential specification of ds concurrent, all the histories
of the form H ′ = < C1, ..., Ck > (k = 1, ..., n) where:
< C1.P [1], ..., C1.P [C1.size], ..., Ck.P [1], ..., Ck.P [Ck.size] >
= < P1, ..., Pn > are in the sequential specification of
ds composable

Informally, the lemma states that a sequential history of C
operations is in the sequential specification of composable ds if
the corresponding history of P operations, where P are the prim-
itive operations that compose (in order) the C Composite-OP
operations, is in the sequential specification of concurrent ds.

5.4.2 Relaxing the Single Writer Commit Assumption.
The implementations of OTB-based data structures typically do
not rely on a global lock-based mechanism to finalize the writes,
but rather, in order to increase the level of concurrency, the commit
phase leverages a combination of two-phase locking (G2.3) and
commit-time-validation (G2.2). Interestingly, the MWMR model
presented in [11] already extended the original SWMR model to
cover the aforementioned point. In this section we summarize
those extensions and show how the same intuitions can be used to
extend our SWC model. We believe that formalizing this intuition
is a straightforward extension of the definitions and theorems in
Section 5.3, following the same roadmap in [11].

Authors in [11] showed that using two-phase locking mech-
anism at commit time5 provides guarantees that they proved to
be sufficient for having linearizable update operations. Those
guarantees are summarized as follows:
- All the commit phase steps of an update operation commute with

all the commit phase steps of any interleaving update operation.
- Every step in the commit phase of any update operation is

base point preserving with respect to any interleaving update
operation. Briefly, a step s is base point preserving with respect
to an operation O if it satisfies the following condition: the
shared state before executing s is a base point for any step s′ in
O if and only if the shared state after executing s is also a base
point for s′.

- The shared state observed before the first write in the commit
phase of an operation is a base point for all the write steps as
well as the return step of that commit phase.

5.4.3 Replacing Regularity with Linearizability
In order to prove linearizability instead of regularity, we need to
additionally prove that the return steps of all read-only operations
observe the same serialization of update operations. In [11], the
authors did so by adding one more condition: “Every update op-
eration has at most one step that is not base point preserving with
respect to all read-only operations.”. Informally, this condition
means that every update operation has a single step that changes
the abstract state of the data structure, which nominates that step
to be the linearization point of the operation. Interestingly, the
authors of [11] already proved that for the concurrent version of
lazy linked-list [2]. As a future work, we plan to extend that for
our composable version presented in Section 4

6 EVALUATION

In this section, we evaluate the performance of OTB-Set, OTB-
PQ, and the semi-optimistic priority queue. The experiments were

5. The authors used the term critical sequence instead of commit phase.
However both terms have the same meaning in OTB-based data structures.
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Fig. 5. Throughput of skip-list-based set with 64K elements, and five
primitive operations, 80% writes and 20% reads, per Composite-OP.
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Fig. 6. Throughput of priority queue with 10K nodes and five primitive
operations, 50% add and 50% removeMin, per Composite-OP.

conducted on a 64-core machine, which has four AMD Opteron
processors, each with 16 cores running at 1400 MHz and 16KB
of L1 data cache. The total memory installed is 32 GB. Threads
start execution with a warm up phase of 2 seconds, followed by an
execution of 5 seconds, during which the throughput is measured.
Each plotted data-point is the average of five runs.

Set. A comprehensive experimental study on all OTB-Set
implementations (linked-list, skip-list, and tree) has been already
shown in [28], [29]. In this section, for the sake of completeness,
we report one of those experiments that showed the typical trend of
OTB-based data structures. We compared the skip-list-based OTB-
Set against lazy set [2] and TB set [9]. Recall that the lazy set is
not capable of running multiple primitive operations atomically
(i.e., it is a concurrent data structure, not composable). We only
show it as a rough upper bound for both OTB-Set and TB.

For a fair comparison, both lazy and TB sets are also skip-
list-based. We used a skip-list of size 64K and a workload
of 80% write operations and 5 primitive operations per each
Composite-OP operation. Also, to conduct an evenhanded ex-
periment the percentage of the writes is made to be the percentage
of the successful ones, because, as we mentioned in Section 4.1.3,
an unsuccessful add/remove operation is considered as a read
operation. Roughly speaking, in order to achieve that, the range
of elements is made large enough to ensure that most add
operations are successful. Also, each remove operation takes an
element added by the previous Composite-OP operations as a
parameter, such that it will likely succeed. Also, the number of
add and remove operations are kept equal to avoid significant

fluctuations of the data structure size during the experiment. We
measured throughput as the number of successful Composite-OP
operations per second.

Figure 5 plots the results of the experiment. Overall, OTB-
Set performs close to the (upper bound) performance of the
lazy set and up to 2× better than TB. This is mainly because,
considering the contention level of the workload, TB’s eager
locking mechanism is ineffective and a more optimistic algorithm,
such as OTB-Set, is preferable.

Priority Queue. Figure 6 shows priority queue results.
Regarding heap-based priority queues, we used Java atomic pack-
age’s priority queue as underlying concurrent data structure in
the TB implementation, and we adapted it for our semi-optimistic
implementation. For skip-list priority queues, both TB and OTB-
PQ boosted the skip-list implementation described in [1]. The
results show that the performance of TB is almost the same
regardless of the underlying implementation, which confirms our
claims about the effect of using the underlying data structures as a
black box. The results also illustrate how our three optimizations
(described in Section 4.2.2) enhance the performance of the heap-
based priority queue and allow our semi-optimistic priority queue
to saturate on a higher throughput than TB. Finally, OTB-PQ is
better than its corresponding (skip-list-based) TB in almost all the
cases, except for the high contention case (more than 48 threads).
In fact, OTB-PQ achieves the best performance with respect to all
other algorithms (both heap-based and skip-list-based) for small
number of threads. This improvement is achieved at the cost
of a slightly lower performance when the number of concurrent
threads increases. This is expected, and reasonable for optimistic
approaches in general, given that the gap in performance for high
contention cases is limited also considering that priority queue is
a non-commutative data structure.

7 CONCLUSION

This paper has two main contributions. First, we presented
Optimistic Transactional Boosting (OTB), a novel methodology
for boosting concurrent data structures to be composable. We
deployed OTB on a number of concurrent data structures with
different characteristics, and we showed that their performance is
better than competitors providing composable executions. Second,
we provided a theoretical model for OTB-based data structures.
This model is an extension of a recent model for concurrent
data structures that includes the two notions of optimism and
composability.
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