
1

Managing Resource Limitation of Best-Effort
HTM

Mohamed Mohamedin, Roberto Palmieri, Ahmed Hassan, Binoy Ravindran

Abstract—The first release of hardware transactional memory (HTM) as commodity processor posed the question of how to efficiently
handle its best-effort nature. In this paper we present Part-HTM, a hybrid transactional memory protocol that solves the problem of
transactions aborted due to the resource limitations (space/time) of current best-effort HTM. The basic idea of Part-HTM is to partition
those transactions into multiple sub-transactions, which can likely be committed in hardware. Due to the eager nature of HTM, we
designed a low-overhead software framework to preserve transaction’s correctness (with and without opacity) and isolation. Part-HTM
is effective: our evaluation study confirms that its performance is the best in all tested cases, except for those where HTM cannot be
outperformed. However, in such a workload, Part-HTM still performs better than all other software and hybrid competitors.

Index Terms—Transactional Memory, Hardware Transactions, Concurrency

F

1 INTRODUCTION

Transactional Memory (TM) [1], [2] is a support that
programmers can exploit while developing parallel appli-
cations so that the hard problem of synchronizing different
threads, which operate on shared memory locations (or ob-
ject otherwise), is solved. TM implementations are classified
as software (STM) [3], which can be executed without any
transactional hardware support, hardware (HTM) [1], [4],
which exploit specific hardware facilities, and hybrid [3],
which mix HTM and STM. Two events confirmed TM
as a practical alternative to the manual implementation
of thread synchronization: first, GCC (the famous GNU
compiler) embedded interfaces for executing atomic blocks;
second, Intel released to the customer market commodity
processors equipped with Transactional Synchronization Ex-
tensions (TSX) [5], which allow the execution of transactions
directly on the hardware through an enriched hardware
cache-coherence protocol. IBM also released Power 8 [6], a
processor with best-effort HTM capabilities.

Hardware transactions (or HTM transactions) are much
faster than their software version because the conflict resolu-
tion and the roll back when aborting is inherently provided
by the hardware cache-coherence protocol; however, their
downside is that they do not have commit guarantees,
therefore they may fail repeatedly, and for this reason they
are categorized as best-effort. The eventual commit of a
transaction that consistently fail using HTM is guaranteed
through a software execution defined by the programmer
(called fallback path). The default fallback path consists of
executing the transaction protected by a single global lock
(called GL-software path). In addition, there are other pro-
posals that take the choice of falling back to a pure STM
path [7], as well as to a hybrid-HTM scheme [8], [9].

In the current HTM implementations, three reasons force

• Authors are with the Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, USA. Dr. Mohamedin and Dr. Hassan are
currently affiliated with University of Alexandria in Egypt.

• E-mails: {mohamedin,robertop,hassan84,binoy}@vt.edu.

a transaction to abort: conflict, capacity, and other. Conflict
failure occurs when two transactions access the same mem-
ory location and at least one of them wants to write it; a
transaction is aborted for capacity if its memory footprint
does not fit with the cache constraints of the architecture;
and any extra hardware intervention, including interrupts,
is also a cause of abort (see Section 2 for more details).

Many recent papers propose solutions to: i) handle
aborts due to conflict efficiently, such that transactions that
run in hardware minimize their interference with concurrent
transactions running in the software fallback path [7], [8],
[9]; ii) tune the number of retries a transaction running in
hardware has to undergo before falling back to the software
path [10]; and iii) modify the underlying hardware support
for allowing special instructions so that conflicts can be
solved more effectively [4], [11].

Despite this body of work, one of the unsolved problems
of best-effort HTM is that there are transactions impossible
to be committed in HTM due to the characteristics of the
underlying hardware itself. Examples include transactions
that require non-trivial execution time even accessing few
memory locations and thus they are aborted due to a timer
interrupt (which triggers the actions of the OS scheduler);
or those transactions accessing several memory locations,
such that the problem of exceeding the cache size arises
(capacity failure). We group these two types of failures into
one superset, where, in general, a hardware transaction is
aborted if the amount of resources, in terms of space and/or
time required to commit, is not available. We name this
superset as resource failures.

None of the past works target this class of aborted
transactions and we turn this observation into our core
motivation: solving the problem of resource failures in
HTM. To pursue this goal, we propose PART-HTM (whose
initial design has already appeared in [12]), an innovative
transaction processing scheme that avoids falling back to
the GL-software path for those transactions that cannot
be executed as HTM due to space and/or time limitation,
instead it executes them as a set of hardware transactions.

2

PART-HTM limits the transactions executed as GL-software
path to those that retry indefinitely in hardware (e.g., due
to extreme conflicting workloads), or those that require the
execution of irrevocable operations (e.g., system calls).

PART-HTM’s core idea is to first run transactions as
HTM and, for those that abort due to resource limitations,
a partitioning scheme is adopted to divide the original
transaction into multiple, thus smaller, HTM transactions
(called sub-HTM), which can be easily committed. How-
ever, when a sub-HTM transaction commits, its updates to
memory locations are immediately made visible to others
and this inevitably jeopardizes the isolation guarantees of
the original transaction. We solve this problem by means of
a software framework that prevents other transactions from
accessing (or from committing after having accessed) those
committed (but still locked) memory locations.

This framework should be non-invasive: a heavy in-
strumentation would annul the advantages of HTM, falling
back into the drawbacks of adopting a pure STM imple-
mentation. PART-HTM uses locks to isolate new memory
locations written by sub-HTM transactions from others,
and a slight instrumentation of read/write operations using
cache-aligned signature-based structures to keep track of
accessed memory locations. In addition, a software valida-
tion is performed to serialize all sub-HTM transactions at a
single point in time. PART-HTM does not aim at improving
performance of those transactions that are systematically
committed as HTM; PART-HTM commits transactions that
are hard to commit as HTM due to resource failures without
falling back to the GL-software path and by still exploiting
HTM leveraging sub-HTM transactions.

PART-HTM ensures serializability [13], the well-known
consistency level for on-line transaction processing. With se-
rializability, all committed transactions observe a consistent
view of the shared state according to some equivalent serial
execution. However, many concurrent applications relying
on speculative execution, as TM, are subject to possible
erroneous computation due to the access of an inconsistent
value even if the execution is doomed to abort. For this rea-
son opacity [14] has been introduced as a correctness level
for those applications because it prevents all transactions,
including aborted ones, from observing inconsistencies in
accessing the shared state. Hardware transactions are par-
tially exempt by those dangerous computation because of
hardware sandboxing [15], [16], which is a policy that aborts
an HTM transaction in case of long or unexpected execution
without propagating the possible error to the application it-
self. However, it has been shown in [16] that the sandboxing
currently implemented by Intel TSX cannot prevent all bad
executions from happening.

To address this issue, we designed another version of
PART-HTM, called PART-HTM-O, that ensures opacity. Doing
that means introducing additional code instrumentation
that may easily lead to poor performance. We limit this
overhead by exploiting a lightweight technique, which we
name address-embedded write locks, to prevent transactional
accesses to locked memory locations at encounter time. This
technique deploys a bit-stealing scheme, therefore it has the
downside of requiring the application to wrap accesses to
primitive data types in an additional level of indirection to
enable the manipulation of the requested memory location’s

address (details in Section 5.5).
We implemented PART-HTM and assessed its effective-

ness through an extensive evaluation study including a
micro-benchmark, a data structure, the STAMP suite [17],
and EigenBench [18]. As competitors, we selected a pure
HTM with GL-software path as a fallback, two state-of-the-
art STM protocols and a recent HybridTM. In this eval-
uation, sub-HTM transactions are manually defined after
a static code profiler. Results confirmed the effectiveness
of PART-HTM. It is the best in almost all the tested cases,
except those where HTM outperforms all (and therefore no
competitor can perform better than that). In these work-
loads, PART-HTM still represents the best among other STM
and HybridTM alternatives. The combination of these two
contributions gives PART-HTM the unique characteristic of
being independent from the application workload.

PART-HTM has been designed and evaluated using the
Intel TSX implementation of HTM. Other HTM processors,
such as IBM Power 8 and Blue Gene/Q, although all
inherit the fundamental nature of being best-effort, they
have additional features (e.g., Power 8’s execution of non-
transactional code inside an HTM transaction) and strate-
gies to handle asynchronous events (e.g., CPU interrupts).
Given that each HTM implementation has its own set of
features, the current design of PART-HTM cannot embrace all
of them especially because some require exploring different
trade-offs between performance and functionalities. For that
reason, in this paper we decided to focus on Intel TSX and
scope out other HTM implementations. We selected Intel
TSX because, at current stage, it is the most diffuse and
affordable processor in the market.

2 PROBLEM STATEMENT

The current Intel HTM implementation is best-effort,
namely no transaction is guaranteed to eventually commit
because it enforces space and time limitations. In this im-
plementation, the L1 cache (32KB) is used as a transactional
buffer for read and write operations. Accessed cache-lines
are marked as “monitored” whenever accessed. This way,
the cache-line size is indeed the granularity used for detect-
ing conflicts. When two transactions need the same cache-
line and at least one wants to write it, an abort occurs. When
this happens, the application is notified and the transaction
can restart as HTM or can fall back to a software path.

In addition to those aborts due to data conflicts, HTM
transactions can be aborted for other reasons. Any cache-line
eviction (e.g., due to cache-associativity) of written memory
locations causes the transaction to abort (however there is
a specialized buffer for handling the eviction of a memory
location previously read, but not written). This means that
write operations of hardware transactions are limited in
space by the size of the L1 cache. However, read opera-
tions can go beyond the L1 cache capacity by exploiting
the L2 cache. Also, any hardware interrupt, including the
interrupts from timers, forces HTM transactions to abort.
We name the union of these two causes as resource limitation
and in this paper we propose a solution for that.

There are two ways to program HTM transactions:
Hardware Lock Elision (HLE) and Restricted Transactional
Memory (RTM). With HLE, each critical section protected

3

by a lock is attempted before as transaction and, in case of
abort, the original lock is acquired and mutual exclusion
is enforced. RTM allows for more flexibility because it
provides programmers with the freedom of deciding how
to activate a transaction even after its abort by not automat-
ically falling back to the original lock, and also it does not
require an already engineered lock-based application while
it admits applications to be coded directly with transactions.
However, while the commit of transactions in HLE is always
guaranteed, in RTM the implementation is responsible to
provide a fallback path where any transaction can commit
eventually. In this paper we focus on RTM because of its
flexibility; however applying PART-HTM to HLE’s first spec-
ulative trial before the lock acquisition is a simple extension.

% of Aborts % of committed
Conflict Capacity Explicit Other GL HTM SW

A 10.11% 70.76% 0.04% 19.09% 49.6% 50.4% N/A
B 93.95% 1.09% 1.14% 3.82% 0.1% 50.3% 49.6%

TABLE 1
Statistics’ comparison between HTM-GL (A) and PART-HTM (B) using

Labyrinth application and 4 threads.

In Table 1 we report a practical case of resource limita-
tion. The table contains statistics related to the Labyrinth
application of the STAMP benchmark. Here we can see
how the sum between the percentage of HTM transactions
aborted for capacity and other forms more than 91% of all
aborts, forcing HTM to often execute its GL-software path.
This is because more than 50% of Labyrinth’s transactions
exceed the size and time allowed for an HTM execution.

3 RELATED WORK

Before the release of Haswell, the first Intel processor with
HTM support, AMD proposed Advanced Synchronization
Facility (ASF) [4], which attracted researchers to design
initial Hybrid TM systems [7], [19] and test them on AMD
simulation stack. However, those systems used ASF support
for non-transactional load/store inside HTM transactions,
which is not allowed in the current Intel TSX extensions.

The release of Intel HTM processors attracted more
research on how to boost HTM capabilities via software [8],
[9], [10], [20], [21]. The best-effort nature of this processor
motivated different research directions such as: tuning the
number of trials in HTM before falling back to the software
path [10]; using STM as a fallback path instead of global
locking in order to reduce conflict between concurrent HTM
and STM transactions [7], [9], [19]; and using reduced hard-
ware transactions where only the STM commit procedure is
executed as HTM transaction [8].

PART-HTM takes a different direction from the above
proposals. Instead of falling back to either global locking
or STM, PART-HTM does not give up HTM execution. In
fact, it partitions transactions that fail in hardware due to
resource limitations and executes each partition as sub-HTM
transaction. Falling back to global locking is chosen only
when a transaction cannot succeed in HTM (e.g., due to
hardware interruption or irrevocable operations) or when
the contention between transactions is very high.

The problem of partitioning memory operations to fit
as a single HTM transaction is described also in [22]. In
this approach authors used HTM transactions for concurrent

memory reclamation. However, unlike PART-HTM, they do
not provide a software framework for ensuring consistency
and isolation of sub-HTM transactions. In [20], a similar
partitioning approach is used to simulate IBM Power 8’s
rollback-only hardware transaction via Intel Haswell HTM.
They ensure opacity by hiding writes that occur in the GL-
software path until the end of the critical section without
monitoring the reads.

SpHT [23] is a general and effective technique for split-
ting best-effort hardware transactions. Similar to PART-HTM,
SpHT splits the transaction into multiple sub-HTM transac-
tions. Each sub-HTM transaction keeps both an undo-log
and a redo-log. The undo-log is used before committing a
sub-HTM transaction to restore memory’s old values (i.e.,
hiding the transaction’s writes). Then, at the beginning
of the next sub-HTM transaction, the redo-log is used to
restore the values written in previous sub-transactions. This
approach is effective if transactions fail due to computations
(e.g., non-transactional code) that can be saved by breaking
them down into multiple parts. However, if transactions
abort because of resource limitations due to transactional
work, which is PART-HTM’s primary focus, its effectiveness
is reduced because the last sub-HTM transaction still has a
redo-log that is as big as the original transaction.

The way a transaction is divided into smaller sub-HTM
transactions does not constitute the main contribution of the
paper. We consider it an orthogonal problem because there
exist several efficient policies that can be applied, often ex-
ploiting compiler supports, such as [22], [24], [25], [26], [27].
A close technique that fits PART-HTM’s design is presented
in [25], where advisory locks are used to serialize the portion
of an HTM transaction that is more prone to conflict. Those
locks are automatically placed by new passes added to the
LLVM compiler. Their activation works as follows: trans-
actions are statically analyzed and advisory locking points
are identified. These points are possible positions where
advisory locks can be placed. At run time, a locking policy
decides which of these locking points to activate. Similarly,
PART-HTM can statically instrument transactions by adding
breaking points between segments, and activate them at
run-time to detect boundaries of a sub-HTM transaction.

Transaction Chopping [27] is a methodology for splitting
transactions to achieve higher concurrency. Although it is
interesting and in principle applicable to cope with resource
limitations as PART-HTM, Transaction Chopping assumes
rollback-safe transactions: either rollback statements are not
allowed or all the rollback statements in a transaction reside
in its first chop. PART-HTM does not assume rollback-safe
transactions, and thus has less limitations on the design of
general purpose concurrent applications.

In [24], Xiang et al. presented ParT, a programming
technique that represents another direction for partitioning
transactions. ParT partitions transactions into two phases;
a read-only (planning) phase, and a read/write (comple-
tion) phase. At the beginning of the completion phase,
an application-specific validator is defined to validate the
output of the planning phase. ParT works well for semantic
objects, such as data structures, since their operations often
expose a read-only phase that traverses the data structure
or does computation. PART-HTM has two advantages over
ParT. First, it fits applications where the two phases of ParT

4

cannot be easily identified. Second, it does not require a
programmer-defined validator, and thus it is more generic.

In [28], authors address the problem of capacity abort
due to best-effort HTM implementations of many-core ar-
chitectures by proposing hardware redesigns. A partition
mechanism is used to establish multiple logically indepen-
dent transactional buffers, i.e., partitions, in shared trans-
actional cache, furthermore, to make these transactional
buffers dynamically expandable. In contrast with PART-
HTM, the work in [28] does not assume a general purpose
hardware and it partitions physical resources rather than
software transactions.

Partitioned segments in PART-HTM are activated sequen-
tially, one after the other. Activating those segments in
parallel is an appealing enhancement. This can be applied
in PART-HTM’s design by leveraging techniques like those
presented in [29], [30]. Such an extension is however left as
a future development.

4 ALGORITHM DESIGN

The basic idea of PART-HTM is to partition a transaction
that likely (or certainly) fails in HTM (due to resource
limitations) into smaller sub-transactions, which could cope
better with the amount of resources offered by HTM.

Although the idea of partitioning a transaction into
smaller hardware sub-transactions has been already ex-
plored in [23], executing them efficiently in a way such
that the global transaction’s isolation and consistency is
preserved still poses a challenging research problem. In this
section we describe the design principles that compose the
base of PART-HTM, as well as the high level transaction
execution flow. The next section describes the algorithmic
details. The presented PART-HTM design assumes a address-
based TM (for simplicity in the description, we also used the
term memory object to indicate its location).

Three-paths Execution. PART-HTM adopts a three-level
fallback mechanism to work well in all possible scenarios:
- Fast Path. To cope with transactions that do not fail for

resource limitations, PART-HTM first tries to execute each
incoming transaction (we call it global transaction hereafter)
as a single non-partitioned HTM transaction. This execu-
tion type is called fast path. One of our design principles is
to minimize the instrumentation cost on that path in order
to achieve comparable performance between PART-HTM
and pure HTM execution in scenarios where most HTM
transactions successfully commit without being split.

- Partitioned Path. In case the transaction experiences a re-
source failure, then our software framework “kicks in” by
splitting that transaction and executing it as a sequence of
sub-HTM transactions. This path is called partitioned path.

- Slow Path. Transactions that repeatedly fail due to reasons
other than resource limitations fall back to an exit path,
called slow path, where a global lock is acquired and the
transaction is guaranteed to complete because it executes
in mutual exclusion with respect to any other execution.

Eager Writing. In the partitioned path, we opt for using
an eager approach: when a sub-HTM transaction TS1 of a
global transaction T commits, the shared memory is directly
modified with the new values of the memory locations

written in TS1 without waiting for T to commit, and the
old values are kept in a private undo-log.

Using eager writing is the main reason why in PART-
HTM, unlike the earlier (lazy) approaches for partitioning
transactions (e.g., [23]), sub-HTM transactions have smaller
footprints than the global transaction that encloses them.
Although using such an eager approach may have some side
effects (e.g., increasing the lock holding time of a written
location and therefore potential consequences, such as live-
lock or higher abort rate), we consider it as a mandatory
choice since reducing transactions footprints (and hence
overcoming resource limitations) is our main objective. That
said, using such a eager writing policy makes PART-HTM’s
design effective where there are large (in terms of number of
accessed memory locations) transactions that are unlikely to
conflict with each other. This claim is also confirmed by the
evaluation study when applications that expose the above
mix of transaction kinds have been tested.

Software Component for Conflict Management. Eager
writing imposes three challenges when executing a sub-
HTM transaction TS1 as a part of a global transaction T .
First, it allows other transactions to potentially access the
values written by TS1 before committing T , thus breaking
the isolation of T . Second, once TS1 is committed, HTM does
not keep any record of its read/written memory locations
during the rest of T ’s execution, therefore it becomes chal-
lenging to enforce the consistency of T ’s (with all its sub-
HTM transactions) reads. Third, the effect of committed sub-
HTM transactions has to be undone if the global transaction
aborts. PART-HTM adds a software component to address
those challenges.

Let T x be a transaction aborted for resource limitations,
and let T x

1 , T x
2 , . . . , T x

n be the sub-HTM transactions ob-
tained by partitioning T x. Let T x

y be a generic sub-HTM
transaction. At the core of PART-HTM there is a software
component that manages the execution of T x’s sub-HTM
transactions. Specifically, it is in charge of: 1) detecting
accesses that are conflicting with any T x

y already committed;
2) preventing any other transaction T k from committing
if it reads or overwrites memory locations updated by T x

y

before T x is committed (in PART-HTM-O, it prevents other
transactions even from reading/overwriting those values);
3) executing T x in a way the transaction observes a consis-
tent state of the memory; and 4) undoing the writes done by
sub-HTM transactions of an aborted global transaction.

The software framework does not handle those conflicts
that happen on T x

y ’s accessed objects when T x
y is still

running; the HTM solves them efficiently. This represents
the main benefit of our approach over a pure STM fallback
implementation.

Signature-based Metadata. It is clear that the efficiency
of PART-HTM depends on the design of the aforemen-
tioned software component. Although this component can
be trivially implemented by populating the same metadata
commonly used by STM protocols for tracking accesses
and handling conflicts, applying existing STM solutions can
easily lead HTM to lose its effectiveness and, consequently,
can lead to poor performance. In the following we point out
some of these reasons:
- STM metadata are not designed for minimizing the im-

pact on memory capacity. Adopting them for solving our

5

problem would stretch both the transaction execution time
and the number of cache-lines needed, thus consuming
precious HTM resources;

- HTM already provides an efficient conflict detection
mechanism, which is faster than any software-based con-
tention manager; and

- HTM monitors any memory access within the transaction,
including those on metadata, which takes the flexibility
for implementing smart contention policies away from
the programmer because concurrent updates on metadata
during the transactional execution cause abort.

We do not use the classical address/value-based read-
set or write-set as commonly adopted by STM implemen-
tations [3]; rather we rely only on cache-aligned Bloom
filter-based metadata (just Bloom filter hereafter) to keep
track of read/write accesses. We recall that HTM monitors
all memory accesses, thus if two HTM transactions write
different parts of the Bloom filter (thus different objects), one
transaction will be aborted anyway (behavior also known as
false conflict). Note that, we refer to a Bloom filter [31] as an
array of bits where the information (memory addresses in
our case) is hashed to a single bit in the array.

Metadata handling is done as follows (the complete list
of metadata is in Section 5).
- One Bloom filter shared across all global transactions is

used to keep track of memory locations written by com-
mitted sub-HTM transactions. This Bloom filter acts as a
shared lock table and is updated by sub-HTM transactions
before committing to announce its written locations.

- Two Bloom filters per global transaction are used for
recording the memory locations read and written by its
sub-HTM transactions. The purpose of these Bloom filters
is to let read/written memory locations survive even
after the commit of a sub-HTM transaction, allowing the
framework to check the validity of the global transaction
at any time. For this reason, these two Bloom filters are
not visible outside the global transaction.

- A value-based undo-log is kept for handling the abort of
a transaction having sub-HTM transactions already com-
mitted. Unfortunately, this undo-log cannot be optimized
using Bloom filters because it needs to store the old values
of written and committed locations. Although we consider
the undo-log as the biggest source of overhead in PART-
HTM, our experimental results show that this overhead is
dominated by the gain of partitioning transactions when
they face resource limitations. Also, since there is no need
to have such an undo-log in the fast path (because it
is executed as a single unpartitioned transaction), this
overhead is not paid when global transactions fit in HTM.

Non-transactional Code. The design of PART-HTM has
a positive side-effect of allowing the execution of non-
transactional computation, originally included (and not de-
sired) inside the HTM transactions, as a part of the software
framework. However, as a direct consequence of the eager
writing policy of PART-HTM, non-transactional code is al-
lowed to access only memory locations locally visible and
not globally. This is because, given that non-transactional
code is not instrumented, it can access a memory location
written by a sub-HTM transaction whose global transaction
is not yet committed, therefore ignoring the existence of
the lock and overwriting the value. Also, any side effect of

non-transactional code cannot be rolled back on abort. This
limitation of non-transactional work represents a downside
for PART-HTM’s design.

Strong Atomicity. Intel HTM implementation provides
strong atomicity, which is a property that aborts hard-
ware transactions if a conflicting transactional and non-
transactional code is executed. PART-HTM cannot guaran-
tee strong atomicity due to the early exposure of written
locations (although locked). In this regard, it is important
to recall that HTM-based concurrency controls that admit
a software fallback path are subject to the same limitation.
Specifically, if a non-transactional operation interferes with
locations accessed by the fallback path, then the fallback
execution may not be consistent anymore. To protect com-
putation in those scenarios there are orthogonal solutions
that can be applied, such as [32], [33].

5 ALGORITHM DETAILS

Figure 1 shows the pseudo-code of PART-HTM’s core opera-
tions. In Section 5.1 we list all metadata used by PART-HTM.
Then, in the subsequent three sections, we show in detail
how the transaction is executed in each of the three paths
(i.e., fast, partitioned, and slow) mentioned in Section 4.

5.1 Protocol Metadata

As we mentioned before, in order to reduce the metadata
size, most of them are Bloom filters (i.e., a compact rep-
resentation). We refer to any Bloom filter-based metadata
as signature. Conflict detection using Bloom filters can cause
false conflicts because the hash function could map more than
one address into the same entry. To reduce false conflict, in
our implementation Bloom filters are bit-arrays of 2048 bits
(4 cache-lines) with a single hash function. Bloom filters are
updated using HTM transactions, thus two HTM executions
that aim at updating different bits of the same Bloom filter
might still conflict if both the bits are stored into the same
cache-line due to HTM conflict resolution policy. Having
Bloom filters of 4 cache-lines alleviates this problem.

PART-HTM uses two types of metadata: some of them are
local, thus visible by only one global transaction (including
all its sub-HTM transactions); and others are shared by all
transactions.
Local Metadata. Each transaction has its own:
- read-set-signature, where the bit at position i is equal to 1

if the transaction read an object at an address whose hash
value is i; 0 otherwise.

- write-set-signature, where the bit at position i is equal to 1 if
the transaction wrote an object at an address whose hash
value is i; 0 otherwise.

- aggregate write-set-signature. This signature is used only in
the partitioned path. In this path we need one signature to
save the writes performed by only the current sub-HTM
transaction, and a separate signature where all the writes
of the enclosing global transaction are saved. The above
write-set-signature is used for the former and the aggregate
write-set-signature is used for the latter.

- undo-log, it contains the old values of the written objects,
so that they can be restored upon the transaction abort.

6

partitioned_tx_commit()*

42. if (is_read_only)

43. atomic_dec(active_tx);

44. return;

45. atomic {

46. ts = atomic_inc(timestamp) % RING_SIZE;

47. ring[ts] = agg_write_sig; }

48. atomic {

49. write_locks = write_locks – agg_write_sig;}

50. agg_write_sig.clear();

51. read_sig.clear();

52. atomic_dec(active_tx);

partitioned_tx_abort()*

53. undo_log.undo();

54. atomic {

55. write_locks = write_locks – agg_write_sig;}

56. agg_write_sig.clear();

57. read_sig.clear();

58. atomic_dec(active_tx);

59. exp_backoff();

60. restart_tx();

Slow Path

slow_tx_begin()*

61. while (!CAS(GLock, 0, 1));

62. while (active_tx);//Wait for active tx

slow_tx_read(addr)

63. return *addr;

slow_tx_write(addr, val)

64. *addr = val;

slow_tx_commit()*

65. Glock = 0;

Sub-HTM

sub_tx_begin()

20. _xbegin();

sub_tx_read(addr)

21. read_sig.add(addr);

22. return *addr;

sub_tx_write(addr, val)

23. undo_log.add(addr, *addr);

24. write_sig.add(addr);

25. *addr = val;

sub_tx_commit()

26. others_locks = (write_locks – agg_write_sig);

27. if (others_locks ∩ write_sig

|| others_locks ∩ read_sig)

28. _xabort();

29. write_locks ∪= write_sig;

30. _xend(); post_commit();

sub_post_commit()*

31. in_flight_validation();

32. agg_write_sig ∪= write_sig;

33. write_sig.clear();

in_flight_validation()*

34. ts = timestamp;

35. if (ts != start_time)

36. for (i=ts; i >= start_time + 1; i--)

37. if (ring[i % RING_SIZE] ∩ read_sig)

38. tx_abort();

39. if (timestamp > start_time + RING_SIZE)

40. tx_abort(); //Abort at ring rollover

41. start_time = ts;

Fast Path

fast_tx_begin()

1. _xbegin();

2. if (GLock) _xabort();

fast_tx_read(addr)

3. read_sig.add(addr);

4. return *addr;

fast_tx_write(addr, val)

5. write_sig.add(addr);

6. *addr = val;

fast_tx_commit()

7. if (write_locks ∩ write_sig

|| write_locks ∩ read_sig)

8. _xabort();

9. if (!is_read_only)

10. ts = ++timestamp %

RING_SIZE;

11. ring[ts] = write_sig;

12. _xend();

13. post_commit();

fast_post_commit()*

14. write_sig.clear();

15. read_sig.clear();

Partitioned Path

partitioned_tx_begin()*

16. while (Glock) PAUSE();

17. atomic_inc(active_tx);

18. if (Glock) tx_abort();

19. start_time = timestamp;

Fig. 1. PART-HTM’s pseudo-code. Procedures marked as * are executed in software.

- starting-timestamp, which is the value of the global-
timestamp (see later) of the system at the time the trans-
action begins.

Global Metadata. All transactional threads share:
- global lock, which is the lock that implements mutual

exclusion between the slow path and any other execution.
- write-locks-signature, a Bloom filter that represents the

write-locks array, where each bit is a single lock. If the
bit in position i is equal to 1, it means that some sub-HTM
transaction committed a new object stored at the address
whose hash value is i. The write-locks-signature has the
same size and hash function as other signatures.

- global-timestamp, which is a shared counter incremented
whenever a global writing transaction commits.

- global-ring, which is a circular buffer that stores committed
transactions’ write-set-signatures, ordered by their com-
mit timestamp. The global-ring has a fixed size and is used
to support the validation against committed transactions,
in a similar way as proposed in RingSTM [34].

- active tx, a counter that stores the number of transactions
currently running in the partitioned path.

5.2 Fast Path

In the fast path, PART-HTM tries to execute an incoming
global transaction as a single HTM transaction. However,
in order to synchronize that with transactions executing
in any other path, the fast path cannot be a pure HTM
transaction and it has to be slightly instrumented according
to the following rules.

Begin [lines 1-2]: the global lock is checked right after
starting the HTM transaction in order to abort the trans-
action if that lock is, or will be, acquired by a transaction
falling back to the slow path.

Read/write [lines 3-6]: When a memory location is
read/written in the fast path, HTM solves any conflict
on that location with concurrent transactions executing in

the fast path or as sub-HTM transactions. However, HTM
will not detect the case when that location is written by a
committed sub-HTM transaction whose global transaction
is still executing (we refer to such a location as a non-visible
location hereafter because that location would not have
been visible if the global transaction was executed entirely
without partitions). For that reason, every memory location
is recorded into the read-set-signature (write-set-signature)
before it is read from (written to) the shared memory. This
information will be used by the HTM transaction before
proceeding with the commit phase.

Commit [lines 7-13]: Before committing the transaction,
validation is needed to solve two issues. First, the transac-
tion should not overwrite any non-visible memory location
because, in this case, the committed sub-HTM transaction
that wrote that location has its global transaction not yet
committed. Thus, overwriting that location means a po-
tential serialization problem for the global transaction be-
cause subsequent sub-HTM transactions may access objects
written by the transaction that overwrote the non-visible
location. Second, the transaction should not read the value
of non-visible location, in order to prevent the exposition of
uncommitted (partial) state of a global transaction.

Both issues can be solved by comparing the transaction’s
read-set-signature and write-set-signature with the global
write-locks-signature. This is because (as we detailed in
the next section) non-visible locations are locked by sub-
HTM transactions before committing using the write-locks-
signature. The comparison is done through a bitwise AND
(i.e., the intersection between the two Bloom filters [Line
7]). If the result is a non-zero Bloom filter, it means that the
HTM transaction wrote some location that was locked, thus
it should abort [Line 8]. It is worth to note that the abort in
the fast path is handled by the HTM implementation itself
and there is no need for an explicit abort handler.

The next step in the commit phase is to add the trans-
action’s write-locks-signature to the global-ring if it is not

7

read-only [Line 9-11] (i.e., at least one write occurred during
the execution). This is done by incrementing the global
timestamp (no need to use atomic increment because we
are still within an HTM context) and using the new value
to identify the target ring location. If the transaction is read-
only, there is no need to add it to the ring.

The last step after committing a fast path transaction is
to clear the local signatures.

5.3 Partitioned Path

5.3.1 Partitioning Phase
When transactions fail in the fast path, partitions are created
and the execution falls back to the partitioned path. In
Section 3 we listed possible approaches to automate the
partitioning process of transactions according to different
heuristics. In this paper, partitions are manually made and
determined based on static profiler analysis. This analysis
splits transactions into multiple basic blocks, and measures
the size of accessed shared objects and the duration of
each basic block executed sequentially. A partition will be
then composed of one or more basic blocks according to
their capability of fitting HTM resource limitations. We also
manually excluded basic blocks that access no shared objects
from being executed in sub-HTM transactions.

When a transaction falls back from the fast path to the
partitioned path, it first calls a begin subroutine for the global
transaction. Then it executes the sub-HTM transactions one
after another. Finally, it calls a global commit subroutine (or
a global abort subroutine if it fails in the in-flight-validation).

5.3.2 Global Transaction: Begin
Similar to the fast path, the transaction checks the global
lock and aborts if it is acquired. In addition, and before
checking the global lock, it atomically increments active tx
[lines 17-18]. Since transactions running in the slow path
do the opposite (acquire the global lock and then check
active tx [lines 61-62]), this guarantees mutual exclusion
between transactions in the partitioned path and those in
the slow path. Finally, the value of the global-timestamp is
stored as the start time of the transaction [Line 19].

5.3.3 Sub-HTM Transaction: Begin
No instrumentation is needed when a sub-HTM transaction
starts.

5.3.4 Sub-HTM Transaction: Read/Write
Locations are read directly from the shared memory as in the
fast path and recorded into read-set-signature even if that
location may have been written before by the same global
transaction. In fact, in case a previous sub-HTM transaction,
belonging to the same global transaction, committed a new
value of that location, this new value is already stored
into the shared memory since HTM uses the write in-place
technique. If the read object has been already written during
the current HTM transaction, then the HTM implementation
guarantees the access to the latest written value.

For writes, the only difference between fast path and
partitioned path is that in the latter the global transaction
could abort in the future, although the current sub-HTM

transaction is committed. If this happens, the previous val-
ues of written locations should be replaced into the shared
memory in the global transaction abort handler. For this
reason, before to finalize the write operation, the old value
of the location is logged into the local undo-log [Line 23].

5.3.5 Sub-HTM Transaction: Commit/Abort
The first step in the commit phase of a sub-HTM trans-
action is to validate the read-set-signature and the write-
set-signature similar to the fast path [lines 26-27]. The only
difference is that locks acquired in previous committed sub-
HTM transactions have to be excluded from the global
write-locks-signature before doing the validation. This is
because, due to the nature of the Bloom filters, a lock is just a
bit and has no ownership information. Thus, a transaction is
not able to distinguish between its own locks (i.e., acquired
by previous sub-HTM transactions of the same global trans-
action), and others’ locks. We solve this issue by a simple
bitwise operation between the transaction’s aggregate write-
set-signature and the global write-locks-signature [line 26],
which allows each sub-HTM transaction to know whether
the locked location is owned by its global transaction or not.

After validation and before committing the sub-HTM
transaction, the new values of written locations should be
protected against accesses from other transactions. This is
done by updating the global write-locks-signature [Line 29].
It is worth to note that, every update to a shared metadata,
such as the write-locks-signature, causes the abort of all
HTM transactions that read the specific cache-line where the
metadata is located, even if they updated or tested different
bits (false conflict). For this reason, in order to minimize
false conflicts, the write-locks-signature is updated in the
commit phase of the sub-HTM transaction, rather than after
each write operation.

In practice, the task of notifying that a new location has
been just committed, but is non-visible, is very efficient:
the write-locks-signature is updated to be the result of
the bitwise OR between transaction’s aggregate write-set-
signature and the write-locks-signature itself.

The last step in the commit phase of sub-HTM trans-
actions, after calling xend, is to call the in-flight-validation
routine (detailed below) and to update the aggregated write-
set-signature [line 32].

Aborted sub-HTM transactions are handled based on the
abort reason. If the sub-HTM transaction aborts due to a
conflict on the global write-lock, the software framework
propagates the abort to the enclosing global transaction.
Otherwise, sub-HTM transaction retries for a limited num-
ber of times before aborting the enclosing transaction (for
simplicity, this is not shown in the pseudo code).

5.3.6 Global Transaction: In-flight-validation
This validation is done by the software framework after
the commit of every sub-HTM transaction in case some
global transaction (including those executing in the fast
path) committed in the meanwhile, whereas transactions in
the fast path do not need to call it. The in-flight-validation is
needed for ensuring that the memory snapshot observed by
the global transaction is still consistent after the commit of
a sub-HTM transaction. The following example shows the
need of the in-flight-validation to preserve correctness.

8

Assuming the scenario with two global transactions T x

and T y , both having two sub-HTM transactions each. Let
us assume that T x

1 reads the value of object o and commits.
Let us also assume that o is not locked at this time. After
that, T y

2 is scheduled. It overwrites and locks o, invalidating
T x. T x is able to detect this conflict during the validation
done before T x

2 commits, but let us assume that the commit
of T y is scheduled before T x

2 ’s commit (in fact, T y
2 is the

last sub-HTM transaction of T y). As we will show later in
the commit procedure (Section 5.3.7), all transaction’s locks
are cleared from the write-locks-signature when the global
transaction commits. This means that, the intersection be-
tween T x

2 ’s read-set-signature and the write-locks-signature
does not report any conflict on o, therefore T x

2 can commit
even if T x’s execution is not consistent anymore.

The in-flight-validation solves this problem by compar-
ing the transaction’s read-set-signature against the aggre-
gate write-set-signature (or write-set-signature in case of fast
path) of all concurrent and committed global transactions
[Line 34-38]. As we will show later, retrieving committed
transactions is easy because, upon commit, each of them add
itself into an entry in the global-ring, which is also associ-
ated with its commit timestamp. The selection of concurrent
transactions through the global-ring is straightforward be-
cause they have a commit timestamp that is higher than
the starting-timestamp of the transaction that is running
the in-flight-validation [Line 36]. If a transaction detects an
overflow in the ring while validating its entries, it aborts
[Lines 39-40]. After a successful in-flight-validation, the
transaction’s starting-timestamp is advanced to the value
of the global-timestamp at the time of the validation [Line
41]. This way, subsequent in-flight-validations do not pay
again the cost of validating the global transaction against
the same, already committed, transactions.

It is worth to notice that the in-flight-validation is done
after each sub-HTM transaction mainly for performance
reason (except for PART-HTM-O where it is mandatory). In
fact, in order to ensure serializable executions, the in-flight-
validation could be done just one time after the commit of
the last sub-HTM transaction and before commit. We de-
cided to perform it after each sub-HTM transaction because
detecting invalidated objects early in the execution avoids
unnecessary computation, saves HTM resources, and makes
the software framework’s execution always consistent.

5.3.7 Global Transaction: Commit/Abort
This section details the commit/abort procedure of a global
transaction running in the partitioned path.

The commit phase of the partitioned path is different
from the one of the fast path transactions in four points.
First, incrementing the global-timestamp and adding the
transaction’s aggregate write-set-signature to the global-ring
must be atomic [lines 45-47] since this commit phase is not
part of any HTM execution. The way we guarantee in our
code that those two lines together are atomic is somehow
complicated (to be optimized), so we did not include it in
Figure 1 and we only marked them as an atomic block. Sec-
ond, there is no need to re-validate the transaction because
it has been already validated by both the the last sub-HTM
transaction and the in-flight-validation called after it. Third,
active tx has to be atomically decremented [line 52]. Finally,

the transaction’s write locks should be released [Line 48-49].
Recall that in each sub-HTM transaction, write operations
are directly applied to the shared memory and the written
locations are protected by modifying the global write-locks-
signature. In order to release write locks, a transaction
executes an atomic bitwise XOR between the transaction’s
aggregate write-set-signature and the global write-locks-
signature.

The abort of a global transaction in the partitioned path
due to failing in the in-flight-validation requires to restore
the values of memory locations written by its committed
sub-HTM transactions. This operation is done traversing
the transaction’s undo-log [Line 53]. After that, the transac-
tion’s write-locks are released from the global write-locks-
signature [Line 54-55]. Finally, active tx is atomically decre-
mented and a retry in the partitioned path is invoked after
an exponential back-off time [Line 58-60]. The transaction is
retried 5 times before falling back to the slow path.

5.4 Slow Path
A transaction that falls back to the slow path acquires the
global lock and waits until all active transactions (i.e., those
running in the partitioned path) complete [Lines 61-62].
This guarantees that no transaction, running in any path,
is concurrent with a transaction executing in the slow path,
thus the slow path can execute without instrumentation,
and release the global lock at the end.

5.5 Ensuring Opacity
PART-HTM cannot guarantee opacity. This is because the
consistency of the execution history is not verified encounter
time but only before committing a sub-HTM transaction, as
well as during the in-flight-validation. Roughly, the former
validation checks if objects accessed during the current sub-
HTM transaction were non-visible; the latter verifies that
the memory snapshot observed by the global transaction
is still consistent against all committed transactions. These
validations do not prevent the transaction from performing
a memory read if the object is non-visible or the global
transaction’s history is not valid anymore, whereas they
“only” prevent the transaction from finally committing. Un-
der specific programming patterns, such as invoking jump
instructions to addresses computed at run-time as a result
of previous read operations, such behavior may produce
erroneous executions as those described in [16].

Two extensions are needed for making PART-HTM
opaque: 1) once a locked object is accessed, the global
transaction should be immediately aborted; 2) no memory
access should be performed if the snapshot observed by the
sub-HTM transaction, as well as the global transaction, is
not valid. Figure 2 shows the pseudo-code of PART-HTM-O’s
core operations. For simplicity in the representation, we do
not report the additional indirection level required by PART-
HTM-O. In this sub-section, line numbers refer to Figure 2.

Encounter time lock detection. In principle, checking
if an object is locked is straightforward because we could
analyze the write-locks-signature just before performing the
actual read. Unfortunately, the write-locks-signature is a
global metadata, which is updated anytime a sub-HTM
transaction commits any object. As a result, reading it

9

partitioned_tx_commit()*

48. if (is_read_only)

49. atomic_dec(active_tx);

50. return;

51. atomic {

52. ts = atomic_inc(timestamp) % RING_SIZE;

53. ring[ts] = write_sig;

54. }

55. foreach (entry in undo_log) //Unlock all

56. entry.addr = entry.addr & ~1;

57. write_sig.clear();

58. read_sig.clear();

59. atomic_dec(active_tx);

partitioned_tx_abort()*

60. undo_log.undo();

61. foreach (entry in undo_log) //Unlock all

62. entry.addr = entry.addr & ~1;

63. write_sig.clear();

64. read_sig.clear();

65. atomic_dec(active_tx);

66. exp_backoff();

67. restart_tx();

Slow Path

slow_tx_begin()*

68. while (!CAS(GLock, 0, 1));

69. while (active_tx);//Wait for active tx

slow_tx_read(addr)

70. return *addr;

slow_tx_write(addr, val)

71. *addr = val;

slow_tx_commit()*

72. Glock = 0;

Fast Path

fast_tx_begin()

1. _xbegin();

2. if (GLock) _xabort();

fast_tx_read(addr)

3. if (addr & 1) //Locked

_xabort();

4. return *addr;

fast_tx_write(addr, val)

5. if (addr & 1) //Locked

_xabort();

6. write_sig.add(addr);

7. *addr = val;

fast_tx_commit()

8. if (!is_read_only)

9. ts = ++timestamp %

RING_SIZE;

10. ring[ts] = write_sig;

11. _xend();

12. post_commit();

fast_post_commit()*

13. write_sig.clear();

Partitioned Path

partitioned_tx_begin()*

14. while (Glock) PAUSE();

15. atomic_inc(active_tx);

16. if (Glock) tx_abort();

17. start_time = timestamp;

not_self_lock(addr)

18. foreach (entry in undo_log)

19. if (entry.addr == addr)

20. return false;

21. return true;

Sub-HTM

sub_tx_begin()

22. _xbegin();

23. if (start_time != timestamp)

24. _xabort(TS_CHANGED);

sub_tx_read(addr)

25. if ((addr & 1) && not_self_lock(addr))

26. _xabort(CONFLICT); //Locked by others

27. read_sig.add(addr);

//Remove lock bit before dereferencing

28. return *(addr & ~1);

sub_tx_write(addr, val)

29. if (addr & 1) //Locked by others or self?

30. if(not_self_lock(addr)) _xabort(CONFLICT);

31. else goto 35

32. undo_log.add(addr, *addr);

33. write_sig.add(addr);

34. addr = addr | 1; //Acquire lock

35. *(addr & ~1) = val;

sub_tx_abort()* //Sub-HTM Abort Handler

36. if (abort_code == TS_CHANGED)

37. in_flight_validation(); //Valid? Abort?

38. restart_sub_HTM(); //Still valid

39. else tx_abort();

in_flight_validation()*

40. ts = timestamp;

41. if (ts != start_time)

42. for (i=ts; i >= start_time + 1; i--)

43. if (ring[i % RING_SIZE] ∩ read_sig)

44. tx_abort();

45. if (timestamp > start_time + RING_SIZE)

46. tx_abort(); //Abort at ring rollover

47. start_time = ts;

Fig. 2. PART-HTM-O’s pseudo-code. Procedures marked as * are executed in software.

during an HTM transaction means being aborted anytime
another sub-HTM transaction updates it, even if the ac-
cessed object is not the same and their entries in the write-
locks-signature are different. Another solution is creating
an external lock-table for storing locks, as done in [35].
However, this solution has the same drawback as the write-
locks-signature because they both rely on a hash-function.

PART-HTM-O solves this problem by introducing the
address-embedded locks, which is a technique never used in
the HTM context, that embeds the information about the
lock acquisition into the memory address of the shared
object itself. With it, we assign the address of shared objects
in a way such that they are always memory-aligned. If so,
we set the least significant bit (meaningless because we
know the object is always memory-aligned) to 1 (locked)
or 0 (unlocked). With address-embedded locks we eliminate
any false conflicts due to shared metadata. In practice, when
an object is accessed inside a sub-HTM transaction, the least
significant bit of its address is checked and if a lock is found,
the transaction is explicitly aborted [Line 3, 5, 25, 29].

The deployment of address-embedded locks introduces
two inherent downsides. First, it requires a memory location
for storing the actual memory-aligned address that points to
the shared object. Although it does not generate a significant
performance overhead, the implementation of this indirect
addressing layer needs a modification of the memory allo-
cation of the application. As an example, if the shared object
is a primitive type (e.g., integer), we need to manage the
value of its pointer. This indirect addressing layer must be
added. Note that, memory accesses occur only inside HTM
transactions, therefore any request to a possible unmapped
location due to the new additional level of indirection would
cause the transaction to abort. The second downside is
that concurrency control metadata become accessible to the

application programmer given the exposed lock bit, thus
allowing their manipulation as a consequence of a malicious
behavior. Besides that, it is important to note that stealing
bits is a widely used technique in coding operating systems.

We exploit the memory alignment of addresses, which
allows the last bit to be manipulated arbitrarily without
corrupting the address itself. If the application accesses a
scalar X with address addr(X), in order to change the
last bit of addr(X) we need an indirect reference to X
(wrap(X)). This way, the value of wrap(X) is addr(X) but
with the last bit ready to be used for locking. Therefore, the
deployment of address-embedded-locks requires modifying
the application (although simple) to use wrap(X) rather
than X . If X is a pointer, then no wrapper is needed and
the lock is embedded in X itself. For instance, in a linked-
list, nodes store pointers to other nodes (Node* next), thus
we already have a container for modifying the addresses
directly to embed the lock. Modifications are rather needed
if there is a scalar (e.g., int size). If so, we wrap it with
a pointer (int* sizep = &size) so it is only accessed
indirectly via the wrapper (*sizep).

Consistent reads. Opacity requires that any memory
access is performed only if it does not violate the consistency
of the snapshot observed so far by the transaction. PART-
HTM does no provide this because, with its scheme, it is not
possible to detect if an object read in a previous sub-HTM
transaction becomes not valid while executing a subsequent
sub-HTM transaction. As a consequence, a read operation
can access an object committed by a transaction whose
history is not consistent with the global transaction. PART-
HTM allows this anomaly and aborts the global transaction
once the sub-HTM transaction is already committed exploit-
ing the in-flight-validation. A trivial solution for ensuring
consistent reads is to validate all objects accessed before

10

reading a new shared object, but this solution is unfeasible
because it would generate several false conflicts and require
maintaining all read objects, thus consuming resources.

PART-HTM-O adopts a strategy that overcomes the above
limitations. At the beginning of each sub-HTM transaction,
the global-timestamp is compared against the transaction’s
start time [Line 23-24]. The goal is to abort the sub-HTM
transaction anytime a new global transaction commits. Once
this happen, the in-flight-validation is called and, in case it
succeeds, just the sub-HTM transaction is restarted [Line
36-38], otherwise the whole global transaction is aborted
[Line 39]. Reading the global-timestamp allows the sub-
HTM transaction to avoid any validation while executing
because, once a new global transaction commits and it is
added to the global-ring, the global-timestamp is changed
and this forces the sub-HTM transaction to abort due to
the hardware conflict detection. The combination of both
the above extensions make the sub-HTM’s validation before
commit useless in PART-HTM-O because its goal is already
provided earlier in the execution.

6 CORRECTNESS

6.1 PART-HTM: serializability
Serializability requires that in any concurrent execution,
committed transactions appear to execute sequentially. Un-
like opacity, serializability does not provide any guarantees
on aborted and live (i.e., not yet committed) transactions.
We show, case by case, that the aforementioned property
holds for every possible concurrent execution.

The first trivial case is when all transactions are running
in the fast path. In that case, since every transaction in the
fast path runs as a single non-partitioned HTM transaction,
serializability is inherited from the HTM guarantees: if two
transactions are conflicting (i.e., they access the same loca-
tion and at least one of them is writing, HTM aborts one of
them). Note that, due to the conflict detection implemented
by HTM, the provided safety guarantee is much stronger
than Serializability.

The second case, which is when some transactions run
in the partitioned path, is the core of our proof. Adding
transactions running in the partitioned path to a concur-
rent execution moves part of the conflict management that
preserves serializability to the software framework. In the
following, we show that the software framework handles
the three possible types of conflicts that can invalidate the
transaction execution: write-read, read-write, and write-write.

Let T x
r and T y

w be two sub-HTM transactions with con-
flicting accesses. Specifically, T x

r performs a read operation
and T y

w a write operation on the same memory location. T x
r

belongs to the global transaction T x, whereas T y
w belongs

to the global transaction T y . Clearly, T x
r and T y

w are both
in the partitioned path. The case when one transaction is in
the fast path and the other is in the partitioned path can be
handled (with slight adaptation) as a special case where the
former is considered to be partitioned into only one sub-
HTM transaction.

A write-read conflict happens when T y
w writes an object

o read by T x
r . If the conflicting operations of T x

r and T y
w

happen while both the transactions are running, the HTM
conflict detection will abort one of them. Otherwise, it

means that the write operation of T y
w on o is executed after

the commit of T x
r . If so, T x will detect this invalidation

through the validation performed at the end of the sub-
HTM transaction that follows T x

r . If there is no sub-HTM
transaction after T x

r , it means that T x commits before T y

thus it serializes itself before T y . Any future serialization
issue that may occur between T x and T y will be detected
by T y during its validation phases. If T y commits after T x

r

but while T x is still executing, T y’s aggregate write-set-
signature will be attached to the global-ring. In this case,
the in-flight-validation performed by T x before committing
will detect the conflict and abort T x.

A read-write conflict happens when T x
r reads an object o

that T y
w already wrote. As before, if the conflict is materi-

alized while both are running, the HTM conflict detection
handles it. If T x

r reads after the commit of T y
w, but T y is

still executing, then T x
r will be aborted before it attempts to

commit thanks to the HTM-pre-commit-validation, which
detects a lock taken on o by T y . If T y commits just after T y

w,
this is not a problem because it means that T x

r accessed to
the last committed version of o.

The write-write conflicts are detected either by exploit-
ing the HTM conflict detection if both the write oper-
ations happen during HTM executions, or before com-
mit all HTM transactions perform the HTM-pre-commit-
validation, which detects a taken lock by intersecting the
transaction’s aggregate write-set-signature (or write-set-
signature if the transaction is committed in the fast path)
with the global write-locks-signature. Handling write-write
conflicts is important because, if ignored (as many serializ-
able concurrency controls do), a read operation on an object
already written inside the same transaction could return a
different value.

The last case is when some transactions, in addition to
those running in fast and partitioned paths, are running in
the slow path. Those transactions cannot break serializabil-
ity because they run in isolation (thanks to the global lock
and the active tx counter).

6.2 PART-HTM-O: opacity
Considering that PART-HTM reads and writes only using
HTM transactions, there is the possibility that doomed
transactions (those that will be aborted eventually) could
observe inconsistent states while they are running as HTM
transactions. In fact, locks are checked only before commit-
ting the HTM transaction, thus a hardware read operation
always returns the value written in the shared memory, even
if locked. The return value of those inconsistent reads could
be used by the next operations of the transaction, generating
non-predictable execution (e.g., infinite loops or memory
exception). This behavior does not break serializability be-
cause aborted transactions are not taken into account by the
correctness criterion. However, for in-memory processing,
like TM, avoiding such scenarios is desirable, as defined
in [14]. As a partial fallback plan, the HTM provides a
sandboxing feature, which eventually aborts misbehaving
HTM transactions that generate infinite loops or erroneous
computations. However, without guaranteeing Opacity, the
protocol cannot prevent corner case situations where a
sub-HTM transaction is committed skipping the pre-HTM
validation [16].

11

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8
M

 tx
/s

ec
Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

 0 2 4 6 8 10 12 14 16 18

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

Part-HTM-no-fast

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16 18

M
 t

x
/s

e
c

Threads

(a) N=M=10.

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16 18

K
 t

x
/s

e
c

Threads

(b) N=100K, M=100.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14 16 18

K
 t

x
/s

e
c

Threads

(c) N=M=100.

Fig. 3. Throughput using N-Reads M-Writes benchmark.

PART-HTM-O addresses this problem by avoiding any
memory operation in case A) the snapshot observed by the
transaction is not consistent anymore, and B) if the memory
access itself would break the consistency of the transaction.

(A) We ensure the point A by monitoring the global-
timestamp as the first operation of a sub-HTM transaction.
This way, if some object is committed just after the in-
flight-validation performed before the activation of a sub-
HTM transaction or if some global transaction commits
while a sub-HTM transaction is executing, then the global-
timestamp is changed and any HTM transaction is aborted
and forced to perform a validation of all accessed objects.

(B) If a sub-HTM transaction accesses an object already
locked (if the object becomes locked after the access, then
the HTM will detect the conflict), then before to finalized
the access the HTM transaction is explicitly aborted by
leveraging the address-embedded write locks.

7 EVALUATION

PART-HTM has been implemented in C++. We used four
benchmarks: N-reads M-write, a configurable application
provided by RSTM [36]; the linked-list data structure;
STAMP [17] (v0.9.10), the popular suite of applications used
for evaluating STM- and HTM-related concurrency controls;
and EigenBench [18], a customizable TM benchmark.

As competitors, we included two state-of-the-art STM
protocols, RingSTM [34] and NOrec [3]; one Hybrid TM,
Reduced Hardware NOrec (NOrecRH) [37]; and one HTM
with the GL-software path as fallback (HTM-GL). Also, the
ring used by RingSTM and PART-HTM have the same size
and signature. NOrecRH and HTM-GL retry a transaction
5 times as HTM before falling back to the software path.
All are implemented such that they do not suffer from
the lemming effect [38]. As suggested in [38], a transaction
does not retry until the global lock is not released. In this
evaluation study we mainly used the Intel Haswell Core i7-
4770 processor (4-core) hosted in a single socket machine,
but for some micro-benchmark we used the Intel Xeon E7-
8880v3 (18-core HTM enabled) processor on a single socket
machine. Hyper-threading is enabled in the former CPU and
disabled in the latter. Both the CPUs have the following
cache sizes per core: L1=32 kB, L2=256 kB.

We used GCC 4.8.2. Transactional barriers (read and
write) are inserted manually in the used applications; no
GCC transactional extensions have been used. All data
points are the average of 5 repeated execution. To show
the viability of using the address-embedded write locks, we

also included the performance of PART-HTM-O in most of
the used applications.

As a general comment of our evaluation, PART-HTM
represents the best solution in almost all the tested work-
loads, except for those where pure HTM transactions always
commit. In these cases, outperforming HTM is impossible
without additional hardware support, but our approach
does not pay a significant performance penalty thanks to
the fast path HTM transactions.

7.1 Micro benchmarks
N-Reads M-Writes. In this benchmark each transaction
reads N elements from one array and writes M to another.
Both the arrays have a fixed size of 100k elements. This
benchmark is configured to access disjoint elements (i.e.,
no contention) in all the experiments because we aim at
evaluating our approach in scenarios where the aborts due
to non-false conflicts of HTM transactions are minimized.

Figure 3(a) shows the results of reading and writing 10
elements. Here, few transactions are aborted for resource
failure, thus almost all commit as HTM. As expected,
HTM-GL has the best throughput, followed by PART-HTM.
This scenario is not the best case for PART-HTM but still,
thanks to the lightweight instrumentation of fast path HTM
transactions, it shows a limited slowdown up to 8 threads
over HTM-GL, whereas the best competitor (NOrecRH) is
much slower than PART-HTM. When number of concurrent
threads increases, PART-HTM suffers from false conflicts on
metadata, which reduces its scalability. However, it remains
the closest competitor to HTM-GL. Recall that HTM-GL
does not suffer from this meta-data overhead, and thus it
keeps scaling even after 8 threads. PART-HTM-O is slightly
slower than its non-opaque version due to the additional
indirection level to implement the address-embedded write
locks, which in this case represents just an overhead because
application workload is already disjoint.

Figure 3(b) shows an experiment where 100k elements
are read from one array and 100 of them are written to the
destination. This scenario reproduces large transactions in
a read-dominated workload. Here, HTM-GL still performs
good up to 8 threads, because Intels HTM implementation
can go beyond the L1 cache capacity for read operations.
However, when number of concurrent transactions is more
than 8, most of HTM transactions reach their capacity limits
and fall back to the GL-software path, and the performance
drops. For this reason, the benefit of partitioning and com-
mitting into sub-HTM transactions is evident and PART-
HTM performs significantly better than HTM-GL. Both STM

12

protocols and NOrecRH suffer from excessive instrumenta-
tion cost due to having several operations per transaction.
PART-HTM gains around 20% over PART-HTM-O. In Fig-
ure 3(b), we also added a new version of PART-HTM, which
avoids the fast path execution and starts immediately by
falling back to the partitioned path (we call it Part-HTM-no-
fast in the figure). This version shows how, interestingly,
the absence of fast path trials in such scenarios improves
PART-HTMs scalability.

In Figure 3(c), each transaction reads one element from
the source array, then it does some floating point operations,
and then it writes its new value to the destination array in
the same entry as the source array. This sequence is repeated
100 times on different objects by a single transaction. This
way we emulate transactions that could be committed as
HTM in terms of size but, for time limitation, are likely
aborted (e.g., by a timer interrupt). Once partitioned, each
sub-HTM transaction executes 25 of those iterations. When
running in the partitioned path, non-transactional code is
still executed transactionally by sub-HTM transactions. In
this scenario, PART-HTM shows a significant speed-up com-
pared to other competitors. HTM-GL executes all transac-
tions using global locking. NOrecRH and NOrec perform
similar but NOrecRH is slightly worst as it executes the
transaction in hardware first. PART-HTM-O follows the same
trend line as PART-HTM but with a performance gap due to
the higher number of aborts as a consequence of the ring
timestamp subscription.

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

M
 t
x
/s

e
c

Threads

(a) 1K, 50% writes.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8

K
 t
x
/s

e
c

Threads

(b) 10K, 50% writes.
Fig. 4. Throughput using Linked-List.

Linked-List. In this benchmark, we do operations on
a linked list. We change its size, and the percentage of
write operations (insert and remove) against read operations
(contains). Linked list transactions traverse the list from
the beginning until the requested element. This increases
the contention between transactions. Write operations are
balanced so that the size of the list is stable.

Figure 4(a) shows the results of a 1K elements linked
list using 50% of write operations. Due to the small size of
the linked list, thus capacity aborts are rare, and given that
concurrent transactions are only eight, thus conflict aborts
are small, almost all transactions commit in hardware and
HTM-GL has the best throughput. However, following the
same trend as Figure 3(a), PART-HTM places its performance
closer to HTM-GL.

Figure 4(b) shows a larger linked list with 10K elements.
Here, most of the transactions fail in hardware for resource
failures. As for the case in Figure 3(c), PART-HTM’s through-
put is the best as sub-HTM transactions pay a limited

instrumentation cost and fast execution in hardware. PART-
HTM gains up to 74% over HTM-GL. It is worth noting
that all algorithms do not scale like Figure 4(a) because
transactions become longer and the cost of aborting them
increases.

7.2 STAMP benchmark

Figure 5 shows the results of STAMP applications. STAMP
applications’ transactions likely do not fail in HTM for
capacity except for Labyrinth and Yada. However, most of
the effort in the design of PART-HTM is focused on reduc-
ing overheads. In fact, STAMP applications’s performance
confirms the effectiveness of PART-HTM’s design because
it is the best in almost all cases, and the closest to the
best competitors when HTM is the best. All data points
report the achieved speed-up with respect to the sequential
execution of the application.

Kmeans (Figure 5(b) and 5(a)), Vacation low-contention
(Figure 5(f)), SCAA2 (Figure 5(c)), Intruder (Figure 5(e)),
and Genome (Figure 5(i)) are application where HTM trans-
actions do not fail for resource limitations, but they are
mostly short and conflict due to real conflicts. In all those
application, HTM-GL is the best but PART-HTM is always
the closest competitor. Note that, SCAA2 shows the instru-
mentation overhead of PART-HTM while executing with only
one thread.

On the other hand, applications like Labyrinth (Fig-
ure 5(d) and Table 1) and Yada (Figure 5(h)) are suited more
for STM protocols than HTM. That is because more than
half of the generated transactions in Labyrinth are large and
long (thus HTM cannot be efficiently exploited), but they
also rarely conflict with each other. As a result, NOrecRH
and NOrec perform worse than, but closer to, PART-HTM.
HTM-GL is the worst. We also observe a 10% of gap between
PART-HTM and PART-HTM-O. This gap is basically the cost of
performing the in-flight-validation once a global transaction
commits and a sub-HTM transaction is executing. Labyrinth
is not characterized by short transactions, thus updates of
the global-timestamp are not very frequent, and this helps
to reduce the gap between PART-HTM-O and PART-HTM.

In Figure 5(f) we observe the impact of hyper-threading
(thus reduce number of cache-lines available per executing
thread). Moving from 4 to 8 threads, the performance of
HTM-GL drops due to the increased capacity aborts. Fig-
ure 5(h) shows the results of Yada. This application has
transactions that are long and large, generating a reason-
able high contention level. Thus it represents a favorable
workload for PART-HTM and the plot confirms it. The big
drop in performance of all competitors is due to the very
high contention (in fact they are all slower than sequential).

We do not report the results using the Bayes application
given its non-deterministic execution.

7.3 EigenBench

EigenBench is a comprehensive benchmark, which can gen-
erate transactions with different properties. We used it to
build a workload with 50% long and 50% small transactions,
thus the latter will likely fit in HTM. A small transaction
does 50 read and 5 write operations to an array of 1024

13

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

Threads

(a) Kmeans Low Contention

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7 8

Threads

(b) Kmeans High Contention

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6 7 8

Threads

(c) SSCA2

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

Threads

(d) Labyrinth

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

Threads

(e) Intruder

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8

Threads

(f) Vacation Low Contention

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

Threads

(g) Vacation High Contention

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 2 3 4 5 6 7 8

Threads

(h) Yada

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8

Threads

(i) Genome

Fig. 5. Speed-up over sequential (non-transactional) execution using applications of STAMP Benchmark.

words while long transactions add non-transactional com-
putation in between operations. Read and written elements
are selected in a random way while providing disjoint
accesses among threads. Figure 6(a) plots the results. PART-
HTM has the best performance as it executes the long trans-
actions efficiently and it is able to execute non-transactional
computation outside sub-HTM transactions. PART-HTM-O
follows with average overhead of 15%. Other competitors
suffered with the long transactions.

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0 5
 10 15 20 25 30 35 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8

Threads

(a) 50% Long transactions & 50%
Short transactions.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 2 3 4 5 6 7 8

Threads

(b) High Contention

Fig. 6. Speed-up over sequential (non-transactional) execution using
EigenBench.

Figure 6(b) shows the results of EigenBench under high
contention scenario. EigenBench is configured to access the

shared hot-array of size 32K. Each transaction performs
10K reads and 100 writes with 50% repeated accesses. With
this workload, transactions execute many operations with
high chance of encountering contention. Here, transactions
under HTM-GL abort each other often and then they fall
back to the the global lock path. On the other hand, PART-
HTM has the best performance because small sub-HTM
transactions have a higher chance to commit and after that,
they acquire locks on written objects, which avoid other
HTM transactions to progress if the lock is acquired.

8 CONCLUSION

In this paper we presented PART-HTM, a hybrid TM, which
aims at committing those HTM transactions that cannot
be fully executed as HTM due to space and/or time lim-
itation. The core idea of PART-HTM is splitting hardware
transactions into multiple sub-transactions and run them in
hardware with a minimal instrumentation.

PART-HTM’s performance is appealing. In our evaluation
it is the best in almost all the tested workloads, and it is close
to HTM’s performance where HTM performs best.

ACKNOWLEDGMENTS

Authors thank anonymous IEEE TPDS reviewers for the
very insightful comments. This work is partially supported

14

by Air Force Office of Scientific Research (AFOSR) under
grant FA9550-14-1-0187.

REFERENCES

[1] T. Harris, J. Larus, and R. Rajwar, “Transactional memory, 2nd
edition,” Synthesis Lectures on Computer Architecture, vol. 5, no. 1,
2010.

[2] M. Herlihy and J. E. B. Moss, “Transactional memory: Architec-
tural support for lock-free data structures,” in ISCA, 1993, pp.
289–300.

[3] L. Dalessandro, M. F. Spear, and M. L. Scott, “Norec: Streamlining
stm by abolishing ownership records,” in PPoPP, 2010, pp. 67–78.

[4] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Rivière,
“Evaluation of amd’s advanced synchronization facility within a
complete transactional memory stack,” in EuroSys, 2010, pp. 27–40.

[5] J. Reinders, “Transactional synchronization in haswell,” Intel Soft-
ware Network., 2012.

[6] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le, “Robust architectural support for transactional memory in
the power architecture,” in ISCA, 2013, pp. 225–236.

[7] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear, “Hybrid NOrec: A case study in the effectiveness
of best effort hardware transactional memory,” in ASPLOS, 2011.

[8] A. Matveev and N. Shavit, “Reduced hardware transactions: A
new approach to hybrid transactional memory,” in SPAA, 2013.

[9] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Her-
lihy, “Invyswell: A hybrid transactional memory for haswell’s
restricted transactional memory,” in PACT, 2014, pp. 187–200.

[10] N. Diegues and P. Romano, “Self-tuning intel transactional syn-
chronization extensions,” in ICAC, 2014, pp. 209–219.

[11] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie,
“Unbounded transactional memory,” in HPCA, 2005, pp. 316–327.

[12] M. Mohamedin, A. Hassan, R. Palmieri, and B. Ravindran,
“Brief announcement: Managing Resource Limitation of Best-
Effort HTM,” in SPAA ’15.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[14] R. Guerraoui and M. Kapalka, “On the correctness of transactional
memory,” in PPoPP ’08, pp. 175–184.

[15] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy, “Improved
single global lock fallback for best-effort hardware transactional
memory,” in TRANSACT ’14.

[16] D. Dice, T. L. Harris, A. Kogan, Y. Lev, and M. Moir, “Pitfalls of
lazy subscription,” in WTTM, 2014.

[17] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in
IISWC’08.

[18] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and
K. Olukotun, “Eigenbench: A simple exploration tool for orthogo-
nal tm characteristics,” in IISWC, 2010, pp. 1–11.

[19] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer, “Opti-
mizing hybrid transactional memory: The importance of nonspec-
ulative operations,” in SPAA, 2011, pp. 53–64.

[20] Y. Afek, A. Matveev, and N. Shavit, “Reduced hardware lock
elision,” in WTTM, 2014.

[21] Y. Afek, A. Levy, and A. Morrison, “Software-improved hardware
lock elision,” in PODC, 2014, pp. 212–221.

[22] D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and N. Shavit,
“Stacktrack: An automated transactional approach to concurrent
memory reclamation,” in EuroSys, 2014, pp. 25:1–25:14.

[23] Y. Lev and J.-W. Maessen, “Split hardware transactions: True
nesting of transactions using best-effort hardware transactional
memory,” in PPoPP, 2008, pp. 197–206.

[24] L. Xiang and M. L. Scott, “Software partitioning of hardware
transactions,” in PPoPP, 2015, pp. 76–86.

[25] ——, “Conflict reduction in hardware transactions using advisory
locks,” in SPAA, 2015, pp. 234–243.

[26] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using RDMA and HTM,” in SOSP, 2015,
pp. 87–104.

[27] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez, “Transaction
chopping: Algorithms and performance studies,” ACM Trans.
Database Syst., vol. 20, no. 3, pp. 325–363, Sep. 1995.

[28] Y. Liu, X. Zhang, Y. Wang, D. Qian, Y. Chen, and J. Wu, Partition-
Based Hardware Transactional Memory for Many-Core Processors, 2013.

[29] D. Niles, R. Palmieri, and B. Ravindran, “Exploiting parallelism of
distributed nested transactions,” in SYSTOR, 2016, pp. 10:1–10:11.

[30] J. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and R. Guerraoui,
“Unifying thread-level speculation and transactional memory,” in
ACM/IFIP/USENIX Middleware, 2012, pp. 187–207.

[31] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, 1970.

[32] M. Abadi, T. Harris, and M. Mehrara, “Transactional memory
with strong atomicity using off-the-shelf memory protection hard-
ware,” in ACM SIGPLAN PPoPP, D. A. Reed and V. Sarkar, Eds.,
2009, pp. 185–196.

[33] T. Shpeisman, V. Menon, A. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha, “Enforcing
isolation and ordering in STM,” in PLDI, 2007, pp. 78–88.

[34] M. F. Spear, M. M. Michael, and C. von Praun, “RingSTM: Scalable
transactions with a single atomic instruction,” in SPAA, 2008.

[35] D. Dice, A. Kogan, and Y. Lev, “Refined transactional lock elision,”
in PPoPP, 2016, pp. 19:1–19:12.

[36] V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. Scherer III, and M. Scott, “Lowering the overhead of nonblock-
ing software transactional memory,” in TRANSACT, 2006.

[37] A. Matveev and N. Shavit, “Reduced hardware norec: An opaque
obstruction-free and privatizing hytm,” TRANSACT, 2014.

[38] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard,
M. Moir, K. Moore, and D. Nussbaum, “Applications of the adap-
tive transactional memory test platform,” in TRANSACT, 2008.

Mohamed Mohamedin is an Assistant Profes-
sor at Faculty of Engineering, Alexandria Uni-
versity. He received his BSc degree in Com-
puter Engineering and his MS and PhD degree
in Computer Engineering at Virginia Tech. His
research interests include transactional memory,
parallel programming, fault tolerance of transac-
tional systems, and distributed computing.

Roberto Palmieri received the BSc in computer
engineering, MSc and PhD degree in computer
science at Sapienza, University of Rome, Italy.
He is a Research Assistant Professor in the ECE
Department at Virginia Tech. His research inter-
ests include exploring concurrency control proto-
cols for multicore architectures, cluster and ge-
ographically distributed systems, with high pro-
grammability, scalability, and dependability.

Ahmed Hassan worked as a Postdoctoral Re-
search Associate in the ECE Department at Vir-
ginia Tech. He received his BSc degree in com-
puter science and his MSc degree in computer
engineering at Alexandria University, Egypt. He
received his PhD degree in Computer Engi-
neering at Virginia Tech. His research interests
include transactional memory, concurrent data
structures, and distributed computing. Recently,
he joined Alexandria University in Egypt as As-
sistant Professor.

Binoy Ravindran is a Professor of Electrical and
Computer Engineering at Virginia Tech, where
he leads the Systems Software Research Group,
which conducts research on operating systems,
virtualization, compilers, run-times, distributed
systems, and real-time systems. Ravindran and
his students have published more than 250
papers in these spaces, some of which have
won best paper award nominations and awards.
Some of his group’s results have been transi-
tioned to the US DOD, in particular, the Navy.

Ravindran has graduated 18 PhD students, mentored 8 postdoctoral
scholars, and is an ACM Distinguished Scientist.

	Introduction
	Problem Statement
	Related Work
	Algorithm Design
	Algorithm Details
	Protocol Metadata
	Fast Path
	Partitioned Path
	Partitioning Phase
	Global Transaction: Begin
	Sub-HTM Transaction: Begin
	Sub-HTM Transaction: Read/Write
	Sub-HTM Transaction: Commit/Abort
	Global Transaction: In-flight-validation
	Global Transaction: Commit/Abort

	Slow Path
	Ensuring Opacity

	Correctness
	Part-htm: serializability
	Part-htm-o: opacity

	Evaluation
	Micro benchmarks
	STAMP benchmark
	EigenBench

	Conclusion
	References
	Biographies
	Mohamed Mohamedin
	Roberto Palmieri
	Ahmed Hassan
	Binoy Ravindran

