
1

Automated Data Partitioning for Highly
Scalable and Strongly Consistent Transactions

Alexandru Turcu, Roberto Palmieri, Binoy Ravindran, and Sachin Hirve

Abstract—Modern transactional processing systems need to be fast and scalable, but this means many such systems settled for
weak consistency models. It is however possible to achieve all of strong consistency, high scalability and high performance, by
using fine-grained partitions and light-weight concurrency control that avoids superfluous synchronization and other overheads
such as lock management. Independent transactions are one such mechanism, that rely on good partitions and appropriately
defined transactions. On the downside, it is not usually straightforward to determine optimal partitioning schemes, especially
when dealing with non-trivial amounts of data. Our work attempts to solve this problem by automating the partitioning process,
choosing the correct transactional primitive, and routing transactions appropriately.

Index Terms—Distributed databases, code generation, concurrent programming

F

1 INTRODUCTION

Distributed transactional storage systems nowadays
require increasing isolation levels, scalable perfor-
mance, fault-tolerance and a simple programming
model for being easily integrated with transactional
applications. The recent growth of large scale infras-
tructures with dozens or hundreds of nodes needs
transactional support ready to scale with them.

Many of the modern transactional storage systems
have abandoned strong consistency (e.g., serializabil-
ity) in order to achieve good scalability and high
performance [4], [10], [19]. Weak consistency mod-
els (e.g., eventual consistency) incur the expense of
allowing some non-serializable executions, which, if
at all tolerated by the application requirements, are
more difficult to deal with for the developers [30].
In fact, it was observed that developers prefer strong
consistency when possible [6].

For this reason, transactional storage systems that
offer serializability without forsaking high speed and
high scalability, represent a very promising sweet
spot in the overall design space. One system that
approaches this sweet spot for On-Line Transaction
Processing (OLTP) workloads is Granola, as proposed
by Cowling and Liskov in [8]. Granola employs a
novel transactional model, independent transactions, to
keep overheads and synchronization to a minimum
while guaranteeing serializable distributed transac-
tions. To help reach its high transaction throughput,
Granola relies on storing the data in main memory
and operating upon it using transactions expressed
in the application’s native programming language, as

• Authors are with the Department of Electrical and Computer Engi-
neering, Virginia Tech, Blacksburg, VA, 24060

opposed to a query language like SQL. This essen-
tially qualifies Granola as a Distributed Transactional
Memory (DTM) system.

One key enabler for good performance in the Gra-
nola model is having the data organized in fine-
grained, high-quality partitions that promote the use
of single-partition and independent distributed trans-
actions. This can be considered a drawback for Gra-
nola, as developers need to manually organize the
data, choose the transaction primitives, and route
transactions appropriately. This work focuses on elim-
inating this drawback by automating the three tasks.

To reach our goal, we adapt and extend an
existing graph-based data partitioning algorithm,
Schism [9], originally proposed for traditional, SQL-
based databases. Our major contributions1 are: (A)
Schism currently supports only single-partition trans-
actions. We extend it to support independent transac-
tions, such that the new proposed partitioning algo-
rithm suggests partitions that favor both fast single-
partition and independent transactions against the
slower, Two-Phase Commit (2PC) coordinated trans-
actions. (B) We develop a mechanism based on static
program analysis for determining edge weights in the
graph that Schism uses for proposing partitions. This
essentially enables applying an algorithm like Schism
(which only works on SQL) to independent transac-
tions, or, more generally, to any DTM-style transac-
tions expressed in a native programming language.
(C) Transactional systems assuming partitioned data
usually delegate the task of routing transactions to
the appropriate partitions to the programmer. We
contribute a machine-learning based mechanism for
routing transactions. This is essential for enabling any
kind of automatic partitioning for Granola or any

1. A preliminary version of this paper appeared in [34]

2

other DTM environment, where a transaction’s access
set is not known a priori. (D) To the best of our knowl-
edge, this is the first work that provides an end-to-
end automated framework for exploiting independent
transactions. (E) We discuss the applicability of inde-
pendent transactions to several popular benchmark
workloads, thus showing independent transaction can
be used in a wide range of OLTP workloads. To the
best of our knowledge, we are the first to use the
Granola model for workloads other than TPC-C.

Additional minor contributions include automatic
program refactoring for run-time trace collection, and
automatic choice of an appropriate transaction prim-
itive based on static program analysis.

We frame our work in a DTM environment because:
(i) similar environments were shown to support much
higher transaction throughputs than traditional OTLP
workloads [31], and (ii) our choice presents us with
some interesting problems that allow us to innovate.

The rest of the paper is organized as follow. In
Section 2 we describe Granola and Schism. Section 3
overviews the system model. The automatic frame-
work is presented in Sections 4, 5, 6. Section 7 dis-
cusses our chosen workloads in the context of inde-
pendent transactions. In Section 8 the framework’s
evaluation is reported. Section 9 discusses past and
related works and Section 10 concludes the paper.

2 BACKGROUND
2.1 Granola: Independent Transactions
Granola [8] is a transaction coordination infrastructure
proposed by Cowling and Liskov. Granola targets
On-Line Transaction Processing (OLTP) workloads.
Granola is a Transactional Memory (TM) system, as it
expresses transactions in a native programming lan-
guage and operates on data stored in main memory
for performance reasons. Synchronization overheads
are kept to a minimum by executing all transactions
within the context of a single thread. This approach re-
duces the need for locking, and was shown to improve
performance compared to conventional databases in
typical OLTP workloads [31], [13], [16].

Granola employs a novel timestamp-based trans-
action coordination mechanism that supports three
classes of one-round transactions. Single-Repository
Transactions are invoked and execute to completion
on one repository (partition) without requiring any
network stalls. Coordinated Distributed Transactions are
the traditional distributed transactions that use lock-
ing and perform a two-phase commitment process.
Additionally, Granola proposes Independent Distributed
Transactions, which enable atomic commitment across
a set of transaction participants, without requiring
agreement, locking and with only minimal commu-
nication in the coordination protocol.

Single-repository and independent transactions ex-
ecute in timestamp mode. These transactions are as-
signed an upcoming timestamp, and executed locally

in timestamp order. Repositories participating in inde-
pendent distributed transactions need to coordinate
to select the same timestamp. Each participant pro-
poses a timestamp for executing the transaction, and
broadcasts its proposal (vote) to the other participants.
Once all votes are received, the final timestamp is
selected locally as the maximum among all proposals.
This selection is deterministic, and the coordination it
requires is very light-weight (needs only one messag-
ing round). At the selected time, the transaction can
execute without any stalls or network communication.

In order to execute coordinated transactions, the
repository needs to switch to locking mode. In locking
mode, all transactions must acquire locks (thus incur-
ring overheads), and can not use the fast timestamp-
based execution. Furthermore, coordinated transac-
tions must undergo a slow two-phase commit. The
repository can revert to timestamp mode when all
coordinated transactions have completed.

Granola provides strong consistency (serializability)
and fault-tolerance. Data is partitioned between the
Granola repositories – with each repository managing
one partition – although it is also possible to keep
some of the data replicated among repositories to
improve performance. Each repository consists of one
master and several replicas. The replicas are used for
fault-tolerance, not for scalability. Most transactions
must be executed by the master node of each repos-
itory – the only exception is for read-only, single-
repository transactions, which can run on the replicas.

In Granola, single-repository and independent dis-
tributed transactions never conflict, because they are
executed sequentially using a single thread. This
means mechanisms employed for rollback and aborts,
such as locking and undo- or redo-logging, are not
needed for these transaction classes, reducing over-
heads and improving performance.

Granola transactions do have restrictions that limit
their applicability and place further requirements on
the potential partitioning schemes: (A) Independent
transactions must reach the same commit decision, in-
dependently, on every participating repository. This is
possible when the transaction never aborts (e.g., read-
only transactions), or the commit decision is based
on data replicated at every participating repository.
(B) All transactions must be able to complete using
only data available at the current repository. This is
a firm requirement for single-repository and indepen-
dent transactions, but could potentially be relaxed for
coordinated transactions.

Performance in Granola depends on how the work-
load and partitioning scheme are able to exploit fast
single-repository and independent transactions. The
user must manually define the partitioning scheme,
implement the transactions using the appropriate
classes, and route transactions correctly. Furthermore,
the partitioning scheme must be compatible with the
Granola restrictions outlined above. This paper aims

3

2

53
1

4

Objects
Bank Accounts
{id=1, amount=$100}
{id=2, amount=$100}
{id=3, amount=$50}
{id=4, amount=$0}
{id=5, amount=$50}
Transactions
- transfer(from=2, to=4, amt=$50)
- transfer(from=2, to=1, amt=$25)
- transfer(from=4, to=3, amt=$50)
- balance(accounts=Array(1, 4, 5))

Possible
Partition Boundary

Fig. 1. Example graph representation in Schism. The
shaded areas are the transactions, which are represented
in the graph by edges connecting all accessed objects.

to automate this partitioning process.

2.2 Schism: Graph-Based Partitioning

Curino et al. presented Schism [9], the approach for
automated data partitioning that we build upon in
this work. Besides lacking support for independent
transactions, Schism as is can not be applied to stored-
procedure style DTM transactions, which further mo-
tivates our work. For completeness, in this section we
overview Schism and describe how it works.

Schism takes as input a representative workload
in the form of an SQL trace, and the desired num-
ber of partitions. It then proposes partitioning and
replication schemes that minimize the proportion
of distributed transactions, while promoting single-
partition transactions. This is done in order to increase
performance, as single-partition transactions are fast.
The proportion of distributed transactions is a mea-
sure of the partitioning quality. The fewer distributed
transactions there are, the higher the partitioning
quality. The partitioning process has four phases:

First, the graph representation phase converts the
SQL trace into a graph. Nodes in this graph repre-
sent data items (database tuples/transactional objects)
that were encountered in the trace. Two nodes are
connected by an edge if they were accessed together
within the same transaction. Thus, the representation
of a transaction takes the form of a clique: the tuples
accessed by the transaction are all interconnected. An
example is shown in Figure 1. A number of heuristics
are applied to promote scalability, such as tuple and
transaction sampling, and coalescing tuples accessed
by the same set of transactions into a single node.

The graph is then modified by replacing each node
with a star-shaped configuration of nodes. This is
done in support for data replication. A node A which
previously had n neighbors, is replaced by n+1 nodes:
one in the center, A0, which is connected to n new
nodes (A1...An) by edges representing the cost of repli-
cating the original node A. Each of these new nodes
is then connected by a single edge to another node
representing the original neighbors. This processing
can also be explained as replacing each edge in the
original graph by three edges connected in sequence:
the two outer edges represent the cost of replicating
the data, and the middle edge represents the cost

2
2

2

2 1

1
11

3
3

3

5
55

4
4 4

4
4

Partition 0
Partition 1

Object placement
1 => P0
2 => Replicated {P0, P1}
3 => P1
4 => P1
5 => P0

Legend
Replication edges
Transaction edges
Partition boundary

Fig. 2. Example graph representation in Schism, with
replication.

of entering a distributed transaction. An example is
illustrated in Figure 2.

In the partitioning phase, the previously con-
structed graph is partitioned using a standard k-
way graph partitioning algorithm. The authors used
the program METIS [17] for this purpose. This is
an optimization problem, where the primary target
is minimizing the cumulative cost of the edges that
cut across partitions. This is equivalent to minimizing
the number of distributed transactions. A secondary
target is balancing the partitions with respect to node
weights. Node weights can be assigned based on
either data size, or number of transactions, depend-
ing on whether the partitions should be balanced in
storage size or load.

For small workloads, the output of the partition-
ing phase can be used as-is, by means of a lookup
table. Newly created tuples would initially be placed
on a random partition, while a separate background
task periodically recomputes the lookup table and
migrates data appropriately. This method however
can not be applied to large datasets for two reasons: (i)
creating and partitioning the graph without sampling
is limited by the available memory and processing
time, and (ii) the lookup table size is similarly limited
by the available memory.

These reasons motivated Schism’s explanation
phase. In the explanation phase a more compact
model is formulated to capture the tuple ! partition
mappings as they were produced in the partitioning
phase. Schism does this by employing machine learn-
ing, or more specifically, C4.5 decision trees [28] as
implemented in the Weka data mining software [12].
The resulting models are essentially sets of range
rules, and are useful if they satisfy several criteria:
they are based on attributes present as WHERE clauses
in most SQL queries, they do not significantly reduce
the quality of the partitions by misclassification, and
finally, they work for new, previously unseen queries,
as opposed to being over-fitted to the training set. To
satisfy these criteria, the authors employed strategies
such as placing limitations on the input attributes
to the classifier, using aggressive pruning and cross-
validation, and discarding classifiers that degrade the
partitioning quality.

Lastly, the final partitioning scheme is chosen in
the final validation phase. The candidates considered
are (i) the machine-learning based range rules, (ii)

4

atomic {

 acc1.amt += value
 acc2.amt -= value
}

atomic { implicit txn =>
 val acc1 = Hyflow.dir.open[BankAccount](("acc",1))
 val acc2 = Hyflow.dir.open[BankAccount](("acc",2))
 acc1.amt() += value
 acc2.amt() -= value
}a b

Fig. 3. Example atomic blocks. In a. objects are assumed to
not need opening before being accessed, as is common for
Software Transactional Memory (STM). b. shows the same
atomic block written to Hyflow’s API, also including object
opening.

the fine-grained lookup table, (iii) a simple hash-
based partitioning, and (iv) full-table replication. The
scheme chosen is the one with the fewest distributed
transactions. In case two schemes lead to similar
results, the simpler of the two is chosen.

3 SYSTEM OVERVIEW

Our partitioning methodology was designed and im-
plemented in the context of a Distributed Transactionl
Memory (DTM) system. DTM systems store data in
main-memory, and access it using transactions ex-
pressed in a programming language (usually the same
as the rest of the application), as opposed to a separate
query language. Declaring and running transactions
in DTM should be as simple as possible: ideally the
transaction code is simply written inside an atomic
block, as exemplified in Figure 3(a).

Our choice of environment (DTM) and trans-
action model (Granola’s independent transactions)
make Schism impossible to apply directly, because:
(A) Schism does not support independent transac-
tions. Any distributed transactions in Schism would
have to be 2PC-coordinated, which degrades perfor-
mance. (B) Schism makes no effort to prevent data
dependencies across partitions. At best, such depen-
dencies are incompatible with independent transac-
tions. At worst, they are incompatible with Granola’s
single-round transaction model, leading to unusable
partitions. (C) Schism assumes transactions are ex-
pressed in SQL code, whose WHERE clauses can
trivially be inspected to obtain information about the
dataset of a transaction, which is then used to route
each transaction to the appropriate partitions. Given
that transactions in our system are not expressed in
parsable query code, but are stored procedures writ-
ten in a programming language, the task of routing
transactions becomes significantly more complicated.

Our implementation is based around Hyflow2 [35],
a JVM-based DTM framework written in Scala. We
implemented the Granola protocol in this DTM frame-
work. Unlike Granola, which relies on opaque up-
calls from the framework to the application and lets
the application code to handle locking and rollback
mechanisms, we opted to provide a more friendly API
and let the framework deal with these mechanisms.
Figure 3 (b) shows an example transaction.

3.1 Partitioning Process

This section provides a brief description of the parti-
tioning process. In a production system, this process
would run periodically alongside transaction process-
ing, and dynamically migrate objects at run-time.
Our implementation however, being only a prototype,
performs the partitioning off-line.

The first phase in our partitioning workflow per-
forms static analysis and byte-code rewriting on all
transactional routines in the workload. This step
serves three purposes. Firstly, it collects data depen-
dency information which is later used to ensure the
proposed partitioning schemes are able to comply to
our chosen one-round transactional model (no data
dependencies are allowed across partitions). Secondly,
it extracts summary information about what opera-
tions may be performed inside each atomic block,
to determine whether an atomic block is abort-free
or read-only. Finally, each transactional operation is
tagged with a unique identifier to help make associ-
ations between the static data dependencies and the
actual objects accessed at run-time.

The second phase is collecting a representative trace
for the current workload, which includes a record for
every transactional operation performed. Each record
contains the transaction identifier, the type of opera-
tion, the affected object, and the operation’s identifier
as previously tagged.

The next three phases are similar to the correspond-
ing phases in Schism. The graph representation phase
converts the workload trace into a graph where nodes
represent objects and edges represent transactions.
This graph is governed by the same rules as in Schism
(see Section 2.2). Additionally, edge weights are up-
dated to reflect the new transaction models, along
with their restrictions and desirability. The graph
is then partitioned using METIS in the partitioning
phase. The result from this step is a fine-grained asso-
ciation from object identifiers to partitions. A concise
model of these associations is created using WEKA
classifiers in the explanation phase.

The final phase is concerned with transaction
routing and model selection. While in Schism routing
information was easily extracted from the WHERE
clause of SQL queries when available, our atomic
block model for expressing DTM transactions pro-
hibits using a similar approach. We thus introduce a
machine-learning based routing phase. The data used
to train this classifier is derived from the workload
trace, using the object-to-partition mapping. Finally
a transaction model is selected for every transaction
class based on the number of partitions it needs,
whether it may abort, and whether it writes any data
(or is read-only).

5

3.2 Run-Time Behavior

During the previously described process, we train two
sets of classifiers. The first set is tasked with object-
to-partition mapping. These classifiers determine the
object placement, and we will call them the placement
classifiers. While it may reduce the quality of the
resulting partitions, misclassification at this stage is
mostly harmless, since it is the classifier that dictates
the final object placement.

The second set of classifiers are the routing classifiers.
They are used on the client side (i.e., in the thread
that invokes the transaction) to decide which nodes
to contact for the purpose of executing the current
transaction. Due to the transactions being expressed
as regular executable code, this information is not
readily available until the code is run. Inputs for these
classifiers are the parameters passed to the transac-
tion. Misclassification at this stage has the potential to
be harmful, as a misrouted transaction may not have
access to all objects needed to execute successfully. We
address this situation by allowing misrouted transac-
tions to abort and restart on a larger set of nodes.

Finally, we do not require users to be aware of
the partitioning scheme or the transaction execution
model when writing transaction code. Thus, users
should be able to write a single atomic block, and
the system would make sure the appropriate code
branches will execute at the corresponding partitions.
In our prototype implementation, the same code is
expected to execute properly on all partitions. This
requires a defensive programming style, which checks
that the return value of certain object open operations
is not null. While this is a good practice anyway for
error handling, our current implementation explicitly
uses null references to denote an object is located at
another partition.

4 STATIC ANALYSIS

Our static analysis phase is motivated by three factors:
(i) determining data dependencies in order to avoid
dependencies across partitions, (ii) determining which
transactions can abort in order to choose the cor-
rect transaction model, and (iii) help with recording
workload traces. Simply observing runtime behavior
is insufficient — for instance, observing a particular
transaction profile never aborted as recorded in a
runtime trace does not constitute a guarantee that it
can never abort.

Our static analysis phase is implemented using the
Soot Java Optimization Framework [20]. Since we
operate on JVM bytecode, few of the mechanisms
described in this section are actually specific to Scala
— transactions could just as easily be expressed in
Java, with only simple changes required to the static
analysis mechanisms. We make several passes over
every application method.

4.1 First Pass
The first pass serves three purposes: (i) it identifies
transactional methods, (ii) it tags transactional oper-
ations, and (iii) it records associations between the
classes Scala uses for anonymous functions and their
main method which contains the application code.

To identify transactional methods, we iterate over
all units of each method (units are Soot’s abstraction
over the JVM byte-code). We look for invocations of
certain methods and references to objects of certain
classes that are usually associated with transactions
— these are listed in Table 1. Methods that match are
recorded as transactional methods.

In addition to recording transactional methods, we
tag units representing invocations to the methods in
Table 1. Tags are a feature in Soot that can associate
information with any unit, for easier retrieval. Within
the tag we store what kind of transactional operation
this invocation represents (e.g., object open, object
delete, field read, field write, transaction abort, etc.),
and an integer uniquely identifying each invocation
site (we name this integer the tag id).

Scala uses classes inheriting AbstractFunctionN2 to
implement anonymous functions (closures). The ap-
plication code is usually located in a method named
apply which takes arguments of the appropriate types.
Scala however defines another polymorphic method
with the same name, but with arguments of type
Object (the root base class on the JVM). This method
acts as a stub — its purpose is to convert (typecast or
un-box) all arguments to the correct specific type and
call the apply method containing the application code.
For the purpose of our static analysis the stub method
is not interesting. We thus record the association
between the AbstractFunctionN-derived class and the
apply method containing application code, but only if
apply is a transactional method as defined above.

4.2 Second Pass
Once all transactional methods and transactional
anonymous function classes are known, we construct
a static invocation graph. This is done in the second
analysis pass. As before, we pay attention to method
invocations, but targeting the previously identified
transactional methods. We first add all transactional
methods as nodes in the invocation graph. Any invo-
cation of method g from within method f adds to the
graph directed edge f ! g.

Besides direct invocations of transactional methods,
we also add indirect invocations to the graph. Scala
is a functional language and has support for higher-
order functions (functions that take other functions
as parameters). An invocation site is included in
the graph when a previously identified transactional

2. Where N is an integer standing for the number of arguments
taken by the function.

6

TABLE 1
Method invocations and reference types that aid in identifying transactional methods and features (static analysis, first pass).

Method signature / Ref type Description

TxnExecutor.apply
(block: Function)

Invokes a transaction given an anonymous function as an atomic block. The block can be a
top-level transaction, and thus an entry point for the subsequent analysis phases.

TxnExecutor.apply
(name: String, args: Array)

Invokes a pre-registered transaction given its name.

Hyflow.registerAtomic
(name: String, block: Function)

Registers an atomic block to execute as a transaction when invoked by name.

HRef.apply()
HRef.update(val: X)

Reads and writes, respectively, a field of a transactional object. Used to extract data depen-
dencies between objects. Also used to identify read-only transactions.

Txn.rollback()
Txn.retry()

Permanently or temporarily aborts a transaction. Used to identify non-aborting transactions
and data dependencies leading to an abort decision.

Directory.open(id: Product)
Directory.delete(id: Product)

Opens and deletes a transactional object, respectively. Used to extract data dependencies
between objects.

HObj, HRef Transactional objects and fields, respectively. Any references to these types flag the containing
method as transactional (and therefore, of interest).

InTxn Transaction context type. Same as above.

AbstractFunctionN object is passed to a higher-order
function (either user-defined, or from the standard
library: map, filter, etc.). The edge added to the
static invocation graph points from the invoking func-
tion f to the apply method of the transactional Ab-
stractFunctionN object, which is invoked indirectly by
the higher-order function. Alongside constructing the
static invocation graph, all invocation sites (direct and
indirect) are tagged as before.

4.3 Third Pass
The third analysis pass extracts internal data depen-
dency information for each transactional method. It
processes each method, taking as input its bytecode
as tagged in passes 1 and 2. The output is a directed
graph representing data dependencies between ac-
cessed objects and external methods invoked. Firstly,
nodes are created in the output graph for important
transactional operations that are the targets of the
dependency analysis. Such operations are object open,
create, delete, transaction abort, and also external
method invocations, as tagged in previous steps.

This pass is implemented as a forward data-flow
analysis. Each Soot unit has an associated state data-
structure that can hold a representation of its depen-
dencies. This representation has two parts: (i) a set of
node dependencies and (ii) a set of value dependen-
cies. A node dependency occurs when the result of an
important operation (i.e. a transactional object that has
been opened) is used in a subsequent statement. Value
dependencies occur when any other (i.e., non-node)
value is used in a subsequent statement. The latter
do not have a presence in the dependency graph, but
help propagate dependencies between nodes.

Initially, all the state data-structures are empty.
We identify the direct dependencies for every Soot
unit, and categorize them into two sets, for node
and value dependencies. The value dependencies are
traced back to the origin unit that defined each of
the values. The states associated with the origin units
are then retrieved and merged. We further merge this
state with a state object formed from the value and

node dependencies. Finally, we store the resulting
state for the current Soot unit. Pseudocode for this
process is shown in Algorithm 1.

Algorithm 1 Forward data-flow analysis pseudocode.
for each unit allUnits do

allDeps unit.getDirectDeps()
(nodeDeps, valueDeps) allDeps.partition(isNodeDep)
valueDeps originUnits valueDeps.getOriginUnits()
valueDeps states

getStateForAll(valueDeps originUnits)
merged valueDepState mergeAll(valueDeps states)
currentState new DepState(valueDeps, nodeDeps)
newState merge(currentState, merged valueDepState)
storeStateForUnit(unit, newState)

end for

After the data-flow analysis, we construct the de-
pendency graph. Starting with an empty graph, we
add nodes for all the units of interest. Then we iterate
over all nodes A in the graph, adding edges from B
to A, for all node-dependencies B of A.

We illustrate this process in Figure 4. The source
code to be analyzed is shown in Figure 4(a). Notice
how many intermediate values are held in variables
of their own. This emulates the behavior of Soot,
which will indeed use separate locations for every
intermediate value, greatly simplifying the static anal-
ysis. For clarity, we show a simplified version. In
Figure 4(b) we show the direct dependencies of each
node and value in the code. Following the data-flow
analysis, units have an associated state storing all
their dependencies, shown in Figure 4(c) as the set
of all edges pointing to a particular block. Finally, the
dependency graph is created by discarding all non-
node values (Figure 4(d)).

4.4 Byte-code Rewriting and Trace Collection
Once all transactional method invocation sites are
known and tagged, we rewrite the method byte-code
to make certain information available at run-time. For
every invocation of a transactional operation (object
open, field read/write, etc.), we change the invocation
to a different method that acts as a wrapper around

7

val src1 = Hyflow.dir.open[Counter]("source 1")
val src2 = Hyflow.dir.open[Counter]("source 2")
val temp1 = src1.value() * 2
val temp2 = src2.value() * 3
val dest = Hyflow.dir.open[Counter]("dest")
val result = temp1 + temp2
dest.value() = result

(a) Analyzed source code.

src1 = ... src2 = ...

dest = ...

dest() = result

temp1 = ... temp2 = ...

result = ...

(b) Direct dependencies

src1 = ... src2 = ...

dest = ...

dest() = result

temp1 = ... temp2 = ...

result = ...

(c) Data-flow analysis

src1 = ...
src2 = ...

dest = ...

dest() = result
(d) Final dep graph

Fig. 4. Forward data-flow analysis example for extracting
the intra-method dependency graph. Rectangles represent
nodes (units of interest), rounded rectangles are values.

the desired operation. This wrapper method takes
an extra argument, the tag id (i.e., an invocation site
identifier), which it logs before passing control to the
transactional operation. The tag id is filled in by the
byte-code rewriter, as an integer constant.

Other outputs from the static analysis process are
the static dependency graphs for all the methods,
the global static invocation graph, and a few other
details: Method Unique Identifier (MUID) for each
transactional method; For each transactional opera-
tion invocation: tag id, type of operation; For each
transactional method call: tag id, type of method
call, MUID and name for the invoked method; For
each type of transaction: transaction name, MUID for
transaction entry point.

Next, a representative trace is collected by running
the workload using the modified byte-code. This will
result in a log of all the transactions executed, and
within those, the important transactional operations.
Log entries contain:

• Transaction id. Differentiates between multiple
concurrent transactions.

• Operation name, such as atomic (transaction re-
quest), txn begin/commit/abort, obj create/open,
field read/write.

• Tag id. Identifies the static invocation site that
generated this log entry. Available for txn abort,
obj create/open, field read/write.

• Operation specific data. Generally, this is the run-
time object id this operation acts upon. For atomic
and txn begin, this is a string representing the
transaction type.

2

1

3

4

(a) Dependency graph

A@1

D@4

B@2 C@3

(b) Resulting graph

Fig. 5. Example partitioning graph for a txn with data deps.

5 GRAPH REPRESENTATION AND PARTI-
TIONING
Once a trace is available, it is parsed and converted
to a graph where nodes represent objects and edges
represent transactions, as described in Section 2.2.
A number of heuristics limit the size of the graph,
such as object and transaction sampling, and coalesc-
ing the nodes that are accessed by the same set of
transactions. Edges are assigned weights such that the
resulting partitioning is optimized.

5.1 Edge Weights
We now explain the process of assigning edge
weights. We aim to satisfy several conditions and op-
timization criteria: (i) Due to the Granola transaction
model, we can not easily allow data dependencies
between partitions. Make a best effort attempt not
to allow such dependencies. (ii) When possible, favor
independent transactions to coordinated transactions.
(iii) Favor single-node transactions to any kind of
distributed transactions.

To satisfy the first rule, we assign the highest
weights to all edges that connect objects having
data dependency relationships with each other (heavy
edges). For example, in Figure 5(a) we show the static
dependency graph for a transaction. Nodes 1, 2, 3 and
4 represent static invocation sites for some transac-
tional operations. At run-time, one execution of this
transaction uses objects A, B, C and respectively, D,
at the four static invocation sites. The system would
assign the following heavy edges: A-B, A-C, A-D and C-
D (Figure 5(b)). They denote the A ! B dependency,
and the A ! C ! D chain.

In our current implementation we use a very high
weight (10,000) for heavy edges, effectively enforc-
ing that no such edges will be broken. We should
note that, with the Granola repository in locking
mode, accessing remote objects would be possible, but
with a penalty in performance. As such, instead of
making heavy edges unbreakable, we could let the
optimization process figure out if it may be, in fact,
more desirable to break a small number of heavy
edges instead of breaking a larger number of lighter
edges. Thus our process could be extended with a
heuristic that assigns weights to heavy edges based on
the workload characteristics, instead of using a large
constant as we do now.

The second rule refers to independent transactions
as compared to coordinated transactions. These two

8

models differ in that coordinated transactions execute
a two-phase commit round, and thus allow reaching
the commit/abort decision based on data not avail-
able at all repositories. Independent transactions can
be used when the transaction does not need to abort,
or reaches a commit/abort decision based on data
available to all participating repositories.

To encode this in the partitioning graph, we first
identify abort operations. If a transaction does not
have any abort operations, it may be executed using
the independent transaction model. Thus all remain-
ing edges in such a transaction receive the lightest
weight possible (10, we call these light edges). On the
other hand, if a transaction does have abort opera-
tions, we want to encourage replication of all objects
that were used in the commit/abort decision, as op-
posed to entering a coordinated transaction. Thus we
use a medium weight (500) for the edges connecting
to such objects. We call these mid-weight edges.

This use-case may lead to replicating an object,
even if the object is only accessed by one transaction.
This behavior is new to our work, and requires an
adjustment to Schism’s handling of replicated nodes,
which was described in Section 2.2. Previously, a
replicated node for object A was created for each
transaction that accessed object A. With our use-case,
it is possible that more than one replicated node is
required for the same transaction. This applies for the
objects that lead to a commit/abort decision and may
be replicated internally.

To better explain this behavior, we provide an ex-
ample in Figure 6. The static dependency graph is
shown in Figure 6(a). The transaction makes an abort
decision based on an object opened at invocation site
1. Separately, it accesses three more objects (at sites 2,
3 and 4), with a data dependency between sites 2 and
3. Assuming at run-time, the objects accessed are A, B,
C and respectively, D, this transaction translates to the
partitioning graph shown in Figure 6(b). Object A has
three replica nodes, one for each other object in the
transaction, arranged in a star-shaped configuration.
The cost of replication edges are determined based on
access patterns to object A throughout the workload.
Because object A is used to make a commit/abort
decision, its replicas connect to the other objects in the
transaction using mid-weight edges AR �B, AR �C,
and AR�D. The other edges are heavy or light edges,
based on the existence of dependency relationships.

Two possible partitioning schemes are shown in
Figures 6(c) and 6(d). In Figure 6(c), object D and one
replica of object A are separated from the rest of the
objects. This may happen, for example, when object
A is rarely written to, and the cost of replicating it
is therefore low. In this case, the transaction runs as
an independent transaction. Alternatively, Figure 6(d)
shows a partitioning scheme where only object D is
separated from the others. There is no replication of
object A, but the transaction must be coordinated.

41

abort

2

3

(a) Static dep. graph

D

A

C

B

AR AR AR

Legend:
Replication edges
Light edges
Mid-weight edges
Heavy edges

(b) Resulting partitioning graph

D

A

C

B

AR AR AR

(c) Replication preferred

D

A

C

B

AR AR AR

(d) Coordinated txn. preferred

Fig. 6. Partitioning graph example in the presence of aborts.
The correspondence between the static invocation sites and
objects accessed at runtime is: 1-A, 2-B, 3-C, 4-D.

5.2 Partitioning and Explanation
Once weights are assigned, we let METIS solve the
optimization problem and propose a partitioning
scheme. The result is a fine-grained association from
objects to partitions. This can be used as-is only for
small workloads. Specifically, we can not use object
sampling to keep the problem size small, because
the system would not know what to do with objects
that do not appear in the mapping. If the problem
size increases too much, running time and memory
requirements rapidly increase as well.

We thus employ an explanation phase, where we
train machine learning classifiers (using the Weka
library) based on the fine-grained mapping. As op-
posed to Schism, we do not need to restrict our
classifiers to be rule-based. Instead, we can use any
classifier that works best for the current workload.
This is possible because we have the whole stack
under our control, and thus we do not need to restrict
ourselves to what could be encoded efficiently in
SQL. Although the current prototype hard-codes a
single classifier type, we envision training a forest
of classifiers in parallel, and choosing the ones that
produce the best end-to-end results.

We train one classifier for each different type of
objects. As in Schism, we use virtual partition num-
bers to represent replicated objects. For example, if
there are two partitions in the system, P=1 and P=2,
we use P=3 as a virtual partition to represent objects
replicated on both partitions.

6 TRANSACTION ROUTING

Our system uses a stored procedure execution model,
invoking transactions using the transaction’s name
and a list of arguments. Not knowing in advance
the data each transaction is going to access makes it
difficult to determine the partitions each transaction
needs to be routed to. Using a simple directory based

9

approach would be impossible. In Schism, the data a
transaction will access is essentially known in advance
— one looks at the WHERE clause of the SQL query for
a quick decision about where to route transactions.
This approach does not work in our situation.

Instead, we need to establish a link between a trans-
action’s input arguments and the set of partitions it
needs to be routed to for execution. For this, we again
turn to machine learning, and employ another set
of Weka classifiers. We train these routing classifiers
using a workload trace. No static knowledge is used
for routing. For each transaction in the trace, we want
to route to at least the following partitions:

• Partitions that replicate any object in the writeset.
• A minimal set of partitions R, such that for any

object X in the read-set, at least one partition P 2
R replicates object X .

Finding R is known as the hitting-set problem, which
is NP-complete. Algorithms exist that approximate
R, but are exponential in time [2]. We compute an
approximation of the set R using a simple heuristic
(Greedy), and we use that approximation to train our
classifiers. This will be the output of the classifier. The
input to the classifier is the list of arguments being
passed to the transaction.

In our current implementation, we let the clients
route transactions as they issue them. This is accept-
able in a DTM environment where clients and servers
are co-located. If clients can not be trusted with the
identity of the servers, or the servers are located
behind a firewall, it would be possible to employ a
dedicated router/gateway process.

Classifiers do not always yield 100% accuracy. Mis-
classification at the routing stage may mean more
nodes are contacted than strictly necessary, which is a
benign situation. However, it is also possible that not
enough nodes are contacted to allow completing the
transaction. In such a situation, the transaction should
abort on all currently participating nodes, and restart
on a superset of the nodes. Algorithm 2 describes
how to handle this situation (our prototype does not
implement this mechanism yet).

Algorithm 2 Proposal for handling misrouted transactions.

NCRT = the set of nodes participating in this transaction
upon open(X) = failed do

. find NREPL, the set of nodes that replicate object X
NREPL placement classifier (X)
if NREPL \NCRT 6= ; then

return . X can be processed on a different node and
. the transaction can continue normally

end if

if current txn may write to X then . from static analysis
Restart txn on NCRT [NREPL

else

Restart txn on NCRT [ANY (NREPL)
end if

The primitive to be used when executing a transac-

tion is decided after the transaction has been routed. If
only one repository is involved, the single-repository
model will be chosen. For distributed transactions
that do not explicitly abort (as identified in the static
analysis phase) the independent transaction model
is chosen. All other transactions use the coordinated
model. This approach can be further refined by deter-
mining whether the decision to abort is made based
on data available at all nodes. If so, an independent
transaction can be used.

7 EXPERIMENTAL SETUP

We evaluate our partitioning process using sev-
eral popular On-Line Transaction Processing (OLTP)
benchmarks: TPC-C [7], TPC-W, AuctionMark, EPin-
ions and ReTwis. These workloads (especially TPC-C)
have been employed in many recent works [32], [16],
[8], but while these works assume a manual partition-
ing, we employ our system in order to automatically
derive the partitioning schemes. In our evaluation,
we run transactions back-to-back using the Granola
model and compare the manual partitioning against
our automatic partitioning for each benchmark. We
reiterate that the Granola model requires data parti-
tioning and can not function without it. Additionally,
we compare against PaxosSTM [18], a modern state-
machine replication based DTM system that does not
support partitioning, and Horticulture [25] (the auto-
matic partitioner of H-Store [16]), where available.

Throughput measurements were obtained on the
NSF PRObE testbed [11] with up to 20 physical ma-
chines. Each machine has 64 AMD Opteron 6272 cores
running at 2.1GHz, and 128GB RAM. Machines com-
municate over a 40GB Ethernet network. Experiments
were allowed sufficient time for warming-up before
the measurement was started. Data points represent
the average across eight measurements. Experiments
were conducted without batching to avoid differences
in throughput due to details in the batching imple-
mentation (batching is an orthogonal feature).

PaxosSTM supports snapshot reads, an optimiza-
tion in the execution of read-only transactions. This
optimization depends on the use of multi-versioning
and full replication in the underlying protocol, and
can negatively affect the freshness of the data avail-
able to read-only transactions. Snapshot reads are not
available in Granola because Granola does not offer
multi-versioning or full replication.

Our work is the first to apply Granola independent
transactions to any other benchmark besides TPC-C.
In doing so, we show that independent distributed
transactions can be used in a wide range of OLTP
workloads. In the rest of this section we discuss the
benchmarks we used in our evaluation and why the
Granola transaction model is appropriate in each case.
We also describe the manual partitioning schemes that
we used in our evaluation. In deriving the manual

10

Fig. 7. Partition quality on the various benchmarks (lower is better).

partition schemes, we took inspiration from the TPC-
C partitioning, which is known to be optimal. While
we can not claim our partitions are optimal, they are
still effective at minimizing distributed transactions.

TPC-C emulates a wholesale supplier with a num-
ber of geographically distributed sales districts and
associated warehouses. It consists of 9 kinds of objects
(i.e., tables, in database terminology) and 5 transaction
profiles (i.e., stored procedures). All objects can be
grouped based on the parent warehouse, except items,
which are global. The manual partitioning scheme
we used is known to be optimal. It groups each
warehouse and all related objects, distributing the
groups across partitions and replicating all items at
all partitions. Using this scheme, Granola is able to
execute all transaction profiles as either single-node or
independent transactions [8]. This is because the only
transactions that ever abort (NewOrder) do so based
on data available at all partitions (the Item objects),
and thus distributed coordination is never required.

TPC-W emulates an e-commerce website. It consists
of 8 kinds of objects and 14 transaction profiles. None
of the transaction profiles ever abort, and can thus be
trivially executed using single-node or independent
transactions. One of the frequently used transaction
profiles (BestSellers) is very long and would appear
poorly suited for Granola’s single-thread execution
model. However, in a production setting, the results
of such a transaction would be cached outside the
repository, amortizing the impact of long transactions.
The manual partitioning scheme we adopted repli-
cates item, author and country objects at all partitions,
and groups each customers with all related objects, dis-
tributing (sharding) groups across all partitions. This
is similar to the TPC-C scheme, with the customers
treated like the TPC-C warehouses.

AuctionMark simulates the workload of a popu-
lar auction website. The benchmark is complex and
consists of 13 kinds of objects and 14 transaction
profiles. Only one of the transaction profiles (Up-
dateItem, representing 2% of the workload) needs to
abort. This transaction would need to execute using
2PC coordination when it accesses data from multiple
partitions. This leaves the remaining distributed trans-
actions (12% of the workload) able to execute using
the independent transaction model. The manual par-
titioning scheme we used groups each user together

with all the related objects (including the items a user
sells) – users are then sharded across all partitions.

The EPinions benchmark simulates the popular
website with the same name. This workload manages
users and products, as well as the many-to-many re-
lationships between them (trust and reviews encode
the relationships between two users, and between an
user and a product, respectively). There are 5 kinds
of objects and 9 transaction profiles. None of the
transaction profiles abort, thus independent transac-
tions can trivially be used for all distributed trans-
actions. The manual partitioning scheme we adopted
for this workload replicates everything everywhere,
thus executing all write transactions as distributed
transactions, while executing read transactions locally.
For a read-dominated workload, this scheme results
in fewer distributed transactions when compared to a
scheme that uses sharding. With sharding, many read-
only transactions would need to execute distributed,
because they involve two users (a buyer and a seller).

Our final workload, ReTwis, is a Twitter clone
originally designed to run on a non-transactional key-
value store. We converted all its operations to trans-
actional stored procedures, thus strengthening consis-
tency and eliminating many round-trips between the
application and the data-store. None of the transac-
tions abort – all distributed transactions can execute
using the independent transaction model. The manual
partitioning we adopted for this benchmark groups
users with all related objects, then shards users across
all partitions. It is hard to define a more effective
partitioning scheme without a deeper knowledge of
the social graph in the workload.

8 EVALUATION

Figure 7 is a summary of our experimental evaluation
and shows that our tool is able to match or exceed the
manual partitioning schemes in terms of the number
of distributed transactions on all benchmarks. In TPC-
C, accesses to the various warehouses are uniform and
each warehouse corresponds to its own partition. Our
tool matches the manual partition scheme for TPC-
C, which is known to be optimal. Horticulture also
arrives at this optimal partitioning scheme on TPC-C.

The remaining benchmarks are characterized by
significantly more complex data access patterns, and

11

TABLE 2
Per phase running time, on TPC-C with 15 warehouses and a 89MB input trace containing 42k txns.

Tuple-level Creating graph METIS Train placement Compute partitions &
sampling rate from txn trace partitioning classifiers train routing classifiers

5% 1m56 26s 22s 2m51s
10% 3m55 1m01s 37s 7m30s
20% 9m49 1m44s 1m02s 6m18

(a) Distributed Txns (b) Misplaced Objects

(c) Misrouted Transactions

Fig. 8. Results on TPC-C for a workload configured with
3 warehouses, with different classifiers. The trace used con-
tains approx. 1200 transactions. Boxes show average values.
Black markers show best classifier. Horizontal line in 8(a)
shows theoretical best.

Fig. 9. Best partition quality on TPC-C with increasing
number of warehouses (lower is better). Horizontal line is the-
oretical minimum. Differences are minimal (less than 0.4%)

(a) Partitioning (b) Routing

Fig. 10. Quality of partitioning and routing with respect to
increasing trace size, on TPC-C (15 warehouses). In 10(a),
horizontal line is optimal manual partitioning.

the automated tool proposes better partitions than
our manual partitioning schemes. Good partitioning
schemes for these benchmarks must take workload
details into account, e.g., which users are most active,
what are the social graphs between users, etc. Such
details are complex and usually ignored in manual
partitioning, which leads to sub-optimal partitions.

TPC-W and AuctionMark observed the largest im-
provements, with distributed transactions reduced
from 24% (and respectively 14%) to only 2%. This
reduction was possible because the objects observed
to be frequently accessed together were placed in the
same partition. EPinions and ReTwis also benefited
from automatic partitioning, but to a lesser extent.
This can be attributed to the difficulty to partition the
many-to-many relationships from these workloads.

We used three classifier types (Naive Bayes [15],
Multilayer Perceptron [14] and C4.5 decision
trees [28]) for both object placement and transaction
routing. Figure 8 shows results for a sample TPC-C
workload. In this workload, approximately 10.3%
of all issued transactions span more than one
warehouses. These transactions would be executed
as distributed transactions under the best known
manual partitioning for TPC-C, i.e., each warehouse
in its own partition, and all item objects replicated at
all partitions. We find that using C4.5 decision trees
for placement and routing gives the best results, both
in terms of minimizing distributed transactions and
in terms of avoiding misrouted transactions. This
applied in all the workloads that we have tested.

Our system proposes high quality partitions. By
manual inspection of the resulting decision trees,

12

we determined that many of our best partitions
were identical to the best known manual partition-
ing scheme for TPC-C. The same conclusion is also
supported by Figure 9, which compares the ratio of
distributed transaction between our best partitions
and the optimal manual partitioning, as the data size
(number of warehouses) is increased.

We scope out a direct comparison against Schism —
both our system and Schism essentially propose the
same partitions (optimal) on TPC-C. Unlike Schism,
our system is able to use the independent transaction
model for most distributed transactions in our work-
loads. Instead, Schism would use all 2PC-coordinated
transactions, leading to lower performance. A direct
comparison between independent transactions and
2PC-coordinated transactions was reported in [8].

Due to the random sampling of tuples and trans-
actions, not every partitioning attempt had the same
optimal result. This can be observed in Figure 8(a),
where the best cases match the theoretical minimum
of distributed transactions, but the average case is a
few percentage points away. Several of the trained
classifiers reached 100% routing accuracy on our test
set, as seen in Figure 8(c). To deal with the inherent
variability of random sampling, we repeated the parti-
tioning process several times and chose the best result.

As the data size is increased, however, the size of
the trace that is the input to the system must also
increase, otherwise the partition quality decreases.
For example, if 3 warehouses only needed a trace
with 1.2k transactions to give good partitions, 7 ware-
houses required 3.5k transactions and 15 warehouses
needed 11k transactions. Figure 10 shows how the
quality of partitioning and routing evolves with in-
creasing the trace size, for 15 warehouses. In practice,
one would likely start with a short trace (which can be
evaluated faster) and progressively increase the trace
size until the partition quality stops improving.

To show how our process scales as we increase
the graph size, we present running times for the
various phases in Table 2. We varied the graph size by
adjusting the tuple-level sampling factor (i.e., the ratio
of data items present in the transaction trace that we
represent as nodes in the graph, the remaining data
items are ignored). We notice that a majority of the
time is spent in the graph representation and evalua-
tion phase. In the evaluation phase, most time is spent
computing routing information for each transaction
in the input trace (training the routing classifiers
is relatively fast). We believe these two most time-
consuming operations could be further optimized.

While our prototype only supports off-line parti-
tioning, we can estimate a live system would exhibit
a trade-off between three factors: system performance
during partitioning, the duration of partitioning and
spare CPU capacity. Since Granola executes all trans-
actions using a single thread, its maximum through-
put is limited by the performance of a single core,

and not by the number of CPU cores available. Thus,
as long as spare CPU cores are available towards
partitioning, there will be no interaction between the
transaction execution system and the separate par-
titioning tool. Transactional throughput can still be
affected by run-time logging, but the impact can be
arbitrarily reduced through sampling, at the expense
of needing more time to complete a trace. If spare
CPU capacity is still available, certain phases of the
partitioning process can be parallelized to further
speed up partitioning.

Figures 11 and 12 show transactional throughput
measurements. PaxosSTM is faster than our approach
on a few of the workloads (AuctionMark-2, EPinions-
2). This happens when contention is low and Pax-
osSTM benefits from running multiple transactions
concurrently. On higher contention workloads how-
ever, Granola’s single-threaded approach performs
better. This effect is strongest on TPC-C, where all
transactions relating to the same warehouse conflict.

Furthermore, PaxosSTM does not scale with in-
creasing number of nodes, as all transactions must be
coordinated across all participants. Our partitioning
approach on the other hand is scalable, especially
when the ratio of distributed transactions is low. This
can be seen on EPinions and ReTwis, as the number
of nodes is increased from 2 to 5 (and 10 respectively).
With 2 nodes, PaxosSTM is similar or faster than
the Granola approach, but as more nodes are added,
throughput under the Granola model increases while
on PaxosSTM it stagnates.

Our throughput measurements also reflect the ben-
efits of automated partitioning as compared to manual
partitioning. TPC-W observed the best improvement,
of almost 4.5x (measured with 10 nodes). The through-
put with manual partitioning did not increase as more
nodes were added to the system, because of the large
ratio of distributed transactions. With automatic par-
titioning however, throughput increased significantly
as the experiment was scaled up.

AuctionMark and ReTwis showed more modest
improvements. In ReTwis the manual partitioning
scheme is already good – further improvements are
difficult. In AuctionMark, despite having fewer dis-
tributed transactions, the transactions span more par-
titions and are thus slower. In TPC-C, both the manual
and automatic partitions were already optimal, so the
throughput only reflects the overheads of classifying
objects at runtime. This effect is more pronounced
at higher node-counts, when the thread executing
Granola transactions becomes saturated.

In EPinions however, automated partitioning be-
came significantly slower than the manual partitions
as the number of partitions in the system was in-
creased from 2 to 5, despite still having a lower ratio
of distributed transactions. This situation is caused
by a skew in the workload towards a single parti-
tion, which then becomes a bottleneck. The issue can

13

Fig. 11. Total transactional throughput by benchmark. Fig. 12. Total throughput on TPC-C. The bar is
the average. The lower error bar is the standard
deviation. The upper error bar is the maximum.

Fig. 13. Total transactional throughput (TPC-C, 3 ware-
houses), with a varying fraction of distributed txns.

be resolved by balancing the partitions in terms of
offered workload instead of data size. The workload
would thus be evenly distributed across all partitions,
although the data distribution may become skewed
instead (some partitions hold more data than others).

We additionally varied the fraction of distributed
transactions in a TPC-C workload to simulate the
effect that partition quality has on throughput. Results
are shown in Figure 13. Fewer distributed transac-
tions clearly lead to better performance. This effect
is strongest when distributed transactions account for
less than about 10-15% of the total workload. Thus,
optimizing the quality of partitioning can be very
beneficial and is especially important for workloads
with less than 10-15% distributed transactions.

9 RELATED WORK
In the last decade, several proposals for scalable
transactional storage [10], [1], [5], [3] are presented.
Some of them target large scalability relaxing strong
consistency [10], [5] ensuring respectively eventual
and timeline consistency. Megastore in [3] is designed
for very large scale on the Internet and it is based
on state machine replication. Sinfonia [1] is similar to
Granola but it requires a-priori knowledge of lock-set
and it does not support independent transactions.

In context of DTM, a number of papers recently
appeared [26], [27], [23]. They provide new protocols
that optimize particular scenarios but none of them
reaches performance comparable to Granola. Addi-
tionally, some of them are based on partial replica-
tion where data is always stored manually over the

nodes without exploiting any automation that allows
optimizing the application access pattern. Our new
automatic framework for partitioning data, although
it is suited for the Granola [8] model, can be adopted
(partially or totally) by any of the previous works for
improving the locality of transactional accesses.

Partitioning techniques have been widely studied in
context of DBMS where the typical approach is to enu-
merate possible partition schemes and evaluate them
using different methodologies. Horticulture [25] is a
system similar in spirit to our work. It targets OLTP
in workloads that may sustain temporal skew, and
was implemented in H-Store [16], a main-memory
NewSQL system. Horticulture employs a partitioning
algorithm derived from a large neighborhood search. It
however lacks support for independent distributed
transactions, and chooses a partitioning strategy at
table granularity as opposed to object granularity.

In [22], Nehme and Bruno implement and evalu-
ate several automatic partitioning algorithms into the
query optimizer for a data warehouse system with
long, complex queries. Due to the nature of such
a system, the optimization goals are different: data
movement costs must be reduced for each query due
to the sheer amount of data involved. The work in [21]
also targets data warehouse systems, but optimizes
for data skipping instead. In contrast to these two
approaches, our system aims to reduce distributed
transactions when the workload is composed of short,
low-latency OLTP transactions.

In [33], the authors propose a stochastic approach
for clustering data in object oriented DBMS. In context
of distributed storage systems, [4] and [5] propose
systems which continuously re-partition data to in-
crease the balancing. Unfortunately these strategies
cannot be easily ported to transaction processing
due to the presence of incoming transactional re-
quests. AutoPart [24] is an automated scheme de-
signed for multi-terabyte datasets, without any OLTP
requirements. A dynamic vertical partitioning ap-
proach based on query patterns was published in [29].
However it is better suited for applications where
such information does not tend to change over time.

14

10 CONCLUSION
We have developed a methodology for using auto-
matic data partitioning in a Granola-based Distributed
Transactional Memory. We perform static byte-code
analysis to determine transaction classes that can be
executed using the independent transaction model.
We also use the analysis results to propose partitions
that promote independent transactions. Due to our
DTM focus, we take a machine-learning approach for
routing transactions to the appropriate partitions.

We evaluate our system on 5 benchmarks and in
most cases observe improvements in both the ratio of
distributed transactions and transactional throughput.
The largest improvements (up to 4.5x in throughput)
were observed on benchmarks where different ob-
jects were frequently accessed together in non-trivial
patterns. We additionally provide the first investiga-
tion of single-repository and independent transaction
models on several benchmarks other than TPC-C.

REFERENCES
[1] M. K. Aguilera et al. Sinfonia: A new paradigm for building

scalable distributed systems. ACM TOCS ’09.
[2] Amir and Farrokh. New approaches for efficient solution of

hitting set problem. NASA JPL, 2004.
[3] J. Baker et al. Megastore: Providing scalable, highly available

storage for interactive services. In CIDR’11.
[4] F. Chang et al. Bigtable: a distributed storage system for

structured data. In OSDI ’06.
[5] B. F. Cooper et al. Pnuts: Yahoo!’s hosted data serving

platform. VLDB ’08.
[6] James C. Corbett et al. Spanner: Google’s globally-distributed

database. In OSDI’12.
[7] TPC Council. “tpc-c benchmark, revision 5.11”. Feb 2010.
[8] J. Cowling and B. Liskov. Granola: low-overhead distributed

transaction coordination. In USENIX ATC’12.
[9] C. Curino et al. Schism: a workload-driven approach to

database replication and partitioning. VLDB 10.
[10] G. DeCandia et al. Dynamo: amazon’s highly available key-

value store. In SOSP ’07.
[11] G. Gibson et al. Probe: A thousand-node experimental cluster

for computer systems research. In USENIX ;login:, 2013.
[12] M. Hall et al. The weka data mining software: An update. In

SIGKDD Explorations, 2009.
[13] S. Harizopoulos et al. Oltp through the looking glass, and

what we found there. In SIGMOD ’08.
[14] Simon Haykin. Neural Networks: A Comprehensive Foundation.

Prentice Hall PTR, 2nd edition, 1998.
[15] G. John and P. Langley. Estimating continuous distributions

in bayesian classifiers. In UAI ’95.
[16] R. Kallman et al. H-store: a high-performance, distributed

main memory transaction processing system. VLDB’08.
[17] G. Karypis and V. Kumar. Metis - serial graph partitioning

and fill-reducing matrix ordering, version 5.1, 2013.
[18] T. Kobus et al. Hybrid replication: State-machine-based and

deferred-update replication schemes combined. In ICDCS’13.
[19] A. Lakshman and P. Malik. Cassandra: A decentralized

structured storage system. SIGOPS Oper. Syst. Rev., 2010.
[20] P. Lam et al. The soot framework for java program analysis:

a retrospective. In CETUS ’11.
[21] S. Liwen et al. Fine-grained partitioning for aggressive data

skipping. In SIGMOD 2014.
[22] Rimma Nehme and Nicolas Bruno. Automated partitioning

design in parallel database systems. In SIGMOD ’11, 2011.
[23] R. Palmieri et al. Osare: Opportunistic speculation in actively

replicated transactional systems. In SRDS ’11.
[24] S. Papadomanolakis and A. Ailamaki. Autopart: automating

schema design for large scientific databases using data parti-
tioning. In SSDBM ’04.

[25] A. Pavlo et al. Skew-aware automatic database partitioning in
shared-nothing, parallel oltp systems. In SIGMOD, 2012.

[26] S. Peluso, P. Romano, and F. Quaglia. Score: A scalable one-
copy serializable partial replication protocol. In Middleware’12.

[27] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues.
When scalability meets consistency: Genuine multiversion
update-serializable partial data replication. In ICDCS, 2012.

[28] Ross Quinlan. C4.5: Programs for machine learning. In Morgan
Kaufmann Publishers, San Mateo, CA., 1993.

[29] L. Rodriguez and XiaoOu Li. A dynamic vertical partitioning
approach for distributed database system. In SMC ’11.

[30] Y. Sovran et al. Transactional storage for geo-replicated
systems. In SOSP ’11.

[31] M. Stonebraker, S. Madden, et al. The end of an architectural
era: (it’s time for a complete rewrite). In VLDB’07.

[32] A Thomson et al. Calvin: fast distributed transactions for
partitioned database systems. In SIGMOD ’12.

[33] M. M. Tsangaris and J. F. Naughton. A stochastic approach
for clustering in object bases. In SIGMOD ’91.

[34] A. Turcu, R. Palmieri, and B. Ravindran. Automated data
partitioning for highly scalable and strongly consistent trans-
actions. In SYSTOR ’14.

[35] A. Turcu, R. Palmieri, and B. Ravindran. Hyflow2: A high
performance distributed transactional memory framework in
scala. In PPPJ ’13.

Alexandru Turcu received the MEng in Dig-
ital Electronics in 2010, from The University
of Sheffield, UK. He is currently a doctoral
student at Virginia Tech, Blacksburg, Virginia.
His research interests include Distributed
Systems, Transactional Memory and Trans-
actional Systems.

Roberto Palmieri received the BSc in com-
puter engineering, MSc and PhD degree
in computer science at Sapienza, Univer-
sity of Rome, Italy. He is a Research As-
sistant Professor in the ECE Department
at Virginia Tech. His research interests in-
clude exploring concurrency control proto-
cols for multicore architectures, cluster and
geographically distributed systems, with high
programmability, scalability, and dependabil-
ity. He is a member of IEEE and ACM.

Binoy Ravindran is a Professor of Electri-
cal and Computer Engineering at Virginia
Tech, where he leads the Systems Software
Research Group, which conducts research
on operating systems, run-times, middle-
ware, compilers, distributed systems, fault-
tolerance, concurrency, and real-time sys-
tems. Ravindran and his students have pub-
lished more than 220 papers in these spaces,
and some of his group’s results have been
transitioned to the DOD. His group’s papers

have won the best paper award at 2013 ACM ASP-DAC, 2012
USENIX SYSTOR (student paper), and selected as one of The Most
Influential Papers of 10 Years of ACM DATE (2008) conferences.

Sachin Hirve received B.E. in electrical en-
gineering from Madhav Institute of Technol-
ogy and Science Gwalior in 2000, M.Tech.
from Indian Institute of Technology Bombay
in 2004 and M.S. from Cleveland State Uni-
versity in 2009. He is currently working to-
ward PhD degree in computer engineering at
Virginia Tech. His research interests include
distributed systems, distributed concurrency
control and fault-tolerance. He is a student
member of the IEEE and the ACM.

