
1

Utility Accrual Real-Time Scheduling Under

Variable Cost Functions

Abstract

We present a utility accrual real-time scheduling algorithm called CIC-VCUA, for tasks whose execution times

are functions of their starting times (and potentially other factors). We model such variable execution times using

variable cost functions(or VCFs). The algorithm considers application activities that are subject to time/utility

function time constraints, execution times described using VCFs, and mutual exclusion constraints on concurrent

sharing of non-CPU resources. We consider the two-fold scheduling objective of (1) assure that the maximum

interval between any two consecutive, successful completions of job instancesin an activity must not exceed

the activity period (an application-specific objective), and (2) maximizing the system’s total accrued utility, while

satisfying mutual exclusion resource constraints. Since the scheduling problem is intractable, CIC-VCUA is a

polynomial-time heuristic algorithm. The algorithm statically computes worst-case task sojourn times, dynamically

selects tasks for execution based on their potential utility density, and completes tasks at specific times. We establish

that CIC-VCUA achieves optimal timeliness during under-loads, and tightly upper bounds inter- and intra-task

completion times. Our simulation experiments confirm the algorithm’s effectiveness and superiority.

Index Terms

variable-cost functions, time/utility functions, utility accrual scheduling, real-time scheduling, overload schedul-

ing, dynamic scheduling, resource management, mutual exclusion

I. I NTRODUCTION

Embedded real-time systems that are emerging in many domains such as robotic systems in the space

domain (e.g., NASA/JPL’s Mars Rover [1]) and control systems in the defense domain (e.g., airborne

trackers [2]) are fundamentally distinguished by the fact that they operate in environments with dynamically

uncertain properties. These uncertainties include transient and sustained resource overloads due to context-

dependent activity execution times and arbitrary activity arrival patterns. Nevertheless, such systems call

for the strongest possible assurances on activity timeliness behavior. Another important distinguishing

feature of these systems is their relatively long execution time magnitudes compared to traditional real-

time systems—e.g., in the order of milliseconds to seconds, or seconds to minutes.

2

When resource overloads occur, meeting time constraints (for example, deadlines) of all application

activities is impossible as the demand exceeds the supply. The urgency of an activity is typically orthogonal

to the relative importance of the activity—e.g., the most urgent activity can be the least important; the

most urgent can be the most important, and vice versa. Hence when overloads occur, completing the most

important activities irrespective of activity urgency is often desirable. Thus, a clear distinction has to be

made between the urgency and the importance of activities, during overloads. During under-loads, such

a distinction need not be made, because deadline-based scheduling algorithms such as EDF are optimal

for those situations [3]—i.e., they can satisfy all deadlines.

Deadlines by themselves cannot express both urgency and importance. Thus, we employ the abstraction

of time/utility functions (or TUFs) [4] that express the utility of completing an application activity as a

function of that activity’s completion time. We specify a deadline as a binary-valued, downward “step”

shaped TUF; Figure1(a) shows examples; a classical deadline has unit utility values[1, 0]. Note that

a TUF decouples importance and urgency—i.e., urgency is measured as a deadline on the X-axis, and

importance is denoted by utility on the Y-axis.

-
Time

6Utility

0

(a) Some Step TUFs

-
Time

6Utility

0

bbbb

(b) MITRE/TOG AWACS TUF [2]

-
Time

6Utility

S
S

S
S

0

HHH

(c) GD/CMU BM/C2 TUFs [5]

Fig. 1: Example TUF Time Constraints

Many real-time systems also have activities that are subject tonon-deadlinetime constraints, such as

those where the utility attained for activity completionvaries(e.g., decreases, increases) with completion

time. This is in contrast to general deadlines, where a positive utility is attained for completing the

activity anytime before the deadline, after which zero, or negative utility is attained. Figures1(b)–1(c)

show examples of such time constraints from two actual experimental applications in the defense domain:

(1) an Airborne Warning And Control System (AWACS) built by The MITRE Corporation and The Open

Group (TOG) [2] and (2) a battle management (BM)/command and control (C2) application built by

General Dynamics (GD) and Carnegie Mellon University (CMU) [5]. Details of these applications can be

found in [2] and [5], respectively; for brevity, they are omitted here.

When activity time constraints are specified using TUFs, which subsume deadlines, the scheduling

3

criterion is based on accrued utility, such as maximizing sum of the activities’ attained utilities. We

call such criteriautility accrual (or UA) criteria, and call scheduling algorithms that optimize them UA

scheduling algorithms.

UA algorithms that maximize summed utility under downward step TUFs (or deadlines) [6]–[8] default

to EDF during under-loads, since EDF can satisfy all deadlines during those situations. Consequently, they

obtain the maximum possible accrued utility during under-loads. When overloads occur, UA algorithms

favor activities that are more important (since more utility can be attained from them), irrespective of their

urgency. Thus, UA algorithms’ timeliness behavior subsumes the optimal timeliness behavior of deadline

scheduling.

In this paper, we focus onvariable costscheduling. In the context of this paper, “cost” means the

duration of an activity, a term that comes from one of the interesting and important applications for such

scheduling. The model presented requires scheduling activities consisting of sequences of jobs whose

durations (e.g., execution times) vary depending on when they begin, or on how long the parent activity

has been running, or on other factors. For the algorithms presented, the varying cost is specified by a cost

function, which specifies the job’s duration as a function of its start time. Thus, even if there were no

new activity arrivals, the load to be scheduled changes while the activities are being performed.

Previous efforts on deadline-based and UA scheduling do not consider variable cost scheduling. For

example, previous UA scheduling algorithms [6]–[8] do not allow task execution times to vary while

tasks are being performed. Theimprecise computation[9] and IRIS (Increasing Reward with Increasing

Service)[10] models include optional parts in addition to the mandatory parts of task execution times.

However, these models are different from UA and variable cost scheduling, because in these models, the

longer the optional part executes, the higher the reward becomes. On the other hand, in UA scheduling, the

utility (reward) can only be accrued by an activity when it is completed, and the utility value is decided

by the completion time. Further, there are no optional parts in variable cost scheduling—task execution

times only contain the mandatory parts and they may vary while the tasks are being performed.

The task model of the TAFT scheduler [11] allows variable task execution times. In TAFT, a task is

allowed to have a main part and an exception part (which is executed when the main part misses its time

constraint). The execution time of the main part is described as an “expected-case execution time” (the

execution time of the exception part is described as a worst-case execution time). The authors describe the

expected-case execution time of a task as a “measure for the time that a certain percentage of instances of

4

the task needs for a successful completion.” This model is fundamentally different from our cost function

model, where the task execution time depends upon when the task starts its execution (or other factors).

The execution time represented on our cost function is a deterministic estimate, which is a function of

time. In contrast, TAFT’s expected-case execution time istime-independent.

Thus, no previous efforts have studied the problem space that intersects UA scheduling and variable cost

scheduling. In this paper, we precisely focus on this unexplored problem space. We consider repeatedly

occurring application activities whose time constraints are specified using TUFs. The execution times of

activities are described by cost functions, which may vary as the activities are being performed. Activities

may concurrently, but mutually exclusively, share non-CPU resources. For such a model, we consider

a two-fold scheduling criterion: (1) assure that the maximum interval between any two consecutive,

successful completions of job instancesin an activitymust not exceed the activity period (an application-

specific criterion); and (2) maximize the system’s summed utility.

This problem isNP-hard. We present a polynomial-time heuristic algorithm for the problem, called

Completion Interval Constrained Variable Cost Utility Accrual Algorithm (or CIC-VCUA). We prove

several timeliness properties of the algorithm including optimal timeliness during under-loads, and tight

upper bounds on completion times between tasks (i.e., activities), and between jobs of one task. Further,

we establish that the algorithm is deadlock-free and safe. Finally, our experimental simulation studies

confirm CIC-VCUA’s effectiveness and superiority.

Thus, the paper’s contribution is the CIC-VCUA algorithm. To the best of our knowledge, we are not

aware of any other efforts that solve the problem solved by CIC-VCUA.

The rest of the paper is organized as follows: In SectionII , we describe a motivating application

for variable cost scheduling; in SectionIII , we outline our activity and timeliness models, and state the

scheduling criterion. We present CIC-VCUA in SectionIV and establish the algorithm’s properties in

SectionV. The experimental measurements are reported in SectionVI . Finally, we conclude the paper

and identify future work in SectionVII .

II. M OTIVATING APPLICATION

One application context of interest to us for variable cost scheduling is an air-to-air radar tracking

problem for which no scheduling algorithms and performance assurances have been publicly available.

To motivate the work in this paper, we simplify and omit some characteristics of the tracking problem

to expedite the creation of an initial plausible scheduling approach that can be generalized in subsequent

5

work. This problem is representative of a large class of related variable-cost scheduling problems which

arise in sensor systems with both sensor collection and data processing times which are strongly dependent

on the physical geometry of the sensor and target observation area.

This type of tracking problem employs an Active, Electronically Steerable Array (AESA) radar to

provide an end-to-end tracking service supporting the evolution of a track through the phases described

below. Examples of such systems include the radar systems installed in certain United States and European

tactical aircraft and Naval surface craft [12]. An AESA radar uses an array of antennas to form a single

virtual “beam,” by varying the power, transmission frequencies, and sampling rates across the individual

antenna elements. Consequently, the time required to deliver or measure a given amount of power in a

particular direction (the pulse width) is a function of the relative geometry of the antenna, the desired

beam shape and signal to noise ratio, and the relative geometry of the antenna and target.

Generally, a single task executed by such a radar consists of a coherent ensemble of “dwells”, which

are pulses of energy. Each such task is strongly a function of geometry and desired quality of the return

signal to be collected. For instance, the number of individual dwells transmitted in an air tracking task

dictates the amount of ambiguity in the resulting range and range-rate measurements. This ambiguity is

also a function of the actual range and range-rate of the target, and thus the time required to achieve a

consistently accurate collection varies as the relative geometry of the radar and the target varies.

Some common civilian applications of AESA radars such as the collection of synthetic aperture radar

(SAR) imagery [13] for agricultural and forestry use and scientific research exploit a train of these tasks,

scheduled coherently, over macroscopic timescales (101–102 seconds). The total end-to-end time required

for such an extended task is again a function of the system geometry, and thus varies in sojourn and

execution time.

The problem notionally consists of three component tasks1: (1) searching a segment of the airspace to

find any airborne moving objects (track initiation); (2) maintaining a track for each of those objects until

some deadline time; and (3) identifying the object using characteristics of the return pulses. An example

of identification is theIdentification Friend or Foe (IFF)system, but many more complicated mechanisms

exist.

Those three tasks for a given object nominally occur in that order, but identification can occur almost

any time while tracking. For each of the three tasks, the radar must make one or more measurements by

1Hereafter, we use the termstask andactivity interchangeably.

6

illuminating the object with dwells, then await any return echoes. For convenience, we denote the entire

sequence of transmit-wait-receive as adwell. Tasks for any object may be interleaved with any other task

by interleaving dwells.

For the tracking tasks, the dwells occur at a revisit rate that is defined by the interval between two

successive dwells—regular, but not necessarily periodic. The revisit rate for any particular object must

be maintained for a long enough time to obtain acceptable values for certain application-level quality of

service (AQoS) metrics.

One such critical AQoS metric is track quality [14], which is a measure of the error in our estimate

of the given object’s location and motion. Achieving any particular track quality value imposes a lower

bound on the revisit rate of the object being tracked, since the estimate error increases quickly in time

after each measurement. Optimal and minimum revisit rates are defined by the probability of detecting the

object with the next dwell—failure to meet a minimum revisit rate implies increased chance of missing

the object on the next dwell [15].

In this application, we associate with each task a cost function which specifies the required duration

for a dwell as a function of execution time. This activity cost varies with many factors, including the

type of dwell and the geometry of the sensor and target object. For instance, the number and duration of

dwells required to search a segment of airspace depends on the relative positions of the radar platform,

the scanned airspace, and the objects in that space. Depending on the relative motion of the radar platform

and the object, it may be better either to procrastinate dwells (intentionally insert idle time in the radar

schedule) or perform dwells early.

The cost function for each task varies with each object’s range and look angle (azimuth off the sensor’s

nominal boresight)—i.e., having the formf(r, θ). The cost function is derived from the particular tracking

problem and an equation known as the radar equation [16]. The radar equation relates the measured energy

received to the geometry of the object, the sensor, and the emitted energy.

Two examples of cost functions are shown in Figure2. Figure2(a)shows the cost function—the amount

of time required on the radar front-end to collect sufficient quantity and quality data—for a target object

flying at a higher altitude and faster velocity than the radar platform; Figure2(b) shows the cost function

for a target object circling the radar platform at a constant range. In these cases, the cost achieves a

minimum when the target object is along the sensor’s boresight. Additionally, the cost increases as a

polynomial function of the range (absolute distance) to the object. The specific cost functions can be

7

2000

1500

1000

500

0
0 2 4 6 8 10

Target Moving Past, Parallel to Sensor

Scenario Time

R
a

d
a

r
C

o
lle

c
ti
o

n
 T

im
e

(a) Cost Function (Radar Collection Time) for

a Target Flying at a Higher Altitude and Faster

Velocity than Radar Platform

2000

1500

1000

500

0
0 0.5 1 2 2.5 3

Target Circling Sensor at Constant Range

Scenario Time

R
a

d
a

r
C

o
lle

c
ti
o

n
 T

im
e

1.5

(b) Cost Function (Radar Collection Time) for a

Target Circling the Radar Platform at a Constant

Range

Fig. 2: Example Cost Functions

derived in part from the physical properties of the transceiver and antennae.

Note that radar dwell scheduling has been extensively studied by real-time researchers in the past—

e.g., [17]–[21]. However, our work fundamentally differs from these works in the variable execution time

model of the dwell jobs. These referenced works on dwell scheduling assume that the execution time of

a radar dwell job is aconstantand time-independent, enforcing this by forcing all dwells to take a fixed

time. In contrast, our work (based on the applications of interest to us) assumes that the execution time

of the dwell job depends on the time at which the job starts its execution, and the distance between the

radar and the target (besides other factors), and consequentlyvarieswith time (see SectionIII-D).

III. M ODELS AND OBJECTIVE

A. System and Task Model

We consider a preemptive system which consists of a set of periodic (dwell) tasks, denoted asT =

{T1, T2, · · · , Tn}. Each taskTi contains a collection of instances. The period of a taskTi is denoted as

Pi. Each task has a begin time and an end time between which execution of all jobs of the task must be

completed.

An instance of a task is called ajob, and we refer to thejth job of task Ti, which is also thejth

invocation ofTi, asJi,j. The basic scheduling entity that we consider is the job abstraction. Thus, we use

J to denote a job without being task specific, as seen by the scheduler at any scheduling event;Jk can

be used to represent a job in the scheduling queue.

8

B. Resource Model

Jobs can access non-CPU resources, which in general, are serially reusable. Examples include physical

resources such as disks and logical resources such as locks. Similar to resource access models for fixed-

priority scheduling [22] and that for UA scheduling [7], [23], we consider a single-unit resource model.

Thus, only a single instance is present for each resource in the system and a job must explicitly specify

the resource that it needs.

Resources can be shared and can be subject to mutual exclusion constraints. A job may request multiple

shared resources during its lifetime. The requested time intervals for holding resources may be nested,

overlapped, or disjoint. We assume that a job explicitly releases all granted resources before the end of

its execution.

Jobs of different tasks can have precedence constraints. For example, a jobJk can become eligible

for execution only after a jobJl has completed, becauseJk may requireJl’s results. As in [7], [23], we

program such precedences as resource dependencies.

C. Timeliness Model

A job’s time constraint is specified using a TUF. Jobs of a task have the same TUF. We useUi (·) to

denote taskTi’s TUF, and useUi,j (·) to denote the TUF ofTi’s jth job. Without being task specific,Jk.U

means the TUF of a jobJk; thus completion ofJk at a timet will yield an utility Jk.U (t).

TUFs can be classified into unimodal and multimodal functions. Unimodal TUFs are those for which

any decrease in utility cannot be followed by an increase. Examples are shown in Figure1. TUFs which

are not unimodal are multimodal. In this paper, we focus onnon-increasingunimodal TUFs, as they

encompass the majority of the time constraints in our motivating applications. Figures1(a) and1(b), and

two TUFs in Figure1(c) show examples.

Each TUFUi,j, i ∈ {1, · · · , n} has an initial timeIi,j and a termination timeXi,j. Initial and termination

times are the earliest and the latest times for which the TUF is defined, respectively. We assume thatIi,j

is equal to the arrival time ofJi,j. Further, the periodPi, and the relative termination timeXi of the task

Ti, are both equal toXi,j − Ii,j.

If a job’s termination time is reached and its execution has not been completed, an exception is raised,

and the job is immediately aborted. Our abortion model follows that of [7], [23], and is based on the

observation that if time constraints are not satisfied, it is desirable to place the affected portions of

9

the system and the physical process being controlled into acceptable operating states. Aborting activities

provides an opportunity to perform the necessary transformations. Although our algorithm does not require

that all activities be aborted (when their time constraints are not met), it is advantageous to exploit the

fact that some can be.

D. Task Execution Time Model

As motivated in SectionII , after a job is released, its execution time may vary with time. Thus, we

define avariable cost function(or VCF) for each job, which describes the job execution time as a function

of its starting time. Jobs of a task have the same VCFs, so a VCF is also defined for a task. We useCi (·)
to denote taskTi’s VCF, and useCi,j (·) to denoteTi’s jth job’s VCF.

For a jobJi,j, the x-axis of its VCF is the absolute time relative to the job’s arrival time; they-axis

represents its execution timeCi,j(t), and the origin shows the execution time ofJi,j when it is just released.

Cost functions of AESA applications can be increasing, decreasing, or strictly convex shaped. In this

paper, we only considerunimodalVCFs. Figure3 shows examples of VCFs. For jobs whose execution

times do not vary with time after their arrivals, we define a constant VCF. Figure3(a) shows a constant

VCF. Figure3(b) and Figure3(c) show an increasing VCF and a decreasing VCF, respectively. From

Figures3(b) and 3(c), we can observe that the jobJi,j ’s VCF starts from a non-zero valueC0. We also

assume thatCi,j(t) is bounded by another non-zero valueC1, which implies that aftertbnd, Ci,j(t ≥
tbnd) = C1.

-
Time

6

0

Ci,j

(a) Constant VCF

-
Time

6Ci,j

C1

C0

0

""""

tbnd

(b) Increasing VCF

-
Time

6Ci,j

C0

C1

0

bbbb

tbnd

(c) Decreasing VCF

Fig. 3: Example Variable Cost Functions for a JobJi,j

Without being task specific,Jk.VCF or Jk.C means the VCF of a jobJk; the execution time ofJk

at a timetcur will be Jk.C(tcur) = Jk.VCF (tcur). Hereafter, in the discussion of TUFs and VCFs, we

interchangeably use the termstask and job if no confusion is raised.

10

E. Scheduling Objective

A successful completion of a job means that the job has met its termination time. With this definition,

we consider a two-fold scheduling criterion: (1) assure that the maximum interval between any two

consecutive, successful completions of jobsof a taskmust not exceed the task period; and (2) maximize

the system’s summed utility. Furthermore, mutual exclusion constraints on all shared resources must be

respected.

Note that with VCFs, it is difficult to statically calculate the system load, since it dynamically varies with

time. For example, a constant load at a task arrival—one that is an under-load—can gradually increase,

and can eventually become an overload even without new task arrivals, due to increasing VCFs. Thus, if

the dynamic system load is so high such that scheduling objective (1) cannot be satisfied for each task,

some tasks may be dropped and consequently aborted. In such cases, tasks that are not dropped are still

subject to the two scheduling objectives and mutual exclusion constraints on all shared resources.

IV. T HE CIC-VCUA ALGORITHM

This section describes the CIC-VCUA algorithm. In SectionIV-A , we first discuss the scheduling

metric used by CIC-VCUA, thePotential Utility Density (or PUD). CIC-VCUA consists of two steps:

static calculation (SectionIV-B to IV-C), and the dynamic step (SectionIV-D to IV-G).

In the static steps of CIC-VCUA, we first find the maximum possible execution time for each task based

on its VCF. Then we label each task as eitherselectedor skipped, based on their PUDs and contribution

to the system load. For theselectedtasks, the algorithm determines the worst case sojourn time of each

task, and attempts to complete all jobs of the task at the same time relative to their arrivals.

After the static step, at each scheduling event, CIC-VCUA builds the dependency chain for each job in

the ready queue, and calculates its PUD. The algorithm then sorts them based on their PUDs, in a non-

increasing order. Next, the algorithm inserts the jobs into a tentative schedule in the order of their critical

times (earliest critical time first), while respecting their resource dependencies and timeliness feasibilities.

Finally, CIC-VCUA determines the job to execute, as well as the amount of time for which it will be

executed, so as to make sure all jobs of a task have identical sojourn times.

Finally in SectionIV-H, we analyze the asymptotic time complexity of the algorithm.

11

A. Algorithm Rationale

The potential utility that can be accrued by executing a job defines a measure of its “return on

investment.” Because of the unpredictability of future events (e.g., during overloads), scheduling events

that may happen later such as job completions and new job arrivals cannot be considered at the time when

the scheduler is invoked. Thus, a reasonable heuristic is to favor “high return” jobs over “low return” jobs

in the schedule. This will increase the likelihood of maximizing the summed utility.

The metric used by CIC-VCUA to determine the return on investment for a job is called the PUD,

which was originally developed in [7]. The PUD of a job measures the amount of utility that can be

accrued per unit time by executing the job itself and other job(s) that it depends upon (due to mutual

exclusion constraints on resources held by the other jobs).

To compute jobJk’s PUD at current timetcur, CIC-VCUA considersJk’s expected completion time,

which is denoted asJk.F inT , and the expected utility by executingJk and its dependent jobs. For each job

Jl that is inJk’s dependency chain and needs to be completed before executingJk, Jl’s expected completion

time is denoted asJl.F inT . PUD ofJk is then computed as:
Jk.U(Jk.F inT)+

P
Jl∈J′

k
s dependency chain Jl.U(Jl.F inT)

Jk.F inT−tcur
.

B. Static Job Selection

We assume that if a job cannot complete before its termination time even though it is scheduled

immediately, it is infeasible and can be safely aborted. The process of testing the feasibility of a job will

be described in SectionIV-D.

To test for feasibility, we have to find the maximum possible task execution times. Depending on the

VCF shapes, the maximumCi,j for each task can be calculated. For jobs with increasing VCFs, by solving

the inequalityCi,j(t) + t ≤ Xi,j, we can derive the latest possible starting timetbi,j of job Ji,j, such that

Ci,j(t
b
i,j) + tbi,j = Xi,j. Ci,j(t

b
i,j) corresponds to the maximum possible execution time ofJi,j, andCi(t

b
i)

describes this parameter at the task level. For jobs with non-increasing VCFs, a jobJi,j ’s maximum

execution time isCi,j(t
0
i,j).

Therefore, although a job’s execution time changes with its starting time, it is possible for us to derive

a system load boundloadb, which will never be exceeded by the system’s dynamic load. For increasing

VCFs, we deriveloadb =
∑n

i=1
Ci(t

b
i)

Pi
; for non-increasing VCFs, we defineloadb =

∑n
i=1

Ci(t
0
i)

Pi
. If a

constant VCF is defined for each task, then a task’s execution time is constant andloadb here is the same

as the system utilization definition in [24].

12

Since the system dynamic load may gradually increase even without new task arrivals, the task instances

to be executed must be carefully selected in order to accrue more utility. Such selection process is

guided by the PUD metric. Toward this, we use a job selection flag, which labels each job asskipped

or selected. The selection process considers the parameters of the task set such as VCFs and TUFs. We

associate with each jobJi,j a labelSELi,j, whereSELi,j = skipped indicates that the job is skipped

andSELi,j = selected indicates that it is selected for execution. At run-time, only jobs whose labels are

set toselectedare dispatched. Thus, the problem becomes choosing the job labels toward optimizing our

scheduling objective.

We label jobs in a static and dynamic fashion, based on the workload information used by the scheduler.

In the off-line (static) part of CIC-VCUA, we select task instances before the application starts. Initially,

all tasks inT are labeled asskipped, i.e., SELi,j = skipped, ∀i ∈ 1, · · · , n, ∀j. At tcur = t0i , assuming

that tasks are independent of each other, we calculate the PUD of each task, which in value is also

the PUD of each task’s first job, i.e.,PUDi =
Ui,1

(
Ci,1(t0i)

)
Ci,1(t0i)

. We also calculate the maximum possible

execution time of each task (Ci(t
b
i) for increasing VCFs andCi(t

0
i) for non-increasing VCFs), and then

choose the sub task setT′. T′ consists ofn′ tasks with the largest PUDs, such that for increasing VCFs,

load′b =
∑n′

i=1′
Ci(t

b
i)

Pi
≤ 1; and for non-increasing VCFs,load′b =

∑n′
i=1′

Ci(t
0
i)

Pi
≤ 1, andn′ is the maximum

possible number of tasks to be selected. Note that ifloadb ≤ 1, thenn′ = n. Thus, we favor tasks with

larger PUDs, and label then′ tasks inT′ asselectedi.e., SELi,j = selected, ∀i ∈ 1′, · · · , n′,∀j.

C. Worst-Case Task Sojourn Times

CIC-VCUA’s first objective is to assure that the maximum interval between any two consecutive,

successful completions of jobs of a taskTi does not exceed its periodPi. In order to satisfy this scheduling

objective, the algorithm determines the worst case sojourn time of each task, and attempts to complete

all jobs of a task at the same time relative to their arrivals. Doing so ensures that all jobsJi,j of a task

Ti have identical sojourn times, satisfying the algorithm’s first objective.

As we knowXi = Pi, for tasks with step TUFs, the notion of termination time is the same as that of

deadline. Thus, theEarliest Deadline First(or EDF) algorithm is also denoted asEarliest Termination

First (abbreviated as EXF) in this paper. In the process of sojourn time calculation, we only consider

selected tasks, i.e.,T′.

For the selected task setT′ with load′b ≤ 1, the on-line scheduling process of CIC-VCUA is essentially

EXF (we describe this in SectionIV-D). Thus, we defineT.wcST to denote the worst-case sojourn time

13

of each taskT , when the task setT′ is scheduled by EXF. For a jobJ of taskT , we denote its worst-case

sojourn time asJ.F inT . This is also the latest possible time for jobs ofT to complete without causing

any load increase or abortions of other jobs.

Figure 4 shows the time line of the jobJi,j, wheret0i andJi,j.X indicate the release and termination

times ofJi,j, respectively, andJi,j.F inT is less thanJi,j.X.

J
i,j

.FinT J
i,j

.X

T
i

t0

i

Fig. 4: A Job Example

For task setT′ with load′b ≤ 1.0, our algorithm defaults to EXF. Hence, in order to find sojourn times

under CIC-VCUA, we use the paradigm for finding sojourn times under EXF. Sojourn times under EXF

can be determined using the notion ofdeadline busy period. A deadlined busy period is a busy period

during which only jobs with absolute deadlines that are smaller than or equal tod execute [25], [26]. This

is needed because, it allows us to determine how long it takes for each task to complete in the presence

of other tasks.

First, it is necessary to calculate the synchronous busy period before calculating the individual deadline

busy periods of tasks. The synchronous busy period, denotedL, is the interval of time, during which the

processor is not idle. Further, if all the first job instances of tasks were to be released synchronously (the

worst-case scenario), it would takeL time units for all jobs to complete. Thus, the busy period bounds

the individual completion times or deadline busy periods of tasks. The busy period is given by [27]:

L0 = 0, Lm+1 = W (Lm) , whereW (t) =
n′∑

i=1

⌈
t

Ti

⌉
Ci.

The busy period is found when the iteration ends atLm = Lm+1. After L is calculated, the individual

deadline busy periods,Li can be calculated. We need to determine which tasks will be executed before

our target task. For a taskTi which arrives at timea, it is intuitive that beforeTi’s absolute termination

time a + Xi, only tasks with termination times shorter than or equal toa + Xi can be executed. The

deadline busy period of a taskTi with an arrival timea is given by [26]:

L0
i (a) = 0, Lm+1

i (a) = Wi (a, Lm
i (a)) +

(
1 +

⌊
a

Xi

⌋)
Ci (1)

14

where:

Wi (a, t) =
∑

j 6=i,Tj .X≤a+Xi

min

(⌈
t

Xj

⌉
, 1 +

⌊
a + Xi −Xj

Xj

⌋)
Cj

In calculating the deadline busy periodLi in Equation1, the first termWi(a, t) calculates the higher

priority workloads arriving in time window[a, t] that have to be satisfied before executing taskTi, and

the second term accounts forTi’s instances that have to be executed. The iterative computation will stop

whenLm+1
i (a) = Lm

i (a). Algorithm 1 shows the calculation of the maximum deadline busy period.

input : τ ; output: (L1, L2, ...Ln) ;1:
Initialization : Ln+1 := L;2:
for i = n down to 1do3:

let k be such that ek ≤ Li+1 − Ci + Xi < ek+1;4:
a := ek −Xi;5:
while Li(a) ≤ a do6:

let k be such that ek ≤ Li(a)− Ci + Xi < ek+1;7:
a := ek −Xi;8:

Li := Li(a);9:

Algorithm 1 : maxDeadBusyP()

Algorithm 1 uses the task listτ , which is ordered by non-decreasing termination times. The algorithm

examines the list, starting from the task with the maximumXi, which has the lengthL. Tasks that have

absolute termination times shorter than that ofTi are inserted into proper termination time positions. Such

positions are defined byE =
⋃n

i=1(mXi + Xi : m ≥ 0) = (e1, e2...). After Li is calculated, the bound

for this task becomesLi; it also becomes a bound for the next task inτ . The algorithm then moves down

the list and calculates the maximumLi for the next task, until all tasks are considered.

After determiningLi, the worst case sojourn time of a taskTi becomesTi.wcST = max(Ti.wcST (a))

for a ≥ 0, whereTi.wcST (a) = max(Ci, Li(a)− a). CIC-VCUA ensures that each job completes at its

worst-case sojourn time after it is released, so that jobs can meet the bound constraint on consecutive

completions.

For a taskTi, the finish time of the first job of the task isJi,1.F inT = Ti.wcST . We can determine

the finish times of the subsequent jobs of a task asJi,j.F inT = Ji,j−1.F inT + Pi.

During schedule construction, CIC-VCUA “pushes back” the completion times of jobs further toward

their termination times, as system load changes with variable execution times. In order to satisfy the bound

constraint across the range ofloadb ≤ 1.0, the algorithm uses the worst-case sojourn times as predicted

finish times. Forloadb > 1.0, CIC-VCUA pushes job finish times such that they occur slightly before the

15

job termination times. Pushing finish times closer to termination times for higher loads is necessary for

two reasons: First, the worst case sojourn time calculation becomes more unpredictable for different VCF

shapes (since the calculation usesCi(t
0
i)). Second, task sojourn times are already close to their termination

times because of the load.

D. Dynamic UA Scheduling

After the initial static steps, CIC-VCUA selects the largest sub task set consisting of the highest PUD

tasks, whose dynamic load will not cause a system overload. The algorithm then adopts the preemptive

earliest termination time first (or EXF) scheduling policy which is optimal from the feasibility point of

view [24].

At each arrival of a jobJi,j, its finish timeJi,j.F inT is calculated from the task sojourn timeTi.wcST ,

the periodPi, and its predecessor’s finish time. After we haveJi,j.F inT = Ji,j−1.F inT + Pi, the job is

executed until only a very small amount of execution time of the job, denoted∆, is left to be executed. At

this time, if the absolute time is far fromJi,j.F inT , then jobJi,j is preempted. Later, it will be selected

again atJ.F inT to be completed.

∆ is a small quantity of time selected (J.C À ∆) so that the interference caused by the execution of∆

time units (to finish the job) to other jobs is negligible.∆ is used to delay the completion of jobs, so that

at their finish timesJ.F inT , they only need to run∆ units of time to finish. If two or more jobs have

identical finish times, then∆ is also used to break the tie. When a jobJ ’s remaining execution time is

only ∆, and it is preempted and will be resumed atJ.F inT , we say that the jobJ is ready to complete.

Since tasks are preemptive, CIC-VCUA’s scheduling events include: (1) a job’s arrival; (2) the expiration

of a time constraint such as the arrival of a TUF’s termination time, when the CPU is idle; (3) a job’s

completion; (4) a resource request; and (5) a resource release.

To describe the algorithm, we define the following variables and auxiliary functions:

• Jr = {J1, J2, · · · , Jm} is the current unscheduled job set;σ is the ordered output schedule.Jk ∈ Jr is

a job. Jk.X is its termination time;Jk.F inT is its finish time, andJk.SEL is the job selection flag.

• selectJob(σ) returns a job to execute with the amount of time it will execute.

• headOf(σ) returns the first job inσ.

• sortByPUD(σ) returnsσ ordered by non-increasing PUD. If two or more jobs have the same PUD,

then the job(s) with the largest execution time will appear before any others with the same PUDs.

16

• owner(R) denotes the set of jobs that are currently holding resourceR; reqRes(J) returns the

resource requested by jobJ .

• insert(J , σ, I) inserts jobJ in the ordered listσ at the position indicated by indexI; if there are

already entries inσ at the indexI, J is inserted before them. After insertion, the index ofJ in σ is I.

• remove(J , σ, I) removes jobJ from ordered listσ at the position indicated by indexI; if J is not

present at the positionI in σ, the function takes no action.

• lookup(J , σ) returns the index value associated with the first occurrence of jobJ in the ordered list

σ.

• feasible(σ) returns a boolean value indicating scheduleσ’s feasibility. For σ to be feasible, the

predicted completion time of each job inσ must never exceed its termination time.

input : T = {T1, · · · , Tn}, Jr = {J1, · · · , Jm}1:
output : selected jobJexe2:
Initialization: t := tcur, σ := ∅;3:
for ∀Jk ∈ Jr do4:

if feasible(Jk) =false then5:
abort(Jk) ;6:

else7:
Jk.Dep := buildDep(Jk) ;8:
Jk.PUD := calculatePUD (Jk);9:

σtmp :=sortByPUD(Jr) ;10:
for ∀Jk ∈ σtmp from head to taildo11:

if Jk.PUD ≥ 0 and Jk.SEL = selected then12:
σ :=insertByEXF(σ, Jk) ;13:

else break;14:

Jexe:=selectJob(σ) ;15:
return Jexe16:

Algorithm 2 : CIC-VCUA: Dynamic Part Description

A high-level description of CIC-VCUA is shown in Algorithm2. At the beginning of each scheduling

event, when CIC-VCUA is invoked at timetcur, the algorithm first checks the feasibility of all the jobs

in the current ready queue. If a job is infeasible, then it can be safely aborted (line6). Otherwise, the

algorithm constructs the job’s dependency list (line8), and then calculates its PUD (line9).

At line 10, jobs are sorted by their PUDs, in a non-increasing order. In each step of thefor loop

from line 11 to line 14, the job with the largest PUD and its dependencies are inserted intoσ by

insertByEXF() . Thus, σ becomes a feasible schedule that is ordered by job termination times, in

a non-decreasing order. Then, theselectJob () function finds a job inσ and returns it for execution.

For each jobJ , CIC-VCUA will compare∆ with J.F inT − tcur when the job has only∆ remaining

17

execution time units. If∆ < J.F inT − tcur, then jobJ is preempted, and another job may be selected

for execution. Later, whenJ.F inT − tcur = ∆, job J will preempt the current running task, so that it can

finish atJ.F inT .

Such monitoring, preemption, and resumption are realized by the procedureselectJob() . This

procedure selects a job with the earliest finish time fromσ. If this job is not ready to complete, then it

ensures that the job executesJ.C−∆ time units. Otherwise,selectJob() runs that job to completion.

After finishing such jobs, the algorithm seeks another job to execute.

E. Resource and Deadlock Handling

Before CIC-VCUA can compute job partial schedules, the dependency chain of each job must be

determined. This is described in Algorithm3.

input : JobJk; output: Jk.Dep ;1:
Initialization : Jk.Dep := Jk; Prev := Jk;2:
while reqRes(Prev) 6= ∅V owner(reqRes(Prev)) 6= ∅ do3:

Jk.Dep :=owner(reqRes(Prev)) ·Jk.Dep;4:
Prev := owner(reqRes(Prev)) ;5:

Algorithm 3 : buildDep()

Algorithm 3 follows the chain of resource request and ownership. For convenience, the input jobJk is

also included in its own dependency list. Each jobJl other thanJk in the dependency list has a successor

job that needs a resource which is currently held byJl. Algorithm 3 stops either because a predecessor job

does not need any resource or the requested resource is free. Note that “¦” denotes an append operation.

Thus, the dependency list starts withJk’s farthest predecessor and ends withJk.

To handle deadlocks, we consider a deadlock detection and resolution strategy, instead of a deadlock

prevention or avoidance strategy. Our rationale for this is that deadlock prevention or avoidance strategies

normally pose extra requirements—for example, resources must always be requested in ascending order

of their identifiers.

Further, restricted resource access operations that can prevent or avoid deadlocks, as done in many

priority-based resource access protocols, are not appropriate for the class of application systems that

we focus here. For example, the Priority Ceiling protocol [22] assumes that the highest priority of jobs

accessing a resource is known. Likewise, the Stack Resource policy [28] assumes preemptive “levels”

of threadsa priori. Such assumptions are too restrictive for our application systems—the resources that

18

will be needed, the length of time for which they will be needed, and the order of accessing them are all

statically unknown.

Recall that we are assuming a single-unit resource request model. For such a model, the presence of a

cycle in the resource graph is the necessaryand sufficient condition for a deadlock to occur. Thus, the

complexity of detecting a deadlock can be mitigated by a straightforward cycle-detection algorithm.

input : Requesting jobJk, tcur;1:
/ * deadlock detection * / ;2:
Deadlock := false;3:
Jl := owner(reqRes(Jk)) ;4:
while Jl 6= ∅ do5:

Jl.LoPUD := Jl.U(Jl.F inT)
J.C(tcur)

;6:
if Jl = Jk then7:

Deadlock := true;8:
break;9:

else10:
Jl := owner(reqRes(Jl)) ;11:

/ * deadlock resolution if any * / ;12:
if Deadlock = true then13:

abort(The jobJm with the minimalLoPUD in the cycle) ;14:

Algorithm 4 : Deadlock Detection and Resolution

The deadlock detection and resolution algorithm (Algorithm4) is invoked by the scheduler whenever

a job requests a resource. Initially, there is no deadlock in the system. By induction, it can be shown that

a deadlock can occur if and only if the edge that arises in the resource graph due to the new resource

request lies on a cycle. Thus, it is sufficient to check if the new edge resulting from the job’s resource

request produces a cycle in the resource graph.

To resolve the deadlock, some job needs to be aborted. If a jobJl were to be aborted, then its timeliness

utility is lost. To minimize such loss, we compute the Local PUD (or LoPUD) of each job attcur. A job’s

LoPUD is defined as the utility that the job can potentially accrue by itself at the current time, if it were

to continue its execution. The algorithm aborts the job with the minimal LoPUD in the cycle to resolve a

deadlock. Before aborting the job, the resources held by the job is released and returned to a consistent

state.

F. Manipulating Partial Schedules

The calculatePUD() algorithm (Algorithm5) accepts a jobJk and its dependency list, and deter-

minesJk’s PUD. It assumes that jobs inJk.Dep finish at their predicted finish timesJ.F inT from the

current position in the schedule, while following the dependencies.

19

input : Jk; output: Jk.PUD;1:
Initialization: tc := 0, U := 0;2:
for ∀Jl ∈ Jk.Dep, from head to taildo3:

tc := tc + Jl.C(tcur);4:
U := U + Jl.U(Jl.F inT);5:

Jk.PUD := U
tc

;6:
return Jk.PUD;7:

Algorithm 5 : calculatePUD()

To computeJk’s PUD, CIC-VCUA considers each jobJl that is in Jk’s dependency chainJk.Dep,

which needs to be completed before executingJk, since they hold resources thatJk needs. (Note that

buildDep() includesJk’s dependents andJk in Jk.Dep.) First, the algorithm calculates the total utility

U that can be accrued by executingJk and its dependents and completing them at their respective

finish timesJ.F inT . The total execution times ofJk and its dependents is aggregated in the variable

tc. calculatePUD () determinesJk’s PUD asU/tc (line 6).

The details ofinsertByEXF() in line 13of Algorithm 2 are shown in Algorithm6. insertByEXF()

updates the tentative scheduleσ by attempting to insert each job along with all of its dependents inσ.

The updatedσ is an ordered list of jobs, where each job is placed according to the termination time that it

should meet. Note that the time constraint that a job should meet is not necessarily the job’s termination

time. In fact, the index value of each job inσ is the actual time constraint that the job must meet.

input : Jk and an ordered job listσ;1:
output : the updated listσ;2:
if Jk /∈ σ then3:

copy σ into σtent: σtent :=σ;4:
insert(Jk, σtent, Jk.X) ;5:
CuXT = Jk.X;6:
for ∀Jl ∈ {Jk.Dep− Jk} from tail to headdo7:

if Jl ∈ σtent then8:
XT=lookup(Jl, σtent) ;9:
if XT < CuXT then continue;10:
elseremove(Jl, σtent, XT) ;11:

CuXT :=min(CuXT,Jl.X) ;12:
insert(Jl, σtent, CuXT) ;13:

if feasible(σtent) then14:
σ := σtent;15:

return σ;16:

Algorithm 6 : insertByEXF()

A job may need to meet an earlier termination time in order to enable another job to meet its time

constraint. Whenever a jobJ is considered for insertion inσ, it is scheduled to meet its own termination

time. However,J ’s dependents must execute beforeJ can execute, and therefore, must precede it in the

schedule. The index values of the dependencies can be changed withinsert() in line 13 of Algorithm6.

20

The variableCuXT is used to keep track of this information. Initially, it is set to be the termination

time of job Jk, which is tentatively added to the schedule (line 6, Algorithm6). Thereafter, any job in

Jk.Dep with a later time constraint thanCuXT is required to meetCuXT . If, however, a job has a tighter

termination time thanCuXT , then it is scheduled to meet the tighter termination time, andCuXT is

advanced to that time since all jobs left inJk.Dep must complete by then (lines 12–13, Algorithm6).

Finally, if this insertion produces a feasible schedule, then the jobs are included in the schedule; otherwise,

the schedule is not changed (lines 14–15).

It is worth noting that the real time constraint that a job has to meet is its finish timeJ.F inT . The

procedureinsertByEXF() resolves resource dependencies and, accordingly, may change the order of

task execution.

G. Selecting a Job for Execution

The procedureselectJob() (Algorithm 7) determines the job that will be executed, as well as the

amount of time for which it needs to be executed.

T
1

T
2

T
3

J
1,1

.FinT J
1,2

.FinT

J
2,1

.FinT

J
2,2

.FinT J
2,3

.FinT

J
3,1

.FinT J
3,2

.FinT

Task arrival

Time

Time

Time

Delta

Fig. 5: Example of a Task Set

At the beginning of the algorithm, the job with the earliest finish time inσ, denotedEarliest, is

found.selectJob() starts by checking whether the currently running jobCurRunning holds resources

(line 3). If so, the algorithm ensures that this job is executed so that the held resources are freed. Then,

Earliest is selected to be the running task, if its finish time has arrived (line6) and the algorithm returns

with Jexe = Earliest.

If line 6 cannot determine the jobJexe that needs to complete, then the algorithm checks if a previous

job, Prev, exists (line10). If Prev exists, then it means thatPrev is currently holding resources, and

21

input : σ, CurRunning, Prev, tcur; output: Jexe ;1:
Initialization : Earliest := minFinT(σ) ; Ji = NULL;2:
if CurRunning.HeldRes 6= ∅ then3:

Prev := CurRunning;4:

/ * a job’s about to finish * / ;5:
if Earliest.F inT = tcur then6:

Jexe := Earliest;7:
setExeTimer(∆) ;8:
return Jexe9:

if Prev 6= NULL then10:
Jexe := Prev;11:
setExeTimer(Jexe.C(tcur)−∆) ;12:
return Jexe13:

for ∀Jk ∈ σ from head to taildo14:
if Jk.C(tcur) > ∆ then15:

Ji := Jk;16:
break;17:

/ * is there a job to run? * / ;18:
if Ji = ∅ then19:

Jexe := NULL;20:
setExeTimer(Earliest.F inT) ;21:

else22:
Jexe := Ji;23:
setExeTimer(Jexe.C(tcur)−∆) ;24:

return Jexe25:

Algorithm 7 : selectJob()

has to be executed to release those resources. However, at the same time, jobs that areready to complete

must be finished without delay. Therefore, jobs holding resources can only be preempted by ready jobs

andPrev’s execution has to follow that of the ready jobs. So, lines10–13 ensure thatPrev is favored

for execution after a job completes.

If line 6 cannot returnJexe and noPrev exists, then the algorithm seeks to select a job that can be

executed inσ (lines14–17). The first job withJ.C(tcur) > ∆ in σ is selected to execute until its remaining

execution time is only∆ (line 24). With task arrivals and completions, the contents and the order ofσ

change, in terms of both resource dependencies and finish times. However, the algorithm ensures that each

job J is selected to complete at its finish timeJ.F inT . If no tasks can be found to execute at line19,

then the algorithm idles the processor until either the earliest finish time or the arrival of a new job.

An example of how CIC-VCUA executes jobs is shown in Figure5. Upward arrows indicate both job

arrivals and termination times, and black boxes denote∆. In this example, jobsJ1,1 andJ3,1 arrive at the

same time. However, sinceJ1,1’s finish time is earlier, CIC-VCUA selectsJ1,1 for execution and creates a

preemption point at timeJ1,1.C(tcur)−∆. As J1,1 is preempted,T2 arrives with an earlier finish time than

that ofJ3,1 and runs untilJ2,1.C(tcur)−∆. After J2,1’s preemption,J3,1 is executed, but it gets preempted

becauseJ1,1’s finish timeJ1,1.F inT arrives andJ1,1 executes to completion. Then,J3,1 resumes, however

22

it is again preempted to letJ2,1 finish. After this,J3,1 resumes and completes at its finish time.

H. Asymptotic Time Complexity

To analyze the complexity of CIC-VCUA (Algorithm2), we consider a ready queue ofn jobs and a

maximum of r resources. In the worst-case,buildDep() will build a dependency list with a length

n; so thefor -loop from line 4 to 9 will be repeatedO (n2) times in the worst-case.sortByPUD() ’s

complexity isO(n log n).

Complexity of thefor -loop body starting from line11 is dominated byinsertByEXF() (Algo-

rithm 6). Its complexity is dominated by thefor -loop (line7–13, Algorithm 6), which requiresO(n log n)

time since the loop will be executed no more thann times, and each execution requiresO(log n) time for

insert() , remove() and lookup() operations on the tentative schedule. Therefore, CIC-VCUA’s

worst-case complexity is2×O(n2) + O(n log n) + n×O(n log n) = O(n2 log n).

CIC-VCUA’s asymptotic cost is similar to that of many past UA scheduling algorithms such as [6]–[8].

Our prior implementation experience with UA scheduling at the middleware-level have shown that the

overheads are in the magnitude of sub-milliseconds [29] (sub-microsecond overheads may be possible at

the kernel-level). We anticipate a similar overhead magnitude for CIC-VCUA (on a similar platform).

As mentioned before, systems such as AESA that we consider in this paper are distinguished by their

relatively long execution time magnitudes—e.g., milliseconds to seconds, or seconds to minutes. Thus,

although CIC-VCUA has a higher overhead than traditional real-time scheduling algorithms, this high

cost is justified for applications with longer execution time magnitudes such as those that we focus here

(of course, this high cost cannot be justified for every application).2

V. A LGORITHM PROPERTIES

A. Non-Timeliness Properties

We now discuss CIC-VCUA’s non-timeliness properties, i.e., deadlock-freedom, correctness, and mutual

exclusion. CIC-VCUA respects resource dependencies by ensuring that the job selected for execution can

execute immediately. Thus, no job is ever selected for normal execution if it is resource-dependent on

some other job.

2When UA scheduling is desired with low overhead, solutions and tradeoffs exist. These include linear-time stochastic UA scheduling [30],

UA scheduling with non-blocking synchronization for concurrent, mutually exclusive resource sharing [31], and using special-purpose

hardware accelerators for UA scheduling (analogous to floating-point co-processors) [32].

23

Theorem 1:CIC-VCUA ensures deadlock-freedom.

Proof: A cycle in the resource graph is the sufficientand necessary condition for a deadlock in the

single-unit resource request model. CIC-VCUA does not allow such a cycle by deadlock detection and

resolution; so it is deadlock free.

Lemma 2: In insertByEXF() ’s output, all the dependents of a job must execute before the job can

execute, and therefore, must precede it in the schedule.

Proof: insertByEXF() maintains an output queue that is ordered by job termination times, while

respecting resource dependencies. Consider jobJk and its dependentJl. If Jl.X is earlier thanJk.X,

thenJl will be inserted beforeJk in the schedule. IfJl.X is later thanJk.X, thenJl.X is advanced to

be Jk.X by the operation withCuXT . According to the definition ofinsert() , after advancing the

termination time,Jl will be inserted beforeJk.

Theorem 3:When a jobJk that requests a resourceR is selected for execution by CIC-VCUA,Jk’s

requested resourceR will be free. We call this, CIC-VCUA’s correctness property.

Proof: From Lemma2, the output scheduleσ is correct. Thus, CIC-VCUA is correct.

Thus, if a resource is not available for a jobJk’s request, jobs holding the resource will becomeJk’s

predecessors. We present CIC-VCUA’s mutual exclusion property by a corollary.

Corollary 4: CIC-VCUA satisfies mutual exclusion constraints in resource operations.

B. Timeliness Properties

We now consider CIC-VCUA’s timeliness properties, and compare the algorithm with other algorithms.

Specifically, we consider the following two conditions: (1) a set of independent periodic tasks subject to

step TUFs; and (2) sufficient processor cycles exist for meeting all task termination times—i.e., there is

no overload, andloadb ≤ 1.

Theorem 5:Under conditions (1) and (2), a schedule produced by EDF [3] is also produced by CIC-

VCUA, yielding equal total utilities. Not coincidentally, this is simply a termination time-ordered schedule.

Proof: We prove this by examining Algorithm2. For periodic tasks, during non-overload situations,σ

from Algorithm 2 is termination time-ordered, due to the properties of the procedureinsertByEXF() .

The termination time that we consider is analogous to a deadline in [3]. As proved in [3], [24], a deadline-

ordered schedule is optimal (with respect to meeting all deadlines) for preemptive task sets when there

are no overloads. Thus,σ yields the same total utility as preemptive EDF.

24

Some important corollaries about CIC-VCUA’s timeliness behavior during non-overload situations can

be deduced from EDF’s optimality [33].

Corollary 6: Under conditions (1) and (2), CIC-VCUA always meet all task termination times.

With the previous theorems and corollaries, we derive algorithm properties in terms of CIC-VCUA’s

scheduling objective.

Theorem 7:CIC-VCUA assures that the maximum time interval between any two consecutive, suc-

cessful completions of jobs of a task does not exceed the task period.

Proof: Let Ji,j.ST andJi,j+1.ST be the sojourn times of two consecutive, successfully completed

jobs Ji,j and Ji,j+1 of task Ti, respectively. Also, letTi.wcST be the worst-case sojourn time of task

Ti (and of all its jobs). Under CIC-VCUA, the maximum time interval between completions ofJi,j and

Ji,j+1 will be equal toPi + Ji,j+1.ST − Ji,j.ST , i.e., Ji,j+1.F inT − Ji,j.F inT . So, in order to have a

maximum interval bound ofPi, we should haveJi,j+1.ST = Ji,j.ST .

We know that the first job ofTi has Ji,1.F inT = Ji,1.ST = Ti.wcST . Under CIC-VCUA, the

consecutive completions of the following jobs will keepJi,j+1.ST = Ji,j.ST = Ti.wcST , i.e., sojourn

times of all jobs are equal to the task’s worst-case sojourn time. Therefore,Ji,j+1.F inT−Ji, j.F inT = Pi.

So for any task, the time interval between two consecutive, successful completions of its jobs does not

exceed the length of the task period.

Following theorem7, during under-loads, every job of taskTi completes within their completion time

boundTi.wcST after its arrival. Other jobs of other tasks abide by the same rule. During system overloads,

when loadb > 1, CIC-VCUA dynamically selects tasks with the highest PUDs among the task set, until

total load′b ≤ 1. Therefore, the bound on consecutive job completions still holds for the selected sub task

set.

VI. EXPERIMENTAL RESULTS

We experimentally evaluated CIC-VCUA through a detailed simulation study. We first describe our

experimental settings, and then report our results.

A. Experimental Settings

We selected task sets with16 tasks in three applications, denotedA1, A2, andA3. Task parameters are

summarized in TableI. Within each range, the periodP is uniformly distributed. The synthesized task

sets simulate the varied mix of short and long periods.

25

TABLE I: Task Settings

Applications] Tasks Period Umax 〈k, Co〉 (VCF = ±k × t + Co)

A1 4 22 ∼ 28 [50, 70] 〈0–0.1, E(Co)〉
A2 18 50 ∼ 70 [300, 400] 〈0–0.1, E(Co)〉
A3 8 2.4 ∼ 9.6 [1, 10] 〈0–0.1, E(Co)〉

The Umaxs of the TUFs inA1, A2, and A3 are uniformly generated within each range. We define

a linearly increasingVCF = k × t + Co, a linearly decreasingVCF = −k × t + Co , and a constant

VCF = Co for each task. The parameterk is uniformly generated within the range[0, 0.1]. We change

the mean value ofCo, and generate normally-distributed values to adjust the system loadloadb. In all

of our experiments, the∆ value is set to be2× 10−4. Finish times of tasksJ.F inT are pushed to their

termination times whenloadb > 0.9, in order to avoid the unpredictability of sojourn time calculations.

B. Performance on Completion Interval

We assign to each task a step TUF, and first consider CIC-VCUA’s performance on scheduling objective

(1). For the16 tasks, we varyloadb from less than0.1 to larger than1.8, and evaluate the maximum

interval between any two consecutive, successful completions of jobs of each task, and of the whole task

set (containing all tasks). We define the former as the maximumintra-task completion interval, and the

latter as the maximuminter-taskcompletion interval.

We consider two classes of VCFs for the task sets:homogeneousand heterogeneous. A task set that

consists of tasks with only one type of VCF shapes is referred to as ahomogeneous set. On the other hand,

in a heterogeneous set, tasks of the set can have any VCF shapes specified in TableI. In the following

experiments, we consider step TUFs.

1) Homogeneous VCFs:In the experiments of this section, we use constant VCFs for all tasks. Figure6

shows the maximum intra- and inter-task completion intervals, asloadb varies. In Figure6(a), we only

show6 tasks as examples selected from the task set to study their maximum intra-task completion interval.

TABLE II: Tasks and Their Periods for Homogeneous Set

Task ID 0 1 3 7 11 13

Period 49 49 43 44 46 48

To validate Theorem7, we show periods of the selected tasks from Figure6(a) in Table II . From

Figure6(a)and TableII , we observe that in allloadb regions, the maximum intra-task completion interval

26

of each task is less than or equal to the length of its period. During overloads, the selected tasks are labeled

as selectedsince they have high PUDs. So they can always satisfy their bound constraints. Therefore,

plots in Figure6(a) validate Theorem7.

0

10

20

30

40

50

60

70

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

M
a

x
In

tr
a

-t
a

sk
 C

o
m

p
le

ti
o
n

 I
n

te
rv

a
l

Task 3

Task 7

Task 11

Task13

Task 0

Task 1

(a) Intra-Task

0

5

10

15

20

25

30

35

40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

M
a

x
In

te
r-

ta
sk

 C
o

m
p

le
ti

o
n

 I
n

te
rv

a
l

Max. Inter Completion Intervals

(b) Inter-Task

Fig. 6: Maximum Intra- and Inter-Task Completion Interval for Homogeneous Set, Constant VCFs, Step TUFs

As a comparison, we also study the maximum inter-task completion interval of the whole task set in

Figure6(b). The minimum period of the task set is3. From the figure, we observe that during under-loads,

the maximum inter-task completion interval is less than20, and during overloads, the maximum inter-task

completion interval may exceed20 in order to satisfy intra-task completion bounds.

Experiments for homogeneous sets with monotonically increasing and decreasing VCFs under various

TUF shapes yield results similar to those shown in Figure6. These are omitted here for brevity, however

they can be found in [34].

2) Heterogeous VCFs:For the experiments in this section, we generate random VCFs for each task.

The shapes we use for VCFs are described in SectionIII-D . Figure 7 shows the maximum intra- and

inter-task completion intervals, asloadb varies. In Figure7(a), we selected5 tasks to study their maximum

intra-task completion interval. The periods of these tasks are shown in TableIII .

TABLE III: Tasks and Their Periods for Heterogeneous Set

Task ID 5 8 9 12 14

Period 46 43 48 45 42

From Figure7(a), we again observe that the maximum intra-task completion interval of each task is less

than or equal to the length of its period, in allloadb regions. During overloads, similar to the homogeneous

set scenario,skippedtasks with low PUDs never get a chance to execute. Hence, plots in Figure7(a) also

validate Theorem7.

27

0

10

20

30

40

50

60

70

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Load_b

M
a

x
 I

n
tr

a
-t

a
sk

 C
o

m
p

le
ti

o
n

 I
n

te
rv

a
l

task 9

task 5

task 12

task 8

task 14

(a) Intra-Task

0

5

10

15

20

25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

M
a

x
In

te
r-

ta
sk

 C
o

m
p

le
ti

o
n

 I
n

te
rv

a
l

Max. Inter Completion Intervals

(b) Inter-Task

Fig. 7: Maximum Intra- and Inter-Task Completion Interval for Heterogenous Set

Figure 7(b) shows the maximum inter-task completion interval of the whole task set. The minimum

period of the task set is3. We observe results similar to that of the homogeneous set scenario. Results

for heterogeneous VCFs under various TUF shapes show consistent results. These are again omitted here

for brevity, but can be found in [34].

C. Performance on Utility Accrual

We now evaluate CIC-VCUA’s performance on the scheduling objective (2). In these experiments, we

consider constant VCFs. For such VCFs, CIC-VCUA can be compared with other UA algorithms (that

cannot deal with non-constant VCFs and varying execution times).

We consider step and decreasing TUFs. Our first experiments compare CIC-VCUA with RUA [8],

DASA [7], LBESA [6], VCUA [35], and EDF without abortion (or EDF-NABT) [3] to evaluate perfor-

mance under step TUFs (all these algorithms allow step TUFs). We then compare CIC-VCUA with RUA,

DASA, VCUA and LBESA, under decreasing TUFs (these algorithms allow decreasing TUFs).

Figures8 and 9 show the accrued utility ratio (or AUR) and termination time meet rate (or XMR)

of the algorithms asloadb increases. AUR is the ratio of the total accrued utility to the total maximum

utility, and XMR is the ratio of the number of jobs meeting their termination times to the total number

of job releases.

Figure8 shows the AUR and XMR of the algorithms under step TUFs. From Figure8(a), we observe that

CIC-VCUA has almost the same AUR as that of DASA, RUA, and LBESA. However, from Figure8(b),

we observe that CIC-VCUA suffers higher termination time misses than other algorithms during high

loads. This is because, CIC-VCUA statically labels some tasks asskipped, so that it can satisfy the

completion interval bounds.

28

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

A
cc

ru
ed

 U
ti

li
ty

 R
a

ti
o

LBESA

DASA

EDF-NABT

CIC-VCUA

RUA

VCUA

(a) AUR

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

T
e
rm

in
a
ti

o
n
 T

im
e
 M

e
e
t

R
a
te

-X
M

R
 (

%
)

LBESA

DASA

EDF-NABT

CIC-VCUA

RUA

VCUA

(b) XMR

Fig. 8: AUR and XMR of CIC-VCUA and other UA Algorithms, Constant VCFs, Step TUFs

The AUR and XMR of the algorithms under decreasing TUFs is shown in Figures9(a)and9(b), respec-

tively. We observe that CIC-VCUA yields less AUR and less XMR than other algorithms for decreasing

TUFs, and much less so than under step TUFs. This is clearly due to the algorithm’s procrastination of

jobs to satisfy the completion time interval bound—CIC-VCUA’s primary scheduling objective. None of

the other algorithms are designed to satisfy the completion time interval bound (see SectionVI-D for

results that illustrate this). Maximizing AUR is only CIC-VCUA’s secondary objective.

Thus, job procrastination results in reduced AUR and XMR for CIC-VCUA with respect to other

algorithms. Further, this reduction is more significant under decreasing TUFs than under step TUFs,

clearly because earlier completion results in greater AUR under decreasing TUFs but not under step

TUFs.

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

A
cc

ru
ed

 U
ti

li
ty

 R
a

ti
o

LBESA

DASA

CIC-VCUA

RUA

VCUA

(a) AUR

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

T
e
rm

in
a

ti
o

n
 T

im
e
 M

e
e
t

R
a

te
-X

M
R

 (
%

)

LBESA

DASA

CIC-VCUA

RUA

VCUA

(b) XMR

Fig. 9: AUR and XMR of CIC-VCUA and other UA Algorithms, Constant VCFs, Decreasing TUFs

Figures8 and9 show that, whenloadb > 0.9, CIC-VCUA starts to miss termination times and its XMR

drops, but its AUR drops much more slowly, since tasks with higher PUDs are statically selected. Further,

29

AURs and XMRs in Figure8 validate Theorem5 and Corollary6.

Our experiments with monotonically increasing and decreasing VCFs yield similar results to those

shown in Figures8 and9. Those are again omitted here, but can be found in [34].

D. Results under Resource Dependency

To construct dependent task sets, we consider task sets where jobs may randomly request and release

resources from an available set of resources during their life spans. The resource request and release times

are uniformly distributed within a job’s life cycle before the job isready to complete. That is, resource

request and release are serviced before the job’s remaining execution time is only∆. We conducted

experiments on task sets and five shared resources. TableIV displays6 tasks that we selected to study

their maximum inter- and intra-task completion intervals.

TABLE IV: Tasks and Their Periods for Resource Dependency Experiments

Task ID 7 11 13 4 12 2

Period 44 46 48 49 50 50

For these experiments, we compare CIC-VCUA with DASA, since DASA is a UA scheduling algorithm

that allows resource dependencies, and exhibits good performance. Figure10 shows the results. With our

experimental settings, we have only limited performance loss in our simulation, but we expect more

performance drop with larger task sets and more resources.

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Load_b

A
cc

ru
ed

 U
ti

li
ty

 R
a

ti
o

0

20

40

60

80

100

120

140

160

180

200

In
tr

a
-T

a
sk

 C
o

m
p
le

ti
o
n

 I
n

te
rv

a
l

CIC-VCUA

DASA

DASA Task

CIC-VCUA task

(a) AUR

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

T
e
rm

in
a
ti

o
n
 T

im
e
 M

e
e
t

R
a
te

-X
M

R
 (

%
)

CIC-VCUA

DASA

(b) XMR

Fig. 10: CIC-VCUA vs DASA under Resource Dependency, Constant VCFs, Step TUFs

Figure 10(a) shows both AURs (on the left Y-axis), and the intra-task completion intervals (on the

right Y-axis) of a randomly selected task, for CIC-VCUA and DASA, asLoadb varies. In terms of AUR,

30

CIC-VCUA performs as well as DASA. Also, we observe from Figure10(a)that the intra-task completion

interval of DASA increases as load increases, and it exceeds the bound of one period. However, CIC-

VCUA maintains the intra-task completion interval as a constant, equal to the task’s period, under different

system loads. Additionally, Figure10(b)shows the XMR comparison of both algorithms. During overloads,

in terms of XMR, DASA and CIC-VCUA exhibit different behaviors because of their different schedule

construction process.

Figure11shows the performance of CIC-VCUA under decreasing VCFs and step TUFs. As Figure11(a)

shows, CIC-VCUA exhibits good AUR even for task sets with resource dependencies. The XMR decrease

is due to the static selection which favors high PUD tasks. Figure11(b)shows the maximum intra-task and

inter-task completion intervals of theselected tasks. Clearly, CIC-VCUA bounds the intra-task completion

interval to be one period.

0

20

40

60

80

100

120

0.12 0.22 0.32 0.42 0.52 0.62 0.72 0.82 0.93 1.03 1.13 1.23 1.33 1.43 1.53 1.63 1.73

Load_b

A
U

R
 a

n
d
 X

M
R

 (
%

)

AUR

XMR

(a) AUR and XMR

0

10

20

30

40

50

60

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

M
a

x
In

tr
a

-t
a

sk
 C

o
m

p
le

ti
o

n
 I

n
te

rv
a

l

task 7

task 11

task 13

task 4

task 12

task 2 Max Inter-task Completion Interval

(b) Completion intervals

Fig. 11: CIC-VCUA Performance under Resource Dependency, Decreasing VCFs, Step TUFs

Figure 12 shows CIC-VCUA’s performance under increasing VCFs and step TUFs. As Figure12(a)

shows, the algorithm AUR and XMR are similar to the case of non-increasing VCFs. Figure12(b) shows

the inter- and intra-task completion intervals ofselected tasks. Again, we observe that CIC-VCUA bounds

the intra-task completion interval to one period.

From Figure12, we observe that the algorithm performance under resource dependencies is similar to

that under no resource dependencies. However, there is a small performance loss due to mutual exclusion

requirements. The higher the number of shared resources, the greater is this performance loss. This is

because, CIC-VCUA respects resource dependencies in scheduling, which in the worst case may cause

jobs to be executed in the reverse order of PUDs or termination times. With such dependent task sets,

the algorithm suffers performance losses, especially during high loads.

31

0

20

40

60

80

100

120

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Load_b

A
U

R
 a

n
d

 X
M

R
 (

%
)

AUR

XMR

(a) AUR and XMR

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Load_b

M
a

x
 I

n
tr

a
-t

a
sk

C

o
m

p
le

ti
o

n
 I

n
te

rv
a

l

task 7

task 11

task 13

task 4

task 12

task 2
Max Inter-task Completion Interval

(b) Completion intervals

Fig. 12: CIC-VCUA Performance under Resource Dependency, Increasing VCFs, Step TUFs

Our experiments with monotonically increasing and decreasing VCFs under various other TUF shapes

yield similar results to those shown in Figures11 and12 [34].

VII. C ONCLUSIONS, FUTURE WORK

In this paper, we present a real-time scheduling algorithm called CIC-VCUA that focuses on the problem

space intersecting UA scheduling and variable cost scheduling. The algorithm considers tasks which are

subject to TUF time constraints and mutual exclusion constraints on shared non-CPU resources, and

whose execution times are functions of their starting times. CIC-VCUA considers a two-fold objective: (1)

bound the maximum interval between any two consecutive, successful completion of jobs of a task to the

task’s period, and (2) maximize the system’s total utility, while satisfying all resource dependencies. This

problem can be shown to be NP-hard. CIC-VCUA heuristically solves the problem in polynomial-time.

We establish that CIC-VCUA achieves optimal total utility during under-loads, and tight upper bounds

on inter- and intra-task completion times. Our experimental studies confirm the algorithm’s effectiveness

and superiority.

This paper only scratched the surface of the VCF scheduling problem; so many problems are open

for further research. Immediate research directions include relaxing some of our task model assumptions.

For example, our work assumed that dwell jobs are arbitrarily preemptible. This is not generally true of

AESA systems, as preempting a dwell is sometimes expensive. (Our preliminary work [35] that led to

this work considered a fully non-preemptive task model, which is also restrictive.) Thus, CIC-VCUA can

be extended for a task model, which includes non-preemption and preemption with non-negligible cost.

Further, timescales associated with VCFs and TUFs can vary widely in AESA systems. For example,

32

the TUFs associated with each dwell may have termination times in the range of tens to hundreds of

milliseconds; the VCFs may only change significantly over the course of tens or hundreds of seconds.

This facet of the model can be exploited in future work.

Our periodic task arrival model can also be relaxed—e.g., to the unimodal arbitrary arrival model (or

UAM) [31]. UAM embodies a “stronger” adversary than most arrival models.

ACKNOWLEDGEMENTS

This work was supported by the US Office of Naval Research under Grant N00014-00-1-0549 and

The MITRE Corporation under Grant 52917. Co-author E. Douglas Jensen’s contributions to this work

were sponsored by the MITRE Corp. Technology Program. The authors thank Dr. Raymond Clark of The

MITRE Corporation for his inputs on the VCF problem. Preliminary results of this work appeared in [35].

REFERENCES

[1] R. K. Clark, E. D. Jensen, and N. F. Rouquette, “Software Organization to Facilitate Dynamic Processor Scheduling,” inProceedings

of IEEE Parallel and Distributed Processing Symposium, April 2004.

[2] R. Clark, E. D. Jensen, A. Kanevsky, J. Maurer, P. Wallace, T. Wheeler, Y. Zhang, D. Wells, T. Lawrence, and P. Hurley, “An Adaptive,

Distributed Airborne Tracking System,” inProceedings of The IEEE Workshop on Parallel and Distributed Systems, ser. LNCS, vol.

1586. Springer-Verlag, April 1999, pp. 353–362.

[3] W. Horn, “Some Simple Scheduling Algorithms,”Naval Research Logistics Quaterly, vol. 21, pp. 177–185, 1974.

[4] E. D. Jensen, C. D. Locke, and H. Tokuda, “A Time-Driven Scheduling Model for Real-Time Systems,” inProceedings of IEEE

Real-Time Systems Symposium, December 1985, pp. 112–122.

[5] D. P. Maynard, S. E. Shipman, R. K. Clark, J. D. Northcutt, R. B. Kegley, B. A. Zimmerman, and P. J. Keleher, “An Example Real-Time

Command, Control, and Battle Management Application for Alpha,” Department of Computer Science, Carnegie Mellon University,

Tech. Rep., December 1988, Archons Project Technical Report 88121.

[6] C. D. Locke, “Best-Effort Decision Making for Real-Time Scheduling,” Ph.D. dissertation, Carnegie Mellon University, 1986, CMU-

CS-86-134,http://www.real-time.org(last accessed: June 22, 2005).

[7] R. K. Clark, “Scheduling Dependent Real-Time Activities,” Ph.D. dissertation, Carnegie Mellon University, 1990, CMU-CS-90-155,

http://www.real-time.org(last accessed: June 22, 2005).

[8] H. Wu, B. Ravindran, E. D. Jensen, and U. Balli, “Utility Accrual Scheduling under Arbitrary Time/utility Functions and Multi-

unit Resource Constraints,” inProceedings of 10th International Conference on Real-Time and Embedded Computing Systems and

Applications (RTCSA), August 2004, pp. 80–98.

[9] J. W. S. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise Computations,”Proceedings of the IEEE, vol. 82, no. 1,

pp. 83–94, Janurary 1994.

[10] J. K. Dey, J. F. Kurose, and D. Towsley, “On-Line Scheduling Policies for a Class of IRIS (Increasing Reward with Increasing Service)

Real-Time Tasks,”IEEE Transactions on Computers, vol. 45, no. 7, pp. 802–813, July 1996.

http://www.real-time.org�
http://www.real-time.org�

33

[11] L. B. Becker, E. Nett, S. Schemmer, and M. Gergeleit, “Robust Scheduling in Team-Robotics,”Journal Of Systems and Software,

vol. 77, no. 1, pp. 3–16, 2005.

[12] J. A. Malas, “F-22 Radar Development,” inIEEE National Aerospace and Electronics Conference, vol. 2, July 1997, pp. 831–839.

[13] J. C. Curlander and R. N. McDonough,Synthetic Aperture Radar : Systems and Signal Processing. Wiley-Interscience, 1991.

[14] T. W. Jeffrey, “Track Quality Estimation for Multiple-Target Tracking Radars,” inProceedings of the 1989 IEEE National Radar

Conference, March 1989, pp. 76–79.

[15] G. van Keuk and S. S. Blackman, “On Phased-Array Radar Tracking and Parameter Control,”IEEE Transactions on Aerospace and

Electronic Systems, vol. 29, no. 1, pp. 186–194, January 1993.

[16] G. W. Stimson,Introduction to Airborne Radar, 2nd ed. SciTech Publishing, January 1998.

[17] S. Gopalakrishnan, M. Caccamo, C.-S. Shih, C.-G. Lee, and L. Sha, “Finite-Horizon Scheduling of Radar Dwells with Online Template

Construction,”Real-Time Syst., vol. 33, no. 1-3, pp. 47–75, 2006.

[18] S. Gopalakrishnan, P. G. Chi-Sheng Shih, M. Caccamo, L. Sha, and C.-G. Lee, “Radar Dwell Scheduling with Temporal Distance and

Energy Constraints,” inProceedings of the International Radar Conference, October 2004.

[19] C.-S. Shih, P. Ganti, S. Gopalakrishnan, M. Caccamo, and L. Sha, “Synthesizing Task Periods for Dwells in Multi-Function Phased

Array Radars,” inProceedings of the IEEE Radar Conference, April 2004, pp. 145 – 150.

[20] C.-S. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and L. Sha, “Template-Based Real-Time Dwell Scheduling with Energy

Constraint,” inIEEE Real-Time and Embedded Technology and Applications Symposium, May 2003.

[21] ——, “Scheduling Real-Time Dwells using Tasks with Synthetic Periods,” inIEEE Real-Time Systems Symposium, 2003.

[22] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols: An Approach to Real-Time Synchronization,”IEEE

Transactions on Computers, vol. 39, no. 9, pp. 1175–1185, 1990.

[23] P. Li, H. Wu, B. Ravindran, and E. D. Jensen, “A Utility Accrual Scheduling Algorithm for Real-Time Activities With Mutual Exclusion

Resource Constraints,”IEEE Transactions on Computers, vol. 55, no. 4, pp. 454–469, April 2006.

[24] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environment,”Journal of the ACM,

vol. 20, no. 1, pp. 46–61, 1973.

[25] L. George, N. Roivierre, and M. Spuri, “Preemptive and Non-Preemptive Real-Time Uni-Processor Scheduling,” INRIA, Le Chesnay

Cedex, France, Tech. Rep. Rapport de Recherche RR-2966, 1996.

[26] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo,Deadline Scheduling for Real-Time Systems. Kluwer Academic

Publishers, 1998, ch. 4: Response Times under EDF Scheduling, pp. 67–87.

[27] ——, Deadline Scheduling for Real-Time Systems. Kluwer Academic Publishers, 1998, ch. 3: Fundamentals of EDF Scheduling, pp.

27–67.

[28] T. P. Baker, “Stack-based Scheduling of Real-Time Processes,”Journal of Real-Time Systems, vol. 3, no. 1, pp. 67–99, March 1991.

[29] P. Li, B. Ravindran, S. Suhaib, and S. Feizabadi, “A Formally Verified Application-Level Framework for Real-Time Scheduling on

POSIX Real-Time Operating Systems,”IEEE Transactions on Software Engineering, vol. 30, no. 9, pp. 613–629, September 2004.

[30] P. Li and B. Ravindran, “Fast Real-Time Scheduling Algorithms,”IEEE Transactions on Computers, vol. 53, no. 8, pp. 1159–1175,

September 2004.

[31] H. Cho, “Utility Accrual Scheduling with Non-Blocking Synchronization on Uniprocessors and Multiprocessors,” PhD Dissertation

Proposal, Virginia Tech, 2005,http://www.ee.vt.edu/∼realtime/choproposal05.pdf.

[32] J. D. Northcutt,Mechanisms for Reliable Distributed Real-Time Operating Systems: The Alpha Kernel. Academic Press, 1987.

[33] M. Dertouzos, “Control Robotics: the Procedural Control of Physical Processes,”Information Processing, vol. 74, 1974.

http://www.ee.vt.edu/~realtime/cho_proposal05.pdf�

34

[34] U. Balli, “Utility Accrual Real-Time Scheduling Under Variable Cost Functions,” Master’s thesis, Virginia Tech, 2005,http://scholar.

lib.vt.edu/theses/available/etd-08052005-155355/.

[35] H. Wu, U. Balli, B. Ravindran, and E. D. Jensen, “Utility Accrual Real-Time Scheduling Under Variable Cost Functions,” inProceedings

of 11th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), August 2005, pp. 213–

219.

http://scholar.lib.vt.edu/theses/available/etd-08052005-155355/�
http://scholar.lib.vt.edu/theses/available/etd-08052005-155355/�

