
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Probability-based Prediction and Sleep
Scheduling for Energy Efficient Target

Tracking in Sensor Networks
Bo Jiang, Student Member, IEEE, Binoy Ravindran, Senior Member, IEEE,

and Hyeonjoong Cho, Member, IEEE

Abstract—A surveillance system, which tracks mobile targets, is one of the most important applications of wireless sensor
networks. When nodes operate in a duty cycling mode, tracking performance can be improved if the target motion can be
predicted and nodes along the trajectory can be proactively awakened. However, this will negatively influence the energy
efficiency and constrain the benefits of duty cycling. In this paper, we present a Probability-based Prediction and Sleep
Scheduling protocol (PPSS) to improve energy efficiency of proactive wake-up. We start with designing a target prediction
method based on both kinematics and probability. Based on the prediction results, PPSS then precisely selects the nodes to
awaken and reduces their active time, so as to enhance energy efficiency with limited tracking performance loss. We evaluated
the efficiency of PPSS with both simulation-based and implementation-based experiments. The experimental results show that
compared to MCTA algorithm, PPSS improves energy efficiency by 25% ∼ 45% (simulation-based) and 16.9% (implementation-
based), only at the expense of an increase of 5% ∼ 15% on the detection delay (simulation-based) and 4.1% on the escape
distance percentage (implementation-based) respectively.

Index Terms—Energy efficiency, target prediction, sleep scheduling, target tracking, sensor networks.

F

1 INTRODUCTION

W IRELESS sensor networks (WSNs) are increas-
ingly being envisioned for collecting data, such

as physical or environmental properties, from a geo-
graphical region of interest. WSNs are composed of
a large number of low cost sensor nodes, which are
powered by portable power sources, e.g. batteries [1].

In many surveillance applications of WSNs, track-
ing a mobile target (e.g., a human being or a vehicle) is
one of the main objectives. Unlike detection that stud-
ies discrete detection events [2], [3], a target tracking
system is often required to ensure continuous mon-
itoring, i.e., there always exist nodes that can detect
the target along its trajectory (e.g., with low detection
delay [4], [5] or high coverage level [6]). Therefore, the
most stringent criterion of target tracking is to track
with zero detection delay or 100% coverage.

Since nodes often run on batteries that are generally
difficult to be recharged once deployed, energy effi-

• B. Jiang is with Intel Corporation, Hillsboro, OR, 97124. E-mail:
jiang.brendan@gmail.com

• B. Ravindran is with the Department of Electrical and Computer
Engineering, Virginia Tech, Blacksburg, VA, 24061. E-mail:
binoy@vt.edu

• H. Cho is with the Department of Computer and Information Science,
Korea University, Seoul, Korea 136-701. E-mail: raycho@korea.ac.kr

• The preliminary result was presented in IPDPS 2008.

ciency is a critical feature of WSNs for the purpose of
extending the network lifetime. However, if energy
efficiency is enhanced, the quality of service (QoS)
of target tracking is highly likely to be negatively
influenced. For example, forcing nodes to sleep may
result in missing the passing target and lowering the
tracking coverage. Therefore, energy efficient target
tracking should improve the tradeoff between energy
efficiency and tracking performance—e.g., by improv-
ing energy efficiency at the expense of a relatively
small loss on tracking performance.

For target tracking applications, idle listening is a
major source of energy waste [7]. To reduce the energy
consumption during idle listening, duty cycling is one
of the most commonly used approaches [8]. The idea
of duty cycling is to put nodes in the sleep state for
most of the time, and only wake them up periodically.
In certain cases, the sleep pattern of nodes may also be
explicitly scheduled, i.e., forced to sleep or awakened
on demand. This is usually called sleep scheduling [9].

As a compensation for tracking performance loss
caused by duty cycling and sleep scheduling, proac-
tive wake-up has been studied for awakening nodes
proactively to prepare for the approaching target [10],
[11]. However, most existing efforts about proactive
wake-up simply awaken all the neighbor nodes in the
area, where the target is expected to arrive, without
any differentiation [6], [10], [12]. In fact, it is some-
times unnecessary to awaken all the neighbor nodes.
Based on target prediction [11], [13], [14], it is possible

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

to sleep-schedule nodes precisely, so as to reduce
the energy consumption for proactive wake-up. For
example, if nodes know the exact route of a target,
it will be sufficient to awaken those nodes that cover
the route during the time when the target is expected
to traverse their sensing areas.

In this paper, we present a probability-based tar-
get prediction and sleep scheduling protocol (PPSS)
to improve the efficiency of proactive wake-up and
enhance the energy efficiency with limited loss on
the tracking performance. With a target prediction
scheme based on both kinematics rules and theory of
probability, PPSS not only predicts a target’s next lo-
cation, but also describes the probabilities with which
it moves along all the directions. Unlike other physics-
based prediction work [14], target prediction of PPSS
provides a directional probability as the foundation
of differentiated sleep scheduling in a geographical
area. Then, based on the prediction results, PPSS
enhances energy efficiency by reducing the number
of proactively awakened nodes and controlling their
active time in an integrated manner. In addition, we
design distributed algorithms for PPSS that can run
on individual nodes. This will improve the scalability
of PPSS for large-scale WSNs.

Since PPSS depends on kinematics-based target
prediction, it primarily aims at tracking a vehicle
that usually moves in a smooth curvilinear trajectory
without abrupt direction changes.

We evaluated the efficiency of PPSS with both
simulation-based and implementation-based exper-
iments. The simulation-based experimental studies
show that compared to circle-based proactive wake-
up scheme (Circle) [6] and the minimal contour track-
ing algorithm (MCTA) [12], PPSS introduces an im-
provement of 25% ∼ 45% on energy efficiency, at the
expense of 5% ∼ 15% increase on detection delay.
The implementation-based experimental results also
show that compared to MCTA, PPSS achieves an
improvement of 16.9% on energy efficiency, at the
expense of only 4.1% increase on the escape distance
percentage.

This paper makes the following contributions:
1) We designed a target prediction scheme based on

both kinematics rules and theory of probability, and
enhanced the energy efficiency of proactive wake-up
with both awakened node reduction and active time
control efforts.

2) The proposed distributed algorithms of PPSS,
which run on individual nodes, make PPSS scalable
for large-scale WSNs.

3) Besides the simulation-based evaluation, we also
implemented a prototype on TelosB motes [15] and
TinyOS [16] to evaluate PPSS with field experiments.
The implementation not only verified the rationality
and the feasibility of PPSS, but also strengthened the
paper’s contributions with more convincing results
than those from the simulation.

The rest of the paper is organized as follows. Re-
lated work is discussed in Section 2. In Section 3,
we introduce system models, our assumptions, and
overview the protocol design. We develop the tar-
get prediction models in Section 4, then present the
energy conservation approaches, including awakened
nodes reduction and active time control in Section 5.
In Section 6, we specify the distributed algorithms of
PPSS. In Section 7, we report the evaluation results
from both the simulation and the implementation. We
conclude and discuss the future work in Section 8.

2 RELATED WORK

Energy efficiency has been extensively studied either
independently or jointly with other features. In [17],
the authors proposed, analyzed and evaluated the
energy consumption models in WSNs with proba-
bilistic distance distributions to optimize grid size
and minimize energy consumption accurately. An
experimental effort based on real implementation is
conducted for energy conservation in [18]. In [19],
Sengul et al. explored the energy-latency-reliability
tradeoff for broadcast in WSNs by presenting a new
protocol called PBBF. In [20], the authors proposed
a distributed, scalable and localized multipath search
protocol to discover multiple node-disjoint paths be-
tween the sink and source nodes, in which energy
was considered as a constraint so that the design is
feasible for the limited resources of WSNs.

As one of the most important applications of WSNs,
target tracking was widely studied from many per-
spectives. First, tracking was studied as a series of
continuous localization operations in many existing
efforts [21], [22]. Secondly, target tracking was some-
times considered as a dynamic state estimation prob-
lem on the trajectory, and Bayesian estimation meth-
ods, e.g., particle filtering, were used to obtain opti-
mal or approximately optimal solutions [23]. Thirdly,
in some cases, target tracking was considered as
an objective application when corresponding perfor-
mance metrics, e.g., energy efficiency [6] or real-time
feature [4], were the focus. Fourthly, a few efforts
were conducted based on real implementation, and
emphasized the actual measurement for a tracking
application [4]. Finally, a few target tracking efforts
did not explicitly distinguish tracking from similar
efforts, such as detection [6] and classification [24].

Although sleep scheduling and target tracking have
been well studied in the past, only a few efforts [6],
[12] investigated them in an integrated manner. In [6],
the authors utilize a “circle-based scheme” (Circle) to
schedule the sleep pattern of neighbor nodes simply
based on their distances from the target. In such a
legacy Circle scheme, all the nodes in a circle follow
the same sleep pattern, without distinguishing among
various directions and distances. In [12], Jeong et. al.
present MCTA algorithm to enhance energy efficiency

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

by solely reducing the number of awakened nodes.
MCTA depends on kinematics to predict the contour
of tracking areas, which are usually much smaller
than the circles of Circle scheme. However, MCTA
keeps all the nodes in the contour active without any
differentiated sleep scheduling.

Typical target prediction methods include
kinematics-based prediction [12], [14], dynamics-
based prediction [25], and Bayesian estimation
methods [23], [26]. Kinematics and dynamics are
two branches of the classical mechanics. Kinematics
describes the motion of objects without considering
the circumstances that cause the motion, while
dynamics studies the relationship between the object
motion and its causes [27]. In fact, most of past
work about target prediction uses kinematics rules
as the foundation, even for those that use Bayesian
estimation methods.

MCTA algorithm presented in [12] is just an exam-
ple of kinematics-based prediction. Another example
is the Prediction-based Energy Saving scheme (PES)
introduced in [14]. It only uses simple models to
predict a specific location without considering the
detailed moving probabilities.

In [25], Taqi et al. discussed a dynamics-based pre-
diction protocol named as A-YAP. They leveraged the
physics research results on the yaw rate and the side
force. However, these results depend on the target
mass, which requires the surveillance system to recog-
nize the target with target classification techniques. In
many cases, target classification is difficult especially
when the real-time tracking constraint is applied.
Moreover, A-YAP also predicts an exact location that
the target is probably moving to, instead of consider-
ing all the possibilities.

Bayesian estimation methods estimate the target
state by incorporating new measures to modify the
prior states as well as predict the posterior ones.
For example, information-driven sensor querying
(IDSQ) [28] optimizes the sensor selection to maxi-
mize the information gain while minimizing the com-
munication and resource usage. The enhancement of
energy efficiency is not achieved by sleep scheduling,
but by minimizing the communication energy. On the
contrary, PPSS aims at improving the overall perfor-
mance on energy efficiency and tracking performance
using sleep scheduling.

Another example of Bayesian estimation methods is
the particle filtering [23]. In [13], the authors predict
the target location using a particle filter, then schedule
the sleep patterns of nodes based on the prediction
result. Similar to Circle scheme, they schedule the
sleep patterns based on the distance only.

3 DESIGN OVERVIEW

In this section, we introduce system models, our as-
sumptions, and overview the design of PPSS protocol.

3.1 System Models and Assumptions
We consider a homogeneous, static sensor network,
in which sensor nodes work in a duty cycling mode.
In each toggling period (TP), a node keeps active for
TP ∗ DC, where DC is the duty cycle. Although the
active period of neighbor nodes may be different, the
communication among them can be guaranteed based
on a MAC protocol such as B-MAC [29].

In the active state, a node may detect targets within
its sensing radius r, and communicate with other
nodes within its communication radius R. We assume
that every node is aware of its own location (using
GPS [30] or algorithmic strategies such as [31]), and
is able to determine a target’s position at detection
(either by sensing or by calculating—e.g., [10], [24]). In
addition, we assume that the sensor nodes are locally
time synchronized using a protocol such as RBS [32].

In this paper, we consider single target tracking
only. In fact, as long as the distance between two
targets is more than two times of the communication
radius of nodes, the sleep scheduling actions triggered
by them will not overlap, thereby they can be handled
with single target tracking algorithms.

3.2 PPSS Design
PPSS is designed based on proactive wake-up: when
a node (i.e., alarm node) detects a target, it broad-
casts an alarm message to proactively awaken its
neighbor nodes (i.e., awakened node) to prepare for the
approaching target. To enhance energy efficiency, we
modify this basic proactive wake-up method to sleep-
schedule nodes precisely. Specifically, PPSS selects
some of the neighbor nodes (i.e., candidate node) that
are likely to detect the target to awaken. On receiving
an alarm message, each candidate may individually
make the decision on whether or not to be an awak-
ened node, and if yes, when and how long to wake
up.

We utilize two approaches to reduce the energy
consumption during this proactive wake-up process:

1) Reduce the number of awakened nodes.
2) Schedule their sleep pattern to shorten the active

time.
First, the number of awakened nodes can be re-

duced significantly, because: 1) those nodes that the
target may have already passed during the sleep delay
do not need to be awakened; 2) nodes that lie on a
direction that the target has a low probability of pass-
ing by could be chosen to be awakened with a low
probability. For this purpose, we introduce a concept
of awake region and a mechanism for computing the
scope of an awake region.

Secondly, the active time of chosen awakened nodes
can be curtailed as much as possible, because they
could wake up and keep active only when the target
is expected to traverse their sensing area. For this pur-
pose, we present a sleep scheduling protocol, which

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

schedules the sleep patterns of awakened nodes in-
dividually according to their distance and direction
away from the current motion state of the target.

Both of these energy reducing approaches are built
upon target prediction results. Unlike the existing
efforts of target prediction [12], [14], [25], we develop
a target prediction model based on both kinematics
rules and probability theory. Kinematics-based predic-
tion calculates the expected displacement of the target
in a sleep delay, which shows the position and the
moving direction that the target is most likely to be in
and move along. Based on this expected displacement,
probability-based prediction establishes probabilistic
models for the scalar displacement and the devia-
tion. Once a target’s potential movement is predicted,
we may make sleep scheduling decisions based on
these probabilistic models: take a high probability to
awaken nodes on a direction along which the target
is highly probable to move, and take a low one to
awaken nodes that are not likely to detect the target.

Awakened Node

Reduction

Active Time

Control

Probability-based target prediction

Fig. 1. PPSS design overview

Fig. 1 shows the three components of PPSS:
1) Target prediction. The proposed target prediction

scheme consists of three steps: current state calcu-
lation, kinematics-based prediction and probability-
based prediction. After calculating the current state,
the kinematics-based prediction step calculates the ex-
pected displacement from the current location within
the next sleep delay, and the probability-based predic-
tion step establishes probabilistic models for the scalar
displacement and the deviation.

2) Awakened node reduction. The number of awak-
ened nodes is reduced with two efforts: controlling
the scope of awake regions, and choose a subset of
nodes in an awake region.

3) Active time control. Based on the probabilistic
models that are established with target prediction,
PPSS schedules an awakened node to be active, so
that the probability that it detects the target is close
to 1.

4 TARGET PREDICTION

In the real world, a target’s movement is subject to
uncertainty, while at the same time it follows certain
rules of physics. This apparent contradiction is be-
cause: 1) at each instant or during a short time period,
there is no significant change on the rules of a target’s
motion, therefore the target will approximately follow
kinematics rules; 2) however, a target’s long term

behavior is uncertain and hard to predict, e.g., a harsh
brake or a sharp turn cannot be predicted completely
with kinematics rules. In fact, even for a short term, it
is also difficult to accurately predict a target’s motion
purely with a physics-based model. However, the
prediction is absolutely helpful for optimizing the
energy efficiency and tracking performance tradeoff.
Thus, we consider a probabilistic model to handle
as many possibilities of change of the actual target
motion as possible.

4.1 Overview
In this paper, we denote some of the vectors in a
2-dimensional plane with polar coordinates, for ex-
ample,

−→
X = (X, θ), where X = ∥

−→
X∥ is its polar

radius and θ ∈ (−π, π] is the polar angle. In a real
deployment, we may simply assign the four direc-
tions, south, east, north and west respectively as −π

2 ,
0, π

2 and π. As long as there is no ambiguity, we
do not explicitly distinguish polar coordinates from
Cartesian coordinates.

A target’s movement status is a continuous function
of time. However, the estimation for a target’s move-
ment status is a discrete time process. The surveillance
system can only estimate the target states at some
time points, and predict the future motion based on
the estimation results. Thus, we assume that PPSS
estimates the target states at time points {tn|n ∈ N}
(ti < tj for ∀ i < j ∈ N), and define the state vector
to represent the target motion state:

Definition 1 (State Vector): For each time point tn, the
state vector is defined as State(n) = (tn, xn, yn,

−→vn,−→an),
where (xn, yn) is the target position, −→vn = (vn, θn) and −→an
are respectively the average velocity vector and the average
acceleration vector of the target during (tn−1, tn), vn is the
scalar speed and θn is the moving direction.

Based on this definition, PPSS predicts the potential
motion of a target at the time point tn in three steps:

1) Current state calculation. Based on State(n − 1)
and the current position (xn, yn) that is assumed to be
obtained by sensing or by calculating, PPSS calculates
the current speed vn, direction θn and acceleration −→an,
and finally composes the current state vector State(n).

2) Kinematics-based prediction. Based on kinematics
rules, PPSS predicts −−→vn+1

′ and the displacement
−−−→
Sn+1

′

(i.e., the displacement vector during (tn, tn+1)). We
denote the predicted value of a variable as its name
with a prime symbol, e.g.,

−−−→
Sn+1

′ is the predicted
−−−→
Sn+1.

3) Probability-based prediction. When the displace-
ment

−−−→
Sn+1

′ is described with its polar coordinate−−−→
Sn+1

′ = (Sn+1,∆n+1), we establish probabilistic mod-
els for the scalar displacement Sn+1 (i.e., the polar
radius) and the deviation ∆n+1 (i.e., the polar angle).

In the default duty cycling mode, the commu-
nication among nodes suffer a sleep delay with a
MAC protocol like B-MAC, where a sending node

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

broadcasts the preamble no less than the length of
a toggling period to guarantee that each duty cycling
receiver can hear it [29]. We suppose the sleep delay
exactly as TP for simplification, i.e., tn+1 = tn + TP .

4.2 Current State Calculation

State(n-2)

State(n-1)

State(n)
1n

v

n
v

1n
v

n
v

1

'
n

v

1
()

n n n
a t t

1 1

'
()

n n n
a t t

(a)

(b)

Fig. 2. State calculation and kinematics-based predic-
tion

First, we calculate State(n) based on State(n − 1)
at the current time point tn. Fig. 2(a) shows the target
motion at three continuous time points, and Fig. 2(b)
illustrates the change of the target’s velocity and its
acceleration. As assumed, the target’s current location
(xn, yn) can be determined by sensing or calculating
with existing algorithms. Then, −→vn and −→an can be
computed as,

vn =

√
(yn−yn−1)2+(xn−xn−1)2

tn−tn−1

θn =

{
arctan yn−yn−1

xn−xn−1
, xn ̸= xn−1

0 , xn = xn−1
−→an =

−→vn−−−−→vn−1

tn−tn−1

(1)

We didn’t substitute (tn − tn−1) with TP, because
the actual time point for sampling tn depends on
whether or not the target is physically detected. TP
is only used for the prediction. Here we assume that
sensor nodes are time synchronized locally in a small
range, so that the received tn−1 may be used in the
calculation. Local time synchronization may be easily
achieved with a protocol such as RBS [32], or simply
with HELLO message exchange [33].

Note that this calculation is based on the previous
observation. If this is the first time that the target is
detected and State(n − 1) does not exist, the calcu-
lation and the prediction will be delayed to the next
time point.

4.3 Kinematics-based Prediction
Then, we utilize kinematics rules to predict −−→vn+1

′,−−−→
Sn+1

′, and construct State(n+1)′. For simplifying the

computation, we assume that the acceleration remains
unchanged as −→an during (tn, tn+1). We argue this is a
reasonable assumption, because the acceleration is the
second derivative of displacement, and its change rate
(i.e., the jerk) is the third derivative of displacement,
which can usually be ignored in the displacements
Taylor polynomial. Then

−−→an+1

′ = −→an−−→vn+1
′ = −→vn +−−→an+1

′ · TP
−−−→
Sn+1

′ = −−→vn+1
′ · TP + 1

2
−−→an+1

′ · TP 2

−−−−−−−−→
(xn+1, yn+1)

′ =
−−−−−→
(xn, yn) +

−−−→
Sn+1

′

(2)
Once time moves from tn to tn+1: 1)

−−−−−−−−→
(xn+1, yn+1)

′

will be replaced with
−−−−−−−−→
(xn+1, yn+1) measured at time

point tn+1; and 2) −−→an+1
′ and −−→vn+1

′ will be replaced
with the actual values −−→an+1 and −−→vn+1 calculated in
step 1 at time point tn+1.

4.4 Probability-based Prediction

At the third step, we setup probabilistic models for
random variables Sn+1 and ∆n+1 of the predicted
displacement

−−−→
Sn+1

′.
Suppose that Sn+1 is Gaussian, i.e., Sn+1 ∼

N(µSn+1 , σ
2
Sn+1

). The mean is calculated as µSn+1 =

∥
−−−→
Sn+1

′∥ = ∥−−→vn+1
′ · TP + 1

2
−−→an+1

′ · TP 2∥ when the
acceleration remains unchanged. Next, we determine
σSn+1 based on the “68-95-99.7 rule” of Gaussian
distribution [34]. During the sleep delay TP , the scalar
speed is likely to change between ∥−→vn∥ and ∥−−→vn+1

′∥.
Thus, Sn+1 is likely to change between SA = ∥−→vn ·TP∥
and SB = ∥−−→vn+1

′ · TP∥, and µSn+1 is likely to fall
in the interval (SA, SB) or (SB , SA) depending on
the included angle between −−→vn+1

′ and −−→an+1
′. Simply

assigning the standard deviation of Sn+1 with σSn+1 =
|µSn+1 − SA|, the probability of Sn+1 ∈ (SA, SB) or
Sn+1 ∈ (SB, SA) will be approximately 68%. There-
fore, we setup the probabilistic model for the scalar
displacement as Sn+1 ∼ N(µSn+1 , σ

2
Sn+1

) where{
µSn+1 = ∥−−→vn+1

′ · TP + 1
2
−−→an+1

′ · TP 2∥
σ2
Sn+1

= (∥−−→vn+1
′ · TP + 1

2
−−→an+1

′ · TP 2∥ − ∥−−→vn+1
′ · TP∥)2

(3)
Next, we establish a linear model for ∆n+1. Assum-

ing that the target holds the identical probability to
turn left or right, we configure the probability density
function of ∆n+1 as Equation 4, which is also shown
in Fig. 3.

f∆n+1(δ) =

{ − q
pδ + q , (δ ≥ 0)
q
pδ + q , (δ < 0)

(4)

In the linear model, p ≤ π and q are coefficients,
which can be determined with two conditions: the
total probability (i.e., the area of the triangle) is equal
to 1 (i.e., pq = 1); E[∆n+1] = 0, thus σ2

∆n+1
=

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

()f

0 pp

q

q
q

p

q
q

p

Fig. 3. Probability density distribution of ∆n+1

E[∆2
n+1] =

∫ p

−p
δ2f(δ)dδ. Then, the coefficients p and

q can be determined with a given σ∆n+1 :{
p =

√
6σ∆n+1

q =
√
6

6σ∆n+1

The variance σ2
∆n+1

can be configured by the ap-
plication or dynamically computed regarding to the
acceleration. For example, by assigning σ∆n+1 with
the calculated maximum deviation angle δmax, the
probability of ∆n+1 ∈ (−δmax, δmax) will be ap-
proximately 68% (based on the “68-95-99.7 rule” of
Gaussian distribution [34]).

In fact, it is also possible to model the deviation
∆n+1 with other probabilistic distributions, e.g., Gaus-
sian distribution. However, the difference between
the influence of two distributions on the performance
of PPSS is very slight [35]. On the contrary, Gaus-
sian distribution may introduce a significantly higher
computational complexity than the linear distribution.
Thus, we do not take this option.

5 ENERGY CONSERVATION

In this section, we first introduce the concept of awake
region and the proactive wake-up process with awake
regions, then describe the approaches for reducing the
energy consumption.

5.1 Proactive Wake-up with Awake Regions
An awake region is defined as the region that a target
may traverse in a next short term, which should be
covered probabilistically by active nodes. The term
awake region, as we use it, is similar to the concept
of a cluster used in the network architecture work
(e.g., [10], [36]) in that it encompasses some of a
cluster’s functions. However, unlike a cluster’s head,
neither an alarm node aggregates data from member
nodes of the awake region, nor it imposes any control
over members. An alarm node’s responsibility here
is just to broadcast an alarm message on detecting
a target. In fact, an awake region is only a virtual
concept. No functions are built upon this concept,
except for the selection of awakened nodes.

Unlike cluster management, the life cycle of awake
regions is described as follows:

1) Creation. On detecting a target, a sensor node will
check its own status to determine if it is an awakened

node in an existing awake region. If yes, it justifies
if the target is leaving the current awake region. If
no previous awake region exists or if the target is
leaving the current awake region, the node runs an
alarm node election algorithm, e.g. [37]. If this node
is elected as the alarm node, it broadcasts an alarm
message to all the candidate nodes. On receiving
this alarm message, each candidate node individually
decides if it is in the scope of this awake region and
whether or not to schedule the sleep pattern. Finally,
a new awake region is formed when every awakened
node schedules their sleep patterns specifically for the
approaching target.

2) Maintenance. If an awake region exists and the
target is not going to move out of the current awake
region, the node keeps active without sleep schedul-
ing operations, and the awake region remains un-
changed.

3) Dismissal. As time progresses, the sleep patterns
of awakened nodes will automatically recover back
to the default pattern, thus the awake region will be
dismissed automatically. There is no explicit dismissal
mechanism needed.

This is a distributed process: based on the alarm
broadcasting, each node makes the sleep scheduling
decision, and returns to the default duty cycling mode
all by itself. An alarm message that is used to make
this decision contains the following information:

• ID and the position of the alarm node (idr, xr, yr);
• The state vector State(n); and
• The prediction results, including

−−−→
Sn+1

′, µSn+1 ,
σSn+1 , and σ∆n+1 .

The approach for electing an alarm node of [37] is
as follows. Upon detection, each node broadcasts a
DETECTION message to nodes nearby containing a
time stamp recording when the detection is declared.
Then it checks all the DETECTION messages received
from nodes nearby within an interval, and compares
the time stamps of other nodes with its own. Nodes
that detect a neighbor node’s time stamp is earlier
than its own simply keep silent. In fact, a simpler
approach also works well. Without any alarm election
algorithm used, multiple alarm messages may be
broadcast from multiple nodes that detect the same
target. Then on receiving the first alarm message, a
neighbor node may stop its own alarm broadcasting,
and simply ignore the following ones sent by nodes
that are within a 2r distance from the first alarm node,
as these alarms may be considered as for the same
target.

5.2 Awakened Node Reduction
Usually, a sensor node’s transmission range R is
far longer than its sensing range r. Thus when the
nodes are densely deployed to guarantee the sensing
coverage, a broadcast alarm message will reach all the
neighbors within the transmission range. However,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

some of these neighbors can only detect the target
with a relatively low probability, and some others
may even never detect the target. Then the energy
consumed for being active on these nodes will be
wasted. A more effective approach is to determine a
subset among all the neighbor nodes to reduce the
number of awakened nodes.

During the sleep delay, the target may move away
from the alarm node for a distance. Then it is un-
necessary for nodes within this distance to wake up,
since the target has already passed by. Meanwhile, all
the nodes in an awake region must in the one-hop
transmission range of the alarm node. Therefore, an
awake region should be in a ring shape, i.e., the part
between two concentric circles.

Beyond the effort that limits the awakened nodes
within an awake region, the number of awakened
nodes can be further reduced by choosing only some
nodes in the awake region as awakened nodes. Based
on our prediction on the target’s moving directions,
the probabilities that the target moves along vari-
ous directions are different. Obviously the number
of awakened nodes along a direction with a lower
probability could be less than the number along a
direction with a higher probability. By choosing an
awakened node based on a probability related to the
moving directions, awakened nodes can be reduced
significantly.

5.2.1 Constrain the Awake Region Scope
Letting d denote the distance of an awakened node
from the alarm node, we next determine an awake
region’s scope by deciding the value scope of d. Here,
we make the same approximate assumption that the
target’s position is exactly the alarm node’s position
to simplify the computation.

As previously discussed, the target may move by
Sn+1 during the sleep delay TP . If we set d ≥
µSn+1 − σSn+1 , the probability that awakened nodes
cannot cover the target after a sleep delay will be
less than (1−68%)

2 = 16% (according to the “68-95-
99.7 rule” of Gaussian distribution [34]). Moreover,
it is obvious that d ≤ R because nodes outside
of the alarm node’s transmission range cannot be
awakened. Therefore we determine the scope of an
awake region as max{µSn+1 − σSn+1 , 0} ≤ d ≤ R.
Thus the number of nodes in an awake region is
ρπ

[
R2−max{µSn+1 −σSn+1 , 0}2

]
, where ρ is the node

density.

5.2.2 Awakened Nodes Selection
So far the computation of an awake region’s scope
depends on the target’s scalar speed only. Moreover,
the decrement percentage of the number of awakened

nodes is only
max{µSn+1

−σSn+1
,0}2

R2 (e.g., 6.25% when
R = 60, µSn+1 = 20, and σSn+1 = 5), which is not
significant enough for enhancing energy efficiency.

As discussed previously, only some of the member
nodes in an awake region need to be awakened. By
taking into account the prediction results on moving
directions, we can further reduce the number of awak-
ened nodes in an awake region so as to save more
energy than solely constraining the scope of an awake
region.

Since the probability that a target moves along the
direction of

−−−→
Sn+1

′ (i.e. E[∆n+1]), denoted as θ, is the
highest, we force all the nodes on this direction to
be awakened. As ∆n+1 decreases on other directions,
the number of awakened nodes on those directions
can also be decreased. We define the probability that
a candidate node on the direction (θ+ δ) reschedules
its sleep pattern (i.e., becomes an awakened node) as

Pss(δ) =
f∆n+1(δ)

f∆n+1(0)
=

{ − 1
pδ + 1 , (δ ≥ 0)
1
pδ + 1 , (δ < 0)

where “ss” means sleep scheduling.
Then, the total number of awakened nodes in an

awake region would be

N =

∫ π

−π

Pss(δ) ·
ρπ(R2 −max{µSn+1 − σSn+1 , 0}2)

2π
dδ

= ρ(R2 −max{µSn+1 − σSn+1 , 0}2) ·
∫ π

0

(
− 1

p
δ + 1

)
dδ

=

√
6

2
ρσ∆n+1(R

2 −max{µSn+1 − σSn+1 , 0}2)

As an example, the number of awakened nodes of
PPSS is only approximately 19% of that of the Circle
scheme when R = 60, µSn+1 = 20, σSn+1 = 5, and
σ∆n+1 = π

6 . In another word, the energy consumption
of PPSS is only about 19% of that of the Circle scheme.

5.3 Active Time Control
After reducing the number of awakened nodes, en-
ergy efficiency can be enhanced further by scheduling
the sleep patterns of awakened nodes, as not all the
awakened nodes need to keep active all the time.
We schedule the sleep patterns of awakened nodes
by setting a start time and an end time of the active
period. Out of this active period, awakened nodes do
not have to keep active. Therefore, the time that an
awakened node has to keep active could be reduced
compared with the Circle scheme.

At the moment that an awakened node receives the
alarm message (i.e. after the sleep delay, we denote
this time point as talarmed), the relationship between
the awakened node’s position and the distribution
of the target’s displacement length during a sleep
delay is shown in Fig. 4. In the figure, 0 means the
position of the alarm node. According to the relative
positions of the awakened node and the target’s ex-
pected position after the sleep delay, we make the
sleep scheduling decisions as follows.

When µSn+1 ≥ d−r, the awakened node is required
to wake up immediately (i.e. at talarmed) since it is

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

R0

dd-r d+r

S S SS S

Fig. 4. Relationship between Sn+1 and d

expected that the target has probably entered its sens-
ing range. When µSn+1 < d− r, the awakened node is
required to wake up at talarmed+

d−r−µSn+1

TS , where we
suppose TS =

µSn+1

TP to be the average speed in the
awake region. In both cases, the awakened node needs
to keep active until talarmed +

d+r−(µSn+1
−σSn+1

)

TS . At
this time point, the probability that the target has
moved out of the sensing range of the awakened
node will be greater than 1 − (1−68%)

2 = 84% (ac-
cording to the “68-95-99.7 rule” of Gaussian dis-
tribution [34]). For the convenience of discussion,
we denote tstart = talarmed +

max{d−r−µSn+1
,0}

TS and
tend = talarmed +

d+r−(µSn+1
−σSn+1

)

TS . In summary, the
rescheduled active period of an awakened node is[
tstart, tend

]
, where{

tstart = talarmed +
max{d−r−µSn+1

,0}
TS

tend = talarmed +
d+r−(µSn+1

−σSn+1
)

TS

(5)

And the time of keeping active is,

Tactive =
min{2r + σSn+1 , d+ r − (µSn+1 − σSn+1)}

TS
(6)

Once a node is sleep-scheduled, it will keep active
until it returns to the default duty cycling mode after
the scheduled active time. Thus, other than the timer
for default duty cycling (or default timer), a new wake-
up timer (or tracking timer) is needed to end the
scheduled state.

6 DISTRIBUTED ALGORITHM

For the actual implementation, all of these mecha-
nisms presented in Section 5 have to be distributed
on each sensor node. In this section, we present
detailed algorithm descriptions for PPSS protocol in
three procedures.

Procedure 1 is a handler for the event of detecting
a target, which can be triggered by an interrupt that
is raised on sensing something.

For the formation frequency of awake regions, the
MCTA algorithm [12] uses a “refresh time” concept.
Instead, we use the target’s motion trend as the crite-
rion: when the target moves close to the edge of the
current awake region, a sensor node, which detects

Procedure 1 OnDetectingTarget() — Triggered when
detecting a target

1: if (I am scheduled to be active) then
2: if (The target is NOT leaving the current

awake region) then
3: return;
4: end if
5: end if
6: (Optional:) Run an alarm election algorithm;
7: if (I am selected as the alarm node) then
8: Calculate −→vn and −→an with Equation 1;
9: Predict

−−−→
Sn+1

′ with Equation 2;
10: Compute µSn+1

, σSn+1
, σ∆n+1

with
Equation 3;

11: Broadcast idr, xr, yr, State(n),
−−−→
Sn+1

′, µSn+1 ,
σSn+1 , σ∆n+1 ;

12: end if
13: return;

the target is leaving and is elected as the alarm node,
broadcasts an alarm message to wake up neighbors
and form a new awake region.

Procedure 2 describes a sensor node’s actions upon
receiving an alarm message. This procedure can also
be implemented as an interrupt handler.

Procedure 2 OnAlarmMsg()—Triggered when receiv-
ing an alarm message

1: Compute the distance d to the alarm node;
2: if (d < µSn+1 − σSn+1) then
3: return;
4: end if
5: Compute δ with the alarm node position, my

position and
−−−→
Sn+1

′;
6: Generate a random number random = [0, 1];
7: if (random > Pss(δ)) then
8: return;
9: end if

10: Compute tstart and tend with Equation 5;
11: SetTrackingTimer(tstart);
12: return;

In step 2 of Procedure 2, the node determines
whether or not it is in the scope of the awake region.
In step 7, the node decides whether to be an awakened
node or not. Finally in step 11, the tracking timer is
set so that the node can wake up at the scheduled
time point.

Procedure 3 describes the tracking timer process-
ing procedure, which controls the scheduled wake-
up/sleep and the mode switch.

The computation workload of PPSS protocol is
mainly located in steps 8, 9, 10 of Procedure 1,
i.e., the calculation for −→vn, −→an, and the prediction
for

−−−→
Sn+1

′, µSn+1 , σSn+1 , σ∆n+1 . Thus the computation
workload is aggregated on the alarm node, which is

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Procedure 3 OnTrackingTimer() — Triggered when the
tracking timer is out

1: if (mode == “default”) then
2: mode = “tracking”;
3: SuspendDefaultTimer();
4: SetTrackingTimer(tend);
5: else
6: mode = “default”;
7: ResumeDefaultTimer();
8: end if
9: return;

more energy efficient than a distributed computation.

7 EXPERIMENTAL EVALUATION

We evaluated PPSS protocol with both simulation-
based and implementation-based experiments: the
simulation was conducted in an environment devel-
oped in C++, and the prototype implementation was
developed based on TelosB motes [15] and TinyOS
version 2.1.1 [16].

PPSS was compared to Circle scheme [6] and MCTA
algorithm [12]. The primary difference among the
three protocols is how they reduce the energy con-
sumption for proactive wake-up: 1) Circle awakens
all the one hop neighbors of the alarm node, thus
consumes the most energy; 2) MCTA compresses the
area where nodes are awakened, but still awakens
every node in the area; and 3) PPSS compresses
the awake region, awakens selected nodes only, and
further reduces their active time.

7.1 Performance Metrics

Before reporting our evaluation results, we first define
the metrics used to estimate energy efficiency and
tracking performance. In the experiments, all of these
metrics were examined for each target intrusion case.

1) Energy efficiency. Since the energy consumption
of sleep scheduling is highly relative to the position
where the target is detected, the energy consumptions
on different nodes may vary significantly. Given this
inequity, the network lifetime—time until the first
sensor node runs out of power—will be a less useful
metric. Instead, we use the network-wide extra energy
(EE) as the criterion of energy efficiency for sleep
scheduling, which is defined as:

EE =
∑
i

EEi =
∑
i

(Escheduled − Edefault)

where Edefault is the energy consumption of node
i for idle listening when no target is detected, and
Escheduled is the total energy of node i consumed
for sleep scheduling when a target is detected (e.g.,
for proactive wake-up, prolonged active time etc.).
Both of them are measured during the same tracking

period. As we focus on keeping tracking a target
instead of data collection, neither of them involves
the communication energy for propagating target in-
formation towards sink nodes.

2) Tracking performance (for the simulation). The
tracking delay is one of the most important perfor-
mance metrics for tracking. Since tracking is a process
of continuous detections, we describe the tracking de-
lay with average detection delay (AD), which is defined
as the trajectory-wide average of escape times:

AD = E[∆T]

where ∆T is the interval between the time when the
target enters the surveillance field or gets lost, and the
time when it is detected for the next time. Before the
target is detected for the first time, PPSS protocol is
not started and all the nodes work in the default duty
cycling mode. Thus, the initial detection delay [4] is
out of the scope of PPSS’s performance. We measure
AD only after the first detection.

3) Tracking performance (for the implementation). In
the prototype implementation, it is usually difficult
to achieve precise time synchronization. Although we
need to implement time synchronization to run PPSS,
the detection delay measurement is probably not pre-
cise enough to evaluate the tracking performance.
Instead, we use escape distance percentage (EDP) as an
alternative of AD, which is defined as the percentage
of a target’s escape distance in the total trajectory:

EDP =

∑
Descape

Dtotal

where Descape is the distance that none of the nodes
can detect the target, and Dtotal is the total length
of the target’s trajectory. Thus, a low escape distance
percentage will mean a good coverage on the target’s
trajectory.

7.2 Simulation-based Evaluation

0 50 100 150 200
60

80

100

120

140

160

180

200

x (m)

y
(m

)

Smooth curve
Abrupt change

Fig. 5. Target route examples

In the simulation, we evaluated the influence of the
following factors on EE and AD of three protocols:
node density ρ, target speed v, the R

r ratio (i.e., the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

ratio of the communication radius to the sensing
radius), localization error ϵ, and target movement
model. We randomly deployed up to 1, 600 nodes in
a 200m × 200m area to track a target that moves at
a speed no greater than 30 m/s. R/r varies from 2
to 6, and ϵ varies from 1 m to 5 m. In addition, the
target may move in a smooth curvilinear trajectory or
with abrupt direction changes, for which two example
moving routes are shown in Fig. 5.

When we study the performance against a certain
factor, the other factors remain as the default values,
which are respectively ρ = 1.5 node/100m2, v =
18 m/s, R/r = 6, ϵ = 3 m, and the smooth curvilinear
movement. For each configuration case, we repeated
the experiment for 100 times and recorded the average
as the final result.

TABLE 1
Energy consumption rates

Status Energy consumption rate (unit)
Active (Pactive) 9.6 (mJ/s)
Transmit (Psend) 720 (nJ/bit), 5.76 (mJ/Byte)
Receive (Prcv) 110 (nJ/bit), 0.88 (mJ/Byte)
Sleep (Psleep) 0.33 (mJ/s)

Besides these factors, we configure the other pa-
rameters including TP = 1 s, DC = 10%, and the
energy consumption rates of Mica2 platform [38], [39]
shown in Table 1. In Table 1, we did not list the
energy consumption rate for instruction execution, as
it is difficult to measure in the simulation. Given that
PPSS may introduce a higher computational complex-
ity than Circle and MCTA, we increased the energy
consumption rate for PPSS’s active state by 20%, in
order to achieve a fair comparison.

0 0.2 0.4 0.6 0.8 1

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

Probability of abrupt direction change

A
D

: a
ve

ra
ge

 d
et

ec
tio

n
de

la
y

(s
)

Circle
MCTA
PPSS

Fig. 6. AD at various probabilities of abrupt direction
change

The evaluation results under various node densi-
ties, target speeds, R

r ratios, and localization errors
are shown in Fig. 7. Next, we discuss the detailed
simulation results:

1) Node density. Fig. 7(a) and Fig. 7(b) show the
comparison of three protocols at various node densi-
ties. As the node density increases, EE increases, and

AD decreases, because an increasing number of nodes
are proactively awakened to track the target.

2) Target speed. Fig. 7(c) and Fig. 7(d) show the
evaluation results at various target speeds. We ob-
serve that as the target moves faster, both EE and AD
decrease. The reason that EE decreases is that a faster
target will stay shorter in the alarm node’s communi-
cation range, thereby require awakened nodes to keep
active for a shorter time, than a slower target. AD will
also decrease, because when the target moves faster, it
will traverse the sensing range of more sensor nodes
in the same period of time, which in turn increments
the probability of being detected.

3) R
r ratio. In the simulation, we fixed R and

decreased r to increase the R
r ratio. The performance

of three protocols at various ratio values is shown in
Fig. 7(e) and Fig. 7(f). When r decreases, the active
time of awakened nodes will decrease according to
Equation 6. Thus, the energy consumption will de-
crease, too. At the same time, a decreasing r will
decrement the probability of detecting a target, there-
fore increment the detection delay.

4) Localization error. Fig. 7(g) and Fig. 7(h) show
the evaluation results at various localization errors.
We observe that the impact of the localization error
on Circle scheme and MCTA is slight, because they
awaken all the nodes in an area or a contour. On the
contrary, the detection delay of PPSS will increase as
the error increases, because the target may deviate
from awakened nodes just like in a default duty
cycling network.

5) Abrupt direction change. We also compared the
performance of three protocols when the target moves
with abrupt direction changes (for which a large δmax

in Section 4.4 is just an example). As their energy
consumptions showed very similar curves as Fig. 7(g),
we only show the average detection delays in Fig. 6.
Since Circle scheme has no inclination on specific
direction, its AD does not change significantly with
the probability of abrupt direction change. On the
contrary, both MCTA and PPSS will be influenced by
the abrupt direction change of the target. Especially,
the detection delay of PPSS will increase quickly to
the level of the default duty cycling mode. Therefore,
PPSS has limitation on slow targets with a high level
of abrupt direction change.

Compared to MCTA, we observe that PPSS intro-
duces an improvement of 25% ∼ 45% on energy
efficiency, at the expense of only 5% ∼ 15% increase
on detection delay. Among the three protocols, Circle
scheme serves as the upper bound for both the energy
consumption and the tracking performance. This is
because: 1) Circle scheme awakens all the neighbor
nodes within the alarm node’s communication radius,
thus consumes the most energy; and 2) it keeps all the
awakened nodes active for a relatively long time, thus
guarantees the best tracking performance.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

0 1 2 3 4
0

1

2

3

4

5

6
x 10

4

(a)

E
E

: e
xt

ra
 e

ne
rg

y
(J

)

0 10 20 30
0

1

2

3

4

5

6
x 10

4

(c)
2 3 4 5 6

0

0.5

1

1.5

2

2.5
x 10

4

(e)
1 2 3 4 5

0

0.5

1

1.5

2

2.5
x 10

4

(g)

0 1 2 3 4
1.5

2

2.5

3

3.5

(b) Node density (nodes/100m2)

A
D

: a
ve

ra
ge

 d
et

ec
tio

n
de

la
y

(s
)

0 10 20 30
2

2.5

3

3.5

4

(d) Target speed (m/s)
2 3 4 5 6

1.8

2

2.2

2.4

2.6

2.8

3

(f) R/r
1 2 3 4 5

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

(h) Localization error (m)

Circle
MCTA
PPSS

Fig. 7. Performance under various node densities, target speeds, R
r ratios, and localization errors

7.3 Implementation-based Evaluation

Besides verifying the efficiency of PPSS, the im-
plementation also exposes the design to real net-
work environments with noises, and irregular sens-
ing/communication radii.

Fig. 8. Mote deployment

In an outdoor parking lot, we deployed 15 TelosB
motes [15] in a 3 × 5 grid, each of which runs the
competing protocols that we implemented on TinyOS
version 2.1.1 [16]. As shown in Fig. 8, a toy car was
remotely controlled to move in a line across the field.

Unlike the simulation, the real implementation re-
quires actual solutions to many detailed issues1:

1) Energy measurement. Three of the commonly
used energy measurement methods — battery em-
ulation/simulation [41], on-board power meter [42],
and online multimeter [43] — all depend on special
hardware devices, and are subject to constraints [40].
Given this situation, we took the emulation approach

1. Limited by the paper space, we cannot specify every detail of
the implementation. More information can be found in [40].

instead: we record the number of operations, and the
communicated data amount or the operating time of
each operation, then calculate the energy consumption
based on these raw data and the configured energy
consumption rates [15].

2) Target detection. It is difficult for TelosB motes
to actually detect a physical target, given its con-
strained sensing devices (i.e., light, temperature and
humidity). Alternatively we emulate a mobile target
with a specially designed mote, called target node,
which broadcasts its positions (configured in a header
file a priori) that other motes may “sense”. The tar-
get node broadcasts short messages periodically at
every 200 ms. Obviously, these extra messages will
influence the application’s regular communications,
as they consume some wireless bandwidth. However,
this is inevitable without the actual sensing devices.
We tried to minimize this influence by shortening the
message length to the least, i.e., the target’s position
only. During the experiments, the target node was
attached to the remotely controlled toy car.

3) Data collection. The influence of experimental
operations on regular operations of protocols should
be minimized, because otherwise the experimental
results will be less reliable. For this purpose, we stored
experimental results temporarily on individual motes,
and designed a data collection node to collect them
after the experiments.

4) Time synchronization. Local time synchronization
was implemented via HELLO message exchange [33].

Protocols under evaluation were implemented in
the structure shown in Fig. 9. The target sensor com-
ponent signals an event of detection when receiving

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Protocol core

Alarm node elector

Awakened node

selector

Target predictor

Target

sensor

Communication

module

Supporting modules:

clock, timer,

LED, random

Fig. 9. Protocol structure

the target node’s broadcast. The communication mod-
ule communicates with neighbor motes. Once a target
is detected, its potential movement is first predicted
by the target predictor module. Then, the alarm node
elector module elects a mote to broadcast the alarm
message. When such an alarm message is received,
the awakened node selector module decides if this
mote should be awakened proactively. Besides these
modules, we designed a few supporting modules,
including local clock, timer, LED control, and random
number generator. The protocol core module handles
the protocol details. Each time a service of a functional
module is needed, the protocol core module calls
a command provided by that module, and possibly
handles the events triggered by the command call.
In this structure, three competing protocols are only
distinguished from each other in the awakened node
selector module and the core protocol module.

DEFAULT_MODE:

IN_DC

DEFAULT_MODE:

NOT_IN_DC

TRACKING_MODE:

IN_T_START

TRACKING_MODE:

IN_T_END

Wake up

Sleep

Wake up

Sleep until t_start
Elect alarm node, broadcast

alarm message if elected

Sleep until t_start

Remain

Sleep

Remain

Fig. 10. PPSS protocol finite state machine

In the protocol core module of PPSS, we designed
an internal finite state machine consisting of four
states as shown in Fig. 102:

1) Default mode/IN DC: active in the default duty
cycling mode;

2) Default mode/NOT IN DC: sleeping in the de-
fault duty cycling mode;

3) Tracking mode/IN T START: the sleep pattern
is scheduled to sleep until tstart; and

2. Fig. 10 was simplified due to the length limit. Please refer
to [40] for the complete version.

4) Tracking mode/IN T END: the sleep pattern is
scheduled to keep active until tend.

For each protocol under testing, the experiment was
repeated five times. Unlike the simulation, we did
the implementation-based experiment under a single
deployment only. This is because that compared to
the simulation, changing network configuration (e.g.
node density) is more difficult in the implementation.
For example, the transmission power level of motes’
RF radio can only be configured as a series of discrete
integer values, i.e., the communication radius cannot
be configured to any number. Therefore, simply re-
deploying nodes in a different density, even in the
same topology, may introduce a different connection
status of nodes. Comparing the experimental results
obtained from these different connection status will
be less helpful.

As previously discussed, we evaluate EDP for track-
ing performance in the implementation, instead of AD
used in the simulation.

TABLE 2
Implementation-based experiment results

Protocol Circle MCTA PPSS
EEalarm (mJ) 8.01 7.92 8.13
EEactive (mJ) 74.1 38.6 33

µ (mJ) 82.11 49.52 41.13
Total µnorm 1.658 1 0.8306
EE σ2 13.31 11.20 7.110

CI (78.63–85.59) (45.57–53.47) (38.59–43.67)
µ (%) 14.0 19.6 20.4
µnorm 0.7143 1 1.041EDP
σ2 2.15 2.83 2.82
CI (12.65–15.35) (18.00–21.20) (18.80–21.99)

In Table 2, we show sample means µ, normalized
means µnorm (to MCTA’s results), variances σ2, and
90% confidence intervals CI (assuming that the sam-
ples are normally distributed) of EE and EDP from
five repeated experiments. EEalarm is the energy for
alarm messages, and EEactive represents the energy
for scheduled wake-up. From the table, we observe:

1) Compared to Circle scheme, PPSS improves en-
ergy efficiency by 49.9%, with the cost of a 45.7%
increase on EDP.

2) Compared to MCTA algorithm, PPSS improves
energy efficiency by 16.9%, with the cost of a 4.1%
increase on EDP.

3) In the extra energy consumed for sleep schedul-
ing, the energy for alarm message communication
takes a small part, and most of the energy is consumed
for keeping motes active to wait for the approaching
target. Just because PPSS reduces the number of awak-
ened motes and their active time, energy efficiency is
improved significantly.

In Fig. 11, we plot the extra energy consumption
of individual motes to show the energy consumption
distribution. The energy data was obtained from one
sample of our experiments. Note that the extra energy

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

0
2

4
6

8
10

0

2

4

6
0

2

4

6

8

10

12

X (m)Y (m)

E
E

 (
m

J)

Fig. 11. Extra energy of motes with PPSS

includes the energy consumed for sleep scheduling
only. Since the sink node neither sends alarm mes-
sages nor was sleep-scheduled, its extra energy was
found zero.

8 CONCLUSION

In a duty-cycled sensor network, proactive wake-
up and sleep scheduling can create a local active
environment to provide guarantee for the tracking
performance. By effectively limiting the scope of this
local active environment (i.e., reducing low value-
added nodes that have a low probability of detecting
the target), PPSS improves the energy efficiency with
an acceptable loss on the tracking performance. In
addition, the design of PPSS protocol shows that it
is possible to precisely sleep-schedule nodes without
involving much physics.

Though the emulation is sometimes unavoidable,
our prototype implementation can still provide more
real and convincing results than the simulation. For
example, besides exposing motes to real environ-
mental noises and unstable links, the implementation
itself can verify the rationality of the solutions, and
the feasibility of applying them into the constrained
resources of actual mote hardware platforms.

Except for the strengths, PPSS has limitations as
well. First, it does not use optimization methods, i.e.,
PPSS imposes no performance constraints when re-
ducing the energy consumption. Without performance
constraints, it is difficult to configure the protocol to-
ward the best energy-performance trade-off for a spe-
cific network environment. However, the optimization
is difficult for PPSS, because it will involve many
physics problems, which are out of this paper’s scope.
Instead, we make an experiment-based effort that
evaluates the performance of PPSS under various con-
ditions. Secondly, the prediction method of PPSS can-
not cover special cases such as the target movement
with abrupt direction changes. This is the expense
that PPSS pays for the energy efficiency enhancement.
Given these limitations, the potential future work in-
cludes optimization-based sleep scheduling and target
prediction for abrupt direction changes.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks (Am-
sterdam, Netherlands: 1999), vol. 38, no. 4, pp. 393–422, 2002.

[2] Q. Cao, T. Yan, J. Stankovic, and T. Abdelzaher, “Analysis of
target detection performance for wireless sensor networks,”
in Intl Conference on Distributed Computing in Sensor Systems
(DCOSS), 2005, pp. 276–292.

[3] G. Wittenburg, N. Dziengel, C. Wartenburger, and J. Schiller,
“A system for distributed event detection in wireless sensor
networks,” in IPSN ’10: Proceedings of the 9th ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks.
New York, NY, USA: ACM, 2010, pp. 94–104.

[4] T. He, P. Vicaire, T. Yan, L. Luo, L. Gu, G. Zhou, R. Stoleru,
Q. Cao, J. A. Stankovic, and T. Abdelzaher, “Achieving real-
time target tracking using wireless sensor networks,” in RTAS
’06: Proceedings of the 12th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, 2006, pp. 37–48.

[5] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic, “Towards
optimal sleep scheduling in sensor networks for rare event
detection,” in Proceedings of the 4th international symposium on
Information processing in sensor networks, 2005, p. 4.

[6] C. Gui and P. Mohapatra, “Power conservation and quality of
surveillance in target tracking sensor networks,” in Proceedings
of the 10th annual international conference on Mobile computing
and networking, 2004, pp. 129–143.

[7] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel, “Delay
efficient sleep scheduling in wireless sensor networks,” in IN-
FOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings IEEE, vol. 4, March
2005, pp. 2470–2481.

[8] Y. Gu and T. He, “Data forwarding in extremely low duty-
cycle sensor networks with unreliable communication links,”
in SenSys ’07: Proceedings of the 5th international conference on
Embedded networked sensor systems, 2007, pp. 321–334.

[9] Y. Wu, S. Fahmy, and N. Shroff, “Energy efficient sleep/wake
scheduling for multi-hop sensor networks: Non-convexity and
approximation algorithm,” in INFOCOM 2007. 26th IEEE In-
ternational Conference on Computer Communications. IEEE, May
2007, pp. 1568–1576.

[10] X. Wang, J.-J. Ma, S. Wang, and D.-W. Bi, “Cluster-based
dynamic energy management for collaborative target tracking
in wireless sensor networks,” Sensors, vol. 7, pp. 1193–1215,
2007.

[11] J. Fuemmeler and V. Veeravalli, “Smart sleeping policies for
energy efficient tracking in sensor networks,” Signal Processing,
IEEE Transactions on, vol. 56, no. 5, pp. 2091–2101, May 2008.

[12] J. Jeong, T. Hwang, T. He, and D. Du, “Mcta: Target track-
ing algorithm based on minimal contour in wireless sensor
networks,” in INFOCOM, 2007, pp. 2371–2375.

[13] X. Wang, J.-J. Ma, S. Wang, and D.-W. Bi, “Prediction-based
dynamic energy management in wireless sensor networks,”
Sensors, vol. 7, no. 3, pp. 251–266, 2007.

[14] Y. Xu, J. Winter, and W.-C. Lee, “Prediction-based strategies for
energy saving in object tracking sensor networks,” in Mobile
Data Management, 2004. Proceedings. 2004 IEEE International
Conference on, 2004, pp. 346–357.

[15] CrossBow, “Telosb data sheet,”
http://www.willow.co.uk/TelosB Datasheet.pdf.

[16] “Tinyos.” [Online]. Available: http://www.tinyos.net/
[17] Y. Zhuang, J. Pan, and L. Cai, “Minimizing energy consump-

tion with probabilistic distance models in wireless sensor
networks,” March 2010, pp. 1–9.

[18] T. He, P. Vicaire, T. Yan, Q. Cao, and G. Z. et al., “Achieving
long-term surveillance in vigilnet,” INFOCOM, 2006.

[19] C. Sengul, M. J. Miller, and I. Gupta, “Adaptive probability-
based broadcast forwarding in energy-saving sensor net-
works,” ACM Trans. Sen. Netw., vol. 4, pp. 6:1–6:32, April 2008.

[20] Y. M. Lu and V. W. S. Wong, “An energy-efficient multipath
routing protocol for wireless sensor networks: Research arti-
cles,” Int. J. Commun. Syst., vol. 20, no. 7, pp. 747–766, 2007.

[21] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko,
and D. Rus, “Tracking a moving object with a binary sensor
network,” in Proceedings of the 1st international conference on
Embedded networked sensor systems, ser. SenSys ’03, 2003, pp.
150–161.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

[22] D. Eickstedt and M. Benjamin, “Cooperative target tracking in
a distributed autonomous sensor network,” in OCEANS 2006,
September 2006, pp. 1–6.

[23] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for on-line non-linear/non-gaussian
bayesian tracking,” IEEE Transactions on Signal Processing,
vol. 50, pp. 174–188, 2001.

[24] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, and H. Z. et al.,
“A line in the sand: A wireless sensor network for target detec-
tion, classification,and tracking,” Computer Networks (Elsevier),
vol. 46, no. 5, pp. 605–634, 2004.

[25] R. M. Taqi, M. Z. Hameed, A. A. Hammad, Y. S. Wha, and K. K.
Hyung, “Adaptive yaw rate aware sensor wakeup schemes
protocol (a-yap) for target prediction and tracking in sensor
networks,” IEICE - Transactions on Communications, vol. E91-B,
no. 11, pp. 3524–3533, 2008.

[26] Y. Zou and K. Chakrabarty, “Distributed mobility management
for target tracking in mobile sensor networks,” Mobile Comput-
ing, IEEE Transactions on, vol. 6, no. 8, pp. 872–887, Aug. 2007.

[27] “Kinematics.” [Online]. Available: http://en.wikipedia.org/
wiki/Kinematics

[28] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-
driven sensor querying and routing for ad hoc heterogeneous
sensor networks,” International Journal of High-Performance
Computing Applications, vol. 16, no. 3, pp. 293–313, 2002.

[29] J. Polastre, J. Hill, and D. Culler, “Versatile low power media
access for wireless sensor networks,” in SenSys ’04: Proceedings
of the 2nd international conference on Embedded networked sensor
systems, New York, NY, USA, 2004, pp. 95–107.

[30] J. Hightower and G. Borriello, “Location systems for ubiq-
uitous computing,” IEEE Computer, vol. 34, no. 8, pp. 57–66,
August 2001.

[31] R. Stoleru, J. A. Stankovic, and S. H. Son, “Robust node
localization for wireless sensor networks,” in EmNets ’07:
Proceedings of the 4th workshop on Embedded networked sensors,
2007, pp. 48–52.

[32] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” SIGOPS Oper.
Syst. Rev., pp. 147–163, 2002.

[33] B. Jiang, B. Ravindran, and H. Cho, “Cflood: A constrained
flooding protocol for real-time data delivery in wireless sensor
networks,” in Proceedings of the 11th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, 2009, pp.
413–427.

[34] “Normal distribution.” [Online]. Available: http://en.
wikipedia.org/wiki/Normal\ distribution

[35] B. Jiang, K. Han, B. Ravindran, and H. Cho, “Energy efficient
sleep scheduling based on moving directions in target tracking
sensor network,” in IPDPS, 2008, pp. 1–10.

[36] J. Denga, Y. S. Hanb, W. B. Heinzelmanc, and P. K. Varshney,
“Balanced-energy sleep scheduling scheme for high density
cluster-based sensor networks,” in Computer Communications:
special issue on ASWN04, vol. 28, 2005, pp. 1631–1642.

[37] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao, “Distributed
group management in sensor networks: Algorithms and ap-
plications to localization and tracking,” in Telecommunication
Systems, vol. 26, no. 2-4, 2004, pp. 235–251.

[38] M. Athanassoulis, I. Alagiannis, and S. Hadjiefthymiades,
“Energy efficiency in wireless sensor networks: A utility-based
architecture,” in European Wireless, 2007.

[39] J. Hill and D. Culler, “Mica: a wireless platform for deeply
embedded networks,” Micro, IEEE, vol. 22, no. 6, pp. 12–24,
Nov/Dec 2002.

[40] B. Jiang, “Energy efficient target tracking in wireless sensor
networks: Sleep scheduling, particle filtering, and constrained
flooding,” Dissertation, Virginia Tech, 12 2010.

[41] A. T. Inc., “Dc source with battery emulation,”
http://www.home.agilent.com/.

[42] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro power meter
for energy monitoring of wireless sensor networks at scale,”
in IPSN ’07: Proceedings of the 6th international conference on
Information processing in sensor networks, 2007, pp. 186–195.

[43] C. Margi, V. Petkov, K. Obraczka, and R. Manduchi, “Char-
acterizing energy consumption in a visual sensor network
testbed,” in In 2nd International IEEE/Create-Net Conference
on Testbeds and Research Infrastructures for the Development of
Networks and Communities (TridentCom 2006), 2006.

Bo Jiang obtained his Ph.D. degree in the
Department of Electrical and Computer Engi-
neering in Virginia Tech in 2010. His research
interests include wireless sensor networks,
real-time and distributed systems, and virtu-
alization techniques. He received his B.S. de-
gree and M.S. degree from the Department
of Computer Science and Technology in Ts-
inghua University, China in 2001 and 2004
respectively. Before joining Virginia Tech, he
worked as a software engineer in Intel China

Research Center for three years, where he conducted development
and customization efforts for Linux device drivers on Intel’s desktop
and mobile platforms. Now he returned to Intel and is working on
smart phone platforms as a senior software engineer.

Binoy Ravindran is an Associate Profes-
sor in the ECE department at Virginia Tech,
Blacksburg, Virginia, USA. His research in-
terests include distributed, real-time, embed-
ded, and networked systems, with a particu-
lar focus on robust resource management at
various levels of abstraction from OSes to vir-
tual machines to runtimes to middleware, and
concomitant programming abstractions. He
and his students have published more than
170 papers in this space, and some of his

groups results have been transitioned to US Department of Defense
programs. Dr. Ravindran is an US Office of Naval Research Faculty
Fellow, an ACM Distinguished Speaker, a former IEEE Distinguished
Visitor, and an Associate Editor of ACM Transactions on Embedded
Computing Systems.

Hyeonjoong Cho is an Associate Profes-
sor in the Department of Computer and
Information Science at Korea University.
His research focuses on real-time sys-
tems on various platforms including sin-
gle/multiprocessors, sensor networks, etc.
He is also interested in real-time operating
systems, embedded systems, and industrial
field bus. Before he joined Korea University
in 2009, he worked as a senior researcher
in Electronics and Telecommunications Re-

search Institute. He received the PhD degree in computer engineer-
ing from Virginia Polytechnic Institute and State University (Virginia
Tech) in 2006. He received his M.S. degree in Electronic and Electri-
cal Engineering from Pohang University of Science and Technology,
South Korea (1998) and B.S. degree in Electronic Engineering from
Kyungpook National University (1996). He had worked for Samsung
Electronics as a senior software engineer at Factory Automation
research institute before pursuing Ph.D. degree.

