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Abstract

We consider lock-free synchronization for dynamic embedded real-time systems that are

subject to resource overloads and arbitrary activity arrivals. We model activity arrival behaviors

using the unimodal arbitrary arrival model (or UAM). UAM embodies a stronger “adversary”

than most traditional arrival models. We derive an upper bound on lock-free retries under the

UAM with utility accrual scheduling — the first such result. We establish the tradeoffs between

lock-free and lock-based sharing under UAM. These include conditions under which activities’

accrued timeliness utility is greater under lock-free than lock-based, and the consequent lower

and upper bound on the total accrued utility that is possible with lock-free and lock-based

sharing. We confirm our analytical results with a POSIX RTOS implementation.

∗A preliminary version of this paper appeared as “Lock-Free Synchronization for Dynamic Embedded Real-Time

Systems,” H. Cho, B. Ravindran, and E. D. Jensen, ACM Design, Automation, and Test in Europe (DATE), Real-Time

Systems Track, pages 438-443, March 2006.



1 Introduction

Embedded real-time systems that are emerging in many domains such as robotic systems for plan-

etary exploration (e.g., NASA/JPL’s Mars Rover [10]) and battle management systems for defense

(e.g., airborne trackers [8]) are fundamentally distinguished by the fact that they operate in environ-

ments with dynamically uncertain properties. These uncertainties include transient and sustained

resource overloads due to context-dependent activity execution times and arbitrary activity arrival

patterns. Nevertheless, such systems require the strongest possible assurances on activity timeli-

ness behavior. Another important distinguishing feature of these systems is their relatively long

execution time magnitudes—e.g., in the order of milliseconds to minutes.

When resource overloads occur, meeting the time constraints (at this point we speak of the

special case of deadlines) of all activities is impossible, requiring a scheduling optimality criterion

more sophisticated than simply meeting all deadlines. The urgency of an activity as expressed

by its deadline is generally orthogonal to the relative importance of the activity—-e.g., the most

urgent activity can be the least important, the most urgent can be the most important, etc. Hence

when overloads occur, completing as many as possible of the most important activities irrespective

of activity urgency is often desirable. Thus, a clear distinction has to be made between urgency and

importance, during overloads. (During underloads, such a distinction need not be made, because

deadline-based scheduling algorithms such as EDF are optimal.)

Deadlines by themselves cannot express both urgency and importance. Thus, we consider the

abstraction of time/utility functions (or TUFs) [15] that express the utility of completing an activity

as a function of that activity’s completion time. We specify a deadline as a binary-valued, down-

ward “step” shaped TUF; Figure 1(a) shows examples. Note that a TUF decouples importance and

urgency—i.e., urgency is measured on the X-axis, and importance is denoted (by utility) on the

Y-axis.

Many embedded real-time systems also have activities that are subject to non-deadline time

constraints, such as those where the utility attained for activity completion varies (e.g., decreases,
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Figure 1: Example TUF Time Constraints

increases) with completion time. This is in contrast to deadlines, where a positive (conventionally,

unit) utility is accrued for completing the activity anytime before the deadline, after which zero,

or infinitively negative utility is accrued. Figure 1 shows examples of such time constraints from

two real applications [8]. When activity time constraints are specified using TUFs, the scheduling

criteria are based on accrued utility, such as maximizing the total activity attained utility. We call

such criteria, utility accrual (or UA) criteria, and scheduling algorithms that optimize them, as UA

scheduling algorithms.

UA algorithms that maximize total utility for downward step TUFs (see algorithms in [22])

default to EDF during underloads, since EDF satisfies all deadlines during underloads. Conse-

quently, they obtain the maximum total utility during underloads. During overloads, they favor

more important activities (since more utility can be attained from them), irrespective of urgency.

Thus, deadline scheduling’s optimal timeliness behavior is a special-case of UA scheduling.

1.1 Shared Data and Synchronization

Most embedded real-time systems necessarily have (logically) concurrent and conflicting needs to

access shared resources that can be only sequentially shared. The means by which these resource

contentions are resolved directly affect the system’s timeliness properties. This is as true for shared

data objects as it is for processors. Mechanisms that resolve such contention for shared data ob-

jects can be broadly classified into: (1) lock-based schemes—e.g., [23], see algorithms in [22];

and (2) non-blocking schemes including wait-free protocols (e.g., [6, 14]) and lock-free protocols

(e.g., [4, 16]).



Lock-based protocols serialize accesses to sequentially shared objects by mutual exclusion,

resulting in reduced concurrency [4]. Further, many lock-based protocols typically incur addi-

tional run-time overhead due to scheduler activations that occur when activities request locked

objects [22, 23]. Also, deadlocks can occur when lock holders crash, causing indefinite starva-

tion to blockers. Many priority-based (e.g., real-time) lock-based protocols also require a’ priori

knowledge of the priority ceilings of locks [23], which may be difficult to obtain for dynamic

applications, resulting in reduced flexibility [4]. These drawbacks have motivated research on

non-blocking objects in embedded real-time systems.

Lock-free objects guarantee that some object operations will complete in a finite number of

steps. Consequently, other operations may have to retry an arbitrary number of times. Instead of

acquiring locks, a lock-free operation continuously accesses the object, checks, and retries until it

becomes successful. Inevitably, lock-free protocols incur additional time costs due to their retries,

which is counter-productive to timeliness optimization. Prior research [4, 11, 13] has shown how

to mitigate or bound these time costs.

In [4], Anderson et al. show how to bound the retry loops of lock-free protocols through judi-

cious real-time scheduling. In [2], lock-free objects on single processors and multiprocessors using

quantum-based scheduling are presented. That work assumes that each task can be preempted at

most once during a single quantum; thus each object access needs to be retried at most once. Effi-

cient lock-free objects, such as queues and stacks, have been presented in [20, 21]. In [26], Valois

presents lock-free linked lists. Treiber presents lock-free stack algorithms in [25].

On the other hand, wait-free objects guarantee that any operation on the objects will complete

in a bounded number of steps, regardless of interferences. Wait-free protocols may incur additional

time or space costs for their intrinsic mechanisms (e.g., some wait-free protocols require multiple

buffers for their operations.)

In [3], Anderson et al. present wait-free schemes for single- and multi-processors, where a task

which announces its intention to share objects also helps other tasks to complete their accesses.

In [16], Kopetz et al. present an analysis on a wait-free synchronization in real-time systems. This



work was later improved by Chen et al. in [6], and subsequently by Huang et al. in [14] and by

Cho et al. in [7]. However, wait-free synchronization sometimes requires a’ priori knowledge of

the maximum number of jobs that may arrive at any given time (for ensuring atomicity), because

the identities of all jobs must be known to all jobs in wait-free algorithms [7, 14, 16]. Obtaining

this a’ priori knowledge is difficult for our motivating applications.

As shown in [4], lock-free implementations always perform better than wait-free ones when

wait-free objects are implemented using Herlihy-like helping scheme. However, the other wait-

free object implementations may be superior to lock-free ones. In this paper, we do not consider

wait-free schemes, and focus on lock-free synchronization.

1.2 Contributions

In this paper, we focus on dynamic embedded real-time systems on a single processor. By dynamic

systems, we mean those subject to resource overloads due to context-dependent activity execution

times and arbitrary activity arrivals. To account for the variability in activity arrivals, we describe

arrival behaviors using the unimodal arbitrary arrival model (or UAM) [12]. UAM specifies the

maximum number of activity arrivals that can occur during any time interval. Consequently, the

model subsumes most traditional arrival models (e.g., periodic, sporadic) as special cases.

We consider lock-free sharing under the UAM. Past work on lock-free sharing upper bounds

the retries under restrictive arrival models like periodic [4] — retry bounds under the UAM are

not known. Moreover, we consider the UA criteria of maximizing the total utility, while allowing

most TUF shapes including step and non-step shapes, and serializable concurrent object sharing.

We focus on the Resource-constrained Utility Accrual (or RUA) scheduling algorithm [27] for that

model. RUA allows arbitrarily-shaped TUFs and concurrent object sharing using locks. For the

special case of downward step TUFs, no object sharing, and underloads, RUA defaults to EDF.

We derive an upper bound on lock-free retries of RUA under the UAM — the first ever retry

bound under a non-periodic arrival model. Since lock-free sharing incurs additional time overhead



due to the retries (as compared to lock-based), we establish the conditions under which activ-

ity sojourn times1 are shorter under lock-free RUA than under lock-based, for the UAM. From

this result, we establish the lower and upper bound on activities’ total utility under lock-free and

lock-based RUA. Further, we implement lock-free and lock-based RUA on a POSIX RTOS. Our

implementation measurements strongly validate our analytical results.

The dynamic real-time application environment which this work focuses on has time frames

that allow more sophisticated and thus higher cost resource management than traditional small

scale static real-time applications do. As always, resource management costs must be justified by

providing corresponding application and system operational effectiveness. For this work, opera-

tional effectiveness of the system is improved by reducing the cost of scheduling with TUF/UA

algorithms which in turn increase application operational effectiveness. For an analogy, consider

the logistics application context, such as scheduling delivery trucks. Very sophisticated but high

execution time resource management algorithms are often used, but result in improved operational

effectiveness in terms of lower truck fuel consumption, etc.

Our major finding is that lock-free synchronization can improve the cost of (lock-based) RUA’s

scheduling decisions by eliminating the computation of activity dependency chains (that arise due

to lock-based object sharing conflicts), and by allowing activities to force roll-backs in their peers

rather than rescheduling when encountering those conflicts. Lock-based RUA views the depen-

dency chain of an activity (i.e., the activity together with all of its dependents, which is O(n)-long

in the worst case) as a logically single entity to respect the dependencies, effectively constituting

its scheduling unit, and thus suffers from increased scheduling cost. With lock-free synchroniza-

tion, dependencies are avoided, thereby reducing an activity’s dependency chain to include just the

activity itself.

The rest of the paper is organized as follows: We describe the task model that we consider

1An activity’s sojourn time is the time between the activity’s arrival and its completion. We use sojourn time

(often used in queuing theory), instead of “response time,” as that term sometimes causes confusion—e.g., real-time

practitioners sometimes use response time to mean interrupt response time, which is a subset of the sojourn time.



in Section 2. In Section 3, we overview lock-based RUA, describe the key steps of the algorithm,

identify those algorithm steps that can be improved through lock-free synchronization, and thereby

establish the premise for lock-free RUA. In Section 4, we derive an upper bound on retries under

lock-free RUA. We compare lock-free and lock-based RUA, and establish the tradeoffs between

the two in Section 5. Section 6 discusses our implementation experience. We conclude the paper

in Section 7.

2 Task Model

Figure 2 shows the three dimensions of the task model that we consider in the paper. The first

dimension is the arrival model. We consider the UAM, which is more relaxed than the periodic

model, but more regular than the aperiodic model. Hence it falls in between these two ends of the

(regularity) spectrum of the arrival dimension. For a task Ti, its arrival using UAM is defined as a

tuple 〈li, ai,Wi〉, meaning that the maximal number of job arrivals of the task during any sliding

time window Wi is ai and the minimal number is li [12]. Jobs may arrive simultaneously. The

periodic model is a special case of UAM with 〈1, 1,Wi〉.

Figure 2: Three Dimensions of Task Model

We refer to the jth job (or invocation) of task Ti as Ji,j . The basic scheduling entity that we

consider is the job abstraction. Thus, we use J to denote a job without being task specific, as

seen by the scheduler at any scheduling event. A job’s time constraint, which forms the second



dimension, is specified using a TUF. TUFs subsume deadlines as a special case (i.e., binary-valued,

downward step TUFs). All jobs of a task have the same TUF. Ui (·) denotes task Ti’s TUF; thus,

the completion of Ti at time t will yield Ui(t) utility.

TUFs can take arbitrary shapes, but must have a (single) critical time. Critical time is the time

at which the TUF drops to zero utility. In general, the TUF has zero utility after the critical time.

We denote the critical time of task i’s Ui (·) as Ci, and assume that Ci ≤ Wi.

The third dimension is the timeliness optimization objective. Example objectives include sat-

isfying all critical times for step TUFs during underloads, and maximizing total accrued utility for

arbitrarily-shaped TUFs during underloads and overloads. Our model includes the UAM, TUFs,

and the objective of maximizing total utility.

Finally, the resource model we consider here does not allow nested critical sections, which may

cause deadlocks in lock-based synchronization, and on the other hand, complicates implementation

in lock-free synchronization.

3 Overview of Lock-Based RUA

We first overview RUA, which allows concurrent object sharing using locks [27] (the complete

algorithm details can be found in [27]). Note that RUA allows nested critical sections. Thus

deadlocks can occur, and the algorithm uses a deadlock detection and resolution mechanism. In

describing RUA, we describe all aspects of the algorithm including its deadlock detection and

resolution mechanism, for completeness and consistency with the description in [27]. Note that

RUA’s deadlock detection/resolution mechanism will not be triggered in the context of this paper

which excludes nested critical sections. Thus, in comparing lock-based RUA with lock-free RUA,

which we do later in Section 5, we disallow nested critical sections and exclude lock-based RUA’s

deadlock detection/resolution mechanism, for an apples-to-apples comparison. We will recall this

aspect in Section 5 (so that the point is not lost).

RUA [27] targets dynamic applications, where activities are subject to arbitrary arrivals and re-



source overloads. Further, activities may access (logical and physical) resources arbitrarily—e.g.,

the resources that will be needed, the length of time for which they will be needed, and the order

of accessing them are all statically unknown.2 Thus, the set of activities to be scheduled and their

resource dependencies may change over time. Consequently, RUA performs scheduling entirely

online. RUA considers activities subject to arbitrarily shaped TUF time constraints, concurrent

object sharing under mutual exclusion constraints, and the scheduling objective of maximizing the

total utility.

The algorithm’s scheduling events include job arrivals, job departures, lock and unlock re-

quests, expiration of job critical times.3 The major steps of the algorithm include computing job

dependency chains, determining job potential utility densities, deadlock detection and resolution,

and constructing feasible schedules. These are explained in the subsections that follow.

3.1 Computing Job Dependency Chains

When RUA is invoked, it first builds the dependency chain of each job—that arises due to mutually

exclusive resource sharing—by following the chain of resource request and ownership.

For example, a job T1 may request for a resource R1 at time t (a scheduling event). Resource

R1 may be locked by another job T2 at time t. Thus, T1 is dependent upon T2 at time t. Job T2

may already be dependent on another job T3 for a resource R2 at time t. Suppose that T3 is not

dependent upon any other jobs at time t. Then, at time t, T1’s dependency chain is the sequence

〈T3, T2, T1, 〉, implying that T3 must be executed before T2, which must be executed before T1, to

respect the chained mutual exclusion dependency.

Note that the execution of T3 and T2 need not be till their completions, since T3 and T2 may

release their locked resources before their completions. Further, T3’s execution need not be imme-

diately before T2, and T2’s execution need not be immediately before T1. The dependency chain

2Note that with lock-free RUA, we exclude physical resources and only focus on logical resources—e.g., data

objects.
3A “scheduling event” is an event that invokes the scheduling algorithm.



Figure 3: An Example Scenario of Computing Dependency Chains

only implies the before-after precedence that must be respected at time t in constructing a sched-

ule at time t, given the current system knowledge at t. In the future, new dependencies may arise,

which will cause new scheduling events, and the dependency chains must be recomputed.

Similarly, T2’s dependency chain is the sequence 〈T3, T2〉, and T3’s dependency chain includes

only T3 since T3 is not dependent upon anyone. Figure 3 illustrates this example scenario of

computing dependency chains.

3.2 Computing Job Potential Utility Densities

Armed with the job dependency chains, RUA next computes the job potential utility densities (or

PUDs). The PUD of a job measures the amount of utility that can be accrued per unit time by

executing the job and the job(s) that it depends upon, given the current system knowledge.

A job Ti is said to be dependent upon another job Tj if Ti needs a resource that is held by Tj

(i.e., Ti is directly dependent upon Tj), or if Ti needs a resource that is held by another job Tk,

which in turn needs a resource that is held by Tj (i.e., Ti is transitively dependent upon Tj). Here,

Tj and Tk are referred to as the dependent jobs of Ti.



To compute a job Ti’s PUD at time t, RUA considers Ti’s estimated completion time (denoted

as tf ) and the utility that can be obtained by executing Ti and its dependent jobs. For each job

Tj that is in Ti’s dependency chain and needs to be completed before executing Ti, Tj’s estimated

completion time is denoted as tj .4 PUD of Ti is then computed as: Ui(tf ) +

∑
Tj∈Ti.Dep

Uj(tj)

tf−t
.

Thus, the PUD calculation for a job reflects the fact that executing the sequence of the job and

its dependents will require a total time equal to the sum of the individual times and will yield a total

utility equal to the sum of the individual utilities. A job’s PUD, thus measures the job’s “return on

investment.”

Note that the term “potential” is used in PUD. This is because, the PUD calculation reflects

the utility that can possibly be obtained from the aggregate computation, given the current system

knowledge.5 It is quite possible that future situations (e.g., new dependencies, execution overruns)

may negate the chance to accrue any utility from the aggregate computation.

3.3 Deadlock Detection and Resolution

The algorithm then checks for deadlocks, caused from nested critical sections, by detecting the

presence of a cycle in the dependency chain — a necessary condition for deadlocks. Deadlocks

are resolved by aborting that job in the cycle, which will likely contribute the least utility. (We

summarize RUA’s abortion model in Section 3.5.) RUA adopts a deadlock detection and resolution

strategy (as opposed to deadlock avoidance or prevention) precisely due to the dynamic nature of

systems of interest — which resources will be needed by which activities, for how long, and in

what order is not assumed to be known to the scheduler.
4Completion time is only an estimate, since the job execution times presented to the scheduler, which are used to

determine completion times, are only assumed to be estimates. Thus, execution overruns are quite possible.
5Actually, the calculated PUD of a job is the highest possible, given the current system knowledge: The PUDs are

calculated assuming that the jobs are executed at the current position in the schedule, and that jobs release resources

only after their executions complete.



3.4 Constructing Feasible Schedules

After handling deadlocks, RUA sorts jobs in the order of non-increasing PUDs.

The algorithm then starts the process of constructing a schedule, by starting with an empty

schedule. Each job is then examined in the non-increasing PUD order, and inserted with its de-

pendents into a copy of the schedule called the “tentative schedule.” To insert a job J and its

dependents into the tentative schedule, RUA proceeds from the tail of J’s dependency chain (i.e.,

starts with J) and moves toward the head of the chain (i.e., ends with the job that is farthest from J

in the chain). The insertion is done in the order of the job critical times, earliest-critical-time-first

(or ECF), thereby maintaining the tentative schedule in the ECF order. (We discuss the insertion

process in Section 3.4.1.)

After inserting a job and its dependents into the tentative schedule, RUA checks the feasibility

of the tentative schedule with respect to satisfying all job critical times. If the schedule is feasi-

ble, the tentative schedule is updated as the new schedule. If infeasible, the tentative schedule is

discarded (thereby rejecting the inserted job and its dependents).

The algorithm repeats this process until all jobs in the sorted PUD list are examined, and selects

the job at the head of the schedule for execution.

3.4.1 Inserting a Job and its Dependents

When a job and its dependents are inserted into the tentative schedule in the ECF order, the ECF

order of the job and its dependents can be inconsistent with the job’s dependency order. This must

be resolved during insertion. For example, let a job T1’s dependency chain is the sequence 〈T2, T1〉.
When T1 is inserted into the tentative schedule, two cases can arise:

(1) Case 1: the ECF order is consistent with the dependency order—i.e., C2 < C1;

(2) Case 2: the ECF order is inconsistent with the dependency order—i.e., C2 > C1.

Case 1 poses no problem, since T2 must precede T1 to respect the dependency. For Case 2, RUA

inserts T2 before T1 to respect the dependency, and updates C2 as C2 = C1. The updated critical



times are used for testing schedule feasibility. Figure 4 illustrates this.

Figure 4: Resolving Conflict Between Critical-Time-Order and Dependency-Order

When a job and its dependents are inserted into the tentative schedule, it is possible that some

of the dependents may already exist in the schedule, since they also may be dependents of other

jobs which were previously inserted into the tentative schedule. If so, the dependency order must

be reestablished to ensure that the previously inserted dependents are also inserted before the job

that is currently being inserted.

For example, let the dependency chains of three jobs T1, T2, and T3 are the sequences 〈T1〉,
〈T1, T2, 〉, and 〈T1, T3〉, respectively (see Figure 5). Let the non-increasing PUD order of the jobs

is T2, T1, T3. Thus, T2 is inserted into the tentative schedule first with its dependent T1, and tested

for feasibility. Suppose that this tentative schedule is feasible and is updated as the new schedule

(i.e., 〈T1, T2〉).
The next job to be inserted is T3 and its dependent T1 (though T1 is the next job in the PUD list,

it is already inserted as part of T2’s insertion). Thus, RUA makes a copy of the tentative schedule

〈T1, T2〉 and starts inserting each job in T3’s dependency chain 〈T1, T3〉, from tail (T3) to head (T1),

at their critical time positions. After inserting T3, RUA is now ready to insert T1. Since T1 has



already been inserted as part of T2’s insertion and before T2, it must now be ensured that T1 is also

inserted before T3. There are two possible cases now:

(1) Case 1: C1 < C3;

(2) Case 2: C1 > C3.

Case 1 automatically ensures that T1 is also inserted before T3 (besides T2). If Case 2 occurs, RUA

removes T1 from the tentative schedule and inserts it before T3 and updates its critical time C1 as

C1 = C3. This scenario is illustrated in Figure 5.

If the tentative schedule is feasible, then it is updated as the new schedule (i.e., 〈T1, T3, T2〉).
Otherwise, the tentative schedule is discarded and the previous schedule is retained (i.e, 〈T1, T2〉).

Figure 5: Removal and Reinsertion of Jobs During Schedule Construction

Note that RUA examines all jobs during the schedule construction process at each scheduling

event, including those that are ready to run, as well as those that are blocked awaiting access to

shared objects. This is because, many job scheduling parameters change at each scheduling event,

due to the dynamic nature of the application. These parameters include dependencies (that may

change due to new lock requests and lock releases) and remaining execution time estimates (that

may change due to changes in application’s operating environmental context). Consequently, RUA



examines all jobs to construct a schedule that will maximize the application’s total utility as much

as possible, given the current situation. Thus, RUA is designed as an integrated scheduler and

resource manager.

If a job’s critical time is reached and its execution has not been completed, the job is immedi-

ately aborted. We discuss the abortion model in Section 3.5.

During underloads, with step TUFs, and no object sharing, it is easy to see that RUA will

never reject a job, as all jobs will be feasible. The resulting output schedule will be an ECF (or

EDF)-ordered schedule, yielding the maximum possible total utility, as that ordering is optimal

for underloads and will meet all job critical times. During overloads, the algorithm will produce

a feasible schedule by greedily favoring as many “high return” jobs as possible, will reject some

low-return jobs, and thereby seeks to obtain as high total utility as possible.

3.5 Job Abortions

To abort a job for resolving a deadlock, RUA raises an abort-exception when the deadlock is

detected and the job has been selected for abortion, during the scheduling process.

Abortion of a job due to the expiration of the job’s critical time is handled asynchronously:

When the job arrives (a scheduling event), RUA will set a timer that will expire when the job’s

critical time is reached, besides constructing a schedule and dispatching a job. When the critical

time later expires (a scheduling event), the timer goes off, and the scheduler is awakened. If the

job has not completed its execution at that time, RUA immediately raises an abort-exception (as

that for deadlock resolution).

Once an abort-exception is raised, the scheduler immediately releases the job’s exception han-

dler and executes it. The handler is assumed to perform whatever compensations and recovery

actions are necessary to avoid inconsistencies—e.g., rolling back logical and physical resources

that are held by the job to safe states. The handler is also assumed to perform actions that are

required to ensure the safety and stability of the external state.



Thus, a job is aborted by immediately executing the job’s exception handler. Once the handler

completes its execution, the system is assumed to be in a safe and consistent state, and other jobs

can safely proceed with their execution. RUA’s model of aborted executions follows that of [9],

and is similar to what is typically employed in transactional paradigms (e.g., [24]).

With lock-free RUA, job abortions also follow the same model. Since deadlocks do not occur

with lock-free RUA, abortions are necessary only when job critical times expire.6 Thus, when

a job’s critical time expires, the timer goes off, and awakens the scheduler. If the job has not

completed its execution at that time, (lock-free) RUA will immediately raise an abort-exception,

and execute the job’s handler.

3.6 Asymptotic Cost

With n jobs, RUA’s asymptotic cost is O(n2logn), for the single-unit resource model, and with or

without nested critical sections. The steps of RUA that dominate its computational cost include:

(1) Computing the dependency chain of each job. This costs O(n2) for all jobs, since the

dependency chain of a single job can contain all other jobs in the worst case. Thus, the dependency

chain of a job can contain O(n) jobs; so the total cost for n jobs is O(n2).

(2) Computing the PUD of each job. This costs O(n2) for all jobs, since the entire dependency

chain of a job (which is O(n) -long in the worst case) must be inspected to determine the PUD of

the job.

(3) Testing dependency chains for a deadlock. For a single job, this costs O(n), and is done

while the dependency chain of the job (which is O(n) -long in the worst case) is computed. This

is done by checking whether the next object requested by a job in the chain is held by another job

in the chain (i.e., whether the chain leads to a cycle). For n jobs, the cost is O(n2).

(4) Sorting jobs by PUD. This costs O(nlogn).

6In this paper, abortions under lock-based RUA are also necessary only when job critical times expire, since nested

sections are excluded, consequently avoiding deadlocks.



(5) Examining each job in decreasing PUD-order, inserting the job and its dependents into

a tentative schedule in the critical-time order, respecting dependencies, and testing for schedule

feasibility. For a single job J , this entire process costs O(nlogn), because each job in J’s depen-

dency chain (which is O(n)-long in the worst case) must be inserted into the tentative schedule

in the critical-time order, respecting the job dependencies. The process of inserting a job into a

tentative schedule in the ECF order and respecting dependencies costs O(logn), as this requires

operations such as lookup, remove, and insert on an ordered list (i.e., the schedule), each of which

costs O(logn). For n jobs in the dependency chain, the cost is therefore O(nlogn). Thus, for n

jobs in the ready queue, the total cost becomes O(n2logn).

Summing up the costs, the total algorithm cost is therefore O(n2logn).

Note that the cost of the algorithm is dominated by the cost of Step 5, which itself costs

O(n2logn). All other steps including the deadlock detection step (i.e., Step 3) cost less. Thus,

even if nested critical sections are not allowed (which will allow the algorithm to skip Step 3), the

algorithm will still cost O(n2logn).

RUA’s cost is higher than that of many traditional real-time scheduling algorithms. However,

this high cost is justified for applications with longer execution time magnitudes such as those that

we focus on here. (Of course, this high cost cannot be justified for every application.) Nevertheless,

it is desirable to reduce the cost so that the resources utilized by the scheduling algorithm can yield

greater benefit in terms of improved scheduling from the application’s point of view.

The major speed bottleneck of the algorithm that cross-cuts across all algorithm steps is the

algorithm’s concept of an “aggregate” computation — i.e., a job and its dependents, the size of

which is O(n)-long in the worst case. At its core, the algorithm views this aggregate computation

as a logically single entity to respect the dependencies, measures the “worth” of an aggregate by

computing its PUD, examines an aggregate when it becomes the highest-PUD aggregate in the

unexamined aggregate pile, and then determines whether to include it in the schedule.

Piecemeal speed optimizations of the algorithm are possible—e.g,., the step of testing for

schedule feasibility can be optimized through randomization as in [17] (with concomitant trade-



offs). However, a cross-cutting optimization, which is needed to improve the total algorithm speed,

is difficult without reducing the size of the aggregate computation. This is precisely what we ac-

complish through lock-free synchronization, where dependencies are avoided, thereby effectively

reducing the size of the aggregate computation to a single job. Of course, this comes with con-

comitant tradeoffs. Thus, one of our goals is to identify those tradeoffs and understand when such

a lock-free RUA would be better and more effective than lock-based RUA.

4 Bounding Retries Under the UAM

4.1 Preemptions Under UA Schedulers

In an effort to catalogue various preemptive scheduling algorithms, Carpenter et al. categorized

scheduling disciplines (for periodic or sporadic tasks) according to whether task priorities are:

(1) static, (2) dynamic but fixed within a job (job-level dynamic), or (3) fully-dynamic [5]. In [1],

Anderson et al. showed examples of each type including: (1) rate-monotonic (RM), (2) earliest-

deadline-first (EDF), (3) least-laxity-first (LLF) scheduling.

Under static and job-level dynamic priority schedulers, a job can be preempted at most once

by another job if no resource dependency (that arises due to concurrent object sharing) exists. This

is because a job does not change its execution eligibility until its completion time. On the other

hand, fully-dynamic priority schedulers allow two jobs to preempt each other more than once as

scheduling events happen. In the sense that execution eligibility of a job dynamically changes, the

behavior of UA schedulers such as RUA is similar to those of fully-dynamic priority schedulers.

The fully-dynamic priority schedulers allow the mutual preemption illustrated in Figure 6, i.e., two

jobs continue preempting each other.

Hence, the maximum number of preemptions under RM or EDF that a job may suffer can be

bounded by the number of releases of other jobs during a given time interval (see [3]), whereas the

maximum number of preemptions that a job may experience under RUA is bounded by the number



Figure 6: Mutual Preemption Under RUA

of events that invoke the scheduler.

Lemma 1 (Preemptions Under UA scheduler). During a given time interval, a job scheduled by

a UA scheduler can experience preemptions by other jobs at most the number of the scheduling

events that invoke the scheduler.

Lemma 1 helps compute the upper bound on the number of retries on lock-free objects for

our model. This is also true with other UA schedulers [22], because it is impossible for more

preemptions to occur than scheduling events. Especially, when lock-free synchronization and RUA

are considered, the scheduling events only include job arrivals and departures, but not lock and

unlock requests.

4.2 Bounding Retries

Under our model, jobs with TUF constraints arrive under the UAM, and there may not always be

enough CPU time available to complete all jobs before their critical times. We now bound lock-free

retries of RUA under this model.

Theorem 2 (Lock-Free Retry Bound Under UAM). Let jobs arrive under the UAM < 1, ai,Wi >

and be scheduled by RUA. When a job Ji accesses more than one lock-free object, Ji’s total number

of retries, fi, is bounded as:

fi ≤ 3ai +
N∑

j=1,j 6=i

2aj

(⌈
Ci

Wj

⌉
+ 1

)

where N is the number of tasks.



Proof. In Figure 7, Ji is released at time t0 and has the critical time (t0 + Ci). After the critical

time, Ji will not exist in the ready queue, because it will be either completed by that time or aborted

by RUA. Thus, by Lemma 1, the number of retries of Ji is bounded by the maximum number of

all scheduling events that occur within the time interval [t0, t0 + Ci]. The scheduling events that

Ji suffers can be categorized into those occurring from other tasks, Tj, j 6= i and those occurring

from Ti. We consider these two cases:

Figure 7: Interferences Under UAM

Case 1 (Scheduling events from other tasks): To account for the worst-case event occurrence

where the maximum number of scheduling events of Tj occurs within Wi, we assume that all

instances of Tj in the window W 1
j are released right after time t0, and all instances of Tj in the

window W 3
j are released before time (t0 + Ci). (In the proof, W k

j denotes the kth window of Tj .)

Thus, the maximum number of releases of Tj within [t0, t0+Ci] is dCi/Wje+1. It also holds when

Wj > Ci as dCi/Wje+ 1 = 2. All released jobs must be completed or aborted, so that the number

of scheduling events that a job can create is at most 2. Hence, aj (dCi/Wje+ 1) is multiplied by

2.

Case 2 (Scheduling events from the same task): In the worst case where the maximal schedul-

ing events by Ti occurs within Wi, all jobs of Ti are released and completed within [t0, t0 + Ci],

which results in at most 2ai events. Ti’s jobs, which are released during [t0 − Ci, t0] also cause

events within [t0, t0 + Ci] by completion. Thus, the total number of events that are possible is 3ai.

The sum of case 1 and case 2 is the upper bound on the number of events. It is also the

maximum number of total retries of Ji’s objects.

Note that fi has nothing to do with the number of lock-free objects in Ji in Theorem 2, even



when Ji accesses more than one lock-free object. This is because no matter how many objects Ji

accesses, fi cannot exceed the number of events. Further, even if Ji accesses a single object, the

retry can occur only as many times as the number of events.

Theorem 2 also implies that the sojourn time of Ji is bounded. The sojourn time of Ji is

computed as the sum of Ji’s execution time, the interference time7 by other jobs, the lock-free

object accessing time, and fi retry time.

5 Lock-Based versus Lock-Free

We now formally compare lock-based and lock-free sharing. As indicated in Section 4, we do

not consider nested critical sections. For an apples-to-apples comparison, we disallow nested

sections for lock-based RUA and exclude its deadlock detection mechanism. As described in

Section 3.6, doing so does not reduce the asymptotic cost of lock-based RUA, since that cost

hinges on algorithm steps other than deadlock detection (i.e., it depends on Step 5 in Section 3.6).

We formally compare lock-based and lock-free sharing in terms of job sojourn times. We do so,

as sojourn times directly determine critical time-misses and accrued utility. The comparison will

establish the tradeoffs between lock-based and lock-free sharing: Lock-free is free from blocking

times on shared object accesses and scheduler activations for resolving those blockings, while

lock-based suffers from these. However, lock-free suffers from retries, while lock-based does not.

We assume that all accesses to lock-based objects require r time units, and to lock-free objects

require s time units. The computation time ci of a job Ji can be written as ci = ui+mi×tacc, where

ui is the computation time not involving accesses to shared objects; mi is the number of shared

object accesses by Ji; and tacc is the maximum computation time for any object access—i.e., r for

lock-based objects and s for lock-free objects.

7Interference time of a task is the time that the task has to wait to get the processor for execution (since its arrival)

as the processor is busy executing other tasks (since those tasks were deemed by the scheduler as more eligible to

execute). Thus, for a task Ti, its interference time is the time spent on executing other tasks when task Ti is runnable.



The worst-case sojourn time of a job with lock-based is ui + Ii + r · mi + Bi, where Bi is

the worst-case blocking time and Ii is the worst-case interference time. In [27], it is shown that a

job Ji under RUA can be blocked for at most min(mi, ni) times, where ni is the number of jobs

that could block Ji and mi is the number of objects that can be used to block Ji. Thus, Bi can be

computed as r ·min(mi, ni). On the other hand, the worst-case sojourn time of a job with lock-free

is ui + Ii + s · mi + Ri, where Ri is the worst-case retry time. Ri can be computed as s · fi by

Theorem 2. Thus, the difference between r ·mi + Bi and s ·mi + Ri is the sojourn time difference

between lock-based and lock-free.

Based on the notation, we formally compare lock-based and lock-free sharing under our model.

Theorem 3 (Lock-Based versus Lock-Free Sojourn). Let jobs arrive under the UAM and be sched-

uled by RUA. If 



s
r

< 2
3
, when mi ≤ ni

s
r

< mi+ni

mi+3ai+2xi
, when mi > ni,

then Ji’s maximum sojourn time with lock-free is shorter than that with lock-based, where xi =
∑N

j=1,j 6=i aj

(⌈
Ci

Wj

⌉
+ 1

)
.

Theorem 3 states that no matter whether mi is greater than ni, s
r

< 1 is necessary for jobs to

obtain a shorter sojourn time under lock-free (since mi+ni

mi+3ai+2xi
is less than one when mi > ni).

Especially when mi ≤ ni, s
r

< 2/3 is sufficient for jobs to obtain a shorter sojourn time under

lock-free. Shorter sojourn times always yield higher utility with non-increasing TUFs, but not

always with increasing TUFs. However, it is likely to improve performance at the system-level

even with increasing TUFs, because each job can save more CPU time for other jobs.

We now describe the proof of the theorem.

Proof. Let X denote r ·mi + r ·min(mi, ni) and Y denote s ·mi + s ·fi to compare sojourn times.

ni is bounded by the total number of jobs that may happen during executing Ji so that ni is at most

2ai +
∑N

j=1,j 6=i aj (dCi/Wje+ 1) = 2ai + xi. We now search for the condition when lock-free

sharing yields shorter sojourn times than lock-based, which means X > Y . There are two cases:



Case 1: When mi ≤ ni, X becomes 2r ·mi. Y is s(mi + 3ai + 2xi). Therefore:

Y =
s

2r
X + s (3ai + 2xi) ,

where X = 2rmi ≤ 2rni ≤ 2r (2ai + xi). The condition that leads to X > Y can be derived

only when s
2r

< 1. Otherwise, Y is always greater than X , which means that the sojourn time

with lock-free objects is greater than that with lock-based objects. Assuming s
2r

< 1, X and Y

become the same when X = 2rs(3ai+2xi)
2r−s

. Hence, when 2rs(3ai+2xi)
2r−s

< X , X is greater than Y ,

where X ≤ 2r (2ai + xi). This leads to:

r

s
>

1

2
+

3ai + 2xi

2mi

.

Since mi ≤ 2ai + xi,

r

s
>

1

2
+

3ai + 2xi

2mi

≥ 1

2
+

3ai + 2xi

4ai + 2xi

≥ 3

2
− 1

4 + 2xi

ai

.

Therefore, the sufficient condition is r
s

> 3
2
.

Case 2: When mi > ni, X becomes r (mi + ni) and we can obtain Y = s
r
X+s (3ai + 2xi − ni).

To make X > Y , s
r

should be less than 1. Otherwise, the sojourn time of jobs with lock-based

objects is always less than that with lock-free objects. X converges to Y at X = rs(3ai+2xi−n)
r−s

.

Therefore,
rs (3ai + 2x− ni)

r − s
< r (mi + ni) .

This inequality leads to:
s

r
<

mi + ni

mi + 3ai + 2xi

.

This implies that s
r

< 1, since mi+ni

mi+3ai+2xi
< 1 considering ni ≤ 2ai + xi.

In [3], Anderson et al. show that s is often much smaller than r in comparison with the vast ma-

jority of lock-free objects in most systems, such as buffers, queues, and stacks. It also is known that

lock-free approaches work particularly well for such simple objects. On the other side, lock-free

approaches tend to become more expensive for complicated objects such as transactional memory.



Much smaller access time of lock-free approaches is in line with the results of our experiments in

Section 6, where we consider UAM arrival and RUA scheduling. Thus, lock-free sharing is very

attractive for UA scheduling as most UA schedulers’ object sharing mechanisms have higher time

complexity.

Theorem 3 does not reveal anything regarding aggregate system-level performance, but only

job-level performance. Since RUA’s objective is to maximize total utility, we now compare lock-

based and lock-free sharing in terms of accrued utility ratio (or AUR). AUR is the ratio of the

actual accrued total utility to the maximum possible total utility. The AURs of lock-based and

lock-free sharing under RUA are bounded as follows:

Lemma 4 (Lock-Free AUR). Let the ith task’s jobs arrive under the UAM, < li, ai,Wi >, and

be scheduled by RUA. If all jobs are feasible and their TUFs are non-increasing, then the AUR of

lock-free sharing, AUR, over time converges into:
∑N

i=1
li

Wi
Ui(ui + s ·mi + Ii + Ri)

∑N
i=1

li
Wi

Ui(0)
< AUR <

∑N
i=1

ai

Wi
Ui(ui + s ·mi)

∑N
i=1

ai

Wi
Ui(0)

,

where Ui(t) is task i’s utility at time t, and N is the number of tasks.

Proof. The AUR is computed as
∑N

i=1 ni · Ui(s
lf
i )/

∑N
i=1 ni · Ui(0), where slf

i is the sojourn time

of Ti and ni is the number of jobs of Ti completed within a time interval. Under UAM, ni is within

the range of [lib∆t
Wi
c, ai(d∆t

Wi
e+ 1)] in a time interval ∆t, i.e., lib∆t

Wi
c is the minimum possible jobs,

nmin
i , and ai(d∆t

Wi
e+1) is the maximum possible jobs, nmax

i , within ∆t under UAM. The AUR can

be rewritten as:

AUR =
n1U1(s

lf
1 )

∑N
i=1 niUi(0)

+ ... +
nNUN(slf

N)
∑N

i=1 niUi(0)
.

Each niUi(s
lf
i )/

∑N
i=1 niUi(0) is a increasing function of ni when ni > 0, and therefore, the max-

imum value of each ni yields the maximum AUR and the minimum value of each ni vice versa.

Thus,
nmin

i Ui(s
lf
i )

∑N
i=1 nmin

i Ui(0)
≤ niUi(s

lf
i )

∑N
i=1 niUi(0)

≤ nmax
i Ui(s

lf
i )

∑N
i=1 nmax

i Ui(0)
.



When a long time interval ∆t is considered, since nmax
i = ai(d∆t

Wi
e+ 1) < ai(

∆t
Wi

+ 2),

AUR <

∑N
i=1

ai

Wi
Ui(s

lf
i )

∑N
i=1

ai

Wi
Ui(0)

.

On the other hand, since nmin
i = lib∆t

Wi
c > li(

∆t
Wi
− 1),

∑N
i=1

li
Wi

Ui(s
lf
i )

∑N
i=1

li
Wi

Ui(0)
< AUR.

The sojourn time slf
i is within [ui + smi, ui + smi + Ii + Ri]. With the non-increasing TUFs, the

shortest possible sojourn time ui +smi yields the maximum AUR and the longest possible sojourn

time ui + smi + Ii + Ri yields the minimum AUR.

Lemma 5 (Lock-Based AUR). Let the ith task’s jobs arrive under the UAM, < li, ai,Wi >, and

be scheduled by RUA. If all jobs are feasible and their TUFs are non-increasing, then the AUR of

lock-based sharing, AUR, over time converges into:
∑N

i=1
li

Wi
Ui(ui + r ·mi + Ii + Bi)

∑N
i=1

li
Wi

Ui(0)
< AUR <

∑N
i=1

ai

Wi
Ui(ui + r ·mi)

∑N
i=1

ai

Wi
Ui(0)

,

where Ui(t) is task i’s utility at time t, and N is the number of tasks.

Proof. See the proof of Lemma 4 while replacing s, slf
i , and Ri with r, slb

i , and Bi respectively,

where slb
i denotes the sojourn time of Ti under lock-based sharing.

In the lock-free RUA, the steps (1) and (3) of RUA (Section 3.6) are entirely avoided, as job

dependencies do not exist. Further, the cost of step (2) is reduced to O(n), since there is no depen-

dency chain for a job. Finally, the cost of step (5) is also reduced to O(n2) since the dependency

chain is not present. Thus, the lock-free RUA costs O(n2) in total.

Note that our comparison of lock-free RUA against lock-based RUA is under no nested critical

sections. As discussed in Section 3.6, the cost of lock-based RUA without nested sections is still

O(n2logn).



6 Implementation Experience

We implemented lock-based and lock-free objects with RUA in the meta-scheduler scheduling

framework [18], which allows middleware-level real-time scheduling atop POSIX

RTOSs. Our motivation for implementation is to verify our analytical results. We used

the QNX Neutrino 6.3 RTOS running on a 500MHz, Pentium-III processor in our implemen-

tation, which provides an atomic memory-modification operation, the CAS (Compare-And-Swap)

instruction. In our study, we used queues, one of the common shared objects, to validate our

theorems. We used the lock-free queues introduced in [21] in our implementation.

6.1 Object Access Times, Critical Load

As Theorem 3 shows, the tradeoff between lock-based and lock-free sharing under RUA depends

upon the time needed for object access—i.e., lock-based object access time r, and lock-free ob-

ject access time s. We measure r and s with a 10 task set. Each measurement is an average of

approximately 2000 samples.
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Figure 8: Lock-Based and Lock-Free Shared Object Access Time

Figure 8 shows r and s under increasing number of shared objects accessed by jobs, not al-



lowing any nested critical section.8 From the figure, we observe that r is significantly larger than

s. This is because: (1) RUA’s lock-based mechanism is expensive, as shown in Section 3.6; and

(2) the meta-scheduler overhead is also playing a big role since

our meta-scheduler implementation is at the application level. (In [18], we experimentally

quantify the overhead of the meta-scheduler through a number of metrics.)

As the number of shared objects accessed by each job is increasing, r is increasing. Note that

r includes the time for lock-based RUA’s resource sharing mechanism.

When s << r, Theorem 3 implies that it increases the likelihood of satisfying the sufficient

condition under which lock-free is more likely to perform better than lock-based.

The impact of r and s on lock-based RUA’s and lock-free RUA’s performance, respectively,

can be measured by evaluating the load at which the schedulers miss task critical times. We

measure it using a metric called Critical time-Miss Load (or CML), which was originally defined

in [18] for the purpose of evaluating scheduler overhead. The CML of a scheduler is defined

as the approximate load after which the scheduler begins to miss task critical times. We define

approximate load (or AL) as AL =
∑n

i=1 ui/Ci, where ui is the task computation time excluding

object access time, and Ci is the task critical time.

Thus, the CML of an ideal EDF scheduler (without any overhead) is 1.0, as EDF is theoreti-

cally guaranteed to meet all deadlines (or critical times) during underloads and no dependencies.

Similarly, since RUA is equivalent to EDF during underloads and no dependencies, its CML is also

equal to 1.0 under those conditions. However, an actual implementation using the meta scheduler

framework [18] incurs certain overhead. Furthermore, the scheduler overhead tends to manifest

itself for jobs with short execution times. That is, shorter the job execution time, the lower is the

CML. Thus, the relationship between CML and average job execution time provides a way of eval-

uating the impact of r and s on lock-based RUA’s and lock-free RUA’s performance (and thus the

viability of particular implementations of those schedulers).

We exclude object access time in CML, because an ideal implementation of objects for syn-

8The error bar around each data point represents 95% confidence interval of that data point.



chronization must have negligibly small – almost zero — object access time. If so, the implemen-

tation is ideal in the sense that the scheduler’s performance with the (ideal) implementation is the

same as that under no object sharing. We call it, the “ideal RUA.”
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Figure 9: Critical Time Miss Load

We consider a task set of 10 tasks, accessing 10 shared queues, and measure the CML of lock-

free, lock-based, and ideal RUA under increasing average job execution times. Figure 9 shows the

results. We observe that lock-free RUA yields almost the same CML as that of ideal RUA, as it

exploits the eliminated blocking times and achieves almost the same performance of RUA without

object sharing. Note that the ideal queue and RUA achieve the CML of 1, only at ≈10usec of

average execution time. This is because of the algorithm’s overhead for scheduling. (RUA’s CML

of 1 is valid at zero job execution times when assuming no system overheads, which is not true in

practice.)

On the other hand, lock-based RUA’s CML converges to 1, only at ≈1 millisecond. This

is precisely because of lock-based RUA’s complex operations for resolving jobs’ contention for

object locks and consequent higher overhead, as manifested by its higher asymptotic complexity

and higher object access times in Figure 8.



6.2 Accrued Utility, Critical Time-Meets

We now measure the AUR and the critical-time-meet ratio (or CMR) of lock-free RUA and lock-

based RUA for average job execution times in the range of 30usec – 1000usec. CMR is the ratio of

the number of tasks that meet their critical times to the total number of task releases. We consider a

task set of 10 tasks, accessing 10 shared queues, arbitrarily. Each experiment is repeated to obtain

AUR and CMR averages from more than 5000 task arrivals. We consider two classes of TUF

shapes in this study: (1) a homogeneous class including just step shapes and (2) a heterogenous

class including step, parabolic, and linearly-decreasing shapes.

Figures 10 and 11 show the AUR and CMR of lock-based and lock-free RUA for step TUFs

and heterogenous TUFs, respectively, during underloads (AL =≈0.4), under increasing number of

shared objects. Figures 12 and 13 show similar results during overloads (AL = ≈1.1). 9
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Figure 10: AUR/CMR During Underload, Step TUFs

As expected, the figures show that lock-based RUA’s AUR and CMR sharply decreases, even-

tually reaching 0% during overloads, as the number of objects increases. This is because, as the

number of objects increases, greater number of task blockings’ occurs, due to the large r, resulting

in increased sojourn times, critical time-misses, and consequent abortions.

9In all figures in this section, the error bar around each data point represents 95% confidence interval of that data

point.
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Figure 11: AUR/CMR During Underload, Heterogeneous TUFs
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Figure 12: AUR/CMR During Overload, Step TUFs
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Figure 13: AUR/CMR During Overload, Heterogeneous TUFs



The performance of lock-free RUA, on the contrary, does not degrade as the number of objects

increases. During underloads, lock-free RUA achieves almost 100% AUR and CMR, whereas

during overloads, the algorithm achieves higher AUR by as much as ≈65% and higher CMR,

by as much as ≈80% than lock-based. This better performance is directly due to the short s of

lock-free objects, which results in few retries and thus reduced interferences.
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Figure 14: AUR/CMR During Increasing Readers, Heterogeneous TUFs

We repeated similar experiments as in Figures 10–13 for increasing number of reader tasks

(instead of increasing shared objects) and observed exact similar trends and consistent results.

Figure 14 shows a snapshot of these results (Heterogeneous TUFs, AL=0.1-1.1), further illustrating

lock-free RUA’s superiority over lock-based. We omit more results as they show the same trend

and consistency.

7 Conclusions

In this paper, we consider non-blocking synchronization for dynamic embedded real-time systems

that are subject to resource overloads and arbitrary activity arrivals. We consider lock-free syn-

chronization for the multi-writer/multi-reader problem that occurs in such systems. We establish

the tradeoffs between lock-free and lock-based object sharing under the UAM, including the con-

ditions under which activity timeliness utility is greater under lock-free than under lock-based,



and the lower and upper bound on their total utilities — the first such result. Our implementation

experience on a POSIX RTOS strongly validates our analytical results.

Future work includes extending the results to algorithms that provide activity-level timing as-

surances, the snapshot abstraction, and multiprocessor and distributed systems. In addition, the

nested sharing that allows tasks to hold multiple objects is a subject for future research.
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