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Taming the Contention in Consensus-based
Distributed Systems

Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and Binoy Ravindran

Abstract—Contention plays a crucial role in the design of consensus protocols. State-of-the-art solutions optimize their performance for
either very low or high contention situations. We propose CAESAR, a novel multi-leader Generalized Consensus protocol, most suitable
for geographical replication, that is optimized for low-to-moderate contention. With an evaluation study, we show that CAESAR

outperforms other multi-leader (e.g., EPaxos) and single-leader (e.g., Multi-Paxos) competitors by up to 1.7x and 3.5x, respectively, in the
presence of 30% conflicting requests, in a geo-replicated setting. Furthermore, we acknowledge that there is no one-size-fits- all
consensus solution, especially for all levels of contentious workloads. Thus, we also propose SPECTRUM, a consensus framework that is
able to switch consensus protocols at runtime to enable a dynamic reaction to changes in the workload and deployment characteristics.
We show empirically that SPECTRUM can guarantee high availability even during periods of transition between consensus protocols.
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F

1 INTRODUCTION

G EOGRAPHICALLY replicated services, namely those
where actors are spread across geographic locations and

operate on the same shared database, can be implemented in
an easier manner by exploiting underlying synchronization
mechanisms that provide strong consistency guarantees.
These mechanisms ultimately rely on implementations of
Consensus [1] to globally agree on sequences of operations
to be executed. Paxos [2], [3] is a very popular algorithm
for solving Consensus among participants interconnected
by asynchronous networks, even in presence of faults, and
it can be leveraged for building such robust and strongly
consistent services easily [4], [5], [6], [7], [8]. An example of
Paxos used in a production system is Google Spanner [4].

In the most deployed version of Paxos, Multi-Paxos [3], a
designated node is elected as the leader and is responsible for
deciding the order of client-issued commands. Multi-Paxos
solves consensus in only three communication delays, how-
ever, in practice, its performance is tied to the performance of
the leader, and this relation is particularly risky when Mulit-
Paxos is deployed in geo-scale because network delays can
be arbitrarily large and unpredictable [9]. In these settings,
the leader might be unreachable or often slow, thus causing
the slow down of the entire system.
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To overcome this limitation, protocols aimed at allowing
multiple nodes to operate as command leaders simultane-
ously [10], [11], [12] have been proposed. Such solutions
provide implementations of Generalized Consensus [13], a
variant of consensus generalized to agree on a common
order of non-commuting (or conflicting1 ) commands. These
approaches, despite avoiding the single-leader bottleneck,
suffer from other types of costs whenever a non-trivial
amount of conflicting commands (e.g., 5% – 40%) is proposed
concurrently as they do not rely on a unique point of decision.

CAESAR. This paper presents the first multi-leader im-
plementation of Generalized Consensus designed for main-
taining high performance in the presence of both mostly
non-conflicting workloads (named as such if less than 5% of
conflicting commands are issued) and conflicting workloads
(where at most 40% of commands conflict with each other).
For this reason, our solution is apt for geo-scale deployments.
More specifically, State-of-the-art implementations of Gener-
alized Consensus (e.g., EPaxos [10] andM2Paxos [14]) reduce
the minimum number of communication delays required to
reach an agreement from three to two in case a proposed
command does not encounter any contention (fast decision).
However, they fail in the following two aspects: they are not
able to minimize the latency as soon as some contention on
issued commands arises, with the consequence of requiring
a slow decision, which consists of at least four communication
delays; or they adopt complex conflict resolution mechanisms
to find the final order of commands, which results in a
noticeable bottleneck before delivery.

To address these aspects, we propose CAESAR, a con-
sensus protocol that deploys an innovative multi-leader
ordering scheme. As a high-level intuition, when a conflicting
command c is proposed, CAESAR seeks an agreement on
a common delivery timestamp rather than on its set of
conflicting commands, unlike existing solutions. To facilitate
this, a local wait condition is deployed to prevent commands

1. Contention is defined as the amount of conflicting commands
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conflicting with c from interfering with the decision process
of c if they have a timestamp greater than c’s.

The core idea behind the ordering process of CAESAR
is the following: a command is associated with a logical
timestamp by the sender, and when a quorum of nodes
confirms the timestamp’s validity, the command is ordered
after all the conflicting commands having a valid earlier
timestamp. Otherwise, the timestamp is considered invalid
and the command is rejected forcing it to undergo two more
communication delays (total of four) before being decided.
With this scheme, CAESAR boosts timestamp-based ordering
protocols, such as Mencius, by enabling the exploitation of
quorums, a fundamental requirement in geo-scale where
contacting all nodes is not feasible. Moreover, CAESAR does
not rely on a single designated leader, unlike Multi-Paxos.

Our approach also provides the benefit of a much simpler
and more parallel delivery of ordered commands compared
to EPaxos [10], a state-of-the-art approach that requires an
analysis of the dependency graphs. That is because, once
the delivery timestamp for a command is finalized, the
command implicitly carries with itself the set of predecessor
commands that have to be delivered before it. This so called
predecessors set is computed during the execution of the
ordering algorithm for the decision of the timestamp, and
not after the delivery of the command; therefore, no extra
local computation is needed.

We implemented CAESAR in Java and conducted an eval-
uation study using key-value store benchmark. We injected
different workloads by varying the percentage of conflicting
commands and measure various performance parameters.
As a testbed, we used the AWS EC2 infrastructure. We
contrasted CAESAR against: EPaxos [10] and M2Paxos [14],
multi-leader quorum-based Generalized Consensus imple-
mentations; Mencius [11], a multi-leader timestamp-based
protocol that does not rely on quorums in the fast path;
Multi-Paxos [2], a single-leader protocol. The results confirm
the effectiveness of CAESAR in providing fast decisions, even
in the presence of conflicting workloads, while competitors
slow down. Using workloads with a conflict percentage in
the range of 2% – 50%, CAESAR outperforms EPaxos, which
is the closest competitor in most of the cases, by reducing
latency as much as 60% and increasing throughput by 1.7×.

SPECTRUM. The evaluation of CAESAR and it’s competi-
tors (see § 3.5) concluded that the efficiency of leaderless
protocols depends on the contention level. In short, M2Paxos
and EPaxos are better suited in low contention, while CAE-
SAR is better under low-to-medium contention. Furthermore,
it was observed that these protocols could be outperformed
by single leader-based ones, e.g., Multi-Paxos, when the con-
tention is really high, since the complex mechanisms that are
adopted to establish the order of non-commuting commands
can result in a remarkable and expensive overhead [12], [14],
which a performance improvement cannot amortize even in
configurations where commands mostly commute.

We acknowledge that there is no one-size-fits-all consen-
sus protocol to address different workload and deployment
scenarios. CAESAR is no exception. Therefore, we propose
SPECTRUM, a novel, general consensus framework that pro-
vides a protocol-agnostic switching scheme that is powered
by an oracle to react to changing contention levels and
network latencies, by using the right consensus protocol

for that scenario. SPECTRUM can switch protocols online,
without any downtime, in a way completely oblivious to the
clients, and while tolerating faults.

We implemented and evaluated SPECTRUM by onboard-
ing the Multi-Paxos, CAESAR [15] and M2PAXOS protocols.
By injecting different conflicting workloads at runtime, we
show that SPECTRUM adds no overhead to the under-
lying consensus protocols during the time period when
the workload is stable; moreover, it is able to limit the
increase of user perceived latency when switching among
consensus protocols, compared to an off-the-shelf stop-and-
restart solution. SPECTRUM does not reject any command
during the switch, unlike the stop-and-restart solution which
causes a downtime of 3–4 seconds.

The main contributions of this work are:
• CAESAR, the first Generalized Consensus protocol to

provide fast decisions under moderate contention.
• SPECTRUM, a framework for transitioning consensus

protocols at runtime, while maintaining high availability.
The rest of this paper is organized as follows. Section 2

presents the system model. Section 3 overviews, details
and evaluates CAESAR. Section 4 motivates, describes, and
evaluates SPECTRUM and its switching mechanism. Section 5
describes related work and Section 6 concludes the paper.

2 SYSTEM MODEL

We assume a set of nodes Π = {p1, p2, . . . , pN} that commu-
nicate through message passing and do not have access to
either a shared memory or a global clock. Nodes may fail by
crashing but do not behave maliciously. A node that does
not crash is called correct; otherwise, it is faulty. Messages
may experience arbitrarily long (but finite) delays.

To circumvent the FLP [16] result, we assume that the
system can be enhanced with the weakest type of unreliable
failure detector [17] that is necessary to implement a leader
election service [18]. In addition, we assume that at least a
strict majority of nodes, i.e.,

⌊
N
2

⌋
+ 1, is correct. We name

classic quorum (CQ), or more simply quorum, any subset of Π
with size at least equal to

⌊
N
2

⌋
+1. We name fast quorum (FQ)

any subset of Π with size at least equal to
⌈

3N
4

⌉
(derived

by minimizing CQ). Some protocols like CAESAR require a
fast quorum to achieve fast decisions in two communication
delays, while a classic quorum is required whenever the
protocol needs more than two communication delays to
reach a decision.

We follow the definition of Generalized Consensus [13]:
each node can propose a command c via the PROPOSE(c)
interface, and nodes decide command structures C-struct cs
via the DECIDE(cs) interface. The specification is such that:
commands that are included in decided C-structsmust have
been proposed (Non-triviality); if a node decided a C-struct
v at any time, then at all later times it can only decide v • σ,
where σ is a sequence of commands (Stability); if c has been
proposed then c will be eventually decided in some C-struct
(Liveness); and two C-structs decided by two different nodes
are prefixes of the same C-struct (Consistency). Note that the
symbol • is the append operator as defined in [13].

For simplicity of the presentation, we also use the notation
DECIDE(c) for the decision of a command c at any node,
with the following semantics: the sequence of k consecutive
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(a) The non-commutative commands c and c̄ are executed only after a
quorum of nodes receives them. A total order of the commands is not
enforced in this case, since commands are submitted via fault-tolerant
broadcast.
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(b) The non-commutative commands c and c̄ are executed only after
a quorum of nodes receives them. A total order of the commands is
enforced in this case: c̄ is executed after c on all nodes, since T = 0 <
T̄ = 4, and timestamp are received in order by p2.

Fig. 1. Fault-tolerant broadcast execution vs. CAESAR execution

calls of DECIDE(c1) • DECIDE(c2) • · · · • DECIDE(ck) is
equivalent to the call of DECIDE(c1 • c2 • · · · • ck).

We say that two commands c and c̄ are non-commutative,
or conflicting, and we write c ∼ c̄, if the results of the
execution of both c and c̄ depend on whether c has been
executed before or after c̄. It is worth noting that, as specified
in [13], two C-structs are equal if they order conflicting
commands in the same way.

3 CAESAR

In this section, we present CAESAR, a protocol to solve con-
sensus efficiently in low-to-moderate contention scenarios.
We begin by providing an overview of the protocol, followed
by a detailed algorithm description and evaluation.

3.1 Overview

We introduce CAESAR incrementally by starting from a
base protocol, which only provides reliable broadcast of
commands, and then we present the design of the final
protocol, which implements Generalized Consensus. We
consider the first protocol as a reference point to show
the minimal costs that are required to implement our
specification of Consensus, and we explain how CAESAR
is able to maximize the probability to execute with the same
number of communication steps as the reference protocol.
Section 3.4 provides the details of CAESAR.

A necessary condition for implementing both a reliable
broadcast protocol and the consistency property of CAESAR
is guaranteeing that if a command is delivered to a (correct
or faulty) node, then it is eventually delivered to any correct
node. This is because whenever a command is executed by
a node and the result externalized to clients, the command
must be durable in the system despite crashes.

The base protocol executes as shown in Figure 1(a). When
a client proposes a command c to the system via the interface
PROPOSE(c), the protocol chooses a node to be c’s leader, p0

in this case, which broadcasts a PROPOSE message with c to
all nodes. Afterwards, whenever c’s leader collects a quorum
of OK replies for c, it broadcasts a STABLE message for c
in order to allow all nodes (including the leader itself) to
deliver and execute c (thick arrows in Figure 1(a)).

The base protocol is fault-tolerant because whenever c is
delivered and executed on some node, one of the following

conditions is true, regardless of the crash of f nodes: if c’s
leader does not crash, eventually any other correct node
receives the STABLE message for c; or if c’s leader crashes,
there always exists at least one correct node that received the
PROPOSE message for c, so it can take over the crashed leader
by re-executing the protocol for c. Moreover, the scheme
adopted by the base protocol needs two communication
delays: one for the PROPOSE message and one for the OK
messages, to return the result of an execution to a client.
Two communication delays are the minimum required to
implement consensus in an asynchronous system [19].

The base protocol does not implement Generalized Con-
sensus because it does not enforce any order on the delivery
of non-commutative commands. In fact, two concurrent
commands, c and c̄, can be delivered and executed in any
order by different nodes, regardless of their commutativity
relation. CAESAR implements the specification of Generalized
Consensus by building a novel timestamp-based mechanism
on top of the base protocol to enforce a total order among
non-commutative commands. We still rely on Figure 1 for
showing the intuition. Command c is associated with a
unique logical timestamp T (see Section 3.4.1 for the times-
tamp assignment), and it can be delivered and executed only
after a quorum of nodes confirms that no other command c̄
with timestamp T̄ , where c̄ ∼ c and T̄ > T , will be executed
before c. Note that in this section we do not distinguish
between fast and classic quorums, although in Section 3.4
we explain that a fast quorum is required at this stage due to
the lower-bound defined in [19]. Here, we assume c’s leader
does not fail or is suspected; the case of faulty leaders is
discussed in Section 3.4.5.

Figure 1(b) shows how CAESAR applies this idea to the
execution of Figure 1(a). Node p0 broadcasts c by proposing
it with timestamp 0; then a quorum of nodes confirms c
since none of those nodes has already received c̄ with a
timestamp greater than 0. The confirmation from a process
pj is sent via anOKmessage, which, unlike the base protocol,
includes a predecessors set Predj of the commands observed
by pj , and that should precede c. When p4 broadcasts c̄ with
timestamp 4, it receives a quorum of replies from p2, p3, p4,
which confirms that c̄ can be executed with timestamp 4
and only after c has been executed. This happens because
p2 already observed c at the time it received c̄ (see circle
in Figure 1(b)), and it included Pred2 = {c} in the OK
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(a) p2 sends an OK message for c at timestamp T = 0 because c is in
the predecessors set of c̄, and c̄ is decided at timestamp T̄ = 4.
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(b) p2 rejects c at timestamp T = 0 because c is not in the predecessors
set of c̄, and c̄ is decided at timestamp T̄ = 4. c is decided at timestamp
5 after a retry.

Fig. 2. Execution of the wait condition in CAESAR due to out of order reception of non-commutative commands on node p2. Command c waits for
command c̄ to be stable on node p2, since c’s timestamp T has been received after c̄’s timestamp T̄ , and T = 0 < T̄ = 4.

message for c̄. A command leader can broadcast the STABLE
message as soon as it receives a quorum of OK messages
for that command, and it also includes the timestamp and
the set Pred, which is the union of the predecessors sets
received in the OK messages. Therefore, in CAESAR, unlike
the base protocol, a node can execute c when it receives the
STABLE message for c and only after it has executed all the
commands in c’s Pred.

As shown in Figure 1(b), a command’s leader in CAESAR
guarantees a fast decision in two communication delays
as long as the proposed timestamp is confirmed by a
quorum of nodes and despite the non-uniform replies that
it collected (the set of predecessors collected by p4 for c̄
is different). This also constitutes a significant difference
between CAESAR and other state-of-the-art Generalized
Consensus implementations, e.g., EPaxos, which require
at least two additional communication delays before the
execution of c̄ in the example of Figure 1(b).

In the following, we answer two questions: what does a
node do if it observes out of order timestamps (Section 3.2)?
How does a command’s leader behave if a node in the
replying quorum rejects a proposed timestamp (Section 3.3)?

3.2 Out of Order Timestamps
Let us now consider the scenario in Figure 2(a), where, unlike
the one in Figure 1, node p2 receives the PROPOSE for c after
having received the one for c̄ (see the circle on p2). In this
case, p2 cannot directly send an OK message for c, because
T = 0 < T̄ = 4, and c̄ could be finally decided at timestamp
T̄ without ever considering c as its predecessor, and hence
be executed before c, with a resulting violation of the order
of the timestamps. On the other hand, sending a rejection for
c would require additional communication delays, because
c’s leader would be forced to retry the decision procedure
with a new timestamp. This overhead is unnecessary if c was
received before c̄ on another node, which could be part of
the quorum of replies to c̄’s leader.

In this case, CAESAR enforces a wait condition for c on
p2 (bar labelled wait along p2’s timeline in Figure 2(a)) in
order to prevent the execution of any step for c until p2

receives the final decision for c̄. Afterwards, if the final
decision for c̄ includes c in c̄’s Pred, p2 can reply with
an OK message to c’s leader. As a result, CAESAR is able
to increase the probability of deciding commands in two
communication delays even in the case of out of order
reception of timestamps. Note that the wait condition does

not cause deadlock since only commands with a lower
timestamp, e.g., c, wait for the final decision of conflicting
commands with a higher timestamp, e.g., c̄.

3.3 Rejection of Timestamps

In case a node cannot confirm a timestamp T proposed for a
command c, it sends a rejection NACK to c’s leader, forcing
the leader to retry c with a timestamp greater than T . This is
the case of Figure 2(b), where p2 rejects T = 0 for c because
it already received the STABLE message for c̄ with timestamp
T̄ > T and c is not in c̄’s Pred. p2 also sends back the set of
commands that caused the rejection (i.e., c̄) to aid in choosing
the next timestamp for c.

In CAESAR, if a command’s leader receives at least one
NACK message for the proposed command c, it assigns a
new timestamp Tnew greater than any suggestion received
in the NACK messages, and it broadcasts a RETRY message
to ask for the acceptance of Tnew to a quorum of nodes. Note
that if a node sends a NACK message for a command c to
c’s leader, it means that c’s leader would receive at least a
NACK message for c from any other quorum due to the way
a command rejection is computed (see Section 3.4).

The RETRY message also contains the predecessors set
Pred, which is computed as the union of predecessors
received in the quorum of replies from the previous phase, as
the case of Section 3.2. Therefore, in Figure 2(b), p0 broadcasts
the RETRY with timestamp Tnew = 5 and Pred = {c̄} for c.

Retrying a command with a new timestamp does not
entail restarting the procedure from the beginning. In fact,
unlike the case of a PROPOSE message, CAESAR guarantees
that a RETRY message can never be rejected (see Sections 3.4.3
and 4.3). Such a guarantee ensures starvation-free agreement
of commands. The reply to a RETRY message for c could
contain a set of additional predecessors that were not
received by c’s leader during the previous communication
phase. This set is sent along with the STABLE message for c.

3.4 Protocol Details

A command c that is proposed to CAESAR can go through
four phases before it gets decided and the outcome of its
execution is returned to the client. CAESAR schedules the
execution of those four phases in order to provide two modes
of decision, called fast decision and slow decision.

A command c is proposed by one of the nodes, which
assumes the role of c’s leader and coordinates the decision
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of c by starting the fast proposal phase. If this phase returns
a positive outcome after having collected replies from a
quorum of FQ nodes, the leader can execute the final stable
phase, which finalizes the decision of c as a fast decision, with
a latency of two communication delays. Otherwise, if the fast
proposal phase returns a negative outcome, the leader executes
an additional retry phase, in which it contacts a quorum of
CQ nodes, before issuing the final stable phase. This results in
a slow decision, with a latency of four communication delays.

In this section we describe CAESAR by detailing the
required data structures in Section 3.4.1, the procedure for
a fast decision in Section 3.4.2, the procedure for a slow
decision in Section 3.4.3, and the behavior of the protocol in
case of failures in Section 3.4.5. We also explain how CAESAR
behaves in case a leader is not able to contact a fast quorum
of nodes during the execution of the fast proposal phase for
a command, as long as no more than f nodes crash. This
case entails the execution of an additional slow proposal phase
after the fast proposal phase and before the remaining retry
and stable phases. This part is overviewed in Section 3.4.4 and
detailed in the technical report [20].

In Figure 4 we provide the main pseudocode of CAESAR
for the decision of a command c. Each horizontal block of
the figure is a phase, and phases are linked through arrows
to indicate the transition from one phase to another. For
instance, in case of fast decision, we have a transition from the
fast proposal phase to the stable phase; on the other hand all
the other transitions are part of a slow decision. Moreover, the
pseudocode is vertically partitioned in order to distinguish
the part that is executed by the command c’s leader and the
part that can be executed by any node (including the leader);
it is also named as acceptor following the Generalized
Consensus framework. Finally, the pseudocodes of auxiliary
functions and the recovery from a failure are provided in
Figures 3 and 5, respectively.

3.4.1 Data Structures per node pi
T Si. It is a logical clock with monotonically increasing values
in a totally ordered set of elements, and it is used to generate
timestamps for the commands that are proposed by pi. Its
value at a certain time is greater than the timestamp of any
command that has been handled by pi before that time.

We assume that whenever pi sends a command, T Si
is updated with a greater value and used as timestamp T
for the command. Also, whenever pi receives a command
with timestamp T , it updates its T Si with a value that is
greater than T , if T ≥ T Si. We also assume that for any
two T Si and T Sj , of pi and pj respectively, the value of
T Si is different from the value of T Sj at any time. This is
guaranteed by choosing the values of T Si (T Sj , respectively)
in the set {〈k, i〉 : k ∈ N} ({〈k, j〉 : k ∈ N}, respectively). The
total order relation on those values is defined as follows:
for any two 〈k1, i〉, 〈k2, j〉, we have that 〈k1, i〉 < 〈k2, j〉 ⇔
k1 < k2 ∨ (k1 = k2 ∧ i < j). The initial value of T Si is 〈0, i〉.
Hi. It is the data structure recording the status of

commands seen by pi. It is represented as a map of tuples
of the form 〈c, T ,Pred, status,B, forced〉 where: c is a
command; T is the latest timestamp of c; Pred is the set
of commands that should precede c in the final decision;
status is the current status of c, and it has values in the set
{fast-pending, slow-pending, accepted, rejected, stable};

B is the ballot number associated with this event, and it has
values in N; and forced is a boolean variable with values in
{>,⊥}, and it indicates if the info associated with this event
(e.g., Pred) has been forced by a recovery procedure.

Each tuple inHi is uniquely identified by the first element
of the tuple, i.e., the command, and thus Hi contains at most
one tuple per command. For a more compact representation,
we use “−” as the wildcard symbol whenever we are not
interested in the value of a specific element of a tuple.

We also use the following notations: Hi.UPDATE(c, T ,
Pred, status, B, forced) to indicate that the protocol ap-
pends the tuple 〈c, T ,Pred, status,B, forced〉 to Hi, by
first possibly deleting any existing tuple 〈c,−,−,−,−,−〉
from Hi; Hi.GET(c) to indicate that the protocol retrieves
a tuple associated with the command c in Hi; and
Hi.GETPREDECESSORS(c) to indicate that the protocol re-
trieves the set Pred of a tuple 〈c,−,Pred,−,−,−〉 in Hi.
The initial value of Hi is an empty map.
Ballotsi. It is an array mapping commands to ballots,

which have values in N. Ballotsi[c] = B means that B is the
current ballot for which pi has processed an event related to
command c. The initial values of Ballotsi are 0.

3.4.2 Fast Decision
A client proposes a command c by triggering the event
PROPOSE(c) on one of the nodes of CAESAR (lines I1–I2),
which becomes c’s leader. Let us call this node pi. pi enters
the fast proposal phase for c by choosing the current value
of T Si as timestamp T ime of c. The other parameters of
this phase are the ballot number Ballot and the whitelist
Whitelist whose values, in this case, are 0 and empty set,
respectively. The meaning of these parameters is strictly
related to the recovery procedure due to node failures, and
therefore we will provide further details in Section 3.4.5.
However, at this stage, it is enough to know that:
- a ballot number for c is an identifier of the current leader

for c, and a node pj receiving a message with ballot number
B can process that message only if its current ballot, i.e.,
Ballotsj [c], for c is not greater than B.

- Whitelist for c contains the commands that should be
considered as predecessors of c according to the perception
of the node that is executing a recovery procedure for c.

Fast proposal phase. The purpose of the fast proposal phase
for a command c with a timestamp T ime is to propose,
to a quorum of nodes, the acceptance of c at T ime and
collect, from that quorum, the known predecessor set Pred of
commands c̄ that should be decided before c at a timestamp
less than T ime. To do so, pi broadcasts a FASTPROPOSE
message with c and T ime, and it collects FASTPROPOSER
messages from a quorum of nodes (lines P1–P2).

When a node pj receives a FASTPROPOSE message with c
and T ime, it computes the predecessor set Predj by calling
the COMPUTEPREDECESSORS function (line P13) and updates
the entry for c in Hj by marking that as fast-pending
with T ime and Predj (line P14), and it calls the function
WAIT (line P15) to check the wait condition, as described
in Section 3.2. pj also stores in Hj whether the value of
Whitelist is different from null or not (line P14).

A FASTPROPOSER message for c from a node pj contains
a timestamp T imej and a predecessor set Predj , and it
can be marked with either OK or NACK. If the message is
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1: function Set COMPUTEPREDECESSORS(c, T ime,Whitelist)
2: return {c̄ : c̄ ∼ c ∧(
Whitelist = null⇒ ∃〈c̄, T̄ ,−,−,−,−〉 ∈ Hj : T̄ < T ime

)
∧

(Whitelist 6= null⇒ c̄ ∈ Whitelist ∨ ∃〈c̄, T̄ ,−,
slow-pending/accepted/stable,−,−〉 ∈ Hj : T̄ < T ime) }

3: function Boolean WAIT(c, T ime)
4: wait until ∀〈c̄, T̄ ,Pred,−,−,−〉 ∈ Hj , (c̄ ∼ c ∧ T ime < T̄ ∧

c 6∈ Pred⇒ ∃〈c̄, T̄ ,Pred, accepted/stable,−,−〉 ∈ Hj)
5: if ∃〈c̄, T̄ ,Pred, accepted/stable,−,−〉 ∈ Hj :

c̄ ∼ c ∧ T ime < T̄ ∧ c 6∈ Pred then
6: return NACK
7: else return OK
8: function BREAKLOOP(c)
9: 〈c, T ,Pred, stable,B,⊥〉 ← Hj .GET(c)

10: for all c̄ ∈ Pred : 〈c̄, T̄ ,Pred, stable,B,⊥〉 ∈ Hj ∧ T̄ < T do
11: Hj .UPDATE(c̄, T̄ , Pred \ {c}, stable, B, ⊥)
12: for all c̄ ∈ Pred : 〈c̄, T̄ ,Pred, stable,B,⊥〉 ∈ Hj ∧ T̄ > T do
13: Pred← Pred \ {c̄}
14: Hj .UPDATE(c, T , Pred, stable, B, ⊥)
15: function Boolean DELIVERABLE(c)
16: return (c ∪Hj .GETPREDECESSORS(c)) ⊆ Decidedj

Fig. 3. Auxiliary functions - node pj

marked withOK, then T imej is equal to the proposed T ime,
by meaning that pj did not reject T ime. On the contrary, if
the message is marked with NACK, then T imej is greater
than T ime meaning that pj rejected T ime and suggested a
greater timestamp for c. In both cases, whether T ime has
been rejected or not, the predecessor set Predj contains all
the commands c̄ that should be decided before c according
to the current knowledge of pj .

WAIT (see lines 3–7 of Figure 3) forces c to wait for
any command c̄ in Hj that does not commute with c to be
marked with either accepted or stable, if c̄’s timestamp is
greater than c’s timestamp and c is not in c̄’s predecessor
set. Afterwards, when the wait condition does not hold
anymore, WAIT returns NACK in case there still exists such
a command c̄, with status either accepted or stable; otherwise
the function returns OK.

If WAIT returns OK, then pj sends T ime and the com-
puted Predj back to c’s leader by confirming what the leader
proposed (line P20). Otherwise, if WAIT returnsNACK (lines
P16–P20), pj rejects the proposed timestamp by: marking the
tuple of c in Hj as rejected, suggesting the current value
of T Sj as a new timestamp for c, and recomputing the
predecessor set according to the new timestamp.

The predecessor set Predj of c is computed as the set of
commands c̄ in Hj that do not commute with c and have a
timestamp smaller than c’s timestamp, with the following
exception (see lines 1–2 of Figure 3): if theWhitelist in input
is not null and c̄ is not contained inWhitelist, then c̄ has to
appear with a status that is different from fast-pending in
Hj in order to be included in Predj .

In case of a fast decision (see FastDecision transition in
Figure 4), the command leader pi is able to collect a fast
quorum of FQ replies that do not reject T ime for c (line P5).
It then submits c with the confirmed T ime and the union
of the received predecessor sets, i.e., Pred, to the next stable
phase (lines P3–P4 and P6).

Note that unlike other multi-leader consensus proto-
cols [10], [13], a fast decision in CAESAR is guaranteed in
case a fast quorum confirms the timestamp for a command,
although those nodes can reply with non-equal predecessors
sets. In the correctness proof of CAESAR (see Section 3.4.6),

we show that such a condition is sufficient to guarantee
the recoverability of the fast decision for c even in case the
command leader and at most other f − 1 nodes crash.
Stable phase. The purpose of the stable phase for a command
c with a timestamp T ime and predecessor set Pred is to
communicate to all the nodes, via a STABLE message, that c
has to be decided at timestamp T ime after all the commands
in Pred have been decided (line S1). In particular, whenever
a node pj receives a STABLE message for c, with T ime and
set Pred (lines S2–S7), it updates the tuple for c in Hj with
the new values and marks the tuple as stable (line S3).

Whenever each command in Pred has been decided
(lines 16–17 of Figure 3), pj can decide c by triggering
DECIDE(c) (lines S5–S7). This is correct because, as we prove
in Section 3.4.6, the phases executed before the stable phase
guarantee that for any pair of stable and non-commutative
commands c and c̄, with timestamps T ime and T ime
respectively, if T ime < T ime then c̄ ∈ Pred, where Pred
is the predecessor set of c. Therefore, the decision order of
non-commutative commands is guaranteed to follow the
increasing order of the commands’ timestamps. However,
this does not mean that if c̄ ∈ Pred, then T ime < T ime.
Hence the stable phase has to take care of breaking any
possible loop that might be created by the predecessor sets of
the stable commands, before trying to deliver them (line S4
and lines 9–15 of Figure 3). That is done as follows: for any
two stable and non-commutative commands c and c̄ with
timestamps T and T̄ , respectively, if T̄ > T then c̄ is deleted
from c’s predecessor set.

When a command c is stable on all nodes, the information
about c can be safely garbage collected.

3.4.3 Slow Decision
In case the leader of a command c cannot guarantee a
fast decision for c, then it has to execute additional phases
before the finalization of the stable phase for c. This happens
because in the fast proposal phase for c (lines I1–I2, P1–P4,
and P11–P20), the command leader cannot collect a fast
quorum of FASTPROPOSER messages that are all marked
with OK (lines P7–P10) due to the following reasons: the
fast quorum of collected FASTPROPOSER messages actually
includes a message that rejects the proposed timestamp for c
and is marked with NACK (lines P7–P8, and R1–R8); or the
leader is only able to collect a quorum of CQ FASTPROPOSER
messages (lines P9–P10), because either there are no FQ
correct nodes in the system or the other N − CQ nodes are
too slow to provide their reply within a configurable timeout
to the command leader (line P2). In this subsection, we refer
to a slow decision by focusing on the former case; the latter is
explained in Section 3.4.4.
Retry phase. This phase guarantees that a command c is
accepted by a quorum of CQ nodes after the previous proposal
phase for c could not provide a fast decision, and before
moving to the stable phase for c. At this stage, the leader
pi of c broadcasts a RETRY message with the maximum
T ime among the ones suggested by the acceptors in the
previous phase, and the predecessor set Pred as the union
of the sets suggested by the acceptors in the previous phase
(line R1). Then pi waits for a quorum of CQ RETRYR replies
that confirm the timestamp T ime for c (line R2), before
submitting T ime to the next stable phase (line R4). This
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Fast Proposal Phase

FastDecision(c, Ballot, Time, Pred)

SlowDecisionFromRetry(c, Ballot, Time, Pred)

Command Leader

Retry Phase

Stable Phase

P1:
P2:

P3:

P4:

P5:

P6:

P9:
P10:

P11:
P12:
P13:
P14:
P15:
P16:
P17:
P18:
P19:

P20:

I1:
I2:

R1:
R2:
R3:
R4:

R5:
R6:
R7:
R8:

S1:

Acceptors

S2:
S3:
S4:
S5:
S6:
S7:

Algorithm 1 Proposal, Retry, and Stable phases.

1: Propose(c)
2: T ime T Si

3: FastProposalPhase(c, 0, T ime, null)

4: FastProposalPhase(c, Ballot, T ime, Whitelist)
5: send FastPropose[c, Ballot, T ime, Whitelist] to all pj 2 ⇧
6: receive FastProposeR[c, Ballot, T imej , Predj , OK/NACK]

from all pj 2 S ✓ ⇧ : |S| = FQ _ (timeout ^ |S| = CQ)
7: T ime MAXj{T imej : pi received

FastProposeR[c, Ballot, T imej , Predj , OK/NACK] from pj}
8: Pred S

j Predj : pi received
FastProposeR[c, Ballot, T imej , Predj , OK/NACK] from pj

9: if |S| = FQ ^ @j : pi received
FastProposeR[c, Ballot, T imej , Predj , NACK] from pj then

10: StablePhase(c, Ballot, T ime, Pred)
11: else if 9j : pi received

FastProposeR[c, Ballot, T imej , Predj , NACK] from pj then
12: RetryPhase(c, Ballot, T ime, Pred)
13: else
14: SlowProposalPhase(c, Ballot, T ime, Pred)

15: SlowProposalPhase(c, Ballot, T ime, Pred)
16: send SlowPropose[c, Ballot, T ime, Pred] to all pj 2 ⇧
17: receive SlowProposeR[c, Ballot, T imej , Predj , OK/NACK]

from all pj 2 S ✓ ⇧ : |S| = CQ
18: T ime MAXj{T imej : pi received

SlowProposeR[c, Ballot, T imej , Predj , OK/NACK] from pj}
19: Pred S

j Predj : pi received
SlowProposeR[c, Ballot, T imej , Predj , OK/NACK] from pj

20: if @j : pi received
SlowProposeR[c, Ballot, T imej , Predj , NACK] from pj then

21: StablePhase(c, Ballot, T ime, Pred)
22: else
23: RetryPhase(c, Ballot, T ime, Pred)

24: RetryPhase(c, Ballot, T ime, Pred)
25: send Retry[c, Ballot, T ime, Pred] to all pj 2 ⇧
26: receive RetryR[c, Ballot, T ime, Predj ] from all pj 2 S ✓ ⇧ : |S| = CQ
27: Pred S

j Predj : pi received RetryR[c, Ballot, T ime, Predj ] from pj

28: StablePhase(c, Ballot, T ime, Pred)

29: StablePhase(c, Ballot, T ime, Pred)
30: send Stable[c, Ballot, T ime, Pred] to all pj 2 ⇧

2

P7:

P8:

Fig. 4. CAESAR’s pseudocode. The left part is executed by the command c’s leader pi, and the right part can be executed by any acceptor pj
(including pi).

guarantees that, even with f failures, there always exists
a correct node that confirmed T ime in this phase.

It is important to notice that as in the case of a FAST-
PROPOSER message, a RETRYR message from a node pj also
contains pj ’s view of c’s predecessors set, which will be
included in the final Pred set in input to the next stable phase
(line R3). This is because, as shown in Section 3.3, c’s leader
has to include all the commands that were not predecessors
of c according to the timestamp proposed in the previous
proposal phase but that have to be considered as predecessors
according to the new timestamp of this phase.

Furthermore, a reply from an acceptor in this phase
cannot reject the broadcast timestamp for c, because, as it
will be clear in the proof of correctness (see Section 3.4.6),
at this stage CAESAR guarantees that there does not exist
any acceptor pj and command c̄ such that c̄ is stable on pj
with timestamp T̄ > T and c is not in c̄’s predecessors set.
Therefore, when a node pj receives a RETRYR message with
c, T ime, and Pred, it only updates the tuple for c in its Hj

by marking it as accepted with T ime and Pred (line R5),
and it computes a new predecessors set Predj by calling the
COMPUTEPREDECESSORS function (line R7), like in the fast
proposal phase. Then, it sends a confirmation RETRYR back to
the command leader with the new Predj as well as the one
previously received by the leader (line R8).

3.4.4 Unavailability of Fast Quorums

In CAESAR, as in other fast consensus implementations [10],
there might exist scenarios where no fast quorum is available.
This happens due to our choice on the size of fast quorums,
i.e., FQ, which is greater than the minimum number of
correct nodes in the system, i.e., N − f . Therefore, under a
period of asynchrony of the system, where a message can
experience an arbitrarily long delay, a node is not able to
distinguish whether f nodes crashed or not, and hence a
command leader that waits for replies from a fast quorum of
nodes could wait indefinitely in a fast proposal phase.

This issue is solved in CAESAR by adopting a more
common solution, namely the adoption of timeouts, but
it requires the interposition of an additional slow proposal
phase after the fast proposal phase and before either the retry or
the stable phase. In particular, a command leader can decide
to execute a slow proposal phase without waiting for a fast
quorum of FQ replies if it has collected a quorum of CQ
FASTPROPOSER messages for a command c and none of
the messages have rejected the proposed timestamp (P9–
P10).This scenario can be considered as a corner case of
CAESAR’s execution and thus, for the sake of brevity, we
decided to detail it in the technical report [20].
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3.4.5 Recovery from Failures
Whenever a node pi crashes, there might exist some com-
mand c whose leader is pi and whose decision would never
be finalized unless some explicit action is taken. Indeed, let
us suppose there exists a node pk that stores c with a status
different from stable. Then, according to the pseudocode of
Figure 4, pk would decide c only after having received a
STABLE message from pi.

1: RECOVERYPHASE(c)
2: Ballotsk[c]++
3: send RECOVERY[c, Ballotsk[c]] to all pj ∈ Π
4: receive RECOVERYR[c, Ballotsk[c], 〈c, Tj ,Predj ,−,Bj ,⊥/>〉/
NOP] from all pj ∈ S ⊆ Π : |S| = CQ

5: MaxBallot←MAX{Bj : pi received
RECOVERYR[c, Ballotsk[c], 〈c, Tj ,Predj ,−,Bj ,⊥/>〉] }

6: RecoverySet← {〈pj , Tj ,Predj ,−,⊥/>〉 : pi received
RECOVERYR[c, Ballotsk[c], 〈c, Tj ,Predj ,−,Bj ,⊥/>〉]

from pj ∧ Bj =MaxBallot }
7: if ∃ 〈pj , Tj ,Predj , stable,⊥〉 ∈ RecoverySet then
8: STABLEPHASE(c, Ballotsk[c], Tj , Predj )
9: else if ∃ 〈pj , Tj ,Predj , accepted,⊥〉 ∈ RecoverySet then

10: RETRYPHASE(c, Ballotsk[c], Tj , Predj )
11: else if ∃ 〈pj , Tj ,Predj , rejected,⊥〉 ∈ RecoverySet then
12: T ime← T Si

13: FASTPROPOSALPHASE(c, Ballotsk[c], T ime, null)
14: else if ∃ 〈pj , Tj ,Predj , slow-pending,⊥〉 ∈ RecoverySet then
15: SLOWPROPOSALPHASE(c, Ballotsk[c], Tj , Predj )
16: else if |RecoverySet| > 0 then
17: T ime← Tj :

∃〈pj , Tj ,Predj , fast-pending,⊥/>〉 ∈ RecoverySet
18: Pred←

⋃
j Predj :

〈pj , Tj ,Predj , fast-pending,⊥/>〉 ∈ RecoverySet
19: if ∃ 〈pj , Tj ,Predj , fast-pending,>〉 ∈ RecoverySet then
20: WhiteList← Pred
21: else if |RecoverySet| ≥

⌊ CQ
2

⌋
+ 1 then

22: WhiteList ← {c̄ ∈ Pred : @S ⊆ RecoverySet, |S| ≥⌊ CQ
2

⌋
+ 1 ∧ ∀〈pj , Tj ,Predj , fast-pending,⊥〉 ∈ S, c̄ 6∈ Predj }

23: else
24: WhiteList← null
25: FASTPROPOSALPHASE(c, Ballotsk[c], T ime,WhiteList)
26: else
27: T ime← T Si

28: FASTPROPOSALPHASE(c, Ballotsk[c], T ime, null)
29: upon receive RECOVERY[c, Ballot] from pk ∧ Ballot > Ballotsj [c]
30: Ballotsj [c]← Ballot
31: ifHj .CONTAINS(c) then
32: send RECOVERYR[c, Ballotsj [c],Hj .GETINFO(c)] to pk

33: else
34: send RECOVERYR[c, Ballotsj [c], NOP] to pk

Fig. 5. RECOVERY phase executed by node pk. Node pj is a receiver of
the RECOVERY message.

For this reason, CAESAR also includes an explicit recovery
procedure (Figure 5) that finalizes the decision of commands
whose leader either crashed or has been suspected. Recall
that a failure detector [17] exists at each node to detect node
failures. Given the aforementioned example, whenever the
failure detector of pk suspects pi, pk attempts to become
c’s leader and finalizes the decision of c. This is done by
executing a Paxos-like prepare phase, and collecting the
most recent information about c from a quorum of CQ
nodes as follows: pk increments its current ballot for c, i.e.,
Ballotsk[c], (line 2) and it broadcasts a RECOVERY message
for c with the new ballot (line 3). Then, it waits for a quorum
of CQ RECOVERYR replies, which contain information about
c, before finalizing the decision for c (line 4). RECOVERYR
from pj contains either the tuple of c in Hj or NOP if such
a tuple does not exist (lines 31–34).

A node pj that receives a RECOVERY message from pk
replies only if its ballot for c is lesser than the one it has
received. In such a case, pj also updates its ballot for c
(lines 29–30). Like in Paxos, this is done to guarantee that
no two leaders can compete to finalize the decision for the

same command concurrently. In fact, if two leaders pk1 and
pk2 both successfully execute lines 3 and 4 of the recovery
procedure with ballots B1 and B2, respectively, then, if B1 <
B2, for any quorum of nodes S , there always exists a node in
S that never replies to pk1 (see the reception of FASTPROPOSE,
SLOWPROPOSE, RETRY, and STABLE messages in Figure 4).

When node pk successfully becomes c’s leader, it filters
the information for c that it has received by only keeping in
RecoverySet the data associated with the maximum ballot,
namedMaxBallot in the pseudocode (lines 5–6). Each tuple
of the set is a sequence of node identifier, timestamp, predecessors
set, status, and forced boolean indicating: the node that sent the
information, the timestamp, the predecessors set, the status
of c on that node, and whether that information has been
forced by aWhiteList or not on that node. Then, pk takes
a decision for c according to the content of RecoverySet as
follows. i) If there exists a tuple with status stable, then pk
starts a stable phase for c by using the necessary info from
that tuple, e.g., timestamp and predecessors set (lines 7–8).
ii) If there exists a tuple with status accepted, then pk starts
a retry phase for c by using the necessary info from that tuple
(lines 9–10). iii) If there exists a tuple with status rejected or
RecoverySet is empty, c was never decided, and hence pk
starts a fast proposal phase for c (lines 11–13, and 26–28) by
using a new timestamp (as described in Section 3.4.2). iv) If
there exists a tuple with status slow-pending, then pk starts
a slow proposal phase for c by using the necessary info from
that tuple (lines 14–15). v) If the previous conditions are false,
then RecoverySet contains tuples with the same timestamp
T ime and status fast-pending (lines 16–25). In this last case,
pk starts a proposal phase for c with timestamp T ime because
c might have been decided with that timestamp in a previous
fast decision (line 25). If so, pk has to also choose the right
predecessors set that was adopted in that decision. Therefore,
it has to either choose a predecessors set in RecoverySet
that was forced by a previous recovery, if any (lines 19–20), or
it has to build its ownWhiteList of commands that should
be forced as predecessors of c (lines 21–24).

This is done by noticing that: if c was decided in a fast
decision with ballotMaxBallot then the size ofRecoverySet
cannot be lesser than

⌊CQ
2

⌋
+1, which is the minimum size of

the intersection of any classic quorum and any fast quorum
(lines 21 and 24); if a command c̄ was previously decided in
a fast decision and it has to be a predecessor of c, then there
cannot exist a subset of

⌊CQ
2

⌋
+ 1 tuples in RecoverySet,

whose predecessors sets do not contain c̄ (line 22). Note
that, the case in which c̄ was previously decided in a slow
decision and has to be a predecessor of c is handled by the
computation of predecessors set in the fast proposal phase (see
line P13 of Figure 4, and lines 1–3 of Figure 3).

3.4.6 Correctness
The complete formal proof on the correctness of CAESAR
is in the technical report [20], where we also provide a
TLA+ specification [21] of the algorithm, which has been
model-checked with TLC model-checker. Here, we provide
an informal proof to convey the main intuition of our design.

Let us define the predicate DECIDED[c,T ,Pred,B] that is
equal to true whenever a node decides a command c with
timestamp T , predecessors set Pred, and ballot B. Note
that a command is decided only when its predecessors with
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lower timestamps are decided, after undergoing the STABLE
phase (Figure 4 lines S4–S7). With this, CAESAR’s Consistency
guarantees can be proved using the following two theorems.
The first theorem dictates that a command predecessor set
is strictly determined by its timestamp, while the second
theorem dictates that, once decided, a command will possess
the same set of predecessors at all higher ballots.

Theorem 1. Command Precedence. ∀c, c̄ :
DECIDED[c, T ,Pred,B] ∧ DECIDED[c̄, T̄ ,Pred,B] ∧ T̄ <
T ∧ c ∼ c̄⇒ c̄ ∈ Pred

Proof Sketch. By contradiction. Suppose that DE-
CIDED[c,T ,Pred,B] ∧ DECIDED[c̄,T̄ ,Pred,B] ∧ T̄ < T
∧ c ∼ c̄ ∧ c̄ /∈ Pred.

If c undergoes a RETRY phase: Suppose that c first selects
a timestamp T ′ < T̄ (since c̄ /∈ Pred) and then it retries
with T due to a NACK received in the Fast Proposal phase
(Figure 4, P7). Since c did not observe c̄ and by definition of
quorum, the quorum of nodes replying to the proposal of c̄
includes c (i.e. c ∈ Pred). Therefore, when c undergoes the
Retry phase with the new T > T̄ , it must be that c̄ ∈ Pred
(Figure 3, L2). There should exist at least one node that is
in both the quorum that replies in the Fast Proposal phase
of c̄ and the one that replies in the Retry phase of c. This
contradicts the hypothesis c̄ 6∈ Pred.

If c does not undergo a Retry phase: Suppose that c is stable
with timestamp T such that c̄ 6∈ Pred. Then, there exists
at least one node pj in the intersection of fast and slow
quorums that responds with a NACK in c̄’s fast proposal
phase (Figure 4, Line P15). Thus, c̄ will be retried at position
T̄ > T . This contradicts the hypothesis that T̄ < T .

Theorem 2. Recoverability. ∀c : ( ∃B
: DECIDED[c, T ,Pred,B] ∧ ∀c̄ ∈ Pred,
DECIDED[c̄, T̄ ,Pred,B] ⇒ (∀B′ ≥ B :
DECIDED[c, T ′,Pred′,B′]⇒ T ′ = T ∧ Pred′ = Pred))

Proof Sketch. If DECIDED[c,T ,Pred,B] happened after a Retry
phase, there should exist a pi ∈ CQ that has accepted
c. Due to the non-empty intersection of quorums, DE-
CIDED[c̄,T̄ ,Pred,B] implies that, in the recovery procedure
for c at B′, there is at least one node pk ∈ CQ (pk 6= pi)
that will respond to c’s recovery and will include c̄ in Pred′
(Figure 5, L31-32).

If c was decided by a Stable immediately after a Fast
Proposal phase, then there should be at least FQ nodes where
c is either stable or fast-pending. Depending on how c̄ ∈ Pred
is decided, we have two cases. If DECIDED[c̄,T̄ ,Pred,B] is
due to a stable after a fast proposal phase, then c̄ will be fast-
pending at least in FQ nodes. Due to the intersection of any
two fast quorums as well as a fast and a slow quorum, the
recovery procedure will pick up cwith c̄ ∈ Pred from at least
one node in the intersection. If c̄ was decided after a Retry,
then CQ nodes should have accepted/stable status for c̄ in its
history. Since any two fast quorums and a slow quorum must
intersect, there should at least be one node in the intersection
that will respond to c’s recovery message.

The Consistency property that no two different nodes
decide different values is satisfied by Theorems 1 and 2. The
first ensures that for any decided command, its predecessor
set always includes all conflicting commands with lower

timestamp at all nodes, while the second ensures that once
decided, the command tuple is available in at least one node
in any quorum, that the recovery procedure can pickup and
enforce at all higher ballots.

3.5 Implementation and Evaluation

We implemented CAESAR in Java and contrasted it with
four state-of-the-art consensus protocols: M2Paxos, EPaxos,
Multi-Paxos, and Mencius. We used the Go language imple-
mentations of EPaxos, Multi-Paxos, and Mencius from the
authors of EPaxos. For M2Paxos, we used the open-source
implementation in Go. Note that Go compiles to native binary
while Java runs on top of the Java Virtual Machine. Thus,
we use a warmup phase before each experiment in order to
kickstart the Java JIT Compiler.

Competitors have been evaluated on Amazon EC2, using
m4.2xlarge instances (8 vCPU and 32GB RAM) running
Ubuntu Linux 16.04. Our benchmark issues client commands
to update a given key of a fully replicated key-value store.
Two commands are conflicting if they access the same key.
The command size is 15 bytes, which include key, value,
request ID, and operation type.

In our evaluations, we explored both conflicting and
non-conflicting workloads. When the clients issue conflicting
commands, the key is picked from a shared pool of 100
keys with a certain probability depending on the experiment.
To measure latency, we issued requests in a closed loop
by placing 10 clients co-located with each node (50 in
total), and for throughput the clients injected requests to
the system in an open loop. Performance of competitors has
been collected with and without network batching (indicated
by the captions).

The reasons behind using a 100-key conflict pool are
as follows. Firstly, fifty geographically distributed clients
accessing the same key at the same time does not reflect
practical application scenarios. To induce a conflict, it is
enough for any two distant clients to access the same key,
which our size of conflict pool enables. Secondly, due to
the open-loop nature of the throughput experiment, the
effective conflict rate usually far exceeds the target rate. Thus,
commands fall prey to the wait condition unnecessarily
and result in lower performance. The choice of 100-key
pool provides a level platform for both the latency and
throughput experiments. An additional latency experiment
with a smaller conflict pool is presented in Appendix A

We deployed the competitors on five nodes located in
Virginia (US), Ohio (US), Frankfurt (EU), Ireland (EU), and
Mumbai (India). This configuration spreads nodes such that
the latency to achieve a quorum is similar for all quorum-
based competitors. It is worth recalling that in a system with
5 nodes, CAESAR requires contacting one node more than
other quorum-based competitors to reach a fast decision.
The round trip time (RTT) that we measured in between
nodes in EU and US are all below 100ms. The node in India
experiences the following delays with respect to the other
nodes: 186ms/VA, 301ms/OH, 112ms/DE, 122ms/IR. As in
EPaxos, CAESAR uses separate queues for handling different
types of messages, and each of these queues is handled
by a separate pool of threads. CAESAR tracks conflicting
commands using a Red-Black tree data structure ordered by
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Fig. 6. Average latency for ordering and processing commands by varying the percentage of commands picked from the 100-key conflict pool.
Batching is disabled. Bars are overlapped: e.g., in the case of 30% in Virginia, latency values are 90 msec, 108 msec, and 127 msec, for CAESAR,
EPaxos, and M2Paxos, respectively.

their timestamp. Further, Multi-Paxos is deployed in two
settings: one where the leader is located in Ireland, which
is a node close to a quorum, and one where the leader is in
Mumbai, which needs to contact nodes at long distances to
receive a quorum of responses.

3.5.1 Non-faulty Scenarios
In Figure 6, we report the average latency incurred by
CAESAR, EPaxos, and M2Paxos to order and execute a
command. Given the latency of a command is affected by
the position of the leader that proposes the command itself,
we show the results collected at each site. Each cluster of
data shows the behavior of a system while increasing the
percentage of commands picked from the conflict pool in the
range of {0% – no conflict, 2%, 10%, 30%, 50%, 100%}.
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Fig. 7. Average latency for ordering commands of Multi-Paxos (with a
close and faraway leader), Mencius, and CAESAR. Batching is disabled.

At 0% conflicts, EPaxos and M2Paxos provide compara-
ble performance because both employ two communication
steps to order commands and the same size for quorums,
with EPaxos slightly faster because it does not need to acquire
the ownership on submitted commands before ordering. The
performance of CAESAR is slightly slower (on average 18%)
than EPaxos because of the need of contacting one more
node to reach consensus.

When the percentage of commands picked from the
conflict pool increases up to 50%, CAESAR sustains its
performance by providing an almost constant latency; all
other competitors degrade their performance visibly. The
reasons vary by protocol. EPaxos degrades because its num-
ber of slow decisions increases accordingly, along with the
complexity of analyzing the conflict graph before delivering.
For M2Paxos, the degradation is related to the forwarding
mechanism implemented when the requested key is logically

owned by another node. In that case, M2Paxos passes the
command to that node, which becomes responsible to order
it. This mechanism introduces an additional communication
delay, which contributes to degraded performance especially
in geo-scale where the node having the ownership of the
key may be faraway. At last, we also included the case
where 100% of commands are from the conflict pool. Here
all competitors behave poorly given the need for ordering all
commands, which does not represent their ideal deployment.

The latency provided by the node in India is higher than
other nodes. Here CAESAR is 50% slower than EPaxos only
when conflicts are low, because CAESAR has to contact one
more faraway node (e.g., Virginia) to deliver fast.

Performances of Multi-Paxos and Mencius are reported
in Figure 7 because these competitors are oblivious to the
amount of conflicting commands injected in the system.
CAESAR 0% has been included as a reference. Mencius’s
performance is similar across the nodes because it needs to
collect feedback from all consensus participants; therefore,
it performs as the slowest node and on average 60% slower
than CAESAR. The version of Multi-Paxos with the leader in
Mumbai (Multi-Paxos-IN) is not able to provide low latency
due to the delay that commands experience while waiting for
a response from the leader. On the other hand, if the leader is
placed in Ireland (Multi-Paxos-IR) the quorum can be reached
faster than the case of Multi-Paxos-IN, thus command latency
is significantly lower. Compared to results in Figure 6, Multi-
Paxos-IR and Multi-Paxos-IN are, on average, 5% and 40%
slower than CAESAR 100%, respectively.50
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Fig. 8. Latency per node while varying the number of connected clients
(5 – 2000). Network messages are not batched.

Scalability of competitors is measured by loading the
system with more clients. Figure 8 shows the latency of
CAESAR, EPaxos, and M2Paxos for each site using a work-
load with 10% conflict pool-picked commands. The x-axis
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indicates the total number of connected clients. The complex
delivery phase of EPaxos, where it analyzes the dependency
graph before executing every command, slows down its
performance as the load increases while CAESAR provides a
steady latency and reaches its saturation only when over 1500
total clients are connected. M2Paxos stops scaling beyond
1000 connected clients due to the impact of the forwarding
mechanism.

Figure 9 shows the total throughput obtained by each
competitor. Performance of Multi-Paxos and Mencius is
placed under the 0% case. Here the performance of CAESAR
degrades by only 17% when moving from a no-conflict
workload to one with 10% conflict pool-picked commands.
EPaxos and M2Paxos have already lost 24% and 45% of their
performance with respect to the no-conflict configuration.
The cases of 30% and 50% still show improvement for
CAESAR, but now the impact of the wait condition to deliver
fast is more evident, which explains the gap in throughput
from the case of CAESAR 10%. M2Paxos is the system that
behaves best when 100% commands are from the conflict
pool. Here the impact of the forwarding technique deployed
when commands access an object owned by a different node
prevails over the ordering procedure of EPaxos and CAESAR,
which involves the exchange of a long list of dependent
commands over the network. Interestingly, Multi-Paxos-IR
performs as EPaxos 0%. That is because in this setting and for
both competitors, nodes in EU and US can reach a quorum
with a low latency, and both of them suffer from the low
performance of the Mumbai’s node. Also, although they rely
on different techniques to decide ordered commands, in this
setting the CPU cycles needed to handle incoming messages
are comparable.
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Fig. 9. Throughput by varying the percentage of commands from conflict
pool. Batching is disabled in the top plot and enabled in the bottom plot.

In the bottom part of Figure 9, batching has been enabled.
Mencius’s implementation does not support batching thus
we omitted it. The trend is similar to the one observed
with batching disabled. The noticeable difference regards
the performance of EPaxos when the percentage of conflicts
increases. When 50% and 100% of commands are from the
conflict pool, EPaxos behaves better than other competitors
because, although the time needed for analyzing the conflict
graph increases, it does not deploy a wait condition that
contributes to slow down the ordering process if conflicts
are excessive. In terms of improvements, CAESAR sustains

its high throughput up until 10% commands are from the
conflict pool ; it provides more than 320k ordered commands
per second, which is almost 3 times faster than EPaxos. Multi-
Paxos shows an expected behavior: it performs well under its
optimal deployment, where the leader can reach consensus
fast, but its performance degrades substantially if the leader
moves to a faraway node.
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Fig. 10. % of commands delivered using a slow decision by varying % of
commands from conflict pool. Batching here is disabled.

CAESAR’s ability to take fewer slow decisions than
existing consensus protocols in presence of conflicts helps
it to achieve a lower latency and higher throughput than
competitors. In Figure 10, we show the percentage of
commands that were committed by taking fast decisions
in both the protocols. It should be noted that the number
of slow decisions taken by EPaxos is in the same range as
the percentage of conflict. However, that is not the case of
CAESAR, where the number of slow decisions more gracefully
increases along with conflicts. In fact, CAESAR takes more
than 3 times fewer slow decisions compared to EPaxos even
under moderately conflicting (e.g. 30% commands from
conflict pool) workloads. The reason for that is the wait
condition that provides the rejection of a command only
when its timestamp is invalid. In this experiment, to avoid
confusion in analyzing statistics, batching has been disabled.

3.5.2 Recovery
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Fig. 11. Throughput when one node fails.

In Figure 11, we report the throughput when one node
crashes, to show that it does not cause system’s unavailability.
We compared CAESAR and EPaxos. For this test, the requests
are injected in a closed-loop with 500 clients on each node.
After 20 seconds through the experiment, the instances of
CAESAR and EPaxos are suddenly terminated in one of
the nodes. Then, the clients from that node timeout and
reconnect to other nodes. This is visible by observing the
throughput falling down for few seconds due to loss of
those 500 clients. However, as the clients reconnect to other
available nodes and inject requests, the throughput restores
back to the normal. In our experiment, the recovery period
lasted about 4 seconds.
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4 SPECTRUM

We now introduce SPECTRUM, a framework for switching
consensus protocols online, starting from the motivations.

4.1 Motivations for a Consensus Framework

The need for a consensus framework to support consistent
and performant coordination is due to the fact that in
literature there exist a plethora of consensus solutions, each
of which is optimized for some specific configurations of
workload and deployment scenarios.

Over the past decade, multiple leaderless protocols
have been introduced each providing different performance
guarantees for various usecases. Most of these protocols
implement the Generalized Consensus specification, where
the total order is obtained only among non-commutative
commands. Hence, the performance of such protocols have
largely been dependent on the amount of contention level,
which is measured in terms of percentage of conflicts
among commands from different nodes, in the system. This
observation enabled grouping protocols into families by their
similarities in performance. Specifically, the contention level
determined, in many cases, the family of protocols that
stood out from others for providing the lowest values of
latency and the highest values of throughput. This clearly
motivated the design of SPECTRUM, a framework that
facilitates transition between consensus protocols to achieve
the highest possible performance.

Need for transparent transitions Although adaptivity in
distributed systems is a well explored problem with many
solutions, the design of an adaptive consensus framework
for a combination of leaderless and leader-based proto-
cols is unexplored because: (i) Despite consensus being
a widely investigated topic, leaderless and more scalable
implementations appeared in literature recently and are not
well established yet; (ii) Reconciling protocols that adopt
fast quorums with the ones that adopt classic quorums is
challenging, especially if those protocols provide different
guarantees in terms of safety and liveness properties, and
carry different representations of the system state, e.g.,
dependency graph in EPaxos, ownership maps in M2PAXOS,
timestamp-based orders in Caesar, total order in Multi-Paxos.

Multi-Paxos,
Raft

EPaxos,
Alvin

100%
Conflict

Caesar

40%

M2Paxos
Oligarchic

Democratic Monarchic

Fig. 12. Optimums for some consensus protocols in the conflict spectrum

A desirable adaptive consensus should switch from
one specific consensus protocol to another one at runtime,
independently of whether the protocols belong to the same
family or not, in order to adapt the consensus layer to the
characteristic of the workload and deployment scenarios.
In doing so, it is crucial that the switching mechanism
provides the same safety guarantees of the protocols that
it manages and coordinates, while being transparent to the
user. Moreover, the decision to switch from one protocol

to another must be fault-tolerant; a decision to switch to a
new protocol instance should persist even in the presence of
crash faults. This means ruling out any solution that involves
making unilateral decisions about the switch.

Note that this work focuses on reconfiguration among
different consensus protocols, and not within a single proto-
col. For instance, this work does not provide a description
of how to reconfigure the internal characteristics of Caesar
(leaderless) to act like a single-leader one. Instead, SPECTRUM
composes protocols as they are, and to do so, we leverage
certain ideas from existing work on reconfiguration [22] and
builds a solution using it. Moreover, leaderless protocols
are newer, and reconfiguration among leaderless and leader-
based protocols have not been explored to the best of our
knowledge. This paper aims to address this gap. Moreover,
we emphasize that leaderless protocols have their advantages
and advocate their use in practice, but when they fail,
SPECTRUM can alleviate the damage. SPECTRUM provides
a protocol-agnostic switching scheme that can maximize
performance under contention.

4.2 Description
SPECTRUM provides dynamic and transparent switches, fault-
tolerant and non-blocking decisions, which enables adaptiv-
ity to different workload and deployment configurations,
by adopting a novel switching solution that is based on
consensus. In particular, the core idea is abstracting the whole
switching and adaptation functionalities into a higher level
consensus layer. Such a layer coordinates the switch between
consensus protocols, while minimizing the unavoidable
increase in user-perceived latency during transitions. Having
a meta layer of consensus coordinating a switch from one
consensus protocol to another, and taking care of the lifetime
of the protocols, is a novel challenge.

Consensus Protocol 1
(e.g. Multi-Paxos)

Time

Stop Start new protocol
and redirect traffic

Drop client requests

Consensus Protocol 2
(e.g. M2Paxos)

Fig. 13. Naive stop-and-restart protocol

Intuition. Before understanding the main intuition be-
hind SPECTRUM, let us consider a simple but intuitive
switching scheme in which some node triggers and coordi-
nates a transition. The coordinator node stops the execution
of one consensus protocol and starts the execution of a
new protocol, like in Figure 13. We call this stop-and-restart
solution. There are two main problems in such a setup: firstly,
the coordination of the transition is not fault-tolerant, leaving
the system vulnerable to crashes during the switching of a
protocol; secondly, it is not clear whether commands that are
submitted during the transition have to be rejected or not
and, if not, which is the protocol in charge of deciding those
commands. On the other hand, if commands are rejected, the
system would suffers from a downtime.

To solve this, we leverage a result presented in [23], where
the authors show that in state machine replication, the separa-
tion between agreement and execution is both necessary and
sufficient to enable lazy recovery. Lazy recovery is a flexible
solution to solve the problem of on-demand instantiation of
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replica nodes; the aim is to activate a minimal number of
replicas first, and as they fail, activate the backup ones.

Indeed, the problem of on-demand instantiation in state
machine replication is similar to the problem of instantiation
of a new consensus protocol and the transfer of execution
state. This leads to our solution, whose high level idea is de-
picted in Fig. 14. Solving consensus involves agreeing on the
order of commands, and then executing them in that order.
By recognizing that fault-tolerant transition among consensus
protocols can actually be guaranteed via consensus itself,
SPECTRUM adopts a solution where a meta consensus layer
triggers and coordinates a switch, and uses the separation
between agreement and execution components in both the
pre-switch and post-switch consensus instances to guarantee
a linear delivery of commands. The correctness of such a
modularized approach has been also formally proved in [24].

The benefits of SPECTRUM are remarkable. Commands
are never rejected during the transition period since the
agreement layer provides continuity. However, they can
experience an increase in latency due to a possible gap in
time between the end of a pre-switch execution and the
beginning of a post-switch execution. This is unavoidable
since commands have to be delivered according to an order
such that commands processed by the pre-switch agreement
should be ordered before commands processed by the post-
switch agreement. The next section describes SPECTRUM
and its subsystems in detail with examples. The algorithmic
details are deferred to [25], due to space constraints.

4.2.1 Meta-Consensus
To ensure full transparency to the user, it is crucial that
SPECTRUM provides the same guarantees of the underlying
consensus protocols. Therefore, an implementation of consen-
sus itself as the core mechanism is the best fit for coordinating
the protocol transitions in a non-blocking, fault-tolerant, and
consistent way. This would also enable the modularization of
the consensus protocols themselves, which can be integrated
into a higher level consensus-based coordination module,
which we call Meta-Consensus, as plugins.

Meta-Consensus module comprises of two components:
the agreement component and the management component. The
agreement component is the core consensus that decides on
the next Switch command, which contains information on
the switch itself (e.g., next consensus protocol), to be applied
in a fault-tolerant manner. The management component is
responsible for executing the decisions from the agreement
component. Particularly, it manages the instances of the
consensus protocols that are involved in the switch; it
coordinates those instances in such a way that the commands
that are submitted by the clients are correctly ordered, even
if they have been submitted during the transition.

An example run of SPECTRUM is depicted in Figure 14. It
shows all the steps that the system takes for commands that
are submitted by clients before, during, and after a transition:
the commands N, �, and �, respectively. It also shows the
execution of a transition itself. As described in the intuition
part of Section 4.2, we divide the run of a consensus protocol
in two parts, agreement and execution.

The figure depicts three nodes that participate in the
agreement and execution of commands, and it is organized as
follows. The first stripe represents the steps of the agreement
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Fig. 14. An example execution of SPECTRUM. Every node has a client
manager that manages client connections and directs client commands
to the active consensus protocol.

component of Meta-Consensus; the second and the fourth ones
represent the agreement parts of the instance of consensus
before the switch, i.e., pre-switch consensus, and the instance
of consensus after the switch, i.e., post-switch consensus,
respectively; the third one represents the execution part of the
pre-switch consensus followed by the execution part of the
post-switch consensus. Note that the management component
is not explicitly shown in the figure, but is discussed below.

Agreement Component. Most of the existing consensus
protocols in literature — both single leader-based and
leaderless — are viable candidates as implementations of the
agreement component. Indeed, they have to implement agree-
ment among nodes to decide the Switch command. The
Switch command is a SPECTRUM command that encodes
information necessary to perform the switch. It contains the
identifier for the next consensus protocol that the management
component must instantiate and redirect client traffic to. The
result of execution of this command informs whether the
switch was successful or not.

The agreement component implements a leader-based
consensus algorithm for simplicity to decide on the Switch
command. The leader informs all the nodes that the transition
has to happen. In the figure, SPECTRUM takes steps for the
Switch command twice. The first one is just to show that
the switch can be used to initialize the first instance of a
consensus protocol at the beginning of a run, while the
second one is to show how to trigger an actual transition.

The agreement and execution of a command that has been
submitted before a transition proceeds normally according to
the active consensus instance. For example, command N in
the figure, undergoes an agreement phase first (second stripe)
and then an execution phase (third stripe). For simplicity
in the representation, we adopt a single-leader protocol –
Multi-Paxos – as both pre-switch and post-switch consensus
protocols. Therefore, the agreement of command N, as well
as all the commands that are submitted by the clients, follows
the algorithm of Multi-Paxos in Figure 14.

Moreover, it is sufficient to use a simpler protocols such
as Multi-Paxos or Raft for the agreement component. Meta-
Consensus only receives a command during a switch and is
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not susceptible to concurrent requests from nodes.
Management Component. Once the agreement component

decides on the next Switch command, it sends the command
to the management component for execution. The execution of
Switch involves the creation of a new consensus protocol
instance, as specified in the command, and redirection of
client requests to the newly created instance. The management
component also serves as the entry point for client commands
into the client-facing consensus instances that it manages.
Note that client commands do not pass through the agreement
component of Meta-Consensus, but directly enter the manage-
ment component. Only Switch commands pass through the
agreement component.

When the management component receives the Switch
from the agreement component, it creates the instance of the
new consensus protocol as defined in the command, and
initializes it. Thanks to the properties of consensus, the
Switch is delivered to all the correct instances of the man-
agement component in the system, hence all the correct nodes
creates and initializes the instance of the new consensus
protocol that SPECTRUM is going to switch to. In Figure 14,
when p0 informs all that the switch should happen, nodes
independently create a new instance of consensus in the
fourth stripe, which can start processing command �.

Through the rest of the paper, we call the period during
which a consensus protocol instance lives as an era. An era is
started whenever a Switch is executed and a new instance
of a protocol is created as a result, and hence it is strictly
tied to a consensus instance. For example, from left to right
in Figure 14, the first vertical line denotes the start of era
1, and the second one denotes the start of era 2. The core
idea is that whenever a new era is started in a node, then all
other nodes in the system will eventually start the new era,
thanks to the properties of consensus that characterize the
agreement component. Those nodes are the participants in the
post-switch consensus instance.

In addition to the aforementioned tasks, the management
component is also responsible for ensuring the in-order
execution of the client commands with respect to different
client-facing consensus protocols. Recall that a new era is
created whenever a Switch is executed, and consequently,
after that the ordering of new commands happens in the
new era. This means that, at any given time during the
switch, both the consensus instances are ordering commands
that are submitted from the clients. The instance in the old
era orders commands that were pending at the time the
transition started, while the instance in the new era orders
commands that are submitted from the start of the transition
on. This way, the management component enables continuity
of the service, with no downtime in ordering the commands.
For example, in Figure 14, command �, which was already
in the system when the switch has started, is decided in era 1,
while command �, which had been submitted by the client
after the switch, is decided in era 2.

However, the execution happens only in one era at a time
to establish a total order between commands in different eras.
To facilitate this, the commands in the new era that are ready
for execution are buffered until the previous era terminates.
This means that command � in the figure, which belongs to
era 2, cannot be executed until commands N and �, which
belong to era 1, have been. The management component takes

care of that, and ensures that the commands are dispatched
for execution first in the order that is decided by Meta-
Consensus and then, within an era, by the order that is decided
by the respective instance of consensus that is running in
that era. The way SPECTRUM defines the completion of an era
depends on the characteristics of the consensus protocols that
are involved in the switch, and it is described in Section 4.2.2.

4.2.2 Switching between Consensus Protocols
Meta-Consensus instantiates a new era and switches the traffic
to that era. The core problem of the switching mechanism is
the identification of completion of a previous era, since the
management component of Meta-Consensus should ensure that
commands across eras are executed sequentially. To enable
the management component to learn when commands in a
previous era have been executed, we adopt a technique used
in Stoppable Paxos [26]. The idea is to propose a special
Terminate command to the previous era protocol that acts
as a marker indicating the end of commands in that era.
Once Terminate command is delivered to the management
component, it can start executing commands in the new era.

Despite the differences in the nature of existing families
of consensus (see Section 4.1), SPECTRUM proposes a uniform
method for handling the delivery of Terminate commands.
For clarity, we describe two mechanisms – one for transi-
tion from single leader-based and another from leaderless
protocol – and later combine them into one, for simplicity.

Transition from Single Leader-based Consensus. For
single-leader (or monarchic) protocols (Multi-Paxos and Raft),
it is sufficient to send the Terminate command to a leader
node, and let that node establish the termination of an
instance in an era. In Figure 14, p0 first requests a quorum
of nodes to accept the termination of the consensus instance
at era 1, and then forces them to terminate that instance.
Meanwhile, new client commands are ordered in the new era,
but are buffered for execution until the old era terminates.

When the Terminate command is delivered to the
management component at a node, it transitions to execute
commands in the new era, e.g., command � in the figure.
The Terminate command ensures the total order of the
commands between two consecutive eras. The properties
of consensus ensure that commands N and � belonging
to Consensus 1 in the figure have already been processed
and executed by a node at the time the final decision for
Terminate is processed by that node.

It should be noted that the decision on the termination is
fault-tolerant even though only one node takes care of the
decision. This is because that node is anyway the leader of
a consensus instance and, as such, it must ensure that the
decision is stable before forcing it to all the others.

Transition from Leaderless Consensus. Leaderless (e.g.,
democratic, oligarchic) protocols typically implement the Gen-
eralized Consensus specification, in that the total order is
obtained only among non-commutative commands. In addi-
tion, every node can propose and decide on the outcome of
their commands. This entails that the Terminate command
must find a total order among all the commands submitted
to the system by all nodes.

In general, the commands submitted to Generalized
Consensus protocols must embed some commutativity infor-
mation. In practice, this is achieved by using the identities
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of the application objects that the commands operate on.
Thus, by including the identities of all application objects,
the Terminate command can establish a total order among
all the commands submitted to the system. One optimization
is to include the range of identities rather than every
single identity in the command, which practical systems
support [4].

4.3 Correctness Arguments

We show how SPECTRUM guarantees the properties of
consensus, as described in Section 2. Due to space constraints
we do not provide a complete formal proof. However, we
provide the reader with a very intuitive explanation on
the correctness of SPECTRUM, which partially relies on the
correctness of the underlying consensus protocols.

SPECTRUM guarantees Non-triviality by construction of
the algorithm, which decides at least the commands that
are proposed, and by the assumption on the network layer,
which neither creates nor duplicates messages. Stability is
trivially guaranteed since commands are decided one-by-
one, and the decisions are never retreated. Furthermore,
a proposed command will be eventually decided since
SPECTRUM proposes it to one of the underlying consensus
protocol instances that it is coordinating, and therefore it
provides the same liveness guarantees of those protocols.

However, there are two exceptions. – i) the command
has been proposed to an instance of consensus that might
not guarantee liveness due to the amount of contention, e.g.,
M2PAXOS, and hence is never learnt – ii) the command is
learnt by an instance of consensus after the instance decides
a Terminate command, which means that the command
cannot be decided, at least in the era associated with that
instance. In both cases, the command remains pending, and
the client that submitted it never receives a reply for it. The
solution relies on command re-transmission: a client that
does not receive a reply for a command in a predefined
amount of time, it can resubmits the command, which is
eventually decided (if had not been decided before) by an
underlying consensus instance after a possible switch. It is
worth noticing that SPECTRUM eventually performs a switch
in case a liveness problem arises due to contention.

Liveness is guaranteed during crashes as well. The critical
scenario is when the leader that coordinates a switch crashes
while it is broadcasting a CHANGEERA message to trigger a
Switch. If that happens, then there exists at least one correct
node that knows the information about the switch, since the
leader has received a quorum of ACKACCEPT messages that
are tagged as ACK before sending CHANGEERA. Further-
more, no more than min {CQ}− 1 nodes can crashes, where
min {CQ} is the minimum size of a quorum.

SPECTRUM guarantees Consistency for commands that are
not submitted during a transition because the underlying
consensus protocol instances guarantee Consistency. On the
other hand, SPECTRUM guarantees that, if a command is
learnt before a Terminate command on a node in era x, then
all correct nodes learn that command before Terminate in x,
thanks to the Consistency of the active consensus instance in x.
Furthermore, if a command has been learnt after Terminate
had been decided in era x, then the command is either not
decided or it has been learnt in era y > x. Since commands

that are learnt by a node in era y cannot be decided by the
execution instance of y until the commands that are lerant
by that node in every era x < y have been decided by the
execution instance of x, Consistency follows.

4.4 Experimental Evaluation

We prototyped SPECTRUM in Java and incorporated the
following consensus protocols into the framework: Multi-
Paxos, CAESAR, and M2PAXOS. Each of these protocols
are fundamentally diverse, and they effectively demonstrate
the capabilities of SPECTRUM in carrying out the switch.
Moreover, these three protocols cover the majority of the
conflict spectrum (Fig. 12) and allow us to demonstrate SPEC-
TRUM’s ability to cope with all contentious workloads. To
demonstrate the effectiveness of our approach, we designed
three different experiments, each highlighting a unique
aspect of the framework. The specifics of the experiments are
discussed in the following subsections.

The deployment configuration is identical to that in
Section 3.5. The experiments measure latency at different
sites by placing 50 clients/site (250 in total) and injecting
requests in a closed loop.

4.4.1 Minimizing latency under conflicts
In this experiment, we show that SPECTRUM’s ability to
switch consensus protocols at runtime enables to provide
the minimum possible user-perceived latency for any con-
tentious workload. In other words, as the contention level in
the workload changes, SPECTRUM can switch to a different
protocol to reduce the user-perceived latency. Contention
level is adjusted by changing the amount of concurrent
conflicting commands entering the system. For example,
at 10% contention, every client in the system issues a non-
commuting command once every ten commands (at random)
that conflicts with another such concurrent command. To
show this, we devised a static oracle that observes the amount
of conflict in the workload injected to the system and triggers
the switch to a protocol that can better handle that particular
workload. The condition for the oracle to trigger the switch
depends on the percentage of conflicts: for ranges of [0, 10),
the oracle chooses M2PAXOS; between [10, 50) the oracle
chooses CAESAR; else the oracle chooses Multi-Paxos.

We conducted two sub-experiments using the oracle. In
the first experiment, we increase the contention level over
time in order to provoke a switch. The result is presented in
Figure 15(a). The x-axis presents the time in seconds since
the beginning of the experiment, and the y-axis shows user-
perceived latency in milliseconds.

We initialize SPECTRUM with M2PAXOS as the starting
consensus protocol and inject a non-conflicting workload. In
this case, the oracle does not trigger any switch as M2PAXOS
is the best protocol for this workload. At time t = 30s,
the amount of conflicts in the workload is increased to
10%. At this point, M2PAXOS experiences a livelock caused
by conflicting ownership acquisitions, and thus the client
requests timeout. The oracle steps in at t = 65s and switches
to CAESAR, and in few seconds, SPECTRUM responds and
delivers commands to the client. At t = 95s, we increase the
conflict to 50%, and CAESAR starts performing poorly, but
not as worse asM2PAXOS at 10% conflict. The oracle triggers
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(a) Scenario showing the effectiveness of the switch as the contention in the workload increases over time.
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(b) Scenario showing the effectiveness of the switch as the contention in the workload decreases over time.

Fig. 15. Effectiveness of SPECTRUM in providing minimum possible latency for any conflicting workload.

the switch to Multi-Paxos at t = 130s, and this reduces the
latency as at this amount of conflict, a monarchic protocol is
better than any other group of protocols.

In the second experiment, we reversed the process; that
is, we reduced the conflicting percentage from 50% to 0%
over a time period. The result is in Figure 15(b). Here, the
system is initialized with Multi-Paxos, and a 50% conflicting
workload is injected initially. The oracle does not trigger any
switch as conditions are suitable for Multi-Paxos. At t = 30s,
the conflict drops from 50% to 10%, making CAESAR more
preferable. Therefore, at t = 65s, the oracle triggers a switch
to CAESAR, and the latency drops down immediately. At
t = 95s, we reduce the conflict to 0%, and this workload can
be better served by M2PAXOS. Therefore, such a switch is
triggered at t = 130s by the oracle and latency drops again.

Note that we configured our oracle to perform the switch
after 35 seconds of observing a new workload and keep
the conflict rate same for about 60 seconds. This is done
to explicitly contrast the change in latency due to the new
workload before and after the switch.

4.4.2 Comparison against an alternate switching scheme
We implemented Stop-and-restart, an alternate switching
scheme that follows the one shown in Figure 13, to contrast
the merits of our solution, during a transition. In Stop-and-
restart, an external coordinator implements the switch by
first stopping the current instance of the consensus protocol,
ensuring that all pending commands have been decided and
executed, and then starting the new instance of a different
consensus protocol. Note that, in contrast to SPECTRUM, Stop-
and-restart rejects any new commands that is submitted to
the system during the transition, and is not fault-tolerant.

In Figure 16, we contrast the performance of SPECTRUM
and Stop-and-restart during the switch from Multi-Paxos
to M2PAXOS. The workload has been kept constant with
0% conflict throughout the experiment to highlight the
cost of the Switch. It can be observed that the switch in
SPECTRUM is transparent to the client, while in Stop-and-
restart, the presence of an external coordinator to handle
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Fig. 16. SPECTRUM vs Stop-and-restart. The former performs the switch
oblivious to the client, while the latter drops requests during the switch.

the switch and a non-streamlined transition causes the
client requests to timeout, and once the switch completes,
client requests receive their responses. This is shown in
the figure with a period of no latency reporting (indicating
the transition period) followed by a sharp spike (indicating
switch completion and client response).

4.4.3 Fault Tolerance
We devised a specific experiment to show the fault-tolerance
of SPECTRUM. We instrumented Meta-Consensus to force a
crash of the leader during the agreement on the switch.
Specifically, right before broadcasting DECIDE. As a result,
the failure detector of a correct node performs the recovery
to finalize the decision of the pending Switch command.
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Fig. 17. Fault Tolerance of SPECTRUM.

The result is shown in Figure 17. At t = 30, the leader
in Ohio is forcefully crashed. Due to the crash, only the
clients of that node timeout, while clients of other nodes
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keep receiving responses from the active consensus protocol.
Other clients do not observe any difference in latency since
the only node that benefitted from Ohio was Virginia, e.g.,
having Ohio is its quorums. However, Virginia can access
Frankfurt with almost the same latency as Ireland, which
already was in the quorums.

5 RELATED WORK

Consensus Solutions In the Paxos [3] algorithm, a value
is decided after a minimum of four communication delays.
Progress guarantees cannot be provided as the initial prepare
phase may fail in the presence of multiple concurrent
proposals. Multi-Paxos alleviates this by letting promises
in the prepare phase cover an entire sequence of values. This
effectively establishes a distinguished proposer that acts as a
single designated leader.

Fast Paxos [27] eliminates one communication delay by
having proposers broadcast their requests and bypass the
leader. However, a classic Paxos round executed by the
leader is needed to resolve a collision, reaching a total of
six communication delays to decide a value. Generalized
Paxos [13] relies on a single leader to detect conflicts among
commands and enforce an order, and it uses fast quorums
as Fast Paxos. On the contrary, CAESAR avoids the usage of
leader either to reach an agreement, as in Paxos, or to resolve
a conflict, unlike in Fast and Generalized Paxos.

Mencius [11] overcomes the limitations of a single leader
protocol by providing a multi-leader ordering scheme based
on a pre-assignment of slots to nodes. It pre-assigns sending
slots to nodes, and a sender can decide the order of a message
at a certain slot s only after hearing from all nodes about the
status of slots that precede s. Clearly this approach is not
able to adopt quorums (unlike Paxos), and it may result in
poor performance in case of slow nodes or unbalanced inter-
node delays. To alleviate the problem of slow nodes, Fast
Mencius [28] uses a mechanism that enables the fast nodes
to revoke the slots assigned to the slow nodes. However,
Fast Mencius still suffers from high latency in specific WAN
deployments since it does not rely on quorums for delivering.

EPaxos employs dependency tracking and fast quorums
to deliver non-conflicting commands using a fast path. In ad-
dition, its graph-based dependency linearization mechanism
that is adopted to define the final order of execution of com-
mands may easily suffer from complex dependency patterns.
Instead, Alvin [12] avoids the expensive computation on the
dependency graphs enforced by EPaxos via a slot-centric
decision, but it still suffers from the same vulnerability to
conflicts as EPaxos: a command’s leader is not able to decide
on a fast path if it observes discordant opinions from a
quorum of nodes. In contrast, CAESAR’s fast decision scheme
is optimized to increase the probability of deciding in two
communication delays regardless of discordant feedbacks.

M2Paxos [14] is a multi-leader consensus implementation
that provides fast decisions while i) adopting only a simple
majority quorum, and ii) avoiding the exchange of command
dependencies. It does that by embedding an ownership
acquisition phase for commands into the agreement process,
so as to guarantee that a node having the ownership on a
set of commands can autonomously take decisions on those
commands. However, in case there are multiple nodes that

compete for the decision of non-commutative commands, the
protocol might require an expensive ownership acquisition
phase to re-distribute their ownership records.

CAESAR is related to Clock-RSM [29]. In Clock-RSM, each
node proposes commands attached with its physical times-
tamp, which are then deterministically ordered according to
their associated timestamps. Although Clock-RSM is multi-
leader like CAESAR, and it relies on quorums to implement
replication, it suffers from the same drawbacks of Mencius,
namely the need of a confirmation that no other command
with an earlier timestamp has been concurrently proposed.

Composition and Adaptation. Composition of consen-
sus protocols has been investigated in [30]. Abstract is an
abstraction for designing and reconfiguring generalized state
machines, by leveraging the idea of composing instances of
different fault-tolerant consensus protocols. The idea is to
build simpler consensus protocols each tolerating particular
system conditions such as fault models and contention, and
compose them together to achieve a robust system. The
downside of the Abstract approach is that it requires
the candidate protocols to implement specific interfaces.
Specifically, the candidates must be able to export (import,
respectively) internal state outside (into, respectively) the
protocol. This means that existing as well as new protocols
must be rethought to accommodate to the abstraction.

SPECTRUM, in contrast, provides isolation and composi-
tion without requiring any changes to candidate consensus
protocols. Specifically, the protocols under consideration
maintain state differently and thus transfer of such state from
one protocol to another is a tedious, perhaps an impossible
task. SPECTRUM treats candidate protocols as black-boxes
and builds a general solution such that no state transfer is
necessary. This makes our framework more appealing for
existing as well as new consensus designs.

In [22], the authors describe algorithms for reconfiguring
state machines, including the one presented in [26]. The
authors propose using a special Terminate command
whose delivery will stop the active protocol, after which
the reconfiguration such as number of nodes and failure
tolerance can be adjusted. This is similar to the stop-and-
restart solution, with which we compared our approach.
Moreover, as mentioned in Section 4.2.2, SPECTRUM also
uses the idea of using the Terminate command from [26].
However, SPECTRUM stands out distinctly due to its ability to
perform the switch seamlessly while ensuring fault-tolerance.
In addition, we present a complete algorithm that has been
implemented and experimentally evaluated, unlike [22], [26].

Adaptivity in distributed systems: Our solution is related to
self-tunable solutions that adapt their internal mechanisms to
react to changes in the environment. SPECTRUM specifically
focuses on the mechanisms offering an effective and cheap
way for the adaptation than on the oracles that trigger
the adaptation. The design of the oracles is an orthogonal
problem, and solutions for that can be used as plugins to
the framework. TAS [31] is an approach for automating the
elastic scaling of replicated in-memory transactional systems.
SPECTRUM can benefit from its performance predictor that
relies on the combined usage of analytical modeling and
machine learning, since it is able to forecast the effects of
data contention. For the same reason, the machine learning-
based model of MorphR [32] can be exploited by SPECTRUM,
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which finds the optimal transactional replication protocols
according to the conflicts in the system. MorphR is able to
choose between blocking, i.e., 2-PC, and non-blocking, i.e.,
total order, protocols, but it does not focus on the optimal
switching mechanisms among non-blocking protocols, e.g.,
different consensus protocols.

6 CONCLUSION

This paper presents two contributions to tame contention
in consensus-based distributed systems. CAESAR addresses
the performance degradation in existing systems under
low-to-moderate contention, while SPECTRUM provides a
framework for switching consensus protocols online to adapt
to changing workload conditions and provide maximal
performance at any workload with an apt consensus protocol.
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APPENDIX A
ADDITIONAL EVALUATION

A.1 Internal Statistics
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Fig. 18. Latency breakdown for CAESAR.

In Figure 18, we report the internal statistics of CAESAR gathered during the experiment in Figure 9 (see Section 3.5).
Figure 18(a) shows the breakdown of the proportion of latency consumed by each ordering phase of the protocol. For
no conflicts (e.g. 0%–2% commands from conflict pool), the maximum time is spent in the proposal phase. The cost of
the delivery is very low, since there are no dependencies. However, as the percentage of commands from conflict pool
increases, delivery becomes a major portion of the total cost because a STABLE command must wait for the delivery of all the
conflicting commands with an earlier timestamp before being delivered. Figure 18(b) reports the average time spent on the
wait condition during the proposal phase by conflicting commands using the same workload for throughput measurement.
Note that we used a different scale (right y-axis) for 30% plot to highlight the difference with respect to the case of 2% and
10% plot. Close together nodes experience a quicker timestamp advancement than faraway nodes because they are able to
exchange proposals faster. Faraway nodes are not aware of this advancement, thus they propose commands with a lower
timestamp, which causes their conflicting commands to wait.

A.2 Latency in Different Deployment Configuration
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Fig. 19. Average latency for ordering and processing commands by changing the percentage of commands picked from conflict pool. Batching is
disabled. Bars are overlapped

We, now, present details of an experimental evaluation with a different deployment setup and conflict categorization. The
reason for this is two folds. First, the choice of deployment places a majority of replicas (3 out of 5) within a same continent
in order to understand the performance of CAESAR when replicas are close together. Second, for conflicting commands,
the key is picked from a pool of 50 keys rather than a pool of 100 keys. This increases the contention further than that in
Section 3.5, particularly in a closed-loop latency experiment. We did not reduce the key space further to emulate realistic
workloads. Note that the use of a conflict pool should favor EPaxos more than Caesar, since EPaxos does not have a wait
condition. However, as we show below, the additional geographical RTT is more detrimental than the wait condition.

We deployed the competitors on five nodes located in Virginia (US), Oregon (US), Califronia (US), Ireland (EU), and Japan
(Asia). It is worth noting that EPaxos’ US nodes have a majority within the US itself due to its use of slightly smaller fast
quorums, while Caesar should access a node outside of the US regardless. The round trip time (RTT) that we measured in
between nodes within the US are all below 100ms, with the RTT between CA and OR at 20ms. The node in Japan experiences
the following delays with respect to the other nodes: 147ms/Virginia, 104ms/California, 92ms/Oregon, 234ms/Ireland.

In Figure 19, we report the average latency incurred by CAESAR and EPaxos to order and execute a command. Given
the latency of a command is affected by the position of the leader that proposes the command itself, we show the results
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collected in each site. Each cluster of data shows the behavior of a system while increasing the percentage of conflicts in the
range of {0% – no conflict, 2%, 10%, 30%, 50%, 100%}.

Under no conflicts, EPaxos is able to provide lower latency by taking the fast path for all requests. As conflict increases,
the latency increases because the commands are forced to take the slow path. However, that is not the case with CAESAR. It
is able to maintain a lower latency compared to EPaxos by mostly staying on the fast path until up to 50% commands are
from conflict pool. We can observe that CAESAR, on average, incurs up to 35% lower latency across all nodes than EPaxos
when 30% of commands are from the conflict pool. However, when 100% of commands are from the conflict pool, CAESAR
performs slightly slower than EPaxos, because the impact of the wait condition on performance is higher due to the fact that,
at this conflict rate, the commands are almost totally ordered.


	Introduction
	System Model
	Caesar
	Overview
	Out of Order Timestamps
	Rejection of Timestamps
	Protocol Details
	Data Structures per node pi
	Fast Decision
	Slow Decision
	Unavailability of Fast Quorums
	Recovery from Failures
	Correctness

	Implementation and Evaluation
	Non-faulty Scenarios
	Recovery


	Spectrum
	Motivations for a Consensus Framework
	Description
	Meta-Consensus
	Switching between Consensus Protocols

	Correctness Arguments
	Experimental Evaluation
	Minimizing latency under conflicts
	Comparison against an alternate switching scheme
	Fault Tolerance


	Related Work
	Conclusion
	Acknowledgments
	References
	Biographies
	Balaji Arun
	Sebastiano Peluso
	Roberto Palmieri
	Giuliano Losa
	Binoy Ravindran

	Appendix A: Additional Evaluation
	Internal Statistics
	Latency in Different Deployment Configuration


