
HiperTM: High Performance, Fault-Tolerant

Transactional Memory

Sachin Hirve, Roberto Palmieri1, Binoy Ravindran

Virginia Tech, Blacksburg VA 24061, USA

Abstract

We present HiperTM, a high performance active replication protocol for
fault-tolerant distributed transactional memory. The active replication pro-
cessing paradigm allows transactions to execute locally, costing them only a
single network communication step during transaction execution. Shared ob-
jects are replicated across all sites, avoiding remote object accesses. Replica
consistency is ensured by a) OS-Paxos, an optimistic atomic broadcast layer
that total-orders transactional requests, and b) SCC, a local speculative
multi-version concurrency control protocol that enforces a commit order
equivalent to transactions’ delivery order. SCC executes write transactions
serially without incurring any synchronization overhead, and runs read-only
transactions in parallel (to write transactions) with non-blocking execution
and abort-freedom. Our implementation reveals that HiperTM guarantees
0% of out-of-order optimistic deliveries and performance up to 3.5× better
than atomic broadcast-based competitor (PaxosSTM) using the standard
configuration of TPC-C benchmark.

Keywords: Distributed Transactional Memory, Fault-Tolerance,
Speculative Processing, State-Machine Replication

Email addresses: hsachin@vt.edu (Sachin Hirve), robertop@vt.edu (Roberto
Palmieri), binoy@vt.edu (Binoy Ravindran)

1Corresponding author. Address: 454 Durham Hall, Virginia Tech, Blacksburg VA
24061, USA. Tel: 540-231-0642. Email: robertop@vt.edu

Paper accepted at Journal of Theoretical Computer Science

1. Introduction

Software transactional memory (STM) [1] is a promising programming
model for managing concurrency of transactional requests. STM libraries
offer APIs to programmers for reading and writing shared objects, ensuring
atomicity, isolation, and consistency in a completely transparent manner.
STM transactions are characterized by only in-memory operations. Thus,
their performance is orders of magnitude better than that of non in-memory
processing systems (e.g., database settings), where interactions with a stable
storage often significantly degrade performance.

Besides performance, transactional applications usually require strong de-
pendability properties that centralized, in-memory processing systems cannot
guarantee. Fault-tolerant mechanisms often involve expensive synchroniza-
tion with remote nodes. As a result, directly incorporating them into in-
memory transactional applications (distributed software transactional mem-
ory or DTM [2, 3, 4, 5]) will reduce the performance advantage (of in-
memory operations) due to network costs. For example, the partial replica-
tion paradigm allows transaction processing in the presence of node failures,
but the overhead paid by transactions for looking-up latest object copies
at encounter time limits performance. Current partial replication proto-
cols [6, 7] report performance in the range of hundreds to tens of thousands
transactions committed per second, while centralized STM systems have
throughput in the range of tens of millions [8, 9]. Full replication is a way
to annul network interactions while reading/writing objects. In this model,
application’s entire shared data-set is replicated across all nodes. However,
to ensure replica consistency, a common serialization order (CSO) of trans-
actions must be ensured.

State-machine replication (or active replication) [10] is a paradigm that
exploits full replication to avoid service interruption in case of node failures.
In this approach, whenever the application executes a transaction T , it is
not directly processed in the same application thread. Instead, a group
communication system (GCS), which is responsible for ensuring the CSO,
creates a transaction request from T and issues it to all the nodes in the
system. The CSO defines a total order among all transactional requests.
Therefore, when a sequence of messages is delivered by the GCS to one
node, it guarantees that other nodes also receive the same sequence, ensuring
replica consistency.

A CSO can be determined using a solution to the consensus (or atomic

2

broadcast [11]) problem: i.e., how a group of processes can agree on a value
in the presence of faults in partially synchronous systems. Paxos [12] is one of
the most widely studied consensus algorithms. Though Paxos’s initial design
was expensive (e.g., it required three communication steps), significant re-
search efforts have focused on alternative designs for enhancing performance.
A recent example is JPaxos [13, 14, 15], built on top of MultiPaxos [12], which
extends Paxos to allow processes to agree on a sequence of values, instead
of a single value. JPaxos incorporates optimizations such as batching and
pipelining, which significantly boost message throughput [14]. S-Paxos [16]
is another example that seeks to improve performance by balancing the load
of the network protocol over all the nodes, instead of concentrating that on
the leader.

A deterministic concurrency control protocol is needed for processing
transactions according to the CSO. When transactions are delivered by the
GCS, their commit order must coincide with the CSO; otherwise replicas
will end up in different states. With deterministic concurrency control, each
replica is aware of the existence of a new transaction to execute only after its
delivery, significantly increasing transaction execution time. An optimistic
solution to this problem has been proposed in [17], where an additional de-
livery, called optimistic delivery, is sent by the GCS to the replicas prior
to the final CSO. This new delivery is used to start transaction execution
speculatively, while guessing the final commit order. If the guessed order
matches the CSO, then the transaction, which is already executed (totally or
partially), is ready to commit [18, 19, 20, 21]. However, guessing alternative
serialization orders [22, 23] – i.e., activate multiple speculative instances of
the same transactions starting from different memory snapshots – has non-
trivial overheads, which, sometimes, do not pay off.

In this paper, we present HiperTM, a high performance active replication
protocol. HiperTM is based on an extension of S-Paxos, called OS-Paxos
that we propose. OS-Paxos optimizes the S-Paxos architecture for efficiently
supporting optimistic deliveries, with the aim of minimizing the likelihood of
mismatches between the optimistic order and the final delivery order. The
protocol wraps write transactions in transactional request messages and ex-
ecutes them on all the replicas in the same order. HiperTM uses a novel,
speculative concurrency control protocol called SCC, which processes write
transactions serially, minimizing code instrumentation (i.e., locks or CAS op-
erations). When a transaction is optimistically delivered by OS-Paxos, its
execution speculatively starts, assuming the optimistic order as the process-

3

ing order. Avoiding atomic operations allows transactions to reach maximum
performance in the time available between the optimistic and the correspond-
ing final delivery. Conflict detection and any other more complex mechanisms
hamper the protocol’s ability to completely execute a sequence of transac-
tions within their final notifications – so those are avoided.

For each shared object, the SCC protocol stores a list of committed ver-
sions, which is exploited by read-only transactions to execute in parallel to
write transactions. As a consequence, write transactions are broadcast us-
ing OS-Paxos. Read-only transactions are directly delivered to one replica,
without a CSO, because each replica has the same state, and are processed
locally.

We implemented HiperTM and experimentally evaluated on PRObE [24],
a high performance public cluster with 19 nodes2 using benchmarks including
TPC-C [25] and Bank. Our results reveal three important trends:

A) OS-Paxos provides a very limited number of out-of-order optimistic
deliveries (0% when no failures happen and <5% in case of failures),
allowing transactions processed – according to the optimistic order –
to more likely commit.

B) Serially processing optimistically delivered transactions guarantees a
throughput (transactions per second) that is higher than atomic broad-
cast service’s throughput (messages per second), confirming optimistic
delivery’s effectiveness for concurrency control in actively replicated
transactional systems. Additionally, the reduced number of CAS op-
erations allows greater concurrency, which is exploited by read-only
transactions for executing faster.

C) HiperTM’s transactional throughput is up to 3.5× better than Pax-
osSTM [26], a state-of-the-art atomic broadcast-based competitor, us-
ing the classical configuration of TPC-C.

With HiperTM, we highlight the importance of making the right de-
sign choices for fault-tolerant DTM systems. To the best of our knowledge,
HiperTM is the first fully implemented transaction processing system based
on speculative processing, built in the context of active replication.

2We selected 19 because, according to Paxos’s rules, this is the minimum number of
nodes to tolerate 9 simultaneous faults.

4

The complete implementation of HiperTM is publicly available at https:
//bitbucket.org/hsachin/hipertm/.

The rest of the paper is organized as follow. Section 2 reports assumptions
made by HiperTM. Section 3 represents the core of the paper and describes
HiperTM with its two main components: OSPaxos and SCC. Correctness
arguments and proofs are also presented in Section 3. The experimental
evaluation of HiperTM is in Section 4; the related work is overviewed in
Section 5; and the Section 6 concludes the paper.

2. System Model

We consider a classical distributed system model [27] consisting of a set
of processes Π = {p1, . . . , pn} that communicate via message passing links.
Process may fail according to the fail-stop (crash) model. A non-faulty pro-
cess is called correct. We assume a partially synchronous system [12], where
2f + 1 nodes are required for tolerating at most f nodes that are simul-
taneously faulty. We consider only non-byzantine faults, i.e., nodes cannot
perform actions that are not compliant with the replication algorithm.

In any ordering communication step, a node contacts all the sites and
waits for a quorum Q of replies. We assume Q = f + 1 such that a quorum
can always be formed because N − f ≥ Q. This way any two quorums
always intersect, thus ensuring that, even though f failures happen, there is
always at least one site with the last updated information that we can use
for recovering the system.

In order to eventually reach an agreement on the order of transactions
when nodes are faulty, we assume that the system can be enhanced with the
weakest type of unreliable failure detector [28] that is necessary to implement
a leader election service [27].

A transaction is composed of a series of read and write operations, exe-
cuted atomically (all or nothing). We name a transaction as write transaction
in case it performs at least one write operation on some shared object, oth-
erwise the transaction is called read-only transaction.

We consider a full replication model, where the application’s entire shared
data-set is replicated across all nodes. Transactions are not executed on
application threads. Instead, application threads, referred to as clients, inject
transactional requests into the replicated system. Each request is composed
of a key, identifying the transaction to execute, and the values of all the
parameters needed for running the transaction’s logic (if any) (Section 3.2

5

details the programming model). Threads submit the transaction request to
a node, and wait until the node successfully commits that transaction.

OS-Paxos is the network service responsible for defining a total order
among transactional requests. The requests are considered as network mes-
sages by OS-Paxos; it is not aware of the messages’ content, it only provides
ordering. After the message is delivered to a replica, the transactional request
is extracted and processed as a transaction.

OS-Paxos delivers each message twice. The first is called optimistic-
delivery (or opt-del) and the second is called final-delivery (or final-del).
Opt-del notifies replicas that a new message is currently involved in the
agreement process, and therefore opt-del’s order cannot be considered reliable
for committing transactions. On the other hand, final-del is responsible for
delivering the message along with its order such that all replicas receive that
message in the same order (i.e., total order). The final-del order corresponds
to the transactions’ commit order.

We use a multi-versioned memory model, wherein an object version has
two fields: timestamp, which defines the logical time when the transaction
that wrote the version committed; and value, which is the value of the ob-
ject (either primitive value or set of fields). Each shared object is composed
of: the last committed version, the last written version (not yet commit-
ted), and a list of previously committed versions. The last written version
is the version generated by an opt-del transaction that is still waiting for
commit. As a consequence, its timestamp is not specified. The timestamp is
a monotonically increasing integer, which is incremented when a transaction
commits. Our concurrency control ensures that only one writer can update
the timestamp at a time. This is because, transactions are processed serially
according to their opt-del order. Thus, there are no transactions validating
and committing concurrently (Section 3.4 describes the concurrency control
mechanism).

We assume that the transaction logic is snapshot-deterministic [20], i.e.,
the sequence of operations executed depends on the return value of previous
read operations. Thus, any form of non-determinism is excluded.

3. HiperTM

3.1. Optimistic S-Paxos

Optimistic S-Paxos (or OS-Paxos) is an implementation of optimistic
atomic broadcast [29] built on top of S-Paxos [16]. S-Paxos can be defined in

6

terms of two primitives (compliant with the atomic broadcast specification):

- ABcast(m): used by clients to broadcast a message m to all the nodes

- Adeliver(m): event notified to each replica for delivering message m

These primitives satisfy the following properties:

- Validity. If a correct process ABcast a message m, then it eventually
Adeliver m.

- Uniform agreement. If a process Adelivers a message m, then all correct
processes eventually Adeliver m.

- Uniform integrity. For any message m, every process Adelivers m at most
once, and only if m was previously ABcasted.

- Total order. If some process Adelivers m before m′, then every process
Adelivers m and m′ in the same order.

OS-Paxos provides an additional primitive, called Odeliver(m), which is
used for delivering a previously broadcast message m before the Adeliver for
m is issued. OS-Paxos ensures that:

- If a process Odeliver(m), then every correct process eventually Odeliver(m).

- If a correct process Odeliver(m), then it eventually Adeliver(m).

- A process Adeliver(m) only after Odeliver(m).

OS-Paxos’s properties and primitives are compliant with the definition of
optimistic atomic broadcast [29]. The sequence of Odeliver notifications de-
fines the so called optimistic order (or opt-order). The sequence of Adeliver
defines the so called final order. We now describe the architecture of S-
Paxos to elaborate the design choices we made for implementing Odeliver
and Adeliver.

S-Paxos improves upon JPaxos with optimizations such as distributing
the leader’s load across all replicas. Unlike JPaxos, where clients only connect
to the leader, in S-Paxos each replica accepts client requests and sends replies
to connected clients after the execution of the requests. S-Paxos extensively
uses the batching technique [14, 15] for increasing throughput. A replica

7

creates a batch of client requests and distributes it to other replicas. The
receiver replicas forward this batch to all other replicas. When the replicas
observe a majority of delivery for a batch, it is considered as stable batch. The
leader then proposes an order (containing only batch IDs) for non-proposed
stable batches, for which, the other replicas reply with their agreement i.e.,
accept messages. When a majority of agreements for a proposed order is
reached (i.e., a consensus instance), each replica considers it as decided.

S-Paxos is based on the MultiPaxos protocol where, if the leader remains
stable (i.e., does not crash), its proposed order is likely to be accepted by
the other replicas. Also, there exists a non-negligible delay between the time
when an order is proposed and its consensus is reached. As the number of
replicas taking part in the consensus agreement increases, the time required
to reach consensus becomes substantial. Since the likelihood of a proposed
order to get accepted is high with a stable leader, we exploit the time to reach
consensus and execute client requests speculatively without commit. When
the leader sends the proposed order for a batch, replicas use it for triggering
Odeliver. On reaching consensus agreement, replicas fire the Adeliver event,
which commits all speculatively executed transactions corresponding to the
agreed consensus.

Network non-determinism presents some challenges for the implementa-
tion of Odeliver and Adeliver in S-Paxos. First, S-Paxos can be configured
to run multiple consensus instances (i.e., pipelining) to increase throughput.
This can cause out-of-order consensus agreement e.g., though an instance a
precedes instance b, b may be agreed before a. Second, the client’s request
batch is distributed by the replicas before the leader could propose the order
for them. However, a replica may receive a request batch after the delivery
of a proposal that contains it (due to network non-determinism). Lastly, a
proposal message may be delivered after the instance is decided.

We made the following design choices to overcome these challenges. We
trigger an Odeliver event for a proposal only when the following conditions
are met: 1) the replica receives a propose message; 2) all request batches
of the propose message have been received; and 3) Odeliver for all previous
instances have been triggered i.e., there is no “gap” for Odelivered instances.
A proposal can be Odelivered either when a missing batch from another
replica is received for a previously proposed instance, or when a proposal is
received for the previously received batches. We delay the Odeliver until
we receive the proposal for previously received batches to avoid out-of-order
speculative execution and to minimize the cost of aborts and retries.

8

The triggering of the Adeliver event also depends on the arrival of re-
quest batches and the majority of accept messages from other replicas. An
instance may be decided either after the receipt of all request batches or
before the receipt of a delayed batch corresponding to the instance. It is
also possible that the arrival of the propose message and reaching consensus
is the same event (e.g., for a system of 2 replicas). In such cases, Adeliver
events immediately follow Odeliver. Due to these possibilities, we fire the
Adeliver event when: 1) consensus is reached for a proposed message; and 2)
a missing request batch for a decided instance is received; and 3) the corre-
sponding instance has been Odelivered. If there is any out-of-order instance
agreement, Adeliver is delayed until all previous instances are Adelivered.

 0

 1

 2

 3

 4

 5

 6

3 7 11 15 19

O
d

e
liv

e
r

o
u

t-
o

f-
o

rd
e

r
%

Replicas

Failure-free
Faulty

(a) % of out-of-order Odeliver w.r.t. Adeliver

 0

 100

 200

 300

 400

 500

 600

3 7 11 15 19

D
e

la
y
 f

ro
m

 O
d

e
liv

e
r

to
 A

d
e

liv
e

r
(µ

s
e

c
)

Replicas

Failure-free
Faulty

(b) Time between Odeliver and Adeliver

Figure 1: OS-Paxos performance.

In order to assess the effectiveness of our design choices, we conducted
experiments measuring the percentage of reordering between OS-Paxos’s op-
timistic and final deliveries, and the average time between an Odeliver and
its subsequent Adeliver. We balanced the clients injecting requests on all
the nodes and we reproduced executions without failures (Failure-free) and
manually crashing the actual leader (Faulty). Figure 1 shows the results.
The experimental test-bed is the same used for the evaluation of HiperTM
in Section 4 (briefly, we used 19 nodes interconnected via 40 Gbits network
on PRObE [24] public cluster).

Reordering (Figure 1(a)) is absent for failure-free experiments (Therefore
the bar is not visible in the plot). This is because, if the leader does not fail,
then the proposing order is always confirmed by the final order in OS-Paxos.
Inducing leader to crash, some reorder appears starting from 7 nodes. How-

9

ever, the impact on the overall performance is limited because the maximum
number of reordering observed is lower than 5% with 19 replicas. This con-
firms that the optimistic delivery order is an effective candidate for the final
execution order. Figure 1(b) shows the average delay between Odeliver and
Adeliver. It is in the rage of ≈300 microseconds to ≈500 microseconds in
case of failure-free runs and it increases up to ≈550 microseconds when leader
crashes. The reason is related to the possibility that the process of sending
the proposal message is interrupted by a fault, forcing the next elected leader
to start a new agreement on previous messages.

The results highlight the trade-off between a more reliable optimistic de-
livery order and the time available for speculation. On one hand, anticipating
the optimistic delivery results in additional time available for speculative pro-
cessing transactions, at the cost of having an optimistic delivery less reliable.
On the other hand, postponing the optimistic delivery brings an optimistic
order that likely matches the final order, restricting the time for processing.
In HiperTM we preferred this last configuration and we designed a lightweight
protocol for maximizing the exploitation of the time between Odeliver and
Adeliver.

3.2. Programming model

Classical transactional applications based on STM/DTM delimit portions
of source code containing operations which must be executed transactionally,
according to the application’s logic (all or nothing). Those blocks are man-
aged by the STM/DTM library and executed according to the concurrency
control rules at hand. Some programming languages use annotations for
marking transactional code (e.g., annotation), while others explicitly invoke
APIs offered by the STM/DTM library in order to open and commit a trans-
actional context (e.g., store-procedure).

HiperTM’s programming model follows the latter approach. Since trans-
actions must be ordered through the total order layer (i.e., OS-Paxos), the
concurrency control mechanism cannot process transactions in the same ap-
plication thread (this is the only difference with the traditional, API-based
transactional programming model). In HiperTM, programmers can either:

(a) wrap transactions in a method with the necessary parameters and call
a library API (i.e., invoke(type par1, type par2, ...)) to invoke that
transaction; or

10

(b) adopt a byte-code rewriting tool for transparently generating methods
with the needed parameters from atomic blocks.

1 class Client{

2 void submitTransfer{

3 ...

4 byte[] request;

5 request.put(TRANSFER);

6 request.putInt(sourceAccount);

7 request.putInt(destAccount);

8 request.putFloat(amount);

9 byte[] response;

10 response = client.invoke(request);

11 ...

12 }

13 }

14 class Server{

15 ...

16 transfer(ClientRequest, srcAcc, dstAcc, amount);

17 ...

18 }

Figure 2: Transfer transaction profile of Bank benchmark on HiperTM.

Figure 2 shows how the transaction profile of the transfer operation of
Bank benchmark is managed by HiperTM. Transfer requires three param-
eters: the source account, the destination account, and the amount to be
transferred. These parameters are stored in the request and sent for execu-
tion using invoke.

3.3. The Protocol

Application threads (clients), after invoking a transaction using the invoke
API, wait until the transaction is successfully processed by the replicated
system and its outcome becomes available. Each client has a reference replica
for issuing requests. When that replica becomes unreachable or a timeout
expires after the request’s submission, the reference replica is changed and the
request is submitted to another replica. Duplication of requests is handled by
tagging messages with unique keys composed of client ID and local sequence
number.

Replicas know about the existence of a new transaction to process only
after the transaction’s Odeliver. The opt-order represents a possible, non
definitive, serialization order for transactions. Only the sequence of Adelivers

11

determines the final commit order. HiperTM overlaps the execution of opti-
mistically delivered transactions with their coordination phase (i.e., defining
the total order among all replicas) to avoid processing those transactions
from scratch after their Adeliver. Clearly, the effectiveness of this approach
depends on the likelihood that the opt-order is consistent with the final or-
der. In the positive case, transactions are probably executed and there is
no need for further execution. Conversely, if the final order contradicts the
optimistic one, then the executed transactions can be in one of the following
two scenarios: i) their serialization order is “equivalent” to the serialization
order defined by the final order, or ii) the two serialization orders are not
“equivalent”. The notion of equivalence here is related to transactional con-
flicts: when two transactions are non-conflicting, their processing order is
equivalent.

T1:[R(A1);W(A1)] T2:[R(A2);W(A2)] T3:[R(A3);W(A3)] T4:[R(A4);W(A4)]

Opt-order:	T1	->	T2	->	T3	->	T4

Case	ii)

T4	conflicts	with	T2	and/or	T3
A2	∩	A4	≠	� and/or	A3	∩	A4	≠	�

Final-order:	T1	->	T4	->	T3	->	T2

Commit	order
T1	->	T4	->	T3	->	T2	is	NOT	equivalent	to

T1	->	T2	->	T3	->	T4

Case	i)

T4	does	not	conflict	with	T2	and/or	T3
A2	∩	A4	=	� and/or	A3	∩	A4	=	�

Commit	order
T1	->	T4	->	T3	->	T2	is	equivalent	to

T1	->	T2	->	T3	->	T4

Figure 3: Example of committing transactions {T1,T2,T3,T4} varying the conflict of ac-
cessed objects, in case the final order contradicts the optimistic order.

Consider four transactions. Suppose {T1,T2,T3,T4} is their opt-order and
{T1,T4,T3,T2} is their final order. Assume that the transactions are com-
pletely executed when the respective Adelivers are issued. When Adeliver(T4)
is triggered, T4’s optimistic order is different from its final order. However,
if T4 does not conflict with T3 and T2, then its serialization order, realized
during execution, is equivalent to the final order, and the transaction can be
committed without re-execution (case i)). On the contrary, if T4 conflicts
with T3 and/or T2, then T4 must be aborted and restarted in order to ensure
replica consistency (case ii)). If conflicting transactions are not committed
in the same order on all replicas, then replicas could end up with different
states of the shared data-set, violating correctness (i.e., the return value of a
read operation can be different if it is executed on different replicas).

Figure 3 pictures the previous two cases. For the sake of clarity, we

12

assume each transaction performing one read operation and one write oper-
ation on the same object. We distinguish between case i) and case ii) by,
respectively, assigning different values to accessed objects (left column in the
figure) or same values (right column in the figure). However, in both the
cases, transaction T4 reads and writes the same object managed by T1, thus
A1 is equals to A4 (due to the compact representation of the example, each
object’s name is different but it can refer to same object). In case i), where
object A2 (or A3) is the same as A4, the validation of T4 after T1 cannot
complete successfully because the value of A2 (or A3) read by T4 does not
correspond to the actual committed value in memory, namely the one written
by T1. On the contrary, the right column shows the case ii) where object
A2 (or A3) is different from A4. This way, T4 can successfully validate and
commit even if its speculative execution order was different. This is because
the actual dependencies with other transactions of T4 are the same as those
in the final order (i.e., T1 has to commit before T4). As a result, T1 is still
committed before T4, allowing T4 to commit too.

3.3.1. Write Transaction Processing

We use the speculative processing technique for executing optimistically
(but not yet finally) delivered write transactions. (We recall that only write
transactions are totally ordered through OS-Paxos). This approach has been
proposed in [17] in the context of traditional DBMS. In addition to [17],
we do not limit the number of speculative transactions executed in parallel
with their coordination phase, and we do not assume a-priori knowledge
on transactions’ access patterns. Write transactions are processed serially,
without parallel activation (see Section 3.4 for complete discussion). Even
though this approach appears inconsistent with the nature of speculative
processing, it has several benefits for in-order processing, which increase the
likelihood that a transaction will reach its final stage before its Adeliver is
issued.

In order to allow next conflicting transaction to process speculatively,
we define a complete buffer for each shared object. In addition to the last
committed version, shared objects also maintain a single memory slot (i.e.,
the complete buffer), which stores the version of the object written by the last
completely executed optimistic transaction. The complete buffer could be
empty if no transactions wrote a new version of that object after the previous
version became committed. We do not store multiple completed versions
because, executing transactions serially needs only one uncommitted version

13

per object. When an Odelivered transaction performs a read operation, it
checks the complete buffer for the presence of a version. If the buffer is
empty, the last committed version is considered; otherwise, the version in
the complete buffer is accessed. When a write operation is executed, the
complete buffer is immediately overwritten with the new version. This early
publication of written data in memory is safe because of serial execution. In
fact, there are no other write transactions that can access this version before
the current transaction completes.

After executing all its operations, an optimistically delivered transaction
waits until Adeliver is received. In the meanwhile, the next Odelivered
transaction starts to execute. When an Adeliver is notified by OS-Paxos,
a handler is executed by the same thread that is responsible for specula-
tively processing transactions. This approach avoids interleaving with trans-
action execution (which causes additional synchronization overhead). When
a transaction is Adelivered, if it is completely executed, then it is validated
for detecting the equivalence between its actual serialization order and the
final order. The validation consists of comparing the versions read during
the execution. If they correspond with the actual committed version of the
objects accessed, then the transaction is valid, certifying that the serializa-
tion order is equivalent to the final order. If the versions do not match, the
transaction is aborted and restarted. A transaction Adelivered and aborted
during its validation can re-execute and commit without validation due to
the advantage of having only one thread executing write transactions.

The commit of write transactions involves moving the written objects
from transaction local buffer to the objects’ last committed version. In ad-
dition, each object maintains also a list of previously committed versions,
which is exploited by read-only transactions to execute independently from
the write transactions.

In terms of synchronization required, the complete buffer can be managed
without it because only one write transaction is active at a time. On the
other hand, installing a new version as committed requires synchronization
because of the presence of multiple readers (i.e., read-only transactions) while
the write transaction could (possibly) update the list.

3.3.2. Read-Only Transaction Processing

Read-only transactions are marked by programmers and they are not
broadcast using OS-Paxos, because they do not need to be totally ordered.
When a client invokes a read-only transaction, it is locally delivered and

14

executed in parallel to write transactions by a separate pool of threads. In
order to support this parallel processing, we define a timestamp for each
replica, called replica-timestamp, which represents a monotonically increasing
integer, incremented each time a write transaction commits. When a write
transaction enters its commit phase, it assigns the replica-timestamp to a
local variable, called c-timestamp, representing the committing timestamp,
increases the c-timestamp, and tags the newly committed versions with this
number. Finally, it updates the replica-timestamp with the c-timestamp.

When a read-only transaction performs its first operation, the replica-
timestamp becomes the transaction’s timestamp (or r-timestamp). Subse-
quent operations are processed according to the r -timestamp: when an ob-
ject is accessed, its list of committed versions is traversed in order to find
the most recent version with a timestamp lower or equal to the r -timestamp.
After completing execution, a read-only transaction is committed without
validation. The rationale for doing so is as follows. Suppose TR is the com-
mitting read-only transaction and TW is the parallel write transaction. TR’s
r -timestamp allows TR to be serialized a) after all the write transactions
with a c-timestamp lower or equal to TR’s r -timestamp; and b) before TW ’s
c-timestamp and all the write transactions committed after TW . TR’s op-
erations access versions consistent with TR’s r -timestamp. This subset of
versions cannot change during TR’s execution, and therefore TR can commit
safely without validation.

Whenever a transaction commits, the thread managing the commit wakes-
up the client that previously submitted the request and provides the appro-
priate response.

3.4. Speculative Concurrency Control

In HiperTM, each replica is equipped with a local speculative concurrency
control, called SCC, for executing and committing transactions enforcing the
order notified by OS-Paxos. In order to overlap the transaction coordination
phase with transaction execution, write transactions are processed specula-
tively as soon as they are optimistically delivered. The main purpose of the
SCC is to completely execute a transaction, according to the opt-order, be-
fore its Adeliver is issued. As shown in Figure 3.3, the time available for this
execution is limited.

Motivated by this observation, we designed SCC. SCC exploits multi-
versioned memory for activating read-only transactions in parallel to write

15

transactions that are, on the contrary, executed on a single thread. The rea-
son for single-thread processing is to avoid the overhead for detecting and
resolving conflicts according to the opt-order while transactions are execut-
ing. During experiments on the standalone version of SCC, we found it to
be capable of processing ≈95K write transactions per second, while ≈250K
read-only transactions in parallel on different cores (we collected these results
using Bank benchmark on experimental test-bed’s machine). This through-
put is higher than HiperTM’s total number of optimistically delivered trans-
actions speculatively processed per second, illustrating the effectiveness of
single-thread processing.

Single-thread processing ensures that when a transaction completes its
execution, all the previous transactions are executed in a known order. Ad-
ditionally, no atomic operations are needed for managing locks or critical
sections. As a result, write transactions are processed faster and read-only
transactions (executed in parallel) do not suffer from otherwise overloaded
hardware bus (due to CAS operations and cache invalidations caused by
spinning on locks) and they are also never stopped.

Transactions log the return values of their read operations and writ-
ten versions in private read- and write-set, respectively. The write-set is
used when a transaction is Adelivered for committing its written versions in
memory. However, for each object, there is only one uncommitted version
available in memory at a time, and it corresponds to the version written by
the last optimistically delivered and executed transaction. If more than one
speculative transaction wrote to the same object, both are logged in their
write-sets, but only the last one is stored in memory in the object’s com-
plete buffer. We do not need to record a list of speculative versions, because
transactions are processed serially and only the last can be accessed by the
current executing transaction.

The read-set is used for validation. Validation is performed by simply ver-
ifying that all the objects accessed correspond to the last committed versions
in memory. When the optimistic order matches the final order, validation is
redundant, because serially executing write transactions ensures that all the
objects accessed are the last committed versions in memory. Conversely, if
an out-of-order occurs, validation detects the wrong speculative serialization
order.

Consider three transactions, and let {T1,T2, T3} be their opt-order and
{T2,T1, T3} be their final order. Let T1 and T2 write a new version of object
X and let T3 reads X. When T3 is speculatively executed, it accesses the

16

Algorithm 1 Read Operation of Transaction Ti on Object X.
1: if Ti.readOnly = FALSE then
2: if ∃ version ∈ X.completeBuffer then
3: Ti.ReadSet.add(X.completeBuffer)
4: return X.completeBuffer.value
5: else
6: Ti.ReadSet.add(X.lastCommittedVersion)
7: return X.lastCommittedVersion.value
8: end if
9: else
10: if r-timestamp = 0 then
11: r-timestamp ← X.lastCommittedVersion.timestamp
12: return X.lastCommittedVersion.value
13: end if
14: P ← {set of versions V ∈ X.committedVersions s.t. V .timestamp ≤ r-timestamp
15: if P 6= ∅ then
16: Vcx ← ∃ version Vk ∈ P s.t. ∀ Vq ∈ P ⇒ Vk.timestamp ≥ Vq .timestamp . Vcx has the

maximum timestamp in P
17: return Vcx.value
18: else
19: return X.lastCommittedVersion.value
20: end if
21: end if

Algorithm 2 Write Operation of Transaction Ti on Object X writing the
Value v.
1: Version Vx ← createNewVersion(X,v)
2: X.completeBuffer ← Vx

3: Ti.WriteSet.add(Vx)

version generated by T2. But this version does not correspond to the last
committed version of X when T3 is Adelivered. Even though T3’s optimistic
and final orders are the same, it must be validated to detect the wrong read
version. When a transaction TA is aborted, we do not abort transactions
that read from TA (cascading abort), because doing so will entail tracking
transaction dependencies, which has a non-trivial overhead. Moreover, a
restarted transaction is still executed on the same processing thread. That is
equivalent to SCC’s behavior, which aborts and restarts a transaction when
its commit validation fails.

The abort handler is responsible for removing the complete buffer of each
object written by the aborted transaction. As a consequence of that, any
newly activated speculative transaction will not observe any speculative ver-
sion while reading, thus it will be forced to read the committed version.

A task queue is responsible for scheduling jobs executed by the main
thread (processing write transactions). Whenever an event such as Odeliver

17

Algorithm 3 Validation Operation of Transaction Ti.
1: for all Vx ∈ Ti.ReadSet do
2: if Vx 6= X.lastCommittedVersion then
3: return FALSE
4: end if
5: end for
6: return TRUE

Algorithm 4 Commit Operation of Transaction Ti.
1: if Validation(Ti) = FALSE then
2: return Ti.abort&restart
3: end if
4: c-timesamp ← replica-timestamp
5: c-timesamp gets c-timesamp + 1
6: for all Vx ∈ Ti.WriteSet do
7: Vx.timestamp ← c-timestamp
8: X.lastCommittedVersion ← Vx

9: end for
10: replica-timestamp = c-timesamp

or Adeliver occurs, a new task is appended to the queue and is executed by
the thread after the completion of the previous tasks. This allows the events’
handlers to execute in parallel without slowing down the executor thread,
which is the SCC’s performance-critical path.

As mentioned, read-only transactions are processed in parallel to write
transactions, exploiting the list of committed versions available for each ob-
ject to build a consistent serialization order. The growing core count of
current and emerging multicore architectures allows such transactions to ex-
ecute on different cores, without interfering with the write transactions. One
synchronization point is present between write and read transactions, i.e.,
the list of committed versions is updated when a transaction commits. In
order to minimize its impact on performance, we use a concurrent sorted
Skip-List for storing the committed versions.

The pseudo code of SCC is shown in Algorithms 1-4. We show the core
steps of the concurrency control protocol such as reading a shared object
(Algorithm 1), writing a shared object (Algorithm 2), validating a write
transaction (Algorithm 3) and committing a write transaction (Algorithm 4).

3.5. Properties

HipertTM satisfies a set of properties that can be classified as local to
each replica and global to the replicated system as a whole. For what con-
cern the former, each replica has a concurrency control that operates isolated,

18

without interactions with other nodes. For this reason, we can infer proper-
ties that hold for non distributed interactions. On the other side, a client of
HiperTM system does not see specific properties local to each replica because
the system is hidden by the semantic of API exposed (i.e., invoke).

We name a property as global if it holds for the distributed system as
a whole. Specifically, a property is global if there is no execution involving
distributed events such that the property is not ensured. In other words,
the property should work for transactions executing within the bounds of
single node, as well as involving transactions (concurrent or not) executing
or executed on other nodes.

3.5.1. Formalism

We now introduce the formalism that will be used for proving HiperTM’s
correctness properties.

According to the definition in [30], an history H is a partial order on the
sequence of operations Op executed by the transactions, where Op’s values
are in the set {begin, read, write, commit, abort}. When a transaction Ti

performs the above operations, we name them as bi, ci, ai respectively. In
addition, a write operation of Ti on a the version k of the shared object x
is denoted as wi(xk); and we refer a read operation the corresponding read
operation as ri(xk). In addition H implicitly induces a total order � on
committed object versions [30].

We now use a directed graph as a representation of an history H where
committed transaction in H are the graph’s vertices and there exists a di-
rected edge between two vertices if the respective transactions are conflicting.
We name this graph as Directed Serialization Graph (or DSG(H)). More
formally, a vertex in DSG is denoted as VTi

and represents the committed
transaction Ti in H. Two vertices VTi

and VTj
are connected with an edge if

Ti and Tj are conflicting transactions, namely there are two operations Opi
and Opj in H, performed by Ti and Tj respectively, on a common shared
object, such that at least one of them is a write operation.

We distinguish three types of edges depending on the type of conflicts
between Ti and Tj:

- Directed read-dependency edge if there exists an object x such that
both wi(xi) and rj(xi) are in H. We say that Tj directly read-depends

on Ti and we use the notation VTi

wr−→ VTj
.

19

- Directed write-dependency edge if there exists an object x such that
both wi(xi) and wj(xj) are in H and xj immediately follows xi in the
total order defined by �. We say that Tj directly write-depends on Ti

and we use the notation VTi

ww−−→ VTj
.

- Directed anti-dependency edge if there exists an object x and a com-
mitted transaction Tk in H, with k 6= i and k 6= j, such that both
ri(xk) and wj(xj) are in H and xj immediately follows xk in the total
order defined by�. We say that Tj directly anti-depends on Ti and we
use the notation VTi

rw
� VTj

.

Finally, it is worth to recall two important aspects of HiperTM that will
be used in the proof.

- (SeqEx). HiperTM processes write transactions serially, without in-
terleaving their executions. This means that for any pair of operations
Op1

i and Op2
i performed by a transaction Ti such that Op1

i is executed
before Op2

i , there is no operation Opj, invoked by a write transaction
Tj, that can be executed in between Op1

i and Op2
i by the HiperTM’s

local concurrency control.

- (ParRO). The second aspect is related to the read-only transactions.
When such a transaction starts, it cannot observe objects written by
write transactions committed after the starting time of the read-only
transaction. Intuitively, the read-only transaction, thanks to the multi-
versioning, could read in the past. This mechanism allows read-only
transactions to fix the set of available versions to read at the beginning
of their execution, without taking into account concurrent commits.

3.5.2. Global Properties

For the purpose of the following proofs, we scope out the speculative exe-
cution when the transactions are optimistically delivered. In fact, this execu-
tion is only an anticipation of the execution that happens when a transaction
is final delivered. For the sake of clarity, we assume that a transaction T is
activated as soon as the final delivery for T is received. This assumption
does not limit the generality of the proofs because any transaction specu-
lative executed is validated when the relative final delivery is received (Al-
gorithm 4, Line 1). If the speculative order does not match the final order,

20

then the transaction is re-executed (Algorithm 4, Line 2). Thus the specu-
lative execution can be seen only for improving performance, but in terms
of correctness, only the execution after the final delivery matters. In fact,
speculative transactions are not committed. The validation (Algorithm 3)
performs a comparison between the read versions of the speculative execution
with actual committed versions in memory. Due to (SeqEx), there are no
concurrent transactions validating at the same time, thus if, the validation
succeeds, then the transaction does not need the re-execution, otherwise it
is re-executed from the very beginning.

Theorem 1. HiperTM guarantees 1-copy serializability (1CS) [31], namely
for each run of the protocol the set of committed transactions appear as they
are executed sequentially, i.e. whichever pair of committed transactions Ti,
Tj, serialized in this order, every operation of Ti precedes in time all the
operations of Tj as executed on a single copy of the shared state.

Proof. We conduct this proof relying on the DSG. In particular, as also
stated in [31], a history H with a version order� is 1-copy serializable if the
DSG(H) on H does not contain any oriented cycle.

To show the acyclicity of the DSG(H) graph, we first prove that for
each history H, every transaction committed by the protocol appears as
instantaneously executed in a unique point in time t (Part1); subsequently
we rely on those t values to show a mathematical absurd confirming that
DSG(H) cannot contain any cycle (Part2).

In order to prove Part1 of the proof, we assign to each transaction T com-
mitted in H a commit timestamp, called CommitOrd(T,H). CommitOrd(T,H)
defines the time where the transaction T appears committed in H. We dis-
tinguish two cases, namely when T is a write transaction or a read-only
transaction.

- If T is a write transaction, CommitOrd(T,H) is the commit timestamp
of T in H (Algorithm 4 Line 4) , which matches also the final order
that OS-Paxos assigned to T . This is because: i) OS-Paxos defines
a total order among all write transactions and, ii), (SeqEx) does not
allow interleaving of operations’ executions. This way, given a history
H, CommitOrd(T,H) is the time when T commits its execution in H
and no other write transaction executes concurrently.

- If T is a read-only transaction, CommitOrd(T,H) is the node’s times-
tamp (Algorithm 1 Line 11) when T starts in H (read-only transactions

21

are delivered and executed locally to one node, without remote interac-
tions). In fact, (ParRO) prevents the read-only transaction to interfere
with executing write transaction, implicitly serializing the transaction
before those write transactions. In this case, CommitOrd(T,H) is the
timestamp that precedes any other commit made by write transactions
after T started.

According to the definition of DSG(H), there is an edge between two
vertices VTi

and VTj
when Ti and Tj are conflicting transaction in H. We now

show that, if such an edge exists, then CommitOrd(Ti, H)≤ CommitOrd(Tj, H).
We do this considering the scenarios where H is only composed of write trans-
actions (WOnly), then we extend it integrating read-only transaction (RW).
(WOnly).

- If there is a directed read-dependency between Ti and Tj (i.e., VTi

wr−→
VTj

), then it means that there exists an object version xi that has
been written by Ti and read by Tj via rj(xi). Since (SeqEx), Ti and
Tj cannot interleave their executions thus all the object versions ac-
cessed by Tj have been already committed by Ti before Tj starts its
execution. If Tj starts after Ti means also that CommitOrd(Ti, H) <
CommitOrd(Tj, H).

- Similar argument can be made if Tj directly write-depends on Ti (VTi

ww−−→
VTj

). Here both Ti and Tj write a version of object x, following the order
Ti, Tj (i.e., Tj overwrites the version written by Ti). As before, through
(SeqEx) we can infer that CommitOrd(Ti, H) < CommitOrd(Tj, H).

- If Tj directly anti-depends on Ti (VTi

rw
� VTj

), it means that there
exists an object x such that Ti reads some object version xi and Tj

writes a new version of x, namely xj, after Ti. By the definition of
directly anti-dependency and given that the transaction execution is
serial (SeqEx), it follows that, if Tj creates a new version of x after
Ti read x, then Ti committed its execution before activating Tj, thus
CommitOrd(Ti, H) < CommitOrd(Tj, H).

(RW).
If we enrich a history H with read-only transactions, the resulting DSG(H)
contains at least a vertex VTr , corresponding to the read-only transaction Tr,
such that, due to (ParRO), the only type of outgoing edge that is allowed to
connect VTr to any other vertex, namely an edge where VTr is the source ver-
tex, is a directly anti-dependency edge. In fact, no other transaction can have

22

any directed read-dependency or directed write-dependency with Tr, because
Tr does not create new object versions. In this case, say Tr the transaction
reading the object version xr and Tw the transaction writing a new version
of x, called xw. Due to (ParRO), any concurrent write transaction (such as
Tw), that commits after Tr’s begin, acquires a timestamp that is greater than
Tr’s timestamp, thus also the new versions committed by Tw(such as xw) are
tagged with a higher timestamp. This prevents read-only transactions to
access those new versions. In other words, Tr cannot see the modifications
made by Tw after its commit. This serializes Tw’s commit operation after
Tr’s execution, thus CommitOrd(Tr, H) < CommitOrd(Tw, H).

Nevertheless, VTr is clearly connected with edges from other vertices cor-
responding to write transactions (Tw) previously committed. In this case, due
to (ParRO), CommitOrd(Tr, H) is not strictly greater than CommitOrd(Tw, H)
but CommitOrd(Tw, H) ≤ CommitOrd(Tr, H) because otherwise Tr is al-
ways forced to read in the past in spite of having fresher object versions
committed before Tr’s starting. However this does not represent a limitation
because, if a cycle on DSG involves a vertex that represents a read-only
transaction (VTr), then all its outgoing edges will connect to vertices with a
CommitOrd strictly greater than the CommitOrd(Tr, H).

We have proved that for each DSG(H) on H and for each VTi
−→ VTj

edge in DSG(H), CommitOrd(Ti, H) ≤ CommitOrd(Tj, H) holds. In or-
der to prove Part2, we now show that DSG(H) cannot contain any oriented
cycle. To do that, we observe that, if DSG(H) is composed of only write
transactions, then CommitOrd(Ti, H) < CommitOrd(Tj, H). In addition,
if there is a path in DSG(H) that is: TW0, TW1 . . . TWi, TR, TWi+1, . . . TWn

where TWi is the i -th write transaction and TR is the read-only transaction,
then CommitOrd(TR, H) < CommitOrd(TWi+1, H). Having said that, we
can now show why DSG(H) cannot have cycles involving only write trans-
actions or read-only transactions. This is because, if such a cycle existed
it would lead to the following absurd: for each VTi

in the cycle we have
CommitOrd(Ti, H) < CommitOrd(Ti, H). �

Theorem 2. HiperTM guarantees wait freedom of read-only transactions [32],
namely that any process can complete a read-only transaction in a finite num-
ber of steps, regardless of the execution speeds of the other processes.

Proof. Due to (ParRO) and the (SeqEx), the proof is straightforward. In
fact, with (SeqEx) there are no locks on shared objects [33] (one transaction

23

processes and commits at a time). The only synchronization point between
a read-only transaction and a write transaction is the access to the version
list of objects. However, those lists are implemented as wait-free [34], thus
concurrent operations on the shared list always complete. This prevents
the thread executing write transactions to possibly stop (or slow-down) the
execution of a read-only transaction.

In addition, read-only transactions cannot abort. Before issuing the first
operation, a read-only transaction saves the replica-timestamp in its local
r -timestamp and use it for selecting the proper committed versions to read.
The acquisition of the replica-timestamp always completes despite any be-
havior of other threads because the increment of the replica-timestamp does
not involve any lock acquisition, rather we use atomic-increment operations.
The subset of all the versions that the read-only transaction can access dur-
ing its execution is fixed when the transaction defines its r -timestamp. Only
one write transaction, TW , is executing when a read-only transaction, TRO

acquires the r -timestamp. Due to the atomicity of replica-timestamp’s up-
date, the acquisition of the r -timestamp can only happen before or after the
atomic increment.

i) If TW updates the replica-timestamp before TRO acquires the r -timestamp,
TRO is serialized after TW , but before the next write transaction that
will commit.

ii) On the contrary, if the replica-timestamp’s update happens after, TRO

is serialized before TW and cannot access the new versions that TW just
committed.

In both cases, the subset of versions that TRO can access is defined and
cannot change due to future commits. For this reason, when a read-only
transaction completes its execution, it returns the values to its client without
validation. �

3.5.3. Local Properties

HiperTM guarantees a variant of opacity [35] locally to each replica. It
cannot ensure Opacity as defined in [35] because of the speculative execution.

In fact, even if such execution is serial, data written by a committed
transaction are made available to the next speculative execution. This usu-
ally happens before the actual commit of the transaction, which occurs only
after its final order is notified. Opacity can be summarized as follow: a

24

protocol ensures opacity if it guarantees three properties: (Op.1) committed
and aborted transactions appear as if they are executed serially, in an order
equivalent to their real-time order; (Op.2) no transaction accesses a snapshot
generated by a live (i.e., still executing) or aborted transaction.

As an example, say H an history of transactions {T1, T2, T3} reading and
writing the same shared objects (i.e., T1=T2=T3=[read(x); write(x)]). The
optimistic order defines the following execution: T1, T2, T3. We now assume
that the final order for those transactions is not yet defined.

T1 starts as soon as it is optimistic delivered. It completes its two oper-
ations and, according to the serial speculative execution, T2 starts. Clearly
T2 accesses to the version of object x written by T1 before T1 actually com-
mits (that will happen when the final order of T1 will be delivered), breaking
(Op.2).

However, we can still say that HiperTM guarantees a variant of opacity
if we assume one of these two scenarios.

a) The speculative execution is just an anticipation of the real execution
that happens when a transaction is final delivered. The validation
procedure is responsible for decoupling speculative and non-speculative
execution. This way, we can scope out the speculative execution and
analyze only the execution after the final delivery of transactions.

b) We can enrich the type of operations admitted by opacity with the spec-
ulative commit. Given that, when a transaction completes its specula-
tive execution, it does the speculative commit, exposing new versions
to only other speculative transactions.

We show this by addressing all the above clauses of opacity and, consid-
ering that this is a local property (i.e., valid within the bound of a replica),
we will refer to HiperTM as SCC.

SCC satisfies (Op.1) because each write transaction is validated before
commit, in order to certify that its serialization order is equivalent to the
optimistic atomic broadcast order, which reflects the order of the client’s
requests. When a transaction is aborted, it is only because its serialization
order is not equivalent to the final delivery order (due to network reorder-
ing). However that serialization order has been realized by a serial execution.
Therefore, the transaction’s observed state is always consistent. Read-only
transactions perform their operations according to the r -timestamp recorded

25

from the replica-timestamp before their first read. They access only the
committed versions written by transactions with the highest c-timestamp
lower or equal to the r -timestamp. Read-only transactions with the same
r -timestamp have the same serialization order with respect to write transac-
tions. Conversely, if they have different r -timestamps, then they access only
objects committed by transactions serialized before.

(Op.2) is guaranteed for write transactions because they are executed
serially in the same thread. Therefore, a transaction cannot start if the
previous one has not completed, preventing it from accessing modifications
made by non-completed transactions. Under SCC, optimistically delivered
transactions can access objects written by previous optimistically (and not
yet finally) delivered transactions. However, due to serial execution, transac-
tions cannot access objects written by non-completed transactions. (Op.2) is
also ensured for read-only transactions because they only access committed
versions.

4. Implementation and Evaluation

HiperTM’s architecture consists of two layers: network layer (OS-Paxos)
and replica speculative concurrency control (SCC). We implemented both in
Java: OS-Paxos as an extension of S-Paxos, and SCC from scratch. To eval-
uate performance, we used two benchmarks: Bank and TPC-C [25]. Bank
emulates a monetary application and is typically used in TM works for bench-
marking performance [26, 6, 36]. TPC-C [25] is a well known benchmark that
is representative of on-line transaction processing workloads.

We used PaxosSTM [26, 5] as a competitor. PaxosSTM implements the
deferred update replication scheme and relies on a non-blocking transac-
tion certification protocol, which is based on atomic broadcast (provided by
JPaxos).

We used the PRObE testbed [24], a public cluster that is available for
evaluating systems research. Our experiments were conducted using 19 nodes
in the cluster. Each node is a physical machine equipped with a quad socket,
where each socket hosts an AMD Opteron 6272, 64-bit, 16-core, 2.1 GHz
CPU (total 64-cores). The memory available is 128GB, and the network
connection is a 40 Gigabits Ethernet.

HiperTM is configured with a pool of 20 threads serving read-only trans-
actions while a single thread is reserved for processing write transactions

26

delivered by OS-Paxos. Clients are balanced on all the replicas. They in-
ject transactions for the benchmark and wait for the reply. We configured
PaxosSTM for working with the same configuration used in [5]: 160 parallel
threads per nodes are responsible to execute transactions while JPaxos (i.e.,
the total order layer) leads their global certification. Data points plotted are
the average of 6 repeated experiments.

4.1. Bank Benchmark

Bank benchmark is characterized by short transactions with few objects
accessed (i.e., in the range of 2-4 objects), resulting in small transactions’
read-set and write-set. A sanity check is implemented to test the correctness
of the execution. The nature of this benchmark causes very high performance.

In order to conduct an exhaustive evaluation, we changed the application
workload such that strengths and weaknesses of HiperTM are highlighted.
Specifically, we varied the percentage of read-only transactions in the range
of 10%, 50%, 90% and the contention level in the system by decreasing the
total number of shared objects (i.e., accounts in Bank benchmark) available.
This way we defined three contention level: low, with 5000 objects, medium,
with 2000 objects, and high, with 500 objects. During the experiments we
collected transactional throughput (Figure 4) and latency (Figure 5). In
addition, for what concerns PaxosSTM, we gathered also the percentage of
remote aborts. This information is available only for PaxosSTM because
HiperTM does not certify transactions globally thus it cannot end up in
aborting transactions. Only if the optimistic order does not match the final
order and the transaction’s read-set is not valid, then a transaction can be
aborted in HiperTM. However, each transaction is aborted only once (at
most) because it immediately restarts and commits without any possible
further invalidation.

Figure 4 shows the throughput of Bank benchmark. For each workload
configuration (i.e., low,medium,high conflict) we reported the observed abort
percentage of PaxosSTM. The trend is clear from the analysis of the plots,
PaxosSTM has a great performance compared with HiperTM because it is
able to exploit the massive multi threading (i.e., 160 threads) for the trans-
action processing when the system is characterized by few conflicts. When
contention becomes greater, namely when number of nodes increases or the
amount of shared objects decreases, the certification phase of PaxosSTM
hampers its scalability. On the contrary, HiperTM suffers from the sin-
gle thread processing when the system has low contention, but outperforms

27

PaxosSTM when the contention starts to increase. As a result, HiperTM
scales better than PaxosSTM when the number of nodes increases.

28

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
s)

Replicas

HiperTM 10%
HiperTM 50%

HiperTM 90%
PaxosSTM 10%

PaxosSTM 50%
PaxosSTM 90%

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e

c

Replicas

(a) Throughput high conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o

rt
e

d
 T

x

Replicas

(b) Abort high conflict

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e

c

Replicas

(c) Throughput medium conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o

rt
e

d
 T

x

Replicas

(d) Abort medium conflict

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e

c

Replicas

(e) Throughput low conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o

rt
e

d
 T

x

Replicas

(f) Abort low conflict

Figure 4: Throughput and abort percentage of HiperTM and PaxosSTM for Bank bench-
mark.

29

In all plots, even where the absolute performance is better than HiperTM,
the PaxosSTM’s trend highlights its lack of scalability. This is mainly be-
cause, when a huge number of threads flood the system with transactional
requests (where each request is the transaction’s read-set and write-set), the
certification phase is not able to commit transactions as fast as clients would
inject requests. In addition, with higher contention, remote aborts play an
important role as scalability bottleneck. As an example, with 11 nodes and
high conflict scenario, PaxosSTM aborts 80% of transactions when configured
with 50% of read-only workload.

Increasing the percentage of read-only workload increases performance of
both competitors due to local multi-versioning concurrency control. However,
HiperTM always scales when the size of the system increases. This is because
HiperTM does not saturate the total order layer since messages are very small
(i.e., the id of the transaction to invoke and parameters) and it does not
require any certification phase. After an initial ordering phase, transactions
are always committed suffering from at most one abort which, anyway, is not
propagated through the network but it is handled locally by the concurrency
control.

It is worth to notice the trend of PaxosSTM for low node count in the plot
in Figure 4(a). Here, even though the number of shared objects is low, with
such few replicas, the overall contention is not high, thus PaxosSTM behaves
as in medium contention scenario (see Figure 4(c) when the percentage of
abort is around 20% and with 90% of read-only transactions). However,
after 9 nodes, HiperTM starts outperforming PaxosSTM and keeps scaling,
reaching its peak performance improvement, that is 2.35× at 19 nodes.

Figure 5 shows the latency measured in the same experiments reported
in Figure 4. As expected, it follows the inverse trend of the throughput and
for this reason we decided not to show the case of medium contention but
the two extreme cases with high and low contention. Both PaxosSTM and
HiperTM rely on batching as a way to improve performance of the total
order layer. Waiting for the creation of a batch consumes the most part of
the reported latency. In addition for PaxosSTM, when a transaction aborts,
client has to reprocess the transaction and issue a new certification phase
through the total order layer. For this reason, PaxosSTM’s latency starts
increasing for high conflict scenarios.

30

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
s)

Replicas

HiperTM 10%
HiperTM 50%

HiperTM 90%
PaxosSTM 10%

PaxosSTM 50%
PaxosSTM 90%

 0

 20

 40

 60

 80

 100

 120

 140

 2 4 6 8 10 12 14 16 18 20

L
a

te
n

c
y
 (

m
s
)

Replicas

(a) High conflict

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

L
a

te
n

c
y
 (

m
s
)

Replicas

(b) Low conflict

Figure 5: Latency of HiperTM and PaxosSTM for Bank benchmark.

4.2. TPC-C Benchmark

TPC-C [25] is a real application benchmark composed of five transaction
profiles, each either read-only (i.e., Order Status, Stock Level) or read-
write (i.e., Delivery, Payment, New Order) . Transactions are longer than
Bank benchmark, with high computation and several objects accessed. The
specification of the benchmark suggests a mix of those transaction profiles
(i.e., 4% Order Status, 4% Stock Level, 4% Delivery, 43% Payment, 45%
New Order), resulting in a write intensive scenario. In order to wide the
space of tested configurations, we measured the performance with a read
intensive workload (i.e., 90% read-only) by changing the above mix (i.e., 45%
Order Status, 45% Stock Level, 3.3% Delivery, 3.3% Payment, 3.3% New

Order).
In terms of application contention, TPC-C defines a hierarchy of depen-

dencies among defined objects, however the base object that controls the
overall contention is the warehouse. Increasing the number of shared ware-
houses results in lower contention. The suggested configuration of TPC-C is
to use as warehouses as the total number of nodes in the system. Therefore
for the purpose of this test, we ran the benchmark with 19 warehouses and
also with 50 warehouses in order to generate a low conflict scenario. We
collected the same information as in Bank benchmark.

31

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
s)

Replicas

HiperTM Std
HiperTM 90%

PaxosSTM Std
PaxosSTM 90%

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e

c

Replicas

(a) Throughput standard conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o

rt
e

d
 T

x

Replicas

(b) Abort standard conflict

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 2 4 6 8 10 12 14 16 18 20

T
x
 p

e
r

s
e

c

Replicas

(c) Throughput low conflict

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

%
 A

b
o

rt
e

d
 T

x

Replicas

(d) Abort low conflict

Figure 6: Throughput and abort percentage of HiperTM and PaxosSTM for TPC-C bench-
mark.

Figure 6 reports the throughput of HiperTM and PaxosSTM, together
with the abort rate observed for PaxosSTM. PaxosSTM’s abort rate re-
sults confirm that the contention in the system is much higher than in Bank
benchmark. In addition, the certification phase of PaxosSTM now represents
the protocol’s bottleneck because read-set and write-set of transactions are
large, thus each batch of network messages does not record many transac-
tions and this limits the throughput of the certification phase. Both these
factors hamper PaxosSTM’s scalability and high performance. On the other
hand, HiperTM orders transactions before their execution and it leverages
OS-Paxos just for broadcasting transactional requests, thus it is independent
from the application and from the contention in the system. This allows

32

HiperTM to scale while increasing nodes and resulting in performance by
as much as 3.5× better in case of standard configuration of TPC-C, and by
more than one order of magnitude for the 10% read-only scenario. HiperTM’s
performance in Figures 6(a) and 6(c) are almost the same, this confirms how
HiperTM, and the active replication paradigm, is independent from appli-
cation’s contention. Unfortunately, with long transactions as in TPC-C,
HiperTM cannot match the performance of Bank benchmark because of the
single thread processing.

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
s)

Replicas

HiperTM Std
HiperTM 90%

PaxosSTM Std
PaxosSTM 90%

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16 18 20

L
a

te
n

c
y
 (

m
s
)

Replicas

(a) Standard conflict

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2 4 6 8 10 12 14 16 18 20

L
a

te
n

c
y
 (

m
s
)

Replicas

(b) Low conflict

Figure 7: Latency of HiperTM and PaxosSTM for TPC-C benchmark.

The Figure 7 shows the latency measured in the above experiments.
Clearly, lower throughput and longer transactions caused higher latency.

5. Related Work

Replication in transactional systems has been widely explored in the con-
text of DBMS, including protocol specifications [37] and infrastructural so-
lutions [38, 39, 40, 41]. These proposals span from the usage of distributed
locking mechanisms to atomic commit protocols. [42] implements and evalu-
ates various replication techniques, and those based on active replication are
found to be the most promising.

In [43, 44], two active replication techniques are presented. Both rely on
atomic broadcast for ordering transaction requests, and execute them only
when the final order is notified. In contrast HiperTM, based on optimistic

33

atomic broadcast, begins to process transactions before their final delivery,
i.e., when they are optimistically delivered.

Speculative processing of transactions has been originally presented in [17]
and further investigated in [19, 20]. [19] presents AGGRO, a speculative con-
currency control protocol, which processes transactions in-order, in actively
replicated transactional systems. In AGGRO, for each read operation, the
transaction identifies the following transactions according to the opt-order,
and for each one, it traverses the transactions’ write-set to retrieve the cor-
rect version to read. The authors only present the protocol in [19]; no actual
implementation is presented, and therefore overheads are not revealed.

In HiperTM, all the design choices are motivated by real performance
issues. Our results show how single-thread processing and multi-versioned
memory for parallel activation and abort-freedom of read-only transactions
are the best trade-off in terms of performance and overhead for conflict de-
tection, in systems based on total order services similar to OS-Paxos. In
contrast to [20], HiperTM does not execute the same transaction in multi-
ple serialization orders, because OS-Paxos, especially in case of failure-free
execution, guarantees no-reorders.

Full replication based on total order has also been investigated in certification-
based transaction processing [26, 45, 46]. In this model, transactions are first
processed locally, and a total order service is invoked in the commit phase
for globally certifying transaction execution (by broadcasting their read and
write-sets). [45] is based on OAB while [46] is based on classical atomic
broadcast layer. Both suffer from (O)AB’s scalability bottleneck when mes-
sage size increases. In HiperTM, the length of messages does not depend on
transaction operations; it is only limited by the signature of invoked trans-
actions along with their parameters.

Object access pattern impacts both state-machine and certification-based
replication differently. Though certification-based transactional systems ex-
hibit high performance for low contention scenarios, they suffer from high
abort rates in case of high contention. On the other hand, state-machine
replication is less impacted by system’s contention level, but even for low
contention workloads its performance is limited. An evidence of this phe-
nomenon can be seen in Section 4 through our comparison between HiperTM
and PaxosSTM. Recently, a hybrid replication approach [5] has been pro-
posed. It tries to bring the best of both worlds by starting the transactions
in certification-based mode and switching to state-machine mode when con-
flicts are detected. This approach limits the number of aborts for conflicting

34

transaction while still providing high throughput for non-conflicting transac-
tions. When compared with HiperTM, the hybrid approach presented in [5]
does not exploit the optimism while ordering transactions and its perfor-
mance is significantly impacted from the prediction of the oracle component
that is responsible for switching between modes. In addition, when transac-
tions in certification-based mode and state-machine mode coexist, then they
influence each other on the system’s critical path because the certification
phase, as well as the execution of state-machine transactions are performed
by the same thread.

Granola [36] is a replication protocol based on a single round of communi-
cation. Granola’s concurrency control technique uses single-thread process-
ing for avoiding synchronization overhead, and has a structure for scheduling
jobs similar to SCC.

6. Conclusions

At its core, our work shows that optimism pays off: speculative transac-
tion execution, started as soon as transactions are optimistically delivered,
allows hiding the total ordering latency, and yields performance gain. Single-
communication step is mandatory for fine-grain transactions. Complex con-
currency control algorithms are sometimes not feasible when the available
processing time is limited.

Implementation matters. Avoiding atomic operations, batching messages,
and optimizations to counter network non-determinism are important for
high performance.

Acknowledgement

This work is supported in part by the AFOSR under grant FA9550-15-1-
0098.

References

[1] N. Shavit, D. Touitou, Software transactional memory, in: PODC, 1995,
pp. 204–213.

[2] M. Couceiro, P. Romano, N. Carvalho, L. Rodrigues, D2stm: Depend-
able distributed software transactional memory, in: PRDC, 2009, pp.
307–313.

35

[3] D. Hendler, A. Naiman, S. Peluso, F. Quaglia, P. Romano, A. Suissa,
Exploiting locality in lease-based replicated transactional memory via
task migration, in: DISC, 2013, pp. 121–133.

[4] A. Turcu, B. Ravindran, R. Palmieri, Hyflow2: a high performance
distributed transactional memory framework in scala, in: PPPJ, 2013,
pp. 79–88.

[5] T. Kobus, M. Kokocinski, P. T. Wojciechowski, Hybrid replication:
State-machine-based and deferred-update replication schemes combined,
in: ICDCS, 2013, pp. 286–296.

[6] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, L. E. T. Rodrigues, When
scalability meets consistency: Genuine multiversion update-serializable
partial data replication, in: ICDCS, 2012, pp. 455–465.

[7] N. Schiper, P. Sutra, F. Pedone, P-store: Genuine partial replication in
wide area networks, in: SRDS, 2010, pp. 214–224.

[8] D. Dice, O. Shalev, N. Shavit, Transactional locking II, in: DISC, 2006,
pp. 194–208.

[9] A. Dragojevic, R. Guerraoui, M. Kapalka, Stretching transactional
memory, in: PLDI, 2009, pp. 155–165.

[10] F. B. Schneider, Replication management using the state-machine ap-
proach, ACM Press/Addison-Wesley Publishing Co., 1993.

[11] X. Defago, A. Schiper, P. Urban, Total order broadcast and multicast
algorithms: Taxonomy and survey, ACM Computing Surveys 36 (4).

[12] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst.
(1998) 133–169.

[13] J. Kończak, N. Santos, T. Żurkowski, P. T. Wojciechowski, A. Schiper,
JPaxos: State machine replication based on the Paxos protocol, Tech.
Rep. EPFL-REPORT-167765, Faculté Informatique et Communica-
tions, EPFL, 38pp (Jul. 2011).

[14] N. Santos, A. Schiper, Tuning paxos for high-throughput with batching
and pipelining, in: ICDCN, 2012, pp. 153–167.

36

[15] N. Santos, A. Schiper, Optimizing paxos with batching and pipelining,
Theor. Comput. Sci. 496 (2013) 170–183.

[16] M. Biely, Z. Milosevic, N. Santos, A. Schiper, S-paxos: Offloading the
leader for high throughput state machine replication, in: SRDS, 2012,
pp. 111–120.

[17] B. Kemme, F. Pedone, G. Alonso, A. Schiper, M. Wiesmann, Using
optimistic atomic broadcast in transaction processing systems, IEEE
TKDE 15 (4).

[18] S. Hirve, R. Palmieri, B. Ravindran, Archie: a speculative replicated
transactional system, in: Middleware, 2014, pp. 265–276.

[19] R. Palmieri, F. Quaglia, P. Romano, AGGRO: boosting STM replication
via aggressively optimistic transaction processing, in: NCA, 2010, pp.
20–27.

[20] R. Palmieri, F. Quaglia, P. Romano, OSARE: opportunistic speculation
in actively replicated transactional systems, in: SRDS, 2011, pp. 59–64.

[21] P. J. Marandi, M. Primi, F. Pedone, High performance state-machine
replication, in: DSN, 2011, pp. 454–465.

[22] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, L. Rodrigues, Brief
announcement: on speculative replication of transactional systems, in:
SPAA, 2010, pp. 69–71.

[23] P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, L. Rodrigues, An
optimal speculative transactional replication protocol, in: ISPA, 2010,
pp. 449–457.

[24] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, A. Joglekar, An integrated experimental environ-
ment for distributed systems and networks, in: OSDI, 2002.

[25] T. Council, TPC-C benchmark, 2010.

[26] P. T. Wojciechowski, T. Kobus, M. Kokocinski, Model-driven compari-
son of state-machine-based and deferred-update replication schemes, in:
SRDS, 2012, pp. 101–110.

37

[27] R. Guerraoui, L. Rodrigues, Introduction to Reliable Distributed Pro-
gramming, 2006.

[28] R. Guerraoui, A. Schiper, Genuine atomic multicast in asynchronous
distributed systems, Theor. Comput. Sci. 254 (1-2) (2001) 297–316.

[29] F. Pedone, A. Schiper, Optimistic atomic broadcast, in: DISC, 1998,
pp. 318–332.

[30] A. Adya, Weak consistency: A generalized theory and optimistic im-
plementations for distributed transactions, Ph.D. thesis, aAI0800775
(1999).

[31] P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency control and
recovery in database systems, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1987.

[32] M. Herlihy, Wait-free synchronization, ACM Trans. Program. Lang.
Syst. 13 (1) (1991) 124–149.

[33] R. Guerraoui, M. Kapalka, The semantics of progress in lock-based
transactional memory, in: POPL, 2009, pp. 404–415.

[34] M. Herlihy, Technical perspective - highly concurrent data structures,
Commun. ACM 52 (5) (2009) 99.

[35] R. Guerraoui, M. Kapalka, On the correctness of transactional memory,
in: PPOPP, 2008, pp. 175–184.

[36] J. A. Cowling, B. Liskov, Granola: Low-overhead distributed trans-
action coordination, in: USENIX Annual Technical Conference, 2012,
2012, pp. 223–235.

[37] B. Kemme, G. Alonso, Don’t be lazy, be consistent: Postgres-r, A new
way to implement database replication, in: VLDB, 2000, pp. 134–143.

[38] S. Peluso, R. Palmieri, F. Quaglia, B. Ravindran, On the viability of
speculative transactional replication in database systems: A case study
with postgresql, in: NCA, 2013, pp. 143–148.

38

[39] F. Perez-Sorrosal, M. Patiño-Mart́ınez, R. Jiménez-Peris, B. Kemme,
Consistent and scalable cache replication for multi-tier J2EE applica-
tions, in: Middleware, 2007, pp. 328–347.

[40] M. Patino-Martinez, R. Jiménez-Peris, B. Kemme, G. Alonso, MIDDLE-
R: Consistent database replication at the middleware level, ACM Trans.
Comput. Syst. 23 (4).

[41] F. Pedone, S. Frølund, Pronto: High availability for standard off-the-
shelf databases, J. Parallel Distrib. Comput. 68 (2).

[42] M. Wiesmann, A. Schiper, Comparison of database replication tech-
niques based on total order broadcast, IEEE TKDE 17 (4).

[43] D. Agrawal, G. Alonso, A. El Abbadi, I. Stanoi, Exploiting atomic
broadcast in replicated databases (extended abstract), in: Euro-Par,
1997, pp. 496–503.

[44] R. Jiménez-Peris, M. Patiño-Mart́ınez, S. Arévalo, Deterministic
scheduling for transactional multithreaded replicas, in: SRDS, 2000,
pp. 164–173.

[45] N. Carvalho, P. Romano, L. E. T. Rodrigues, Scert: Speculative cer-
tification in replicated software transactional memories, in: SYSTOR,
2011, p. 10.

[46] S. Peluso, J. Fernandes, P. Romano, F. Quaglia, L. E. T. Rodrigues,
SPECULA: speculative replication of software transactional memory,
in: SRDS, 2012, pp. 91–100.

39

