
1

A Syscall-Level Binary-Compatible Unikernel
Pierre Olivier1, Hugo Lefeuvre1, Daniel Chiba2, Stefan Lankes3, Changwoo Min4, and Binoy Ravindran4

F

Abstract—Unikernels are minimal single-purpose virtual machines.
They are highly popular in the research domain due to the ben-
efits they provide. A barrier to their widespread adoption is the
difficulty/impossibility to port existing applications to current uniker-
nels. HermiTux is the first unikernel providing system call-level bi-
nary compatibility with Linux applications. It is composed of a hyper-
visor and a lightweight kernel layer emulating the load- and runtime
Linux ABI. HermiTux relieves application developers from the burden
of porting software, while providing unikernel benefits such as se-
curity through hardware-assisted virtualized isolation, swift boot time,
and low disk/memory footprint. Fast system calls and kernel modu-
larity are enabled through binary rewriting and analysis techniques,
as well as shared library substitution. HermiTux’s design principles
are architecture-independent and we present a prototype on both the
x86-64 and ARM aarch64 ISAs, targeting various cloud as well as
edge/embedded deployments. We demonstrate HermiTux’s compatibil-
ity over a range of native C/C++/Fortran/Python Linux applications. We
also show that it offers a similar degree of lightweightness compared to
other unikernels, and that it performs similarly to Linux in many cases:
its performance overhead averages 3% in memory- and compute-bound
scenarios, and its I/O performance is acceptable.

Index Terms—Unikernels, Virtualization, Operating Systems

1 INTRODUCTION

Unikernels have become popular in academic research,
in the form of a virtualized LibOS model bringing nu-
merous benefits: increased security, performance improve-
ments, isolation, cost reduction, etc. Their potential appli-
cation domains are plentiful: cloud- and edge-deployed
micro-services/SaaS/FaaS-based software [1], server appli-
cations [2], NFV [3], IoT [4], HPC [5], etc. Although they are
presented as a secure and attractive alternative to contain-
ers, unikernels still struggle to gain significant traction in
industry and their adoption rate is quite slow [1]. One of the
major reasons is the difficulty, and sometimes impossibility,
of porting legacy/existing applications to current unikernel
models [1], [2], [6]–[8].

In situations such as the use of compiled proprietary
code, the unavailability of an application’s sources makes
it impossible for a user to port and run it using any of
the existing unikernel models. Such binaries are gener-
ally stripped and obfuscated, thus disassembling and re-
linking with a unikernel layer is not suitable. Even when

• Contact: pierre.olivier@manchester.ac.uk
• 1The University of Manchester, 2Qualcomm, 3RWTH Aachen Univer-

sity, 4Virginia Tech

sources are available, considering unikernel models sup-
porting legacy programming languages (C/C++) [9], [10],
porting a medium/large-sized or complex codebase can still
be difficult [1], [2], [6], [8]. This is due to factors such as
incompatible/missing libraries/features, complex build in-
frastructures, lack of developer tools (debuggers/profilers),
and unsupported languages. Porting complexity is further
increased as that process requires expertise in both the
application and the considered unikernel model [7]. Because
it is currently the burden of the application programmer,
we believe that this significant porting effort is one of
the biggest roadblocks preventing wide-spread adoption of
unikernels.

The solution we propose is a unikernel that offers binary
compatibility for regular (i.e. Linux) applications, while
keeping classical unikernel benefits. It allows the develop-
ment effort to be focused on the unikernel layer. In this con-
text, we present a prototype named HermiTux, an extension
of the HermitCore [5] unikernel, which is able to run native
(no recompilation/relinking) Linux executables as uniker-
nels. By providing this infrastructure, HermiTux transforms
the porting effort from the application programmer into a sup-
porting effort from the unikernel layer developer. In this model,
not only can unikernel benefits be obtained transparently
for native Linux applications, but furthermore it is now
possible to run previously un-portable applications such
as proprietary software. With HermiTux, the effort to port
and run a legacy application as a unikernel is non-existent,
even when its sources are unavailable. HermiTux supports
statically and dynamically linked executables, is compati-
ble with multiple languages (C/C++/Fortran/Python, etc.),
compilers (GCC and LLVM), full optimizations (-O3), and
stripped/obfuscated binaries. It supports multithreading
and Symmetric Multi-Processors (SMP), checkpoint/restart
and migration. We demonstrate HermiTux on a set of native
Linux applications on the x86-64 architecture. Their perfor-
mance running in HermiTux is mostly similar to a Linux
execution.

The majority of existing unikernels do not provide any
kind of binary compatibility. Still, a couple of systems [10],
[11] offer such binary compatibility by interfacing at the
level of the C library, acting similarly to a dynamic loader.
This prevents them for supporting a wide range of appli-
cations requiring OS services through system calls made
without going through the C library. Contrary to these
works, and in order to maximize compatibility, HermiTux
is compatible at the system call level which is a standardized
interface used by all applications and libraries compiled for

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

2

Linux.
The first challenge HermiTux tackles is how to provide sys-

tem call-level binary compatibility? To that end, HermiTux sets
up the execution environment and emulates OS interfaces
at runtime in accordance with Linux’s Application Binary
Interface (ABI). A custom hypervisor-based ELF loader is
used to run a Linux binary alongside a minimal kernel in
a single address space Virtual Machine (VM). System calls
made by the program are redirected to the implementations
the unikernel provides. A second challenge HermiTux faces
is how to maintain unikernel benefits while providing such binary
compatibility? Some come naturally (small disk/memory
footprints, virtualization-enforced isolation), while others
(fast system calls and kernel modularity) pose technical
challenges when assuming no access to sources. To enable
such benefits, HermiTux uses binary rewriting and analysis
techniques for static executables, and substitutes at runtime
a unikernel-aware C library for dynamically linked executa-
bles. Finally, HermiTux is optimized for low disk/memory
footprint and attack surface, which are as low as or lower
than existing unikernel models.

Because of the wide range of unikernel application cases,
HermiTux aims to be compatible in both server and embed-
ded virtualization scenarios. Thus, our system is developed
for the Intel x86-64 and ARM aarch64 (ARM64) Instruction
Set Architectures (ISAs). The fundamental principles of Her-
miTux’s design are architecture independent. However, its
implementation as well as the design of the binary rewrit-
ing/analysis techniques we use to bring back unikernel
benefits are ISA specific. These differences are described in
this paper.

The contributions presented in this paper are:
• A new unikernel model designed to execute na-

tive Linux executables while maintaining the classical
unikernel benefits;

• Two prototype implementations of that model on the
x86-64 and aarch64 architectures;

• An evaluation of these prototypes comparing their
performance to Linux, containers, and other unikernel
models: OSv [10], Rump [9] and Lupine Linux [11].

This paper is organized as follows: we give some back-
ground and motivation in Section 2. In Section 3, we present
the design of HermiTux, then give implementation details
in Section 4. A performance evaluation is presented in
Section 5. We present related works in Section 6, before
concluding in Section 7.

2 BACKGROUND AND MOTIVATION

2.1 Unikernels
A unikernel [2] is an application statically compiled with
the necessary libraries and a thin OS layer into a binary able
to be executed as a virtualized guest on top of a hypervisor.
Unikernels are qualified as: (A) single purpose: a unikernel
contains only one application; and (B) single address space:
because of (A), there is no need for memory protection
within the unikernel, consequently the application and the
kernel share a single address space and all the code executes
with the highest privilege level.

Such a model provides significant benefits. In terms of
security, the strong isolation between unikernels provided

by the hypervisor makes them good candidates for cloud
deployments. Moreover, a unikernel contains only the nec-
essary software needed to run a given application. Com-
bined with the very small size of the kernel, this leads to a
significant reduction in the application attack surface com-
pared to regular VMs [12]. Some unikernels are also written
in languages providing memory-safety guarantees [2]. Con-
cerning performance, unikernel system calls are fast because
they are common function calls: there is no costly world
switch between privilege levels [5]. Context switches are
also swift as there is no page table switch or TLB flush.
In addition to the codebase reduction due to small kernels,
unikernel OS layers are generally modular: it is possible to
configure them to include only the necessary features for
a given application. Small size and modularity lead to a
reduction in resource usage (RAM, disk), which translates
into cost reduction for the cloud user, and high per-host VM
density for the cloud provider [1].

All these benefits make that the application domains for
unikernels are plentiful. They are a perfect fit for the dat-
acenter [1], [2] that runs the majority of cloud applications
requiring high degree of isolation, or compute-intensive jobs
necessitating high performance and low OS overheads. Fur-
thermore, the reduced resource usage of unikernels make
them uniquely suited for embedded virtualization [4], [12],
a domain of growing importance with the emergence of
paradigms such as edge computing and IoT. Because the
application domains of unikernels include both server and
embedded machines, the system presented in this paper
targets two ISAs: Intel x86-64, which is unarguably the
dominant architecture in the datacenter, and aarch64, widely
used in embedded devices.

2.2 Porting Existing Applications to Unikernels

Porting existing software to run as a unikernel in order
to reap these benefits can be difficult or even impossible.
First, in some situations, the unavailability of an applica-
tion’s sources (proprietary software) makes porting it to
any existing unikernel impossible, as all require recompila-
tion/relinking. Second, porting legacy software to a uniker-
nel that supports only modern programming languages
requires a full application rewrite in that target language [2],
which in many scenarios is unacceptable. Third, considering
the unikernels supporting legacy languages, the task still
represents a significant challenge [1], [6], [8] for multiple
reasons. A given unikernel supports a limited set of kernel
features and software libraries. If a feature, library, or a
particular version of a library required for an application is
not supported, the application would need to be adapted [6].
In many cases the lack of a feature/library means that the
application cannot be ported at all. Moreover, unikernels
use complex build infrastructures and it can be burden-
some to port the large build infrastructures of some legacy
applications (large/generated Makefiles, autotools/cmake
environments) to unikernel toolchains. The same goes for
changing the compiler or build options.

We believe that this large porting cost, combined with
the fact that it is the responsibility of the application pro-
grammer, represents an important factor explaining the
slow adoption of unikernels in the industry. One solution

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

3

is to have a unikernel provide binary compatibility for reg-
ular executables while still keeping the classical unikernel
benefits such as small codebase/footprint, fast boot times,
modularity, etc. This new model allows unikernel develop-
ers to work on generalizing the unikernel layer to support
a maximum number of applications, and relieves applica-
tion developers from any porting effort. Such an approach
should also support developer tools such as debuggers. In
that context, HermiTux allows running Linux binaries as
unikernels, while maintaining the aforementioned benefits.

2.3 The Lightweight Virtualization Design Space
The lightweight virtualization design space includes uniker-
nels, security-oriented LibOSes such as Graphene [13], [14],
and containers with software [15] and hardware [16] hard-
ening techniques. HermiTux requires no application porting
effort, and further differs from other binary-compatible sys-
tems because of 2 reasons. First, as a unikernel HermiTux
runs hardware-enforced (Extended Page Tables) VMs, an
isolation mechanism that is fundamentally stronger than
software-enforced isolation (containers/software LibOS). It
is shown by the current trend of running containers within
VMs for security (clear containers [17]) and the efforts to
strengthen containers’ isolation (such as gVisor [15]). This
is generally used as a security argument in favor of uniker-
nels versus containers [1], [18]. Second, SGX-based isolation
such as used in Graphene-SGX [14] has a non-negligible
performance impact that is fundamentally higher than the
very low performance overhead of current direct-execution,
hardware-enforced virtualization techniques leveraged in
HermiTux.

HermiTux enables a wide range of applications to trans-
parently reap unikernel benefits without any porting effort:
there is no need for code modification and the poten-
tial complexities of maintaining a separate branch. Given
the security and footprint reduction features provided by
unikernels, this is highly valuable in today’s computer
systems landscape where software and hardware vulner-
abilities regularly make the news, and where datacenter
architects are seeking ways to increase consolidation and
reduce resource/energy consumption. Being binary com-
patible allows HermiTux to be the only way to run propri-
etary software (whose sources are not available) as uniker-
nels. Finally, HermiTux allows commodity software to
reap traditional benefits of VMs such as checkpoint/restart
or migration without the associated overhead of a large
disk/memory footprint.

2.4 System Call-Level Binary Compatibility
Two existing unikernels already claim binary compatibility
with applications, OSv [10] and Lupine Linux [11]. It is
important to note that both offer binary compatibility at
the standard C Library (libc) level: the unikernel includes a
dynamic loader that catches at runtime the calls to the libc
functions such as printf, fopen and redirects them to the
kernel.

Such an method of interfacing implies the assumption
that all syscalls are made through the libc, which does not
hold true when considering the wide variety of modern
application binaries. We analyzed the entirety of Debian 10

x86-64 repositories (main, contrib and non-free) and
counted 553 ELF executables including at least one invoca-
tion of the syscall instruction: these represent programs
that perform system calls without going through the libc,
and that as such would not be supported by libc-level binary
compatible unikernels. This limited libc-level compatibility
prevents these systems from running a relatively large range
of applications that would highly benefit from execution
as unikernels. Just to give a few examples, a plethora of
cloud services are written in Go, a language that performs
most system calls without going through a standard C
library. Furthermore, due to the lack of compatibility at the
system call level, OSv does not support the most popular
HPC shared memory programming framework, OpenMP1.
Finally, libc-interfacing precludes support for static binaries.

HermiTux represents an attempt to push the degree of
compatibility of unikernels further by interfacing at a much
more standard and unanimously used interface: the system
call level.

3 SYSTEM DESIGN

The design of HermiTux is based on the following as-
sumptions: we assume that the sources of the binaries we
consider are unavailable. We make no assumption about the
compiler used, the level of optimizations, or whether the
binary is stripped or obfuscated. Thus, disassembling and
reassembling, generally considered quite unreliable [19],
[20], is not a suitable solution. We rather decide to offer
binary compatibility with a commodity OS, Linux.

The Linux ABI. To offer binary compatibility, HermiTux’s
kernel needs to comply with the set of rules constituting
the Linux ABI [21]. These rules are partially ISA-specific,
and can be broadly classified into load-time and runtime
rules. Load-time rules include the binary format supported
(ELF), which area of the 64 bit address space is accessible
to the application, the method of setting up the address
space by loading segments from the binary file, and the
particular register state (ISA-specific) and stack layout (com-
mand line arguments, environment variables, ELF auxiliary
vector) expected at the application entry point. Runtime
rules include the instruction used to trigger a system call,
and the registers containing its arguments and return value:
these are obviously ISA-specific. Finally, Linux applications
also expect to communicate with the OS by reading and
writing various virtual filesystems (/proc, /sys, etc.) [22]
as well as through a memory area shared with the kernel:
the vDSO/vsyscall.

3.1 System Overview

HermiTux’s design objective is to emulate the Linux ABI at
load- and runtime while providing unikernel principles. Load
time conventions are ensured through the use of a custom
ELF loader. Runtime convention are followed by imple-
menting a Linux-like system call handler in HermiTux’s ker-
nel. vDSO/vsyscall and virtual filesystems access are em-
ulated with methods described further. Finally, HermiTux
maintains some unikernel benefits, namely fast system calls

1. https://github.com/cloudius-systems/osv/issues/590

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

4

 Host: Linux kernel

Hypervisor: uHyve

Static/dynamic
native Linux
application

A Load

B Init. stack and jump to entry point

C

Syscall

G
u

es
t

H
o

st

KVM

Syscall- Fastcall
based

modularity

Hermitux
kernel

Debug & Profile

Fig. 1. Overview of the HermiTux system, composed of Uhyve hypervi-
sor running on a Linux host, modified to load both the HermiTux kernel
and the Linux binary into a single-address space VM.

and modularity, without assuming access to the application
sources using binary rewriting and analysis techniques for
static executables. For dynamically compiled programs, we
use a unikernel-aware shared standard C library that is
loaded at runtime in place of the original standard library
the program was linked against. HermiTux’s kernel is de-
veloped as an extension to the HermitCore unikernel [5].

Figure 1 presents a high-level view of the system. We
rely on a custom lightweight hypervisor named Uhyve that
runs in a Linux host and leverages the KVM interface to
create a virtual machine. Uhyve was originally developed
for HermitCore, and was extended in the context of Hermi-
Tux. At launch time, Uhyve allocates memory for the guest
to use as its physical memory. Next, the hypervisor loads
the HermiTux kernel (A on Figure 1) at a specific location
in that area, and then proceeds to map the loadable ELF
segments from the Linux binary at the locations indicated
in the ELF metadata. After that loading process, control is
passed to the guest and the kernel initializes. Page tables
are set up in order to build a single address space containing
both the kernel and the application. Following the unikernel
principle, the kernel and the application both execute at the
highest level of privileges: ring 0 in x86-64 and exception
level 1 for aarch64.

After initialization, the kernel allocates and initializes a
stack for the application following the Linux loading con-
vention, then jumps to the executable entry point B whose
address was read at load time from the ELF metadata.
During application execution, system calls will be executed
according to the Linux convention, i.e. using the syscall
x86-64 instruction or the SVC (supervisor call) instruction
for aarch64. The kernel catches such invocations by imple-
menting a system call handler that identifies the system call
invoked, determines parameters from CPU registers, and
invokes the HermiTux implementation of the considered
system call C .

3.2 Load-Time Binary Compatibility

At load time, the hypervisor copies the kernel and Linux ap-
plication loadable ELF segments in guest memory at the vir-
tual addresses indicated in ELF metadata. Both application
and kernel will run in a single address space so we need to
ensure that statically and dynamically allocated code/data
for both entities do not overlap. This is done by locating the
kernel outside of the memory region dedicated for applica-
tions. Contrary to Linux, which dedicates the upper half of

the 48 bit virtual address space to the kernel, and because
of the very small virtual/physical memory requirements of
HermiTux’s kernel, we can locate it at 0x200000, below the
area reserved for the application. This gives the application
access to the major part of the virtual address space and has
the interesting side-effect of enabling very high entropy for
randomized mappings: 34 bits, which is higher than vanilla
Linux (28 bits) as well as PaX/grsecurity hardened kernels
(33 bits).

HermiTux supports dynamically compiled binaries as
follows: when the loader detects such a binary, it loads and
passes control to a dynamic loader that in turns loads the
application as well as the library dependencies, and takes
care of the symbols’ relocations. Because of its binary com-
patibility, in HermiTux the dynamic loader is an unmodified
version of a regular Linux dynamic loader. We assume
that it comes shipped with the application binary and its
shared library dependencies. Contrary to KylinX [23], in
HermiTux we take the decision not to share in the vir-
tual address space the dynamic libraries between multiple
unikernels. This is mostly for security reasons, as shared
memory between VMs makes them potentially vulnerable
to side-channels [24] such as Flush+Reload or Prime+Probe.
Moreover, if security is less of a concern and memory usage
is constrained, Kernel Same page Merging (KSM) [25] is
an efficient and standard way to solve that issue. While
dynamic binaries are favored by Linux distribution main-
tainers [22], static executables still provide benefits in terms
of performance [26] and compatibility [27]. Thus we aim to
support both linking types.

3.3 Runtime Binary Compatibility
In a unikernel, system calls are common function calls. In
HermiTux, the application performs system calls using the
(ISA-specific) Linux convention, unsupported by existing
unikernels. HermiTux implements a system call handler
invoked when the specific instruction triggering a system
call is executed by the application. The handler redirects
the execution to the internal unikernel implementation of
the invoked system call (C on Figure 1). Interfacing with
the application at the system call level is at the core of
the runtime binary compatibility provided by HermiTux.
It means that our prototype, currently tested on software
written in C/C++/Fortran/Python, can easily be extended
to other languages and runtimes.

Vanilla HermitCore supports only a very small number
of system calls, and we had to significantly extend this inter-
face in HermiTux. In a unikernel context, developing system
call support for unmodified Linux applications might raise
concerns in terms of codebase size and complexity increase.
It could also be, intuitively, a very large engineering effort
to end up re-implementing Linux. Yet for our work this
does not represent a full re-implementation of the Linux
system call interface: while it is relatively large (more than
350 system calls), applications generally use only a small
subset of that interface [28]. It has also be shown that one
can support 90% of a standard distribution’s binaries by
implementing as few as 200 system calls [22]. To support
the applications presented in the evaluation section (Sec-
tion 5), our prototype implements 107 system calls. Source-
compatible unikernels such as OSv [10] or Rumprun [9]

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

5

also showed that supporting a relatively large portion of
the Linux system call API does not lead to a significantly
large codebase size or attack surface.

3.4 Unikernel Benefits & Isolation
System call latency in unikernels is low as they are common
function calls. Despite a system call handler optimized for
the unikernel context, we observed that in HermiTux this
latency still does not approach that of function calls: it is
due to the instruction used to perform a system call used in
unmodified Linux binaries. In both x86-64 and aarch64 ISAs,
that instruction relies on an exception. The latency of such
an operation is significantly higher than that of a common
call instruction.

Without assuming access to the application sources, we
rely on two techniques to offer fast system calls in Her-
miTux (Fastcall in Figure 1). For static binaries, we use bi-
nary instrumentation to rewrite the system call instructions
found in the application with regular function calls to the
corresponding unikernel implementations. This process is
ISA-specific and is detailed for both x86-64 and aarch64 in
Section 4. For dynamically linked programs, we observe
that in a vast majority of application binaries, most of the
system calls are made by the standard C library. With that
in mind, in HermiTux dynamic binaries are linked at load
time against a unikernel-aware C standard library that we
designed, in which all the system calls are replaced by
function calls to the kernel. We call this technique library
substitution. It bears a resemblance to the way the OSv [10]
kernel and LibC interface with an application, however in
our case we do not write a Libc from scratch but adapt
automatically an existing one using a code transformation
tool, Coccinelle [29]. Compared to writing a Libc from
scratch, we believe this solution not only provides a larger
support for Libc functionalities, but is also more robust and
future proof.

Modularization is another important benefit of uniker-
nels. Because of our binary compatibility goal, the system
call codebase is relatively large in HermiTux. We design the
kernel so that the implementation of each system call can
be compiled in or out at kernel build time. In addition to
memory footprint reduction, this has security benefits that
are stronger than traditional system call filtering (such as
seccomp): it is not only impossible to call the concerned sys-
tem calls, but the fact that their implementation is entirely
absent from the kernel means that they cannot be used in
code-reuse attacks. To compile a tailored kernel for a given
application whose sources are not necessarily available, we
designed a binary analysis tool able to scan an executable
and detect the various system calls that can be made by that
program.

HermitCore forwarding filesystem calls to the host raises
obvious concerns about security/isolation. We implemented
a basic RAM filesystem, MiniFS, within HermiTux’s kernel,
disabling any dependence on the host in that regard. Build-
ing a full-fledged filesystem is out of the scope of this work,
however MiniFS’s simple implementation is sufficient to run
with honorable performance the benchmarks used in our
performance evaluation (see Section 5), including Postmark.
MiniFS also emulates pseudo files with configurable per-
file read and write functions: we emulate /dev/zero with

a custom read function filling the user buffer with zeros,
/dev/cpuinfo with a read function populating the buffer
with Linux-like textual information about the CPU, etc.

4 IMPLEMENTATION

HermiTux is build on top of HermitCore [5] with 15K
additional LoC on top of HermitCore’s 20K LoC. It supports
both x86-64 and aarch64. Although our system’s design
principles are architecture independent, a (small) subset of
its implementation is architecture-specific.

Loading and Initialization. The hypervisor sets up the VM
and loads both the kernel and the application in memory,
according to the ELF metadata in the binaries. If the appli-
cation supports PIC/PIE it is loaded at a random location.
Next the kernel initializes and creates a page table defining a
single address space. After initialization, the kernel creates a
task for the application. The application will share its stack
with the kernel, so the stack is filled with elements (com-
mand line parameters, etc.) according to the ABI convention,
with a series of push operations on x86-64. Doing the same
thing is not practical on aarch64 as this ISA only supports 16
bytes-aligned push operations, and many elements we wish
to push are 8 bytes in size. Thus, we fill a temporary buffer
that ends up being copied to the stack with potentially one
byte of padding.

System Call Handling. The kernel installs and implements
a system call handler adhering to the Linux ABI: system
call number in %rax/%x8; arguments in %rdi, %rsi, %rdx,
%r10, %r9, %r8/%x0-%x5; and return value in %rax/%r0
for x86-64/aarch64, respectively. The handler saves the reg-
ister’s contents, calls the implementation of the invoked
system call, and restores the register before returning. It is
optimized: many ‘world switch’ operations are unnecessary
in a unikernel (for example stack switches). When returning,
we can also avoid costly instructions such as sysret on
x86-64 and replace it with a simple jump.

HermiTux supports currently 107 system calls. Many are
only partially supported, for example, ioctl only supports
the necessary commands for LibC initialization. 4K LoC are
dedicated to the system call layer, showing that HermiTux
can keep a small unikernel codebase while supporting a
wide range of applications as presented in the evaluation
section. With the supported system calls, HermiTux is able
to emulate Linux’s support of networking, filesystem, multi-
threading and synchronization, memory mappings, process
management, break management, signals, time manage-
ment, and scheduling.

Fast System Calls. In its basic form, HermiTux uses a tradi-
tional system call handler and thus looses the unikernel ben-
efit of low-latency system calls. To recover that feature for
dynamically compiled binaries, we link at runtime against a
unikernel-aware standard C Library. The unikernel-aware C
library loaded at runtime with dynamic binaries is adapted
from Musl Libc. We use the Coccinelle [29] tool to describe
high level code transformation rules updating system call
invocations into function calls to HermiTux’s kernel. With a
small set of rules (80 lines), we are able to update 97.5% of
the 500+ system call invocation within the entire library. We

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

6

confirmed the success of this method over different versions
of Musl released multiple years apart.

Regarding static binaries, we resort to binary rewriting,
realized statically to avoid any runtime overhead. Our goal
is to replace the occurrences of the system call instruction
(syscall for x86-64, SVC for aarch64) by function calls
to the kernel. For x86-64, an ISA whose instructions have
variable sizes, the main challenge lies in the small size of
syscall: 2 bytes. It is too small to allow replacement by
any kind of call or jump-like instruction without overwrit-
ing the next instruction(s) in the code segment. To address
that issue, we overwrite each occurrence of the syscall
instruction as well as the next instruction(s) with a jmp
to a snippet of code that we developed. This code is in
charge of first adapting the Linux syscall ABI convention to
the function call system-V convention (i.e. moving %r10 to
%rcx). Second, the system call implementation in the kernel
is invoked with a common function call instruction, callq.
Finally, the instructions following the syscall that were
originally overwritten are replayed, before jumping back
to instruction following the last overwritten instruction.
Although this process includes a few operations in addition
to the function call, it is still much faster than a traditional
system call invocation.

On the other hand, aarch64 is a fixed-size instruction set
and thus does not suffer from the same issue as x86-64.
Intuitively the system call instruction SVC can be simply
overwritten with a function call, i.e. a BL (Branch and
Link) without side-effects on the following instructions. The
actual challenge for aarch64 lies in an important ABI point:
contrary to x86-64 that stores the return address on the stack,
aarch64 holds it in the special register %x30. Thus, when we
replace the system call instruction SVC with the function call
one BL, BL overwrites %x30 holding the return address of
the current function with the address that the newly inserted
function (i.e. the system call implementation) is supposed to
return to.

In that context, one may think that we would loose the
possibility to return from functions invoking system calls
which of course would break the program. However, we
realized that in many cases this issue could be tackled
without resorting to a complex solution such as the one
we used for x86-64. First, in the common case, a function
invoking a system call is also calling other functions, which
mandates that the value of %r30 is saved on the stack
by the compiler-generated code and restored at the time
of returning from the function in question, thus even if
overwriting SVC with BL looses the value of %r30, it will be
properly restored before returning. Second, in the relatively
common case where SVC is directly followed with a return
instruction RET, then SVC can be overwritten with a simple
branch instruction B: as this function preserve %x30, when
the system call implementation return, it will simply return
to the function initially invoking the system call. Third, a
small number of system calls such as exit never return thus
loosing %x30 is acceptable. Combined, these 3 cases cover
more than 90% of the system call invocation in a standard
libc (Musl). We used the angr [30] binary analysis tool to
identify them and perform safe replacements of system
calls by function calls. The 10% syscalls left go through the
standard trap-based handling mechanism.

System Call-based Modularity. With the growing support
for the Linux ABI, the subset of HermiTux’s codebase that
concerns system call implementation is relatively large: it
currently represents about 25% of the entire unikernel code-
base. To bring back the “modularity” feature of unikernels
into HermiTux, we propose the compilation of tailored
kernels containing only the implementation of the system
calls required for an application. This is achieved by having
as much as possible of each system call’s processing code
implemented within its own compilation unit (C source file),
and using preprocessor directives to enable/disable calls to
the system call implementations (sys_*) from the generic
system call handler as necessary at build time.

To leverage this functionality and build a kernel tailored
for a given application it is necessary to know the entire
set of system calls that can possibly be invoked by the said
application. To that aim we decide to rely on static analysis.
As we do not assume access to the application source
code, we resort to decompiling the binary. Armed with the
knowledge of the system call invocation ABI convention, we
explore system call sites in the decompiled machine code
and determine at these points what is the value present
in the register holding the system call identifier: %rax for
x86-64 and %r8 for aarch64. This technique works for both
statically and dynamically compiled binaries, as for the
latter it can be applied to the application binary as well as to
libraries. We use Dyninst [31] for x86-64 and Angr [30] for
aarch64 to decompile the binaries and obtain the CFG. We
iterate on the instruction flow backwards until we find the
value loaded in %rax/%r8 identifying a system call. In the
vast majority of cases this identifier comes from a constant
in the original code and this search is straightforward. For
Glibc, we found one call site where this value came from
memory, making it impossible to identify statically. Looking
at the corresponding C code allows to easily determine that
it was in fact a read system call. To tackle such scenarios,
we created a lookup table that returns the system calls
being made by library functions that contain such statically
unidentifiable system calls.

In addition to the syscall-based modularity, we also
enabled modularized coarse-grained components that were
originally (in HermitCore) included in all builds, such as the
LWIP TCP/IP stack.

5 EVALUATION

The objective of the performance evaluation is to answer
the following questions: First, can HermiTux run native Linux
binaries while still keeping the lightweightness benefits of uniker-
nels, i.e. low disk/memory footprints and fast boot times? How
does it compare to other lightweight virtualization solutions
regarding these metrics? (Section 5.1). Second, as we focus on
native/legacy executables, can HermiTux execute binaries that
are written in different languages, stripped, obfuscated, compiled
with full optimizations and different compilers/libraries? (Section
5.2). Finally, how does HermiTux’s performance compare with
other lightweight virtualization solutions? (Section 5.3);

We evaluate HermiTux over multiple macro- and micro-
benchmarks. The proposed system is compared to several
lightweight virtualization solutions, including a Linux VM

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

7

running an Alpine distribution on top of the Firecracker hy-
pervisor, Docker, and three unikernels models focusing on
compatibility with existing applications: Lupine Linux [11],
OSv [10] and Rumprun [9]. For each of them we use the
latest version available on their respective git repositories.
Note that on the contrary to HermiTux, none of these
unikernels are binary compatible with Linux at the system
call level (Lupine’s “pure” unikernel form is enabled by
Kernel Mode Linux2 – KML that forces the interfacing
to take place at the level of the libc). Lupine and OSv
run on top of Firecracker, and Rump on top of Solo5 for
compatibility reasons. Lupine does not support aarch64. In
network-bound setups, we also run all VMs on top of Qemu
for performance reasons. The macro-benchmarks we used
include C/Fortran/C++/Python NPB [32], PARSEC [33]
and the Python Performance Benchmark Suite3. We also
build an edge computing benchmark based on PARSEC’s
StreamCluster compute kernel. Micro-benchmarks include
redis-benchmark and LMbench4 to measure system call
latency.

We wish to assess HermiTux’s efficiency in both datacen-
ter/cloud and edge contexts, and we run experiments on
both x86-64 and aarch64 architectures. The x86-64 machine
is an Intel Xeon E5-2637 (3.0 GHz, 64 GB RAM), running
Ubuntu Server 16.04 with Linux v4.4.0 as the host. It is a
typical server found in the datacenter. The aarch64 machine
is a LibreComputer LePotato single board computer, with
an aarch64 CPU clocked at 1.5 GHz and 2 GB of RAM.
It runs Ubuntu 18.04 with Linux v4.19.0 as the host. It is
representative of a certain class of low-power embedded
systems found at the edge of the cloud. Unless otherwise
stated, the compilers used are GCC/G++ v6.3.0 (x86-64) and
v8.3.0 (aarch64), and the -O3 level of optimizations is used.

In addition to the experiments presented here, we also
validated our syscall-level binary compatibility by confirm-
ing HermiTux’s basic support for additional languages such
as Rust, Lua, and Nim.

5.1 Lightweightness: Footprint Reduction & Boot Time
Boot Time. This metric is critical for unikernels [1], [12], [34],
in situations where reactivity and/or elasticity is required.
Boot and destruction latencies have been measured in var-
ious ways in related work. Although hypervisor initializa-
tion time can sometimes be non negligible, guests can run
on top of various virtual machine monitors and we chose to
exclude hypervisor initialization time from our study and
only consider guest boot time. We thus define the boot time
as the latency between the moment the hypervisor starts to
execute guest code when the unikernel is launched and the
moment when the first instruction of user code is run after
guest kernel initialization. To that aim, we instrumented
both the hypervisors (Uhyve, Firecracker and Solo5) and
the guest kernels. The hypervisors are modified to take a
timestamp right before the start of guest execution. The
guest kernels are instrumented by inserting right after the
kernel boot process a trap to the hypervisor which in turn
takes a timestamp. For Docker, we used docker events

2. http://www.yl.is.s.u-tokyo.ac.jp/∼tosh/kml/
3. https://pyperformance.readthedocs.io/
4. http://lmbench.sourceforge.net/

to compute the difference between the container start and
container die events.

The results are presented on Figure 2. HermiTux inherits
the fast and optimized boot time of its basis, HermitCore:
33 ms on x86-64, and 5ms on aarch64. On x86-64 it is
moderately slower than OSv (13 ms) and Rump (17 ms), but
much faster on aarch64 (34 ms for OSv, 50 ms for Rump).
HermiTux also boots quite faster than Docker: 3x for x86-
64, 26x for aarch64. Regarding Lupine, as mentioned in the
related paper [11] its boot time is impacted by the KML
patch: with KML Lupine’s application can enjoy fast system
calls however the boot time is 3x that of HermiTux: 94
ms. Without KML, it drops to 41 ms. Unsurprisingly, the
traditional kernel (Alpine) numbers are much higher, being
20x (x86-64) and 237x (aarch64) higher than HermiTux’.
Memory Usage. A low memory footprint is one of the
promises of the unikernel model. Similar to boot time,
various ways have been used by related works to measure
RAM usage. Once again we chose to exclude hypervisors’
internal memory footprint and as such we define RAM
usage as the minimal amount of memory one can give to
a VM for the execution of a dummy “hello world” program.
We used this method for the unikernels and the Alpine VM,
and use docker stat for Docker.

The results are presented on Figure 2. The minimalist
design of HermiTux, inherited from HermitCore’s, allows
to offer a low memory footprint: 11 MB on x86-64 and
aarch64. Rump has a slightly smaller memory usage on
x86 (8 MB) but it is more than twice higher on aarch64 (24
MB). OSv’s RAM footprint is also higher than HermiTux
on both ISAs: more than 2x on x86-64 and 1.3x on aarch64.
On x86-64 Lupine’s footprint is 1.8x higher than HermiTux’.
Unsurprisingly, the Alpine VM has the higher memory
usage on both ISAs, 34 MB, and the docker container has
the lowest, 6 MB.
Image Size. Finally, we compared the disk image sizes
of a simple “hello world” application for each solution.
For the compiled unikernels it is simply the size of the
unikernel binary. For HermiTux it is the sum of the kernel
and application binaries. We also report the disk image size
of the application binary itself (that would be the footprint
of an empty container), and of an Alpine container and VM.

Results are presented in Figure 2. Varying the ISAs
for the systems that support it leads only to minor disk
footprint variations. As one can observe HermiTux offers
a very low image size: 1.2 MB on x86-64 and 530 KB on
aarch64. Once again this benefits comes from HermitCore’s
minimalist design. It is similar or better than the other
unikernel image sizes that are all below 5 MB apart from
OSv on ARM which is 7 MB. The Alpine VM has the highest
footprint: 35 MB, and for the Alpine container it is relatively
low: 5 MB. Note that the application binary size is negligible
(about 10KB), indicating that most of it is taken by systems
software such as the kernels.

We can conclude by stating that the lightweightness
benefits of unikernels are preserved in HermiTux, as it is on
par and sometimes better than state-of-the art unikernels.
System Call Level Modularization. We analyzed a set of
applications compiled against the Musl libc with our system
call identification tool and compiled for both x86-64 and
aarch64 a set of HermiTux kernels, each tailored for an

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

http://www.yl.is.s.u-tokyo.ac.jp/~tosh/kml/
https://pyperformance.readthedocs.io/

8

Hermitux Linux
Binary

Lupine Alpine OSv Rump Docker
0.001

0.01

0.1

1

10

100

Im
ag

e
si

ze
 (

M
B

)

 x86-64

 aarch64
 x86-64

 aarch64

Hermitux Lupine Alpine OSv Rump Docker
0

5

10

15

20

25

30

35

40

M
em

or
y

fo
ot

pr
in

t (
M

B
)

Hermitux Lupine Lupine
NOKML

Alpine OSv Rump Docker
0

20
40
60
80

100
120
140
160
180
200

B
oo

t t
im

e
(m

s)
 x86-64

 aarch64
603 1186

Fig. 2. Boot time, memory usage and image size comparison for several virtualization solutions running on x86-64 and aarch64. HermiTux runs on
Uhyve. Lupine, Alpine, and OSv run on Firecracker, and Rump runs on Solo5. NOKML means KML patch disabled.

TABLE 1
System call-based modularity efficiency.

Program
Number of
system calls

x86-64 kernel .text
size reduction

aarch64 kernel .text
size reduction

Minimal 4 21.22 % 29.26 %

Hello world 9 19.91 % 27.42 %

PARSEC Blackscholes 15 17.68 % 24.50 %

Postmark 27 16.02 % 22.55%

Sqlite 33 11.34 % 16.44%

Full syscalls support 107 - -

application by supporting only the system calls made by
that application. Table 1 presents the number of system calls
made and the savings in terms of kernel code segment size
reduction brought by the tailored kernel over a kernel with
full system calls support. We chose the code segment size
for metric as reducing its size enhances security: indeed, this
segment is mapped with executable rights and is a potential
target of code reuse attacks. In Table 1, minimal represents a
kernel for an application with minimal system call usage: its
main function returns directly. Results show that compiling
a tailored kernel can lead to a significant reduction in the
kernel code size. For example, for Blackscholes, this code
reduction is 24% for aarch64, and 17% for x86-64. More sys-
tem call intensive applications see a smaller size reduction:
16% for aarch64 and 11% for x86-64 with SQLite. We expect
these numbers to grow as support for more system calls is
added to HermiTux.

These experiments show that HermiTux offers low im-
age sizes, RAM usage, boot time, and a modular kernel
codebase, while being binary-compatible with Linux appli-
cations.

5.2 Application Support: Compilation Scenarios

To demonstrate the generality of HermiTux, we compiled a
program from the NPB [32] suite under different configura-
tions. We varied the compiler (GCC v6.3.0 for x86-64 and
v8.3.0 for aarch64, as well as LLVM [35] v4.0.1 for both
ISAs), the C library (Musl and Glibc), and the language
the benchmark is written in: NPB has C and Fortran im-
plementations. Two additional configurations include (1) a
stripped and (2) obfuscated binary. Obfuscation is typically
used in scenarios where proprietary software is involved. It
was achieved using Obfuscator-LLVM [36], an open-source
tool applying obfuscation passes on the LLVM Intermediate
Representation. We activated altogether these obfuscation
techniques: instruction substitution, bogus control flow in-

GCC/
Musl

GCC/Musl
stripped

GCC/
Glibc

Gfortran Clang Clang
obfuscated

0

50

100

NP
B

be
nc

hm
ar

k
ex

ec
ut

io
n

tim
e

(s
)

Linux x86
HTux x86

Linux ARM
HTux ARM

Fig. 3. Execution times for various scenarios, x86 runs BT, ARM CG.

sertion, and control flow flattening. -O3 optimization level
was enabled for all configurations. The experiments were
run on both the x86-64 server and the aarch64 embedded
board. We chose NPB BT class A for x86-64 and CG class
A for aarch64, because these run for a sufficiently long time
(tens of seconds) on each machine.

Execution times for Linux and HermiTux are very simi-
lar, as presented in Figure 3: for all experiments and in both
architectures, the difference between Linux and HermiTux
stays below 2%.

For x86-64 one can also observe that compiling with
LLVM brings about 15% performance improvement. It is
worth noting that the version of LLVM we use (v4.0.1) is
slightly more recent than the version of GCC used for x86-
64 (v6.3.0). For aarch64, GCC is about 12% faster than LLVM.
In that case the version of GCC we used for that ISA (v8.3.0)
is much more recent than LLVM’s version (v4.0.1).

The combination of obfuscation options we chose leads
to a 146% slowdown on x86-64 and a 449% slowdown on
aarch64. Such performance degradation is similar for Linux
and HermiTux in both ISAs. They are to be expected due
to the obfuscation overhead. Varying the C library and
the language does not impact the performance of such a
compute-/memory-intensive workload.

5.3 General Performance

Memory- and Compute-bound Benchmarks on x86-64.
We ran on our x86-64 server a set of benchmarks from
NPB (BT/IS/EP), PARSEC (Swaptions and StreamCluster),
and Python Performance Benchmark (Nbody). Note that
HermiTux is able to run other programs from the bench-
mark suites, which results are not presented here for space
reasons. To support Python, HermiTux runs the Micropy-
thon [37] lightweight interpreter. Results are presented on
Figure 4 where execution times are normalized to the ex-
ecution time of Linux: 1 on the y-axis represents Linux’s

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

9

BT
(Fortran)

EP
(C)

IS
(C)

Stream
cluster
(C++)

Swap
tions

(C++)

NBody
(Python)

0

1

2
Ex

ec
. t

im
e

no
r-

m
al

ize
d

to
 L

in
ux

HermiTux
Docker

OSv
Rump

Fig. 4. NPB/PARSEC/Python performance suite execution time normal-
ized to Linux’ on x86-64.

execution time. OSv and Rump do not support Fortran or
Micropython. These benchmarks have not been ported to
run on Lupine, but we expect a runtime similar to Linux
since the system call latency is not a bottleneck.

HermiTux performs similarly to Linux: the average
difference between HermiTux and Linux runtime over
all benchmarks is 2.7% (including NPB/PARSEC/Python
benchmarks not shown here for space reasons). The over-
head observed for HermiTux is slightly higher for a few
benchmarks (e.g., IS). The reason is the very short runtime
of these tests: a few seconds. In these cases, the benchmark
is so short that I/O, in the form of printing to the standard
output, becomes a significant source of latency (for our tests
with HermiTux such I/O is forwarded to the host).

Both Docker and OSv also present very similar results
compared to Linux. It is also the case for Rump, however
one can observe a significant slowdown (50%) for Swap-
tions. Rump lacking profiling tools, we were not able to pin-
point the exact reason for this degradation. One explanation
could be that Rump toolchain is slightly older: it uses g++
v5.4.0 whereas all the other systems make use of the host
g++ v6.3.0.

Network Performance on x86-64. To assess HermiTux’s
network performance, we used Redis. Redis is a widely used
key-value store server, and a perfect target for unikernel de-
ployment in particular because of its security requirements
as a server application. On our x86-64 server, we ran Redis
within the previously mentioned virtualization solutions.
As Firecracker’s network support is not yet on par with
Qemu’s, for the related VMs we report results for both hy-
pervisors. We ran the redis-benchmark from the host with 20
parallel clients and a key size of 2 bytes to stress the system
in an extremely latency-sensitive scenario. We also varied
artificially the network latency between the client and the
server using tc, with 0, 0.2, 1, and 5 additional ms of latency,
corresponding to various LAN setups representative of a
certain class of Redis deployments.

The results are presented on Figure 5. Without any added
network latency this experiment represents an extremely
latency-sensitive scenario and HermiTux is slower than the
competitors. It is on average 2.47x (GET) and 2.76x (SET)
slower than the competitors running on Qemu, as well
as 1.34x (GET) and 1.13x (SET) slower when they run on
Firecracker. This is due to multiple factors, particularly the
un-optimized network driver and TCP/IP stack (LWIP) of
HermiTux, combined with the lack of support for virtio. It is
likely that given mature support for networking, HermiTux

1024

2048

4096

8192

16384

32768

65536

131072

1024

2048

4096

8192

16384

32768

65536

131072 SET

GET

Hermi-
Tux

Lupine
FC

Lupine
Qemu

Alpine
FC

Alpine
Qemu

Rump
Qemu

OSv
Qemu

OSv
FC

R
ed

is
 t

hr
ou

gh
pu

t
in

 r
eq

/s
R

ed
is

 t
h

ro
ug

hp
ut

 in
 r

eq
/s

 0 ms .1 ms 1 ms 5 msAdded latency:

Fig. 5. Redis performance. Note the logarithmic scale on the Y-axis, and
that we voluntarily start this axis at 1024 to better show differences.
Results annotated “FC” are run on the Firecracker hypervisor.

would perform similarly to the competitors. Furthermore,
by adding the network latency that is unavoidable in many
deployment scenarios for Redis, the performance differ-
ences between the various systems decreases. For example,
by adding a mere 0.2 ms, for GET HermiTux is only 1.2x
slower than the competitors on Qemu. Starting from 1 ms
of latency, that slowdown becomes negligible (¡ 3%). This
shows that HermiTux is still viable in many networking
scenarios. A further argument is developed in the next
paragraph, showing our systems’ efficiency in throughput-
bound scenarios.

Edge Computing Benchmark on aarch64. Edge computing
promises to bring the computational power that is currently
centralized in the datacenter closer to the data sources (end
user, IoT devices, etc.), with the aim to reduce service laten-
cies. Edge nodes are expected to be much more heteroge-
neous than traditional servers, and can include in particular
embedded devices [38] of various ISAs such as aarch64.
Unikernels are good candidates for these multi-tenant and
resource constrained environments, thus we evaluate the
aarch64 port of HermiTux with an edge computing bench-
mark.

Real-time data analytics is one of the most important
types of workloads at the edge [39]. We created an edge
benchmark by adapting PARSEC’s StreamCluster, an ap-
plication performing online k-means clustering, to receive
its input data from the network rather than from a file.
With this benchmark we aim to reproduce a scenario typical
of edge computing, in which some end user/IoT device
produces data and sends it for processing to an edge node.

In this experiment a host server (the Potato aarch64
board) is representing the edge node and runs StreamClus-
ter in a VM, HermiTux or a standard KVM VM. The client
is represented by a separate machine that sends the data
set to the VM, which in turns runs the clustering algorithm
on that data. Both machines are connected through a local
network. We define the execution time of one iteration as
the time between the start of the data set transfer and the

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

10

128KB 512KB 2MB 8MB
Data set size

101

102
Ite

ra
tio

n
ex

ec
ut

io
n

tim
e

(s
)

Linux
HermiTux

Fig. 6. Execution time of one iteration of the edge benchmark on aarch64
with varying input data set sizes.

0

5

10

15

20

25

30

null (getppid)
read
write

E
xe

ct
io

n
tim

e
(m

s)

Linux
(native)

HTux
Handler

HTux
Rewrite

0

20

40

60

80

100

null (getppid)
read
write

HTux Lib.
Substitution

x86-64 aarch64

Linux
(native)

HTux
Handler

HTux
Rewrite

HTux Lib.
Substitution

Fig. 7. LMbench system call latency on x86-64 (left) and aarch64 (right).

end of the clustering process on that data. Varying the data
set size, we run 10 iterations for each size on each system
(HermiTux/Linux KVM) and report the average execution
time of an iteration. The results are presented on Figure 6.

As one can see, the performance of HermiTux is similar
to Linux’: the average difference over all data set sizes is
2.3%. Although we saw in the previous experiment (Redis)
that HermiTux’s network performance is somewhat inferior
to Linux, we noticed that for this edge benchmark the data
set network transfer only represents a very small part of the
iteration execution time: indeed, because of the low process-
ing power of the embedded board we use, the computation
phase represents the major part of the work. Increasing the
data set size does not change this fact as the network and
processing latencies grow proportionally.

System Call Latency. We used LMbench3 [40] to measure
system call latency in HermiTux, for null (getppid), read
and write. LMbench reports the execution time of a loop
calling 100000 times the corresponding system call. Figure 7
shows the results for native Linux, HermiTux’s system call
handler, a static binary running in HermiTux with binary-
rewritten system calls, and a dynamic binary running in
HermiTux with our substituted unikernel-aware C library.

Concerning x86-64, the system call latency is on average
5.6x lower in HermiTux (handler) compared to Linux. It is
due to multiple factors, including a simple and optimized
handler implementation (for example there is no sysret
in HermiTux) and a simpler implementation for the sys-
tem calls themselves, speeding up their processing. Binary-
rewriting the invocations of syscall in static binaries gives
a 2.3x reduction over the regular handler in HermiTux: this
is mainly due to the suppression of the interrupt overhead
induced by the syscall instruction. Finally, substituting
a unikernel-aware C library for dynamic programs brings
a 5.7x latency reduction compared to HermiTux’s handler:
in that case system calls are common function calls. This is

faster than our binary-rewriting technique (2.3x) because of
the additional instructions this technique needs to execute.

Concerning aarch64, HermiTux system call latency opti-
mizations also bring significant speedups: binary rewriting
system call invocations gives a latency reduction of 8.4x (for
null) over using a regular system call handler. Substituting
a unikernel aware C library brings a reduction of 11.7x.
which is only 1.3x faster than binary rewriting. As previ-
ously mentioned, with aarch64, most system call invocations
can be binary-rewritten with a simple function call or branch
operation without the need for additional operations such as
in x86-64. As a result, the speedups for libc substitution and
binary rewriting are relatively similar in aarch64. Overall,
the absolute latencies are higher on aarch64 due to the
low processing power of the embedded board compared to
the x86-64 server. The relatively high latency for the read
system call can be explained by the fact that LMbench uses
/dev/zero as target for the file operations. Reading from
this file corresponds to zeroing the user buffer passed to
read, a much more expensive operation (memset) than
writing to this file which corresponds to a no-op. The
difference between read and write is higher on aarch64
due to a difference in the (machine-dependent) throughput
of /dev/zero.

We ran additional experiments not shown here for space
reasons. We also evaluated HermiTux’s multi-threading
support running the OpenMP version of NPB CG/LU/MG
and observed that performance was similar to Linux. We
also ran a filesystem (Postmark) and a database (SQLite)
benchmark and observed that HermiTux’s numbers were on
par with Linux and Docker. Finally, we validated our sys-
tem’s support for checkpoint/restart/migration by check-
pointing and restarting the NPB benchmarks.

Overall, these results show that HermiTux can bring the
low footprint, fast boot time, and low system call latency of
unikernels and be binary-compatible without a significant
performance impact for a wide range of applications.

6 RELATED WORKS

Rumprun [9] and OSv [10] are two unikernels focusing
on compatibility with existing/legacy applications. Rump
allows components of the NetBSD kernel to be used as
libraries compiled with an application to create a unikernel.
OSv [10] is designed from scratch, providing a specialized
API for cloud applications, and supporting an unmodified
Linux ABI. However, applications have to be recompiled
as relocatable shared-objects. Consequently, both Rump and
OSv require source code to be available and the build
process of applications has to be extended to suit these
unikernel models’ requirements. With LightVM [1], authors
show that the performance of unikernels are similar/better
compared to containers and argue that porting to a uniker-
nel requires significant effort. They propose Tinyx, a system
which allows automated building of a stripped-down Linux
kernel. HermiTux tackles the same problem by running
unmodified Linux executables on top of a unikernel layer
whereby footprint and attack surface are significantly re-
duced compared to the Linux kernel (even a stripped down
version). Still, in absolute, it is unlikely that a kernel such as
Linux can achieve the same degrees of lightweightness and

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

11

attack surface reduction compared to unikernels built from
scratch such as HermiTux.

Lupine [11] is a unikernel version of Linux that re-
duces kernel size through configuration and eliminating the
user/kernel boundary with the Kernel Mode Linux patch.
Although it claims binary compatibility, it is important to
note that contrary to HermiTux that is binary compatible
at the system call level, Lupine compatibility is achieved
at the standard C library level through a dynamic loader
and a modified version of Musl Libc. As a result, con-
trary to HermiTux, with Lupine some unikernels benefits
(such as fast system calls) cannot be achieved for programs
that do not dynamically link against Musl such as static
binaries. UKL [41] is another unikernel-version of Linux,
however it is still under development. As our experimental
comparison with Lupine shows, it is unlikely that even a
heavily shrinked down version of large monolithic OS such
as Linux can achieve the same degree of lightweightness as
a unikernel built from scratch such as HermiTux.

Graphene [13] is a LibOS running on top of Linux, ca-
pable of executing unmodified, multi-process applications.
Graphene’s security can be enhanced with Intel SGX [14],
but this involves significant overhead (up to 2x). While bi-
nary compatibility comes for free in containers and in some
software LibOSes such as Graphene, we show that it is also
doable in unikernels. Unikernels such as HermiTux are an
interesting alternative to containers and software LibOSes as
they benefit from the strong isolation enforced by hardware-
assisted virtualization [1], [18], which comes at a very low
performance overhead. Google proposes gVisor [15], a Go
framework addressing containers’ security concerns by pro-
viding some degree of software isolation through system
call filtering/interposition. This frameworks comes at a non-
negligible performance overhead [42], and is not able to
reach the same level of isolation provided by the VMs used
in the context of unikernels [43].

Dune [44] uses hardware-assisted virtualization to pro-
vide a process-like abstraction, and implements in particular
a sandboxing mechanism for native Linux binaries. It is
important to note that its isolation model is quite different
from HermiTux: Dune either redirects system calls to the
host kernel or blocks them, which limits compatibility when
blocking or decreases isolation when redirecting.

The authors of a Linux API study [22] on x86-64 classify
system calls by popularity. Such knowledge can be used to
prioritize system call development in HermiTux. A system
call binary identification technique is also mentioned, but
few implementation details are given, and authors report
that identification fails for 4% of the call sites.

Finally, contrary to HermiTux, some of the systems ref-
erenced here (OSv, LightVM, X-Containers, Graphene-SGX,
Lupine) only support a single ISA, x86-64.

7 CONCLUSION

HermiTux runs native Linux executables as unikernels by
providing binary compatibility, relieving application pro-
grammers from the effort of porting their software. In this
model, not only can unikernel benefits be obtained for free
in unmodified applications, but it is also possible to run
previously un-portable software. HermiTux achieves this

goal with, in most cases, negligible to acceptable overhead
compared to Linux, and performs generally better than
other unikernels (OSv, Rump) for unikernel-critical metrics.
HermiTux is available online under an open-source license:
https://ssrg-vt.github.io/hermitux/.

ACKNOWLEDGMENTS

This work is supported in part by ONR grants N00014-
16-1-2104, N00014-16-1-2711, and N00014-16-1-2818; BMBF
grant 01IH16010C; and EPSRC grant EP/V012134/1. Hugo
Lefeuvre is partly supported by NEC labs Europe.

REFERENCES

[1] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My vm is lighter
(and safer) than your container,” in Proceedings of the 26th
Symposium on Operating Systems Principles, ser. SOSP ’17. New
York, NY, USA: ACM, 2017, pp. 218–233. [Online]. Available:
http://doi.acm.org/10.1145/3132747.3132763

[2] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels:
library operating systems for the cloud.” in Proceedings of the
Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ser. ASPLOS’13. ACM,
2013, pp. 461–472.

[3] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici, “Clickos and the art of network function
virtualization,” in Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’14.
Berkeley, CA, USA: USENIX Association, 2014, pp. 459–473.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2616448.
2616491

[4] B. Duncan, A. Happe, and A. Bratterud, “Enterprise iot security
and scalability: how unikernels can improve the status quo,” in
IEEE/ACM 9th International Conference on Utility and Cloud Comput-
ing, ser. UUC 2016. IEEE, 2016, pp. 292–297.

[5] S. Lankes, S. Pickartz, and J. Breitbart, “Hermitcore: a unikernel
for extreme scale computing,” in Proceedings of the 6th International
Workshop on Runtime and Operating Systems for Supercomputers, ser.
ROSS 2016. ACM, 2016.

[6] “Porting native applications to osv: problems you may run
into,” 2014, https://github.com/cloudius-systems/osv/wiki/
Porting-native-applications-to-OSv. Online, accessed 05/02/2018.

[7] S. Kuenzer, V.-A. Badoiu, H. Lefeuvre, S. Santhanam, A. Jung,
G. Gain, C. Soldani, C. Lupu, S. Teodorescu, C. Raducanu, C. Banu,
L. Mathy, R. Deaconescu, C. Raiciu, and F. Huici, “Unikraft: Fast,
specialized unikernels the easy way,” ser. EuroSys’21. New York,
NY, USA: ACM, 2021.

[8] “Unikernels are secure,” 2017, https://news.ycombinator.com/
item?id=14736909. Online, accessed 11/27/2017.

[9] A. Kantee and J. Cormack, “Rump kernels no os? no problem!”
USENIX; login: magazine, 2014.

[10] A. Kivity, D. L. G. Costa, and P. Enberg, “Os v - optimizing the
operating system for virtual machines,” in Proceedings of the 2014
USENIX Annual Technical Conference, ser. ATC’14, 2014, p. 61.

[11] H.-C. Kuo, D. Williams, R. Koller, and S. Mohan, “A linux in
unikernel clothing,” in Proceedings of the Fifteenth European Con-
ference on Computer Systems, 2020, pp. 1–15.

[12] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire,
D. Sheets, D. J. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam
et al., “Jitsu: Just-in-time summoning of unikernels.” in Proceedings
of the 12th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI’15, 2015, pp. 559–573.

[13] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation
and security isolation of library oses for multi-process applica-
tions,” in Proceedings of the Ninth European Conference on Computer
Systems, ser. EuroSys’14. ACM, 2014, p. 9.

[14] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical
library os for unmodified applications on sgx,” in Proceedings of
the USENIX Annual Technical Conference, ser. ATC 2017, 2017, p. 8.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://ssrg-vt.github.io/hermitux/
http://doi.acm.org/10.1145/3132747.3132763
http://dl.acm.org/citation.cfm?id=2616448.2616491
http://dl.acm.org/citation.cfm?id=2616448.2616491
https://github.com/cloudius-systems/osv/wiki/Porting-native-applications-to-OSv
https://github.com/cloudius-systems/osv/wiki/Porting-native-applications-to-OSv
https://news.ycombinator.com/item?id=14736909
https://news.ycombinator.com/item?id=14736909

12

[15] Google, “Gvisor github webpage,” 2018, https://github.com/
google/gvisor, Online, accessed 05/03/2018.

[16] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. Stillwell et al., “Scone:
Secure linux containers with intel sgx.” in OSDI, vol. 16, 2016, pp.
689–703.

[17] I. Corp., “Intel clear containers,” 2018, https://clearlinux.org/
documentation/clear-containers. Online, accessed 08/04/2018.

[18] R. Pavlicek, “Containers 2.0: Why unikernels will
rock the cloud,” 2018, https://techbeacon.com/
containers-20-why-unikernels-will-rock-cloud. Online, accessed
08/05/2018.

[19] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making reassembly
great again,” 2017.

[20] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling.” in
USENIX Security Symposium, 2015, pp. 627–642.

[21] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell, “System v appli-
cation binary interface,” AMD64 Architecture Processor Supplement,
Draft v0, vol. 99, 2013.

[22] C.-C. Tsai, B. Jain, N. A. Abdul, and D. E. Porter, “A study
of modern linux api usage and compatibility: what to support
when you’re supporting,” in Proceedings of the Eleventh European
Conference on Computer Systems. ACM, 2016, p. 16.

[23] Y. Zhang, J. Crowcroft, D. Li, C. Zhang, H. Li, Y. Wang, K. Yu,
Y. Xiong, and G. Chen, “Kylinx: A dynamic library operating
system for simplified and efficient cloud virtualization,” in Pro-
ceedings of the 2018 USENIX Annual Technical Conference, 2018.

[24] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and
M. Costa, “Strong and efficient cache side-channel protection
using hardware transactional memory,” in USENIX Security Sym-
posium, 2017, pp. 217–233.

[25] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density
by using ksm,” in Proceedings of the linux symposium. Citeseer,
2009, pp. 19–28.

[26] W. Dietz and V. Adve, “Software multiplexing: share your libraries
and statically link them too,” Proceedings of the ACM on Program-
ming Languages, vol. 2, no. OOPSLA, p. 154, 2018.

[27] C. S. Collberg, J. H. Hartman, S. Babu, and S. K. Udupa, “Slinky:
Static linking reloaded.” in USENIX Annual Technical Conference,
General Track, 2005, pp. 309–322.

[28] A. Quach, R. Erinfolami, D. Demicco, and A. Prakash, “A multi-
os cross-layer study of bloating in user programs, kernel and
managed execution environments,” in Proceedings of the 2017 Work-
shop on Forming an Ecosystem Around Software Transformation, ser.
FEAST, 2017.

[29] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller,
“Documenting and automating collateral evolutions in linux
device drivers,” in Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008, ser. Eurosys ’08.
New York, NY, USA: ACM, 2008, pp. 247–260. [Online]. Available:
http://doi.acm.org/10.1145/1352592.1352618

[30] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[31] C. C. Williams and J. K. Hollingsworth, “Interactive binary instru-
mentation,” in Second International Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS), 2004.

[32] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[33] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceed-
ings of the 17th international conference on Parallel architectures and
compilation techniques. ACM, 2008, pp. 72–81.

[34] V. Nitu, P. Olivier, A. Tchana, D. Chiba, A. Barbalace,
D. Hagimont, and B. Ravindran, “Swift birth and quick death:
Enabling fast parallel guest boot and destruction in the xen
hypervisor,” in Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser.
VEE ’17. New York, NY, USA: ACM, 2017, pp. 1–14. [Online].
Available: http://doi.acm.org/10.1145/3050748.3050758

[35] C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings of the
international symposium on Code generation and optimization: feedback-

directed and runtime optimization. IEEE Computer Society, 2004,
p. 75.

[36] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-
LLVM – software protection for the masses,” in Proceedings of
the IEEE/ACM 1st International Workshop on Software Protection, ser.
SPRO’15, B. Wyseur, Ed. IEEE, 2015, pp. 3–9.

[37] Micropython Contributors, “Micropython webpage,” 2018, https:
//micropython.org/, Online, accessed 08/05/2018.

[38] R. Pettersen, H. D. Johansen, and D. Johansen, “Secure edge
computing with arm trustzone.” in IoTBDS, 2017, pp. 102–109.

[39] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[40] L. W. McVoy, C. Staelin et al., “lmbench: Portable tools for per-
formance analysis.” in USENIX annual technical conference. San
Diego, CA, USA, 1996, pp. 279–294.

[41] A. Raza, “Ukl: A unikernel based on linux,” https://next.redhat.
com/2018/11/14/ukl-a-unikernel-based-on-linux/, Online, ac-
cessed 12/12/2018, 2018.

[42] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou,
R. Van Renesse, and H. Weatherspoon, “X-containers: Breaking
down barriers to improve performance and isolation of cloud-
native containers,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2019, pp. 121–135.

[43] H. Fingler, A. Akshintala, and C. J. Rossbach, “Usetl: Unikernels
for serverless extract transform and load why should you settle for
less?” in Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop
on Systems. ACM, 2019, pp. 23–30.

[44] A. Belay, A. Bittau, A. J. Mashtizadeh, D. Terei, D. Mazières,
and C. Kozyrakis, “Dune: Safe user-level access to privileged cpu
features.” in Osdi, vol. 12, 2012, pp. 335–348.

Pierre Olivier received the BS and MS degrees from the University
of Western Brittany, Brest, France, in 2009 and 2011, and the PhD
degree from the University of South Brittany, Lorient, France, in 2014. He
was a Postdoc from 2015 to 2018 and a Research Assistant Professor
from 2018 to 2019 at Virginia Tech, US, before joining the University
of Manchester, UK, as a lecturer. His research interests include many
areas of systems software.
Hugo Lefeuvre received the BS from Karlsruhe Institute of Technology,
Germany, in 2020. He is working toward the PhD degree in computer
systems at the University of Manchester, UK. His research interests
include, among others, systems software, security, and networking.
Daniel Chiba received his MS degree in Computer Engineering from
Virginia Tech in 2018, where his research centered on virtualization
and unikernels. He currently works in the graphics software team at
Qualcomm.
Stefan Lankes received a conferral of a doctorate from the RWTH
Aachen University. Between 2007 and 2017, he was academic councilor
at Chair for Operation Systems at the RWTH Aachen University. Since
2017, he is working as Academic Director at the Institute for Automation
of Complex Power Systems, RWTH Aachen University. His research
interests include operating systems, cloud computing and high perfor-
mance computing.
Changwoo Min is an Assistant Professor of the Electrical and Computer
Engineering Department at Virginia Tech, where his research focuses
on many-core scalability and concurrency of in-memory and non-volatile
memory systems. His prior research includes operating systems, stor-
age systems, database systems, and system security. Before joining
Virginia Tech in 2017, he was a research scientist in Computer Science
at Georgia Institute of Technology. He received his Ph.D. degree from
Sungkyunkwan University in 2014. Before starting his Ph.D., he devel-
oped various software products, including Linux-based mobile platform
(Tizen), Java virtual machine (J9), and desktop operating system (OS/2)
in Samsung Electronics and IBM Korea.
Binoy Ravindran is a professor of electrical and computer engineering
at Virginia Tech, where he leads the Systems Software Research Group
which conducts research on distributed systems, operating systems,
virtualization, compilers, concurrency, and verification. His group has
published more than 290 papers in these spaces, including eight best
paper awards and nominations. Several of his group’s results have been
transitioned to the US DOD, in particular, the Navy. He has mentored
six research faculty members, 14 postdoctoral scholars, and 18 PhD
students, ten of whom currently hold tenured or tenure-track faculty
positions. He is an ACM distinguished scientist, a former office of naval
research faculty fellow, and serves or has served on the editorial boards
of IEEE TC, IEEE TPDS, ACM TECS, IEEE D&T, and IEEE TSUSC.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3122896

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://github.com/google/gvisor
https://github.com/google/gvisor
https://clearlinux.org/documentation/clear-containers
https://clearlinux.org/documentation/clear-containers
https://techbeacon.com/containers-20-why-unikernels-will-rock-cloud
https://techbeacon.com/containers-20-why-unikernels-will-rock-cloud
http://doi.acm.org/10.1145/1352592.1352618
http://doi.acm.org/10.1145/3050748.3050758
https://micropython.org/
https://micropython.org/
https://next.redhat.com/2018/11/14/ukl-a-unikernel-based-on-linux/
https://next.redhat.com/2018/11/14/ukl-a-unikernel-based-on-linux/

	Introduction
	Background and Motivation
	Unikernels
	Porting Existing Applications to Unikernels
	The Lightweight Virtualization Design Space
	System Call-Level Binary Compatibility

	System Design
	System Overview
	Load-Time Binary Compatibility
	Runtime Binary Compatibility
	Unikernel Benefits & Isolation

	Implementation
	Evaluation
	Lightweightness: Footprint Reduction & Boot Time
	Application Support: Compilation Scenarios
	General Performance

	Related Works
	Conclusion
	References
	Biographies
	Pierre Olivier
	Hugo Lefeuvre
	Daniel Chiba
	Stefan Lankes
	Changwoo Min
	Binoy Ravindran

