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Abstract—We consider the problem of least-latency end-to-end routing over adaptively duty-cycled wireless sensor networks. Such
networks exhibit a time-dependent feature, where the link cost and transmission latency from one node to other nodes vary constantly in
different discrete time moments. We model the problem as the time-dependent Bellman-Ford problem. We show that such networks satisfy
the FIFO property, which makes the time-dependent Bellman-Ford problem solvable in polynomial-time. Using the β-synchronizer, we
propose a fast distributed algorithm to construct all-to-one shortest paths with polynomial message complexity and time complexity. The
algorithm determines the shortest paths for all discrete times in a single execution, in contrast with multiple executions needed by previous
solutions. We further propose an efficient distributed algorithm for time-dependent shortest path maintenance. The proposed algorithm is
loop-free with low message complexity and low space complexity of O(maxdeg), where maxdeg is the maximum degree for all nodes.
We discuss a sub-optimal implementation of our proposed algorithms that reduces their memory requirement. The performance of our
algorithms are experimentally evaluated under diverse network configurations. The results reveal that our algorithms are more efficient
than previous solutions in terms of message cost and space cost.

Index Terms—Time-dependent, shortest path, wireless sensor networks, routing, routing maintenance, least-latency.
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1 INTRODUCTION

Multihop data routing over wireless sensor networks
(WSNs) has attracted extensive attention in the recent
years. Since there is no infrastructure in sensor networks,
the routing problem is different from the one in traditional
wired networks or the Internet. Some routing proto-
cols [2], [3] over WSNs presented in the literature are ex-
tended from the related approaches over wired/wireless
ad-hoc networks. They usually find a path with the
minimum hop count to the destination, which is based on
the assumption that the link cost (or one-hop transmission
latency) is relatively static for all wired/wireless links.
However, for duty-cycled WSNs [4]–[6], that assumption
may not always be valid.

Duty-cycled WSNs include sleep-wakeup mechanisms,
which can violate the assumption of static link costs.
Currently, many MAC protocols support WSNs operating
with low duty cycle, e.g., B-MAC [5], X-MAC [6]. In such
protocols, sensor nodes operate in low power listening
(or LPL) mode. In the LPL mode, a node periodically
switches between the active and sleep states. The time
duration of an active state and an immediately following
sleep state is called the LPL checking interval, which can
be identical, or can be adaptively varied for different
nodes, referred to as ALPL [7]. The duty-cycled mech-
anism has been shown to achieve excellent idle energy
savings, scalability, and easiness in implementation. How-
ever, they suffer from time-varying neighbor discovery
latencies (the time between data arrival and discovery of
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the adjacent receiver), which is also pointed out by Ye
et.al. [8]. As shown in Figure 1, the neighbor discovery
latency between two neighbors is varying with different
departure times. Even with synchronized duty-cycling,
the neighbor discovery latency is varying at different time
moments due to adaptive duty cycle setting as shown in
Figure 1.

To formally define the problem, we first define the
link cost as the time delay between data dispatching
time, which is the earliest time when a sender wakes up
for data transmission, and the data arrival time at the
receiver. The link cost is time-varying in adaptively duty-
cycled WSNs due to varying neighbor discovery latencies,
even though the physical propagation condition does
not change with time. The dispatching time is the time
moment when the data is ready for transmission at the
sender side. Thus, this raises a non-trivial problem: with
time-varying link costs, how to find optimal paths with
least nodes-to-sink latency for all nodes at all discrete
dispatching time moments?

A similar problem has been modeled in previous
works as the time-dependent shortest path problem (or
TDSP) [9], [10] in the field of traffic networks [11], time-
dependent graphs [12], and GPS navigation [13]. The
general time-dependent shortest path problem is at least
NP-Hard, since it may be used to solve a variety of
NP-Hard optimization problems such as the knapsack
problem. However, depending on how one defines the
problem, it may not be in NP, since its output is not poly-
nomially bounded. Moreover, there are even continuous-
time instances of the TDSP problem in which shortest
paths consist of an infinite sequence of arcs, as shown
by Orda and Rom [14]. In this paper, we study a special
case where the networks are known as FIFO networks,
in which commodities travel along links in a First-In-
First-Out manner. Under the FIFO condition, the time-
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dependent shortest path problem is solvable in polyno-
mial time.

The TDSP problem has also been studied with a dis-
tributed approach. The only previous distributed solu-
tion [10] computes the shortest paths for a specific depar-
ture time in each execution. If the whole time period has
M discrete intervals (M is ∞ for infinite time intervals),
we have to execute the algorithm in [10] M times, which
is inefficient in terms of message complexity and time
complexity, given the limited power and radio resource
in WSNs. Therefore, the first motivation of our work is
to design a fast distributed algorithm for the problem,
which can efficiently enumerate all optimal paths with
least end-to-sink latency for infinite time intervals.

The second motivation of our work is to propose an al-
gorithm which can dynamically and distributively main-
tain time-dependent least-latency paths. In WSNs, a node
may update its duty-cycle configuration (e.g., based on
its residual energy), or join or leave the network, thereby
changing the network topology. In such situations, the
duty-cycle updating node or the joining/leaving node
may change the cost of all the links with its neighbors,
which means that a single node update can cause multiple
link updates. Previous efforts on this problem [15], [16]
are efficient in handling single link updates. Applying
such solutions for multiple link updates would imply
that multiple distributed updates execute concurrently
for a single node update, which is not efficient in terms
of message cost and memory cost for resource-limited
WSNs.

The third motivation is to address practical implemen-
tation issues. Our work requires schedule-awareness in
neighborhood. One scenario for such requirement is that
all nodes have none information from each other after
initial deployment in field. In this scenario, we would
like to get schedule-awareness without global time syn-
chronization. Local synchronization and light information
exchange is desirable to get duty-cycling information and
time difference from neighbors for a sensor node.

One candidate to achieve this is by neighbor discovery
protocol, just similar as the link layer neighbor discov-
ery protocol in the Internet. Nodes without schedules
of neighbors would stay awake and broadcast neighbor
discovery message periodically (i.e., once every multiple
predefined time slots) and neighbors can response back
their schedule information, which is a kind of local level
synchronization. Once reaching a stable stage, any node
would get its neighbor’s schedule and the time difference
from its neighbors, and switch back to duty-cycling state.
The update of nodes schedule can be undergoing in
background either probatively or reactively.

Because our work is not limited to any specified MAC-
protocol, we discuss different methods to achieve sched-
ule awareness over several underlying mechanisms, such
as B-MAC, S-MAC, and quorum-based wakeup schedul-
ing in Section 7.1.

Regarding to another practical implementation issues,
we also need to understand how to simplify the vector
presentation so that only smaller vector sizes are required,

given the limited memory resource of sensor nodes. We
present a sub-optimal implementation, which achieves a
trade-off between latency and memory usage. Finally, we
discuss the complexities of our algorithms in some special
scenarios, like static link costs and multiple sink nodes.

In this paper, we first propose a distributed algorithm to
compute the time-dependent paths with least-latency for
all nodes in a duty-cycled WSN. The algorithm has low
message and space complexities. The algorithm is based
on the observation that the time-varying link cost function
is periodic, and hence by derivation, the time-varying
distance function for each node is also periodic. We show
that the link cost function satisfies the FIFO property [9].
Therefore, the time-dependent shortest path problem is
not an NP-hard problem, and thus is solvable in poly-
nomial time. We also propose distributed algorithms for
maintaining the shortest paths. The proposed algorithms
re-compute the routing paths based on previous path
information.

The message complexity of our algorithms is O(δ2) per
node update, where δ is the number of nodes that change
either the distance or the parents in their shortest paths
to the sink as a consequence of the corresponding nodes’
update. The algorithms’ space complexity is O(maxdeg).
Finally, we propose a sub-optimal implementation, which
requires vectors with smaller sizes to represent link cost
functions and the distance function.

The contributions of the paper are as follows: 1) We
model adaptively duty-cycled WSNs as time-dependent
networks. We show that such networks satisfy the FIFO
condition and the triangular path condition 2) We present
distributed algorithms for finding the time-dependent
shortest paths to the sink node for all nodes. When
compared to the previous solution [10], our algorithms
find the shortest paths in a single execution for infinite
time intervals 3) We present distributed shortest path
maintenance algorithms with low message complexity
and space complexity 4) We propose sub-optimal imple-
mentation with vector compression.

To the best of our knowledge, we are not aware of
any other efforts that consider duty-cycled WSNs as time-
dependent networks and solve the problem of finding or
updating the shortest paths with efficient message and
space costs.

The rest of the paper is organized as follows: We survey
past and related works in Section 2, and outline our
assumptions and define the problem in Section 3. We
formally model the link cost function and the distance
function in Section 4. The algorithms for route construc-
tion and route maintenance are described in Sections 5
and 6, respectively. We discuss practical implementation
issues in Section 7. Simulation results are reported in
Section 8. We conclude in Section 9.

2 RELATED WORK

We summarize the literature on LPL scheduling and the
time-dependent shortest path problem as follows.

LPL/ALPL in WSNs. LPL means that a node only
wakes up and listens the channel state for a short time
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period. Examples include B-MAC [5], which is a CSMA-
based technique that utilizes low power listening and an
extended preamble to achieve low power communication.
In B-MAC, nodes have an awake and a sleep period,
and an independent sleep schedule. If a node wishes to
transmit, it precedes the data packet with a preamble that
is slightly longer than the sleep period of the receiver.
During the awake period, a node samples the medium,
and if a preamble is detected, it remains awake to receive
the data. With the extended preamble, a sender is assured
that at some point during the preamble, the receiver will
wake up, detect the preamble, and remain awake in order
to receive the data. The designers of B-MAC show that B-
MAC surpasses existing protocols in terms of throughput,
latency, and for most cases, energy consumption. While B-
MAC performs quite well, it suffers from the overhearing
problem, and the long preamble dominates the energy
usage.

To overcome some of B-MAC’s disadvantages,
XMAC [6] and DPS-MAC [17] were proposed. In X-
MAC or DPS-MAC, short preamble was proposed to
replace the long preamble in B-MAC. Also, receiver
information is embedded in the short preamble to avoid
the overhearing problem. The main disadvantage of
B-MAC, X-MAC, and DPS-MAC is that it is difficult
to reconfigure the protocols after deployment, thus
lacking in flexibility. X-MAC [6] and DPS-MAC [17] are
compatible with LPL mechanisms. However, they do not
explicitly support adaptive duty cycling, where nodes
choose their duty cycle depending on their residual
energy.

Jurdak et. al. [7] and Vigorito et. al. [4] present adaptive
low power listening (ALPL) mode based on nodes’ resid-
ual energy. These works provide the application spaces
for our work. In ALPL, since nodes have heterogenous
duty cycle setting, it is more difficult for neighbor discov-
ery since a node cannot differentiate whether a neighbor
is sleeping or failing when it does not receive feed-back
from the neighbor. ALPL also incurs time-dependent link-
cost and end-to-end latency as illustrated in Section 4.
Recently, B-MAC [5] was also extended to support the
ALPL mode in TinyOS.

Delay-efficient routing over adaptively duty-cycled
WSNs. Over adaptively duty-cycled WSNs, routing be-
comes more difficult due to two reasons: intermittent
connection between two neighbor nodes and changes in
the transmission latency at different times. Some works
have studied the delay-efficient routing problem over
adaptively duty-cycled WSNs in recent years.

Lu [18] et al. proposed two methods to solve routing
over intermittently connected WSNs due to duty cycling.
One is by an on-demand approach that uses probe mes-
sages to determine the least latency route. The other one
is a proactive method, where all least latency routes at
different departure times are computed at the beginning.
The first method does not work well for frequent data
deliveries. The second method is a centralized approach,
and is not flexible for distributed construction. Our al-
gorithms also follow the proactive approach, but are

distributed.
Yu [19] et al. considered the problem with a different

perspective. They studied how to consume a minimum
amount of energy while satisfying an end-to-end delay
bound specified by the application. In [20], they studied
how to guarantee the end-to-end latency by adjusting
duty cycling in individual nodes. There are also some
other works that have studied the energy-delay trade-
off for duty-cycled WSNs, such as [21] and [22]. These
efforts are similar to our work, but there is a fundamental
difference: we study the least routing latency, given the
duty-cycle or energy configuration on each node.

Time-Dependent Shortest Path Problem. This problem
was first proposed by Cooke and Halsey [9]. It has been
well studied in the field of traffic networks [11], time-
dependent graphs [12], and GPS navigation [13]. Previous
solutions for this problem mostly work offline using a
centralized approach [12]. Although these solutions can
provide inspirations, they cannot be applied to WSNs
where the global network topology is not known by a
centralized node, given the large-scale size of a WSN.

For the distributed time-dependent shortest path prob-
lem, the only previous work [10] computes the shortest
paths for a specific departure time in each execution,
which is not time-efficient. If the whole time period has
M discrete intervals (M is ∞ for infinite time intervals),
we have to execute the algorithm in [10] M times, which
is inefficient in terms of message complexity and time
complexity. For multiple executions, the algorithm in [10]
suffers from high message cost, which is undesirable for
resource-limited WSNs.

The work in [10] discusses two policies for the time-
dependent shortest path problem: waiting and non-
waiting. Waiting does not mean waiting in the buffer,
but means waiting for some time after the data has been
delivered (i.e., the receiver is awake). Non-waiting means
that a sender will immediately send the data once the
receiver is awake. We do not consider the waiting policy
in our work, since the end-to-end latency does not benefit
from waiting.

Dynamic Shortest-Path maintenance. Many
works [15], [16], [23] exist for handling link decreases
and increases, and node deletions and insertions in
static networks. In [24], an algorithm is given for
computing all-pairs shortest paths, which requires
O(n2) messages when the network size is n. In [25], an
efficient incremental solution has been proposed for the
distributed all-pairs shortest paths problem, requiring
O(nlog(nW )) amortized number of messages over a
sequence of edge insertions and edge weight decreases.
Here, W is the largest positive integer edge weight.
In [26], Awerbuch et al. propose a general technique
that allows to update the all-pairs shortest paths in
a distributed network in O(n) amortized number of
messages and O(n) time, by using O(n2) space per node.

In [23], Ramarao and Venkatesan give a solution for
updating all-pairs shortest paths that requires O(n3)
messages, O(n3) time, and O(n) space. They also show
that, in the worst case, the problem of updating shortest
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paths is as difficult as computing shortest paths. They
suggest two possible directions toward devising efficient
fully dynamic algorithms for updating all-pairs shortest
paths: 1) explore the trade-off between the message, time
and space complexity for each kind of dynamic change
2) devise algorithms that are efficient in different com-
plexity models (with respect to worst case and amortized
analysis).

However, the algorithms in [15], [23] need O(n) space
at each node, which is impractical for sensor nodes with
limited memory capacity. In addition, none of the previ-
ous works are efficient for shortest path maintenance in
time-dependent networks.
β-Synchronizer [27]. As described in [27], the synchro-

nizer is a methodology for designing efficient distributed
algorithms in asynchronous networks. Researchers have
used synchronizers to reduce message complexity of
some asynchronous algorithms, such as Bellman-Ford. A
synchronizer works as follows. A synchronizer generates
sequences of “clock-pulses” at each node of a network.
At each node, a new pulse is generated only after it
receives all the messages which were sent to that node by
its neighbors at the previous pulse. Thus, a synchronizer
runs in a phase-by-phase manner.

A β-synchronizer is a special type of synchronizer,
which has an initialization phase, in which a leader s
is chosen in the network and a spanning tree rooted at
s is constructed (e.g., by a Breadth-First-Search). After
the execution of one phase, the leader s will eventually
learn that all the nodes in the network are “safe”. At
that time, it broadcasts a message along the spanning
tree, notifying all the nodes that they may generate a
new pulse. The communication pattern for receiving all
acknowledgments is just like convergecast. Therefore,
with a β-synchronizer, whenever a node learns that it
is safe and all its descendants in the tree are safe, it
sends an acknowledgment to its parent. In each phase, a
β-synchronizer incurs low message complexity, which is
O(|V |) [27], where |V | is the network size, but at a higher
time cost.

For a distributed shortest path algorithm armed with a
β-synchronizer, if the number of phases are limited, the
total message complexity will be bounded.

3 ASSUMPTIONS AND PROBLEM DEFINITION

We model a WSN as a directed graph G = (V,E,C),
with |V | nodes and |E| links. C = {τi,j(t)|(i, j) ∈ E} is a
set of time-dependent link delays, i.e., τi,j(t) is a strictly
positive function of time defined for [0,∞), describing the
delay of a message over link (i, j) at time t. Each node ni
only knows the identity of the nodes in its neighbor set,
defined as Ni.

We assume that time axis are arranged as consecutive
numbered time slots. We denote the duration of one time
slot for node ni as Ti. It is possible that Ti 6= Tj (ALPL)
for two nodes ni and nj . The time expansion of each
node ni is modeled as discrete and infinite, where Ti =
{t0i , t1i , t2i , · · · , tMi }, M is +∞, and tki − t

k−1
i = Ti. We use

the terms checking interval and time slot interchangeably.

The wakeup schedule depends on the underlying MAC
protocol. We first assume that a node can be operated in
the LPL mode: a node wakes up at the beginning of a time
slot to check the channel state. If there is no activity, the
node goes back to sleep; otherwise, it stays awake. Then,
we relax the assumption and discuss how our work can
be applied to other wakeup schedules, such as quorum
schedules [28].

We consider the non-waiting policy (i.e., the sender
immediately delivers data once the receiver is awake) at
each node, since the node-to-sink delay will not benefit
from waiting. Thus, once the data arrives at an interme-
diate node, the node will attempt to dispatch the data
immediately. Dispatching time represents the earliest time
when a sendor is awake for data transmission. Thus,
dispatching times are not the same as the data departure
times, as the data may still be buffered in the sender’s
memory. For simplicity in modeling and design, a node
dispatches the received data at tki ∈ Ti.

A nonnegative travel time τi,j(t
k
i ) is associated with

each link (i, j) with the following meaning: if tki is the
data dispatching time from node ni along the link (i, j),
then tki + τi,j(t

k
i ) is the data arrival time at node nj .

The general problem of determining the shortest paths
with the least latency in time-dependent WSNs can be
defined as follows: Find the least-time paths from all
nodes to the sink node ns corresponding to the minimum
achievable delay di, ∀ni ∈ V and ∀tki ∈ Ti, where:

di(t
k
i ) = min

nj∈Ni

{τi,j(tki ) + dj
(
tki + τi,j(t

k
i )
)
} (1)

Equation 1 is an extension of Bellman’s equations [29]
for the time-dependent network and is referred to as TD-
Bellman’s equation hereafter.

We also assume that a message arrives correctly in finite
time from a sender to a receiver, which can be achieved
by any reliable MAC-layer transmission mechanism.

We do not assume that the entire network is time-
synchronized, i.e., all nodes are not equipped with
GPS devices or are not operated by global time-
synchronization protocols [30]. However, due to the
proactive routing nature in our proposed algorithms,
we need to know the link costs at the beginning of
route construction. Therefore, we assume awareness of
wakeup schedules of the neighborhood for each node.
Such schedule awareness can be achieved by neighbor
discovery protocols such as periodic neighbor detection
mechanisms. We further assume that all nodes have the
same time frequency, and their clocks drift at relatively
slow speeds.

4 MODELING ADAPTIVELY DUTY-CYCLED
WSNS

In this section, we model adaptively duty-cycled WSNs
as time-dependent networks. The algorithms we pro-
pose are based on Equation 1. Basically, tki is infinitely
discrete. Note that sensor nodes have limited memory
and exchanging messages is expensive. Thus, in order to
implement Equation 1 in practice, we must make τi,j(tki )
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and dj
(
tki + τi,j(t

k
i )
)

(where k ∈ [0,∞]) finite, so that the
time-dependent link cost and distance can be represented
by vectors.

We will now show that the link cost function is periodic
and establish that the time-varying distance function is
also periodic. Having done so, we will show how TD-
Bellman’s Equation can be implemented by vector repre-
sentations of link costs and distances.

4.1 Link Cost Function

Without loss of generality, suppose there are two adjacent
nodes ni and nj , where ni is the sender and nj is the
receiver.

Fig. 1. Varying neighbor discovery latency in heteroge-
nous LPL mode

Suppose at time t0i , the neighbor discovery latency is
∆
t0i
i,j . Then at time tki = t0i + k ∗Ti, the neighbor discovery

latency can be expressed as:

∆
tki
i,j = Tj − (k ∗ Ti −∆

t0i
i,j)mod Tj (2)

In an actual deployment, for example with the X-MAC
protocol, we can measure ∆

t0i
i,j in the following way: at

the beginning of the time slot which starts at t0i , node ni
sends out a preamble which contains the node ID of nj .
nj immediately feeds-back an ACK containing the value
of Tj once it receives the preamble. After receiving the
ACK by ni, the one-hop round trip delay from t0i to the
time at which the ACK is received is set to ∆

t0i
i,j . Once

we have measured ∆
t0i
i,j , ∆

tki
i,j (k ≥ 0) can be computed by

Equation 2.
For data transmission with fixed length data packets,

we define the data propagation time as τdata. Now, for a
directed link (i, j), we can set the link cost function as,
for ∀tki ∈ Ti,

τi,j(t
k
i ) = Tj − (k ∗ Ti −∆

t0i
i,j)mod Tj + τdata (3)

If τdata is relatively small when compared with Ti and
Tj , we can set τdata = 0. This is especially true for some
WSN applications with small information reports, such as
target tracking and environment monitoring.

Theorem 1: For every link (i, j), the time-varying link
cost function is periodic. The minimum period for the
function regarding k is,

P (τi,j) =
LCM(Ti, Tj)

Ti
(4)

where τi,j(tki )=τi,j(t
k+P (τi,j)
i ) (k ≥ 0) and LCM is the least

common multiple.

4.2 Distance to Sink
We refer to the node-to-sink delay as distance, for com-
patible representation with that in the static Bellman-Ford
algorithm [29].

Consider node ni and its neighbor nj , where Ti 6= Tj .
For dispatching time t0i at ni, let us suppose that the data
arriving time at nj is tj0j . Then, for the dispatching time
tki at ni, with the same time frequency for the two nodes,
the corresponding time instant at nj is tj0j −∆

t0i
i,j + k ∗ Ti.

Hence, based on the neighbor discovery mechanism (e.g.,
B-MAC [5], X-MAC [6]), nj will be discovered by ni at

the time instant tj0j + dk∗Ti−∆
t0i
i,j

Tj
e ∗Tj , with respect to nj ’s

time clock. Therefore, the function of distance from ni to
ns through the path through nj is:

di(t
k
i ) = τi,j(t

k
i ) + dj(t

k
′
+j0

j ) (5)

for ∀tki ∈ Ti, where k
′

= d(k ∗ Ti −∆
t0i
i,j)/Tje for tk

′

j ∈ Tj ,
and j0 is the data arriving time slot at nj with respect to
dispatching time t0i .

Theorem 2: For a path ni → ni−1 · · · → n1 → ns, the
distance function di(t

k
i ),∀tki ∈ Ti, is a periodic function,

where the minimum period for the function regarding k
is:

P (di) =
LCM(T0, T1, · · · , Ti)

Ti
(6)

for di(tki ) = di(t
k+P (di)
i ), where T0, T1, · · · , Ti are dura-

tions of the LPL checking intervals of nodes ns, n1, · · · ,
ni, respectively.

Proof: The proof is by induction. For i = 1, d1(tk1) =

τ1,s(t
k
1) + ds(t

k
′

1 ). Since ds ≡ 0, d1(t) = τ1,s(t
k
1). Accord-

ing to Theorem 1, d1(tk1) is periodic and its period is
LCM(T0, T1)/T1. Assume that the claim is true for node
ni−1.

Now, for node ni, di(tki ) = τi,i−1(tki ) + di−1(tk
′+j0
i−1 ),

where k
′

= d(k ∗ Ti − ∆
t0i
i,j)/Tje and j0 is the data

arrival time slot at ni−1 with respect to tki , based
on Equation 5. Let us define f1 = τi,i−1(tki ) and
f2 = di−1(tk

′+j0
i−1 ). The minimum period for func-

tion f1 is P (f1) = LCM(Ti, Ti−1)/Ti. Let
∏

=
LCM(T0, T1, · · · , Ti−1). Based on the induction step, for
distance function di−1(tki−1), the period is

∏
/Ti−1. The

period for function f2 is P (f2) =
∏
/gcd(

∏
, Ti). Since

gcd(
∏
, Ti) =

∏
∗Ti

LCM(
∏
,Ti)

, we have P (f2) = LCM(
∏
,Ti)

Ti
.

Therefore, the minimum period for di(tki ) is: P (di) =
LCM [P (f1), P (f2)] = LCM(T0, T1, · · · , Ti)/Ti.

Given a WSN with different LPL checking intervals, the
period for the distance function of any node is bounded
by LCM(T0, T1, · · · , Tn)/min{Ti}, from Equation 6.

In practical implementations, it is recommended that
LCM(T0, T1, · · · , Tn)/min{Ti} is not arbitrarily large.
Thus, our mechanism for finding the shortest paths at
the routing layer should be based on cross-layer de-
sign. For example, {100ms, 200ms, 500ms, 1000ms} is a
good configuration set, where there is a bounded period
LCM(100, 200, 500, 1000)/min{100, 200, 500, 1000} = 10
for the distance function. It means that for any node, its
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distance to the sink will repeat at most every 10 checking
intervals.

4.3 Implementation via Vectors
We implement the discrete, periodic, and infinite link cost
functions and the distance functions as vectors, and im-
plement the TD-Bellman’s equation (Section 3) by vector
operations. Our goal is to use vectors with limited sizes in
order to implement our algorithm with limited memory
and same message size over the air, although the time
axis is infinite.

We implement the link cost function τi,j(t
k
i ) (tki ∈ Ti)

with a vector ~τi,j , where | ~τi,j | = LCM(Ti, Tj)/Ti and
τi,j [k] represents a set of numbers as follows:

τi,j [k] = {τi,j(tki ), τi,j(t
k+| ~τi,j |
i ), τi,j(t

k+2∗| ~τi,j |
i ), · · · } (7)

For the node ni, its distance function di(t
k) (tki ∈ Ti)

can be implemented by ~di, where |~di| = P (di(t
k)). di[k]

represents a set of numbers as follows:

di[k] = {di(tki ), di(t
k+|~di|
i ), di(t

k+2∗|~di|
i ), · · · } (8)

However, there are two difficulties for the implementation
of the TD-Bellman’s equation by vector operations.

The first one is vector mapping. To implement Equa-
tion 5, even if we know ~τi,j and ~dj , we cannot add up
the two vectors directly. We define a new vector ~d

′
j as:

d
′

j [k] = dj [(k
′
+ j0) mod |~dj |] (9)

where k
′

= d(k∗Ti−∆
t0i
i,j)/Tje and j0 is the corresponding

time slot for τi,j [0] at nj (i.e., t0i + ∆
t0i
i,j = tj0j ).

Only after mapping dj [k] to d
′

j [k], we can add τi,j [k] to
d
′

j [k]. By vector mapping, the size of the new vector ~d′j is:

|~d′j | =
|~dj | ∗ Tj

gcd(|~dj | ∗ Tj , Ti)
(10)

The second difficulty comes from the various sizes of
vectors for link cost and distance. Suppose ~di(j) is the
vector representing the distance of ni from a path through
nj in discrete time intervals. To implement Equation 5, if
~τi,j and ~d

′
j have the same size, we can directly add them

up for computing ~di(j). Otherwise, we need to expand
the two vectors to be of the same size, which means
expanding ~τi,j by LCM(| ~τi,j |, |~d

′
j |)/| ~τi,j | times and ~d

′
j by

LCM(| ~τi,j |, |~d
′
j |)/|~d

′
j | times. After the expansion, we can

directly add up the expanded vectors. We call such an
operation, vector expansion.

Vector mapping and expansion do not change the value
of the discrete functions τi,j and dj . They just change
the representation of values of the two discrete functions.
The vector expansion is valid since the time expansion is
infinite.

We define the following functions for implementation:
Definition 1: For a vector ~v:

• ror(~v, ofs): output ~v′ where ∀k ∈ [0..|~v| − 1], v′[k] =
v[(k + ofs) mod |~v|];

• rol(~v, ofs): output ~v′ where ∀k ∈ [0..|~v| − 1], v′[k] =
v[(~v|+ k − ofs) mod |~v|];
• map(~v, a, b,∆, ofs): output v′ where ∀k ∈ [0..|~v| − 1],
v′[k] = v[(da∗k−∆

b e+ ofs) mod |~v|];
• exp(~v, e) = ~v||~v...||~v (e times) (|| presents catenating

operation)
We utilize these functions to implement the TD-

Bellman’s equation. Suppose that ni has received the
distance vector ~dj of node nj . Suppose τi,j [0] is associated
with the time slot l0i,j at node ni, and the data arriving
time slot for τi,j [0] is l0j at nj . Then, ~di(j), the distance
vector of ni to the sink from the path through nj , can be
calculated as:

~dj
′

= map[ror(~dj , l
0
j ), Ti, Tj , τi,j [0], 0];

~di(j)
′ = exp( ~τi,j , e1) + exp(~dj

′
, e2);

~di(j) = rol[ ~di(j)
′, l0i,j ]

= vec add( ~τi,j , ~dj , l
0
i,j , l

0
j )

(11)

where |~dj
′
| is defined in Equation 10 and by defining A =

LCM(| ~τi,j |, |~d
′
j |), e1 = A/| ~τi,j | and e2 = A/|~d′j |.

We update ~di and the corresponding parent vector ~pi in
the following way. Suppose the original di[0] is associated
with the time slot 0 at ni (i.e., di[0] = di(t

0
i )). Now,

(~di, ~pi) = vmin{exp(di, e
′

1), exp( ~di(j), , e
′

2]} (12)

where B = LCM(| ~di(j)|, | ~di|), e
′

1 = B/|~di|, and e
′

2 =

B/| ~di(j)|. The function (~di, ~pi) = vmin(~v1, ~v2) compares
the corresponding elements in the two vectors ~v1 and
~v2, and copies the smaller element of each pair into the
corresponding element in ~di and the corresponding vector
ID into ~pi.

In addition, we define an operator ~< for comparing two
vectors ~v1 and ~v2. Let C = LCM(|~v1|, |~v2|). If ∀k ∈ [0..C−
1] exp(~v1, C/|~v1|)[k] ≤ exp(~v2, C/|~v2|)[k], then ~v1~<~v2. For
example, [1, 3]~<[2, 3].

Example. We now give an example to illustrate the
vector implementation. In Figure 2, there are four nodes
n0, n1, n2, and n3. n0 is the sink. By the measurement
method introduced in Section 4.1 and Equation 2, we
have τ1,0 = [155, 5], τ2,0 = [50, 200], τ3,1 = [20, 120, 70],
and τ3,2 = [175, 275, 75].

By Equation 5, we directly have ~d1 = [155, 5] and
~d2 = [50, 200], which means that the shortest latencies
from node n1 to node n0 will be repeatedly 155 and
5 every two time slots, starting from t01. Similarly, this
applies for node n2.

Then node n1 and n2 send their distance vectors d1 and
d2 to n3 by messages. After n3 receives the messages, by
Equation 11, it will compute the distance vector ~d3(1),
which is the latency of routing through node n1, and
the distance vector ~d3(2), which is the latency of routing
through node n2.

We now have ~d′1 = [155, 5, 155] (the extension of d1).
Thus, ~d3(1) = ~d′1 + τ3,1 = [20, 120, 70] + [155, 5, 155] =
[175, 125, 225]. Similarly, d′2 = [50, 200, 50] (the extension
of d1), and ~d3(2) = d′2 +τ3,2 = [50, 200, 50]+[175, 275, 75] =
[225, 475, 125].
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1,0=[155,5] 2,0=[50,200]

d1=[155,5]

d0=0

d2=[50,200]

n0

n1 n2

n3

t

t

3,1=[20,120,70]

d =[175,125, 225]

T0 = 300ms

T1 = T2 = 150ms

T3 = 100ms

3,2=[175,275,75]

tt² t¹

p =[n1,n11, n1]

Fig. 2. Example vector implementation

Therefore, ~d3 = vmin{[175, 125, 225], [225, 475, 125]} =
[175, 125, 125], and correspondingly ~p3 = [n1 n1 n2]),
which means that the shortest distance will be repeatedly
175, 125, and 125 every three time slots, starting from t03.
The corresponding parents are repeatedly n1, n1, and n2

every three time slots, starting from t03.

4.4 Properties

The FIFO condition [9] means that a packet which was
delivered earlier will always arrive at a direct neighbor
earlier. We will prove that an adaptively duty-cycled WSN
satisfies the FIFO condition.

Theorem 3: FIFO condition: The link cost function τi,j(tki )
satisfies the FIFO property, which means, for any tk1i <
tk2i ,

tk1i + τi,j(t
k1
i ) ≤ tk2i + τi,j(t

k2
i ) (13)

Proof: From Equation 3, we have tk2i + τi,j(t
k2
i )− tk1i −

τi,j(t
k1
i ) = (k2−k1)∗Ti+(k1 ∗Ti−∆

t0i
i,j) mod Tj−(k2 ∗Ti−

∆
t0i
i,j) mod Tj = (k2 − k1) ∗ Ti + [(k1 − k2) ∗ Ti] mod Tj =

(k2 − k1) ∗ Ti − [(k2 − k1) ∗ Ti] mod Tj ≥ 0.
We now give an intuitive explanation for Theorem 3.

In a static network, τi,j(tk2i ) − τi,j(tk1i ) = 0, because the
link cost is constant. In adaptively duty cycled WSNs,
the link cost τi,j(t) captures the time difference between
when node ni wakes up at t and when node nj wakes
up. Since node ni, which wakes up at tk1i , can always
detect the awake neighbor nj earlier (or at least at the
same time) than the case in which ni wakes up at tk2i , we
have tk1i + τi,j(t

k1
i ) ≤ tk2i + τi,j(t

k2
i ).

By Theorem 3, the time-dependent shortest path prob-
lem in adaptively duty-cycled WSNs is not NP-hard and
is solvable in polynomial-time [9].

Theorem 4: Suppose node ni has two neighbors nj and
nk, which are one-hop away from each other. Then, at a
time instant ti, we have the triangular property:

τi,j(ti) ≤ τi,k(ti) + τk,j [ti + τi,k(ti)] (14)

Proof: Suppose at time ti, the data arriving time slot
at nj is tj , and the data arriving time at nk is tk.

If tk ≤ tj , which means that the data arriving time at
nk is earlier than the data arriving time at nj , τi,k(ti) +
τk,j [ti + τi,k(ti)] = tk − ti + tj − tk = tj − ti = τi,j(ti).

If tk > tj , which means that the data arriving time at
nk is later than the data arriving time at nj , we have:
τi,k(ti)+τk,j [ti+τi,k(ti)] = tk−ti+t

′

j−tk > tj−ti+t
′

j−tk >
tj − ti > τi,j(ti). The theorem follows.

ni

nj

nkni

nj

nk

(a) (b)

Fig. 3. Triangular path condition: the direct path ni → nj
always achieves the least latency among all paths from ni
to nj

Theorem 4, as illustrated in Figure 3(a), illustrates that
node ni will always directly arrive at its neighbor nj
without going through other nodes. We now have the
following claim:

Lemma 1: Triangular Path Condition: For a node ni and
its neighbor nj , at any dispatching time, the one-hop
path ni → nj always has the least time delay for data
transmission.

Proof: We prove this by induction. Suppose there are
multiple nodes along the path from ni to nj . We define
these nodes as nk, nk+1, · · · , nk+i. If i = 0, based on
Theorem 4, Lemma 1 is true.

Now, assume that i = k and Lemma 1 is true. We prove
that Lemma 1 is true when i = k+1. Suppose the adjacent
node to ni along the path is nk. Then the direct path nk →
nj has shorter latency than the path along nk+1, · · · , nk+i.
Also, based on Theorem 4, ni → nj has shorter latency
than the path (ni− > nk− > nj). Therefore, the direct
path ni → nj has shorter latency than the path along nk,
nk+1, · · · , nk+i. The lemma follows.

An illustration is given in Figure 3(b). Note that the
triangular path condition does not exist in static networks.

5 ALGORITHM FOR INITIAL ROUTE CON-
STRUCTION

We now present an algorithm for initial time-dependent
shortest path route construction in duty-cycled WSNs,
where the distances from all nodes to the sink node are
initially infinite. The proposed algorithm, referred to as
the FTSP algorithm, for Fast Time-Dependent Shortest
Path algorithm, is inspired by the work in [10].

As described in Section 4, although the time axis is
infinite, the time-varying link costs and distance can be
implemented by vectors. Therefore, our algorithm which
implements Equation 1 is basically similar to the dis-
tributed Bellman-Ford algorithm. The difference is that
our algorithm is exchanging vectors (i.e., for time-varying
link costs and distances), rather than single values of static
link cost and distance.

FTSP is adapted from the distributed Bellman-Ford
algorithm and is augmented with a β-synchronizer [27].
We choose a β-synchronizer in order to avoid exponential
message complexity, as discussed in Section 2. With a β-
synchronizer, the time cost and message cost are bounded
and there is no gain in the best case. However, due
to the limited resource in WSNs, we believe it is more
important to avoid the exponential message complexity
of the traditional Bellman-Ford algorithm.

Equipped with the vector implementation, FTSP com-
putes the shortest paths for infinite discrete time intervals
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in one execution, in contrast with the solution in [10],
which only calculates the shortest paths for a specified
discrete time.

Let |Dm| denote the diameter of the longest shortest
path for all nodes. We show that the message com-
plexity of FTSP is O(|Dm||E|) and the time complexity
is O(|Dm||V |). FTSP does not suffer from exponential
message complexity, like that in previous works for the
static shortest path problem over asynchronous networks
(e.g., [31]).

5.1 Distributed Algorithm Description
There are essentially two steps in our algorithm for
constructing routing paths. In the first step, we build a
spanning tree. In the second step, we calculate the shortest
paths and send back the acknowledgment to the sink
for nodes in the network with a layer-by-layer approach.
In our algorithm FTSP, we combine the two steps and
implement them through iterations. In the first iteration,
FTSP computes the shortest paths for nodes in the nearest
layer to the sink. In the following iterations, FTSP goes
beyond one layer each time, until it reaches the last layer.

We present the data structures and message formats in
FTSP:
• ~di: vector of distance from ni to ns, defined in Equa-
tion 8; initially all elements are ∞;
• ~τi,j : link delay from ni to its neighbor nj , defined in

Equation 7; τi,j [0] is obtained by measurement;
• ~pi: vector of parents for ni in the shortest path ni → ns

for infinite time intervals; initially all elements are node
ni;
• MSG(IDsrc, IDfrom, ~d, updated): control message;
IDsrc is the node ID of sink node, or update source
node (see Section 6); IDfrom is the sender’s node ID; ~d
is the distance vector of the sender; updated indicates
whether there is an update in the current iteration,
which will be explained later;
• ACK[j]: boolean indicating whether a node receives a
control message from its neighbor nj

We assume that ni knows the duration of the checking
interval Tj of all its neighbors nj ∈ Ni after measuring
link delays. Initially, a directed spanning tree rooted at
ns is built upon the network. We assume that ni knows
its parent st pi in the spanning tree. We also assume
that FTSP is invoked by higher-level protocols that create
“START” impetuses at ns.

The first iteration of FTSP begins when node ns receives
the “START” impetus. Subsequent ones begin whenever
ns completes an iteration and determines whether another
one is necessary by checking whether there is a node
whose distance was minimized in the last iteration.

Each iteration begins at node ns by sending a control
message to all its neighbors. When replies from all its
neighbors have been received, node ns concludes that an
iteration is completed. Every other node, i.e., ni (ni 6= ns),
begins an iteration upon receiving a control message from
its parent st pi in the spanning tree, upon which it sends
control messages to all its neighbors except st pi. When
replies are received from all these neighbors, a control

Algorithm 1: Algorithm for sink node ns in FTSP:
Initialization:
∀nj ∈ Ns, ACK[j] = 0, updated[j] = true;

On receiving START:
send MSG(s, s, 0, false) to ∀nj ∈ Ns;

On receiving MSG(j, ~dj , lj , bChanged):
ACK[j] = 1; updated[j] = bChanged;
if (∀nj ∈ Ns, ACK[j] == 1) then

ACK[j] = 0;
if (∀nj ∈ Ns, updated[j] == false) then

STOP;
else

send MSG(s, s, 0, false) to ∀nj ∈ Ns;

message is sent to the parent, thereby completing the
current iteration at node ni.

The control message from node nj contains the distance
vector ~dj (known thus far during the previous iterations)
between nj and ns. When such a message is received
at node ni, node ni checks whether the new informa-
tion decreases the value of any element in the current
distance vector. It does so by considering the path that
goes through nj , taking into account the most recent
information from nj .

We describe the procedures in Algorithms 1 and 2.

Algorithm 2: Algorithm for node ni(i 6= s) in FTSP:
Initialization:
st pi = NULL;
for ∀nj ∈ Ni do

ACK[j] = 0; updated[j] = true;
Measure link delay ∆0

i,j at the beginning of any time slot;
l0i,j = the time slot number for measurement;
lj = the data arriving time slot number at nj ;
for ∀k ∈ [0..LCM(Ti, Tj)/Tj ] do

τi,j [k] = Tj − (k ∗ Ti −∆0
i,j)mod Tj ;

On receiving MSG(s, j, ~dj , bChanged) from nj :
ACK[j] = 1; updated[j] = bChanged; ~di

prev
= ~di;

if nj == st pi then
send MSG(s, i, ~di, false) to ∀nj ∈ Ni except st pi;

~di(j) = vec add(~di, ~dj , l
0
i,j , lj); /* Equation 11*/

(~di, ~pi) = vmin(~di, ~di(j)); /* Equation 12*/
if (~di~< ~dprevi ) then updated[j] = true;
if (∀nj ∈ Ni, ACK[j] == 1) then

if (∃nj ∈ Ni, updated[j] == true) then bUpdated = true;
else then bUpdated = false;
send MSG(s, i, ~di, bUpdated) to st pi;
∀nj ∈ Ni, ACK[j] = 0;

The functions vec add(·), vmin(·), and operator ~< are
defined in Section 4.3.

5.2 Correctness and Complexity
Let PATH(i, tki ) be a path obtained by node ni, which is
starting at time tki and moving along its parent pi[k]. Let
di[k]m denote the value of di[k] after the mth iteration in
FTSP. We have the following properties:

Theorem 5: 1) After termination, PATH(i, tki ) is loop-
free and concatenated. 2) In the mth (m ≥ 0) iteration, a
node ni whose shortest path is at most m-hop away from
the sink node will be determined, for all discrete time
intervals tki ∈ Ti.
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Proof: For part 1, ∀tki ∈ Ti, after termination, suppose
pi[k] is set to the node nj for the shortest path with respect
to ns. Since nj is the parent of ni at the time slot tki ,
PATH(i, tki ) is a path composed of PATH(j, tki +τi,j(t

k
i )),

which is appended to node ni ∀tki ∈ Ti. Thus, for any
node ni and ∀tki ∈ Ti, PATH(i, tki ) is concatenated.

We prove that PATH(i, tki ) is loop-free by contradic-
tion. Without loss of generality, assume that there is a
loop: (ni0 → ni1 → ni2 · · ·ni+k → ni0). This means that,
there is a shortest path (ni0 → ni1 · · · ,→, ni+k), where
ni+k is one-hop away from ni0 . According to the trian-
gular path condition in Lemma 1, such a shortest path
cannot exist because ni0 → ni+k is always the shortest
one among all paths from ni0 to ni+k, contradicting the
assumption.

We prove part 2 by induction on m. It is easy to find
that the claim is true for m = 0. Now, assume that the
claim is true for m− 1 (i.e., the inductive hypothesis). We
now prove for m by induction.

Consider a specific time tki and a node ni such that
there is a shortest path with at most m hops between ni
and ns. Let SP (i, s, tki ,m) be the shortest path, which is
at most m hops from ni to ns at time tki . Let nj be ni’s
parent on SP (i, s, tki ,m) at tki . This means that, there is a
path with at most m− 1 hops between nj and ns.

By the inductive hypothesis, nj determined its shortest
distance at the (m − 1)th iteration. In the m-th iteration,
node nj sends its minimized distance vector ~djm−1 to
node ni. Thus, SP (i, s, tki ,m) is determined after receiving
the vector ~djm−1 in the mth iteration, which completes the
inductive step. Since tki is chosen arbitrarily, this holds for
all values of tki ∈ Ti.

Part 2 in Theorem 5 implies that, for m ≥ Dm, all nodes
determine their minimum delay and the corresponding
parents for all time intervals, since all shortest paths
contain at most Dm nodes.

Theorem 6: The message and time complexity of FTSP
is O(Dm|E|) and O(Dm|V |), respectively.

Proof: Based on the implementation of the β-
synchronizer in [32], in each iteration, there is exactly one
message traversing each link in the spanning tree, totally
|E| messages exchanged. By Theorem 5, the number of
iterations is upper bounded by the longest shortest path’s
length Dm. Thus, the message complexity is O(Dm|E|).

Suppose the largest delay for transmitting a message in
the spanning tree is a constant, denoted by |C|. In each
iteration, the time consumed is at most |V | ∗ |C|. Since
there are at most Dm iterations, the time complexity is
O(Dm|V |).

6 ALGORITHM FOR DYNAMIC ROUTE MAINTE-
NANCE

When compared with static networks, link changes and
node changes are more frequent in duty-cycled WSNs. If a
node changes its duty-cycle configuration, or dynamically
joins or leaves the network, the links connecting with all
its neighbors will be changed at multiple time intervals.
In such a situation, a single node update usually causes
multiple link updates.

Some previous works in static networks (e.g., [15]) have
proposed solutions that efficiently deal with single link
updates. They are inefficient for multiple link updates
caused by a single node update. The algorithms in [15] are
also memory-inefficient, since each node stores the route
entries for all other nodes, incurring the space complexity
of O(|V |).

Unlike previous works [15], where each node stores
the route information for all other nodes, we propose a
solution in which a node only stores the route to the sink,
which is more practical in WSNs due to their memory
constraints. In our proposed algorithm, when one node is
updated (denoted as the source node), the algorithm does
not update the shortest path for the whole network from
scratch, but only updates necessary nodes. Thus, the main
idea is first to identify which nodes need to be updated.
After that, the algorithm updates the shortest path for
these identified nodes. The updating process is similar
to the route construction described in Section 5. But the
starting point is the source node, rather than from the
sink node, and the updating scope is just a subset of the
whole network.

The proposed distributed algorithms for path mainte-
nance are also equipped with the β−synchronizer. Again,
we choose the β-synchronizer in order to avoid exponen-
tial message complexity as discussed in Section 2.

The proposed algorithms, referred to as FTSP-M (“M”
meaning maintenance), focus on per-node update and
can be easily extended to node insertion and deletion. If
there are multiple node updates, the algorithms will run
concurrently at multiple nodes.

6.1 Overview and Rational of the Distributed Algo-
rithms
Suppose the source update node is nu and the corre-
sponding input change is σ. We divide σ into two parts:
σinc and σdec, where σinc includes the increasing links
for ∀tku ∈ Tu, and σdec includes the decreasing links for
∀tku ∈ Tu. Let δ(σinc) be the set of nodes that change
either the distance or the parents for all infinite discrete
time intervals, as a consequence of σinc. Similarly, let
δ(σdec) be the set of nodes affected by σdec. Apparently,
δ(σ) = δ(σinc) ∪ δ(σdec).

We identify the input change δ(σ) as δ(σinc) and δ(σdec),
because δ(σdec) is easy to handle given the sufficient loop-
free condition claimed in [33], which is referred to as the
distance increase condition (or DIC). With DIC, at time t, if
node ni detects a link-cost decrease or a decrease in the
distance reported by a neighbor, node ni is free to choose
its new parents. Therefore, the node in δ(σdec) can safely
select a new parent.

However, things become more complicated for nodes in
δ(σinc), since a loop can be formed if they directly choose
a new parent [33]. In order to address this issue, we
adopt two phases. In the first phase, we increase the node-
to-sink distance for all nodes, which are descendants of
nu. In the second phase, those nodes will re-select their
parents based on the Bellman-Ford approach.

We use the β-synchronizer in phase 1 and phase 2, in
order to bound the message complexity, though it will
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introduce additional time cost. For WSNs, which have
limited energy resource, less communication is usually
more important for some applications, which is the mo-
tivation for using the β-synchronizer.

6.2 Algorithm Descriptions
We use similar data structures and message formats as
that in Section 5.1. FTSP-M consists of two phases for
node nu and all nodes ni ∈ δ(σ). We describe our
algorithms in Algorithms 3 and 5.

In phase 1, an initial spanning tree is built up gradually
to contain all nodes in δ(σinc). The purpose of phase 1 is to
let all nodes in δ(σinc) increase their distances to the sink
node as a consequence of σinc, along the time-expanded
shortest path trees rooted at nu. After the termination of
phase 1, all nodes in δ(σ) will never increase their distance
again.

In each iteration, node nu sends a control message to all
neighbors. Every other node, i.e., ni (ni 6= nu) will send
control messages to all its neighbors if it is in the spanning
tree and receives a message from its parent. If ni is not
in the spanning tree in the current iteration, it checks
whether nj is its parent in its shortest path after receiving
a control message from nj , which can be done by checking
whether nj ∈ ~pi. If true, nv will join the spanning tree
and set newspi = nj . By doing so, the spanning tree will
increase at most one level in each iteration.

Algorithm 3: Operations at update node nu in FTSP-
M:

Initialization:
Same initialization as in Algorithm 2;
if pu 6= null then

for ∀nj ∈ Nu do
( ~dj ,l0j ) = get dist(nj ); /* retrieve ~dj , detailed

implementation is omitted */
~dj(u)=vec add( ~τu,j , ~dj ,l0u,j ,l0j ); /* Equation 11*/
inc update( ~du, ~pu, nj , ~dj(u));

Phase 1: On receiving START:
send MSG(u,u, ~du,false) to ∀nj ∈ Nu;

Phase 1: On receiving MSG(u, j, ~dj , bChanged):
ACK[j] = 1; updated[j] = bChanged;
if (∀nj ∈ Nu, ACK[j] == 1) then

if (∀nj ∈ Nu, updated[j] == false) then
Beginning Phase 2;

else
send MSG(u,u, ~du,false) to ∀nj ∈ Nu;
∀nj ∈ Nu, ACK[j] = 0;

Phase 2: On Beginning Phase 2:
send MSG(u,u, ~du,false) to ∀nj ∈ Nu;

Phase 2: On receiving MSG(0, j, ~dj , bChanged) from nj :

ACK[j] = 1; updated[j] = bChanged; ~dprevu = ~du;
~du(j) = vec add( ~du, ~dj , l

0
i,j , lj , ); /* Equation 11 */

( ~du, ~pu) = vmin( ~du, ~di(j)); /* Equation 12 */
if ( ~du~< ~dprevu ) updated[j] = true;
if (∀nj ∈ Nu, ACK[j] == 1) then

if (∀nj ∈ Nu, updated[j] == false) then
STOP;

else
send MSG(u,u, ~du,false) to ∀nj ∈ Nu;
∀nj ∈ Nu, ACK[j] = 0;

Algorithm 4: Function: inc update( ~d1,~p1,n2, ~d2)

d1 = exp( ~d1,(| ~d1| ∗ | ~d2|)/| ~d1|); d2 = exp( ~d2,(| ~d1| ∗ | ~d2|)/| ~d2|);
p1 = exp( ~p1,(| ~d1| ∗ | ~d2|)/| ~d1|); flag = false;
for k = 0 to | ~d1| ∗ | ~d2| − 1 do

if p1[k] == n2 && d1[k] < d2[k] then
d1[k] = d2[k]; flag = true;

return flag;

A control message will traverse from the root (nu) to
all other nodes in the spanning tree just like that in FTSP.
When node ni receives a control message from nj , it only
updates the element to be increased in its distance vector,
as illustrated in Algorithm 4.

When replies from all its neighbors have been received,
node nu concludes that an iteration is completed. When
replies are received from all neighbors by a node, a control
message is sent to the parent, thereby completing the
iteration at the node. When there is no distance increase
for all nodes in δ(σinc), phase 1 will be terminated and
node nu will start phase 2.

In phase 2, the initial spanning tree built up in phase 1 is
continuously growing until it contains all nodes in δ(σ).
Phase 2 is also running by iterations. In each iteration,
when a node ni not in the spanning tree receives a control
message from nj , if the value of any elements in its
distance vector is decreased, it will join the spanning tree
by setting its parent newspi to nj . The distance update
and message traversing in phase 2 of FTSP-M are just
similar to that in FTSP.

6.3 Correctness and Complexity
In phase 1, all nodes in δ(σinc) do not change their
parents, but increase their distances as a consequence of
σinc. Thus, there is no loop in phase 1. In phase 2, all
nodes in δ(σ) will never increase their distances, thereby
satisfying the distance increase condition [33]. All paths
are therefore loop-free.

Theorem 7: In phase 1, each node in δ(σinc) with at most
m hops away from nu along the time-dependent shortest
path will not increase its distance after m iterations.

Proof: The proof is by induction on m. It is easy to
find that the claim is true for m = 0. Now, assume that
the claim is true for m− 1 (i.e., the inductive hypothesis).
We now prove for m by induction.

Consider a specific time tki and a node ni ∈ δ(σinc)
such that there is a shortest path with at most m−1 hops
between ni and ns after node update. Let SP (i, u, tki ,m−
1) be the shortest path which is at most m− 1 hops from
ni to nu at time tki . Let nj be ni’s neighbor which is not
updated yet due to σinc. Then nj is at most m hops away
from nu.

By the inductive hypothesis, ni will not increase its
distance after (m − 1)th iteration. In the m-th iteration,
node ni sends its updated distance vector ~djm−1 to node
nj , and nj will determine its updated distance in the it-
eration if nj ∈ δ(σinc). Thus, SP (j, u, tki ,m) is determined
after receiving the vector ~dim−1 in the mth iteration, which
completes the inductive step. Since tki is chosen arbitrarily,
this holds for all values of tki ∈ Ti.
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Algorithm 5: Operations in node ni(ni 6= nu) in FTSP-
M:

Initialization: newspi = null; ∀nj ∈ Ni,updated[j] = false;
Phase 1: On receiving MSG(u, j, ~dj , bChanged) from nj :

if nj ∈ Nu then
re-measure τi,u at the beginning of one time slot;
reset l0i,j and l0u;

~di(j)=vec add( ~τi,j , ~dj ,l0i,j ,l0j );
if newspi == null then

if (inc update(~di,~pi,nj ,~di(j))) then
newspi = nj ; send MSG(u,i, ~dj ,true) to nj ;

else send MSG(u, i, ~dj , false) to nj ;

else
FORWARD(u); /* u means the MACRO is executed in phase

1 */
ACK[j] = 1; updated[j] = inc update(~di,~pi,nj ,~di(j));
ACK REPLY(u);

Phase 2: On receiving MSG(0, j, ~dj , bChanged):
if newspi == null then

if (updated[j]) then
newspi = nj ; send MSG(0, i, ~dj , true) to nj ;

else send MSG(0, i, ~dj , false) to nj ;

else
FORWARD(0); /* 0 means the MACRO is executed in phase

2 */
ACK[j] = 1; updated[j] = bChanged; ~dprevi = ~di;
~du(j) = vec add( ~du, ~dj , l

0
i,j , lj); /* Equation 11*/

( ~du, ~pu) = vmin( ~du, ~di(j)); /* Equation 12*/
if ( ~du~< ~dprevu ) updated[j] = true;
ACK REPLY(0);

FORWARD(int dict): code macro
if (newspi == nj ) then

send MSG(dict,i,~di,false) to ∀nj ∈ Ni except newspi;

ACK REPLY(int dict): code macro
if (∀nj ∈ Ni, ACK[j] == 1) then

if (∃nj ∈ Ni, updated[j] == true) then bUpdated = true;
else then bUpdated = false;
send MSG(dict, i, ~di,bUpdated) to newspi;
∀nj ∈ Ni, ACK[j] = 1; bUpdated = false;

By Theorem 7, after |δ(σinc)| iterations, all nodes in
δ(σinc) will not increase their distance anymore.

Definition 2: Updated-subpath: for any node ni ∈ δ, the
updated-subpath is from ni to the first node ne not in δ
along the shortest path from ni to nu.

Theorem 8: In phase 2, all generated updated-subpaths
are loop-free, and updated-subpaths with at most m hops
long are determined in the mth iteration.

Proof: After phase 1, the DIC loop-free condition [33]
is satisfied. Thus, all updated-subpaths are loop free in
phase 2.

The proof for at most m hops-long updated-subpaths
being determined in the mth iteration can be done by
induction. It is easy to find that the claim is true for m = 0.
Now, assume that the claim is true for m − 1 (i.e., the
inductive hypothesis). We now prove for m by induction.

Consider a specific time tki and a node ni ∈ δ such
that there is an updated-subpath which contains m hops
between ni and nu. Let UP (i, u, tki ,m) be the updated-
subpath which is at most m hops long at time tki . Let nj
be ni’s parent on UP (i, u, tki ,m) at tki . This means that
there is an updated-subpath with at most m − 1 hops
between nj and ns.

By the inductive hypothesis, the updated subpath from
nj to nu is determined at the (m−1)th iteration. In the m-
th iteration, node nj sends its minimized distance vector
~djm−1 to node ni. Thus, UP (i, u, tki ,m) is determined
after receiving the vector ~djm−1 in the mth iteration,
which completes the inductive step. Since we choose tki
arbitrarily, the theorem holds for ∀tki ∈ Ti.

Theorem 9: The message complexity for per node up-
date with δ(σ) output change is O(|δ(σ)|2 ∗maxdeg). The
time complexity is O(|δ(σ)|2), and space complexity is
O(maxdeg).

Proof: In phase 1, the number of iterations is δ(σinc) ≤
δ(σ). In phase 2, there are at most δ(σ) iterations before
all updated-subpaths are decided. Thus totally, there are
O(|δ(σ)|2 ∗maxdeg) messages. In each iteration, the con-
sumed time is at most |δ(σ)|∗C (C is the largest transmis-
sion delay for all links). Thus, the message complexity is
O(|δ(σ)|2). Since a node only stores the information of all
its neighbors, the space complexity is O(maxdeg).

7 PRACTICAL IMPLEMENTATION

We now discuss some practical implementation issues.
In particular, we discuss how to achieve awareness of
schedules of neighborhood and how to reduce the vector
size given a large LCM in Equation 6.

7.1 Schedule Awareness
FTSP and FTSP-M require awareness of wakeup sched-
ules of the neighborhood. Achieving this requirement
depends on the specific underlying MAC protocol. We
discuss three scenarios for achieving schedule awareness
over different MAC protocols.

Active Neighbor Discovery: This means that a node
needs to probe the schedules of its neighbors actively.
We consider two scenarios which need active neighbor
discovery. One is the LPL mode as adopted by B-MAC [5]
and X-MAC [6]. The other is the low duty-cycling mode,
where time axis are arranged as consecutive short time
slots, and all slots have the same duration.

For either scenario, we assume that beacon messages
are sent out at the beginning of wakeup slots, similar
to [28], [34]. In order to discover neighbors, a node has
to stay awake in order to detect the beacon message of
its neighborhood. The node should wait until beacons are
received from its neighbors. The frequency with which a
node should detect its neighbors’ schedule depends on
implementation considerations.

Quorum-based Duty-Cycling: Active neighbor discov-
ery mechanisms requires a node to stay awake actively.
Now we introduce quorum-based duty-cycling which
does not have that requirement. Here, the wakeup sched-
ule follows a quorum system design [35]. In quorum-
based duty cycling, two neighbor nodes can hear each
other at least once within bounded time slots via the non-
empty intersection property. We choose cyclic quorum
systems [28] for presentation.

We use the following definitions for briefly reviewing
quorum systems (used for wakeup scheduling). Consider
a cycle length n and U = {0, · · · , n− 1}.
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Definition 3: A quorum system Q under U is a superset
of non-empty subsets of U , each called a quorum, which
satisfies the intersection property: ∀G,H ∈ Q : G∩H 6= ∅.
If ∀G,H ∈ Q, i ∈ {0, 1, ...n − 1}: G ∩ (H + i) 6= ∅, where
H + i = {(x + i) mod n : x ∈ H}, Q is said to have the
rotation closure property.

Cyclic quorum systems (or cqs) satisfy the rotation
closure property, and are denoted as C(A,n), where A
is a quorum and n is the cycle length. For example,
the cqs {{1, 2, 4}, {2, 3, 5} · · · , {7, 1, 3}} can be denoted as
C({1, 2, 4}, 7).

Given two different cyclic quorum systems C(A1, n1)
and C(A2, n2), if two quorums from them, respectively,
have non-empty intersections, then, even with clock drift,
they can be used for heterogenous wakeup schedul-
ing in WSNs. For example, given C({1, 2, 4}, 7) and
C({1, 2, 4, 10}, 13), two quorums from them, respectively,
have non-empty intersection for every 13 time slots.
Therefore, two nodes that wake up with schedules com-
plying with any two quorums from these two cyclic
quorum systems can hear each other.

By embedding the wakeup schedule information in the
beacon message, a node can always detect the wakeup
schedules of its neighborhood through the non-empty
intersection property of the quorum design.

Synchronization: MAC protocols with synchronization
require that all neighboring nodes wake up at the same
time. The simplest method for doing this is to use a
fully synchronized pattern, like that in the S-MAC proto-
col [36]. In this case, all nodes in the network wakeup
at the same time according to a periodic pattern. A
further improvement can be achieved by allowing nodes
to switch off their radio when no activity is detected for a
timeout value, like that in the TMAC protocol [37]. In this
scheme, neighboring nodes form virtual clusters to set
up a common sleep schedule. The main disadvantages of
such scheduled rendezvous schemes are the complexity
of implementation and the overhead for synchronization.
Through synchronization, a node can conveniently know
the schedules of its neighbors. Schedule awareness can be
achieved by periodic message exchange between a node
and its neighbors.

7.2 Sub-optimal Implementation with Vector Com-
pression
The key implementation aspect of our proposed algo-
rithms is the vector representation of link cost functions
and distance functions. However, if the vector size is
too large (i.e., the LCM in Equation 6 is too large), the
proposed algorithms, FTSP and FTSP-M, may not be
feasible given the limited memory resource of embedded
sensor nodes, and inefficient due to distributed message
exchanging. Based on Theorem 2, the vector size is de-
pending on LCM(T0, T1, · · · , Ti)/Ti. The worst case is
that all nodes have different cycles, and the size of the
distance vector can be very large.

In a real implementation, to avoid arbitrarily long vec-
tors, there are two possible solutions: 1) Use a predefined
duty cycle set, so that the LCM(T0,T1,··· ,Ti)

Ti
can be bounded

by carefully selecting a duty cycle set, as discussed in

Sections 4.1 and 4.2; 2) Adopt vector compression to
achieve a trade-off, i.e., adopt a low-accurate distance
vector, which takes less memory space, to represent the
end-to-end latency. Hence, the output path is sub-optimal
in terms of latency.

The first solution can be applied to small-scale net-
works, where the node number is not large and pre-
defining a duty cycle set is not difficult. For a large-scale
network, we might need the second solution in which a
bounded, global LCM(T0,T1,··· ,Ti)

Ti
is not necessary.

The basic idea of vector compression in the second
solution is to smooth all values in a vector and represent
the vector with less information. For example, for a vector
[1 2 3 4 5 6] with 6 elements, we can approximately
represent the vectors by a vector with 2 elements, such as
[(2, 3), (5, 3)] (where 2 = (1+2+3)/ and 5 = (4+5+6)/3).
Each tuple (v, s) in the vector represents the average value
of s elements in the original vector.

The formal description of vector compression is as
follows:

Vector compression: Suppose the source vector is vs =
[v1, v2, · · · , vn] and the target vector size is m (n > m). We
compress vs by:

vt = [(
v1 + v2 + · · ·+ vlen

len
, len),

(
v1+len + v2+len + · · ·+ v2∗len

len
, len), · · · ,

(
v1+(m−1)∗len + v2+(m−1)∗len + · · ·+ vn

n− (m− 1) ∗ len
, n− (m− 1) ∗ len)]

where len = d nme.
We choose the average value v1+i∗len+v2+len+···+v(i+1)∗len

len
as the value of vt[i], because the expected deviation can
be minimized by P =

∑len
j=1

1
len |vt[i]− v[j]|.

In addition to the averaging filter used in the above
equation, other filters, such as the Wavelet transform
filter [38] can also be applied for vector compression, as
typically used in image compression.

7.3 Remarks
The FTSP algorithm described in Section 5 is a proac-
tive routing protocol. Although its time complexity is
O(Dm ∗ |V |) for initial route construction, it is affordable
in the initial stage of WSNs. The low space complexity
(O(|maxdeg|)) for route maintenance makes the algorithm
scalable for large-scale WSNs.

Note that FTSP and FTSP-M target the ALPL mode [7]
with various checking intervals. When all nodes have
homogenous LPL checking intervals (like that in the
standard B-MAC), according to Equations 3 and 5, the
link cost function and the distance function will become
constants. In such a case, our algorithms will default to
the static shortest path algorithm. However, FTSP and
FTSP-M will yield the same message complexities and
time complexities for the static situation.

Our work focuses on the scenario of a single sink node.
However, it can be extended to multiple destinations. In
WSNs, there is usually no end-to-end communication be-
tween two arbitrary nodes. We only consider the general-
ization of communication between one node and multiple
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sink nodes, rather than the communication between two
arbitrary nodes.

8 EXPERIMENTAL RESULTS

We evaluated the performance of FTSP, FTSP-M, and
the sub-optimal implementation through extensive sim-
ulations using the OMNET++ discrete event simula-
tor [39]. We compared our algorithms with other re-
lated algorithms for the TDSP problem, including the
distributed Bellman-Ford algorithm [31] adapted to the
time-dependent model (Section 4), referred to here as
TD-Bellman, and DSPP1 [10]. The following three major
metrics were measured in the evaluation: 1) message
count, 2) time cost, 3) average memory cost.

We examined two main factors that affect the perfor-
mance of our algorithms, including network size and the
underlying duty cycle setting. Our experimental settings
were compatible with typical configurations, as in [3], [7],
[8]. The wireless communication range in our simulation
was set to 10m. We adopt the wireless loss model used
in [40], which considers the oscillation of radio links.

We generated 8 network size sets with varying sizes,
G1,· · · ,G8, which are listed in Table 1. For each network
size, we randomly generated 10 topologies. Each data
point presented in our simulation results in this section
is the average of 10 topologies, with 10 runs on each
topology.

TABLE 1
Network Size Sets

G1 G2 G3 G4
|V | 50 80 200 400

G5 G6 G7 G8
|V | 600 1K 1.5K 2K

TABLE 2
Time Slot Sets

C1 (ms) {100, 100, 100, 100}
C2 (ms) {100, 200, 300, 600}
C3 (ms) {100, 200, 400, 800}
C4 (ms) {100, 200, 500, 1000}

We chose two MAC protocols: ALPL (adaptive low
power listening) and quorum-based duty-cycling. In the
ALPL mode, a node just wakes up for a short time
during a checking interval to check the channel activities.
The duration of the checking interval varies for different
nodes. We changed the duration of the checking interval
in our simulation experiments with 4 sets, C1, C2, C3, and
C4, as listed in Table 2. With each set, we randomly chose
one element as the value of the LPL checking interval
for each node. With different time slot sets, the size of a
message (changed with vector size) is changing. Thus, we
used a flexible packet size in our simulation. Each element
in a vector occupied 1 byte in all experiments.

For quorum-based duty-cycling, we choose the (7, 3, 1),
and (21, 5, 1) difference sets for the heterogenous wakeup
schedule settings. The duration of one time slot was set to
100ms in quorum-based duty-cycling. Since FTSP, FTSP-
M, TD-Bellman, and DSPP1 are independent of wakeup
scheduling, we argue that the comparison is fair even
when we choose quorum-based duty-cycling.

8.1 Least-latency Path Construction
In the first set of simulation experiments, we measured
the ALPL mode and chose C4 as the time slot setting,

which indicates that the largest distance vector size is
10 by Equation 6, and varied the network size. With the
number of nodes increasing from 50 to 2000 in G1,· · · ,G8,
the average time consumed and the message count are
shown in Figure 4.

The average execution time of DSPP1 is about 10
times larger than that of FTSP, since DSPP1 has to be
executed 10 times to compute the shortest paths for all
time intervals. FD-Bellman is better than FTSP when the
network size is small, since FD-Bellman does not have
a distributed synchronizer in its execution. When the
network size becomes large (i.e., ≥ 1K), FTSP outperforms
FD-Bellman due to the exponential worst case message
complexity of the Bellman-Ford algorithm. We observed
similar trends for time cost for the three algorithms, as
shown in Figure 4.
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Fig. 4. Comparison of time efficiency and message effi-
ciency by varying |V |
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Fig. 5. Comparison of time efficiency and message effi-
ciency by varying time slots in ALPL mode
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Fig. 6. Comparison of time efficiency and message effi-
ciency for quorum-based duty-cycle setting

We also varied the time slot sets with a fixed network
size of G6, which represents medium-sized WSNs. The re-
sults are shown in Figure 5. We observe that FTSP and FD-
Bellman do not change their message count significantly
since they only depend on the network size. The time cost
of all algorithms become worse when the average value
of all elements in the selected time slot set becomes larger,
since the average link delay is correspondingly increasing.

Finally, we measured the performance for quorum-
based duty-cycling by fixing the network size of G6. Each
node randomly chose the (7, 3, 1) and (21, 5, 1) difference
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sets for its heterogenous schedule settings. As shown in
Figure 6, we observe similar trends for execution time and
message count. The average execution time of DSPP1 is
about 3 times larger than that of FTSP, since DSPP1 has to
be executed 3 times to compute the shortest paths for all
time intervals given the (7, 3, 1) and (21, 5, 1) difference
sets. The time costs for all algorithms become worse
for larger sized networks, which is consistent with the
conclusion in Theorem 6.

8.2 Least-latency Path Maintenance
For evaluating the path maintenance performance of
FTSP-M, we return to static networks by selecting the time
slot set of C1 in Table 2 for the ALPL mode. We do so for
the purpose of a fair comparison with the previous work
in [15], referred to here as Full-Dynamic and DSDV [41]
with unicast support.

We first evaluate the effect of input changes on all al-
gorithms for medium-sized networks by choosing G6. As
shown in Figure 7, FTSP-M achieves the median message
cost and time cost when input changes become large. The
reason is that, DSDV suffers from exponential message
complexity. In addition, FTSP-M uses the synchronizer,
which consumes additional time and messages, which is
not as efficient as that in Full-Dynamic.

We also measured the average memory cost by varying
the network size for the two underlying duty-cycling
mechanisms. We first chose the ALPL mode and set the
time slot set of C1 in Table 2 for all nodes. The results
shown in Figure 8 indicate that FTSP-M achieves the best
memory cost, which does not depend on the network size.
The memory costs of DSDV and Full-Dynamic increase
with the network size, since each node stores an entry
for all other nodes.
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Fig. 7. Performance comparison for route maintenance by
varying input change: ALPL mode
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Fig. 8. Performance comparison for route maintenance on
memory required in each node

Finally, we measured the average memory cost for
the quorum-based duty-cycling mechanism. Each nodes
randomly chose the (7, 3, 1) difference sets for the het-
erogenous schedule settings. As shown in Figure 8, we

observe similar trends for the quorum-based duty-cycling
mechanism. The only difference is that with (7, 3, 1) dif-
ference sets, each node maintains 3 entries in the routing
table for all neighbors.

8.3 Performance of Sub-Optimal Implementation

For sub-optimal implementation with vector compres-
sion, the performance is a trade-off between path latency
and message size. We evaluated this tradeoff for both
initial route construction and route maintenance. We first
fixed the duty cycle setting by choosing C4 and compared
the performance between FTSP and its sub-optimal im-
plementation. Since the message count does not rely on
vector implementation, we compared the vector size (in
terms of the number of elements in a vector). Since each
element took one byte in a message packet, the packet
size (in bytes) represents the vector size.
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Fig. 9. Performance comparison for route construction:
latency and vector size (in bytes) over ALPL mode
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Fig. 10. Performance comparison for route construction:
latency and message size over quorum-based duty-cycling
mode

Figure 9 shows the results. We observe that the sub-
optimal implementation achieves less message size with
vector compression. To understand the end-to-end latency
of the two techniques, we compared the maximum value
of the least latency achieved by all nodes (defined as
max-min latency). As shown in Figure 9, the sub-optimal
implementation has higher max-min latency than FTSP.
However, the sub-optimal implementation has a smaller
average message size than FTSP.

We then fixed the duty cycle setting by choosing
the (7, 3, 1) and (21, 5, 1) difference sets as the wakeup
schedule for all nodes. We observed similar trends, as
shown in Figure 10. We observe that the sub-optimal
implementation has higher max-min latency than FTSP,
but has a smaller vector size. The simulation results
show the performance tradeoff after introducing the sub-
optimal implementation, which has smaller message size
but higher latency.
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9 CONCLUSIONS

In this paper, we addressed the distributed shortest path
routing problem in duty-cycled WSNs. Our contributions
are four-fold. First, we modeled duty-cycled WSNs as
time-dependent networks, which satisfy the FIFO con-
dition. Second, we presented the FTSP algorithm for
finding shortest paths in such networks. FTSP has poly-
nomial message complexity and is more time-efficient
than previous solutions. Third, we presented FTSP-M
for distributed route maintenance with node insertion,
updating, and deletion. FTSP-M is memory efficient and
has polynomial message complexity. Finally, we proposed
a sub-optimal implementation on vector representations
to reduce memory requirements. The vector size of the
sub-optimal solution does not depend on the largest
LCM value as shown in Equation 6. Simulation results
validated the effectiveness and efficiency of our solutions.

We envision several directions for future work. One
is to investigate the time-dependent minimum spanning
tree problem, which is NP-Hard in duty-cycled WSNs.
Another direction is to study time-dependent multicast
routing in duty-cycled WSNs, which is a required service
for many applications and is the reverse direction of all-
to-one least-latency routing.
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