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Abstract

We consider wait-free synchronization for the single-writer/multiple-reader problem in small-memory

embedded real-time systems. We present an analytical solution to the problem of determining the

minimum, optimal space cost required for this problem, considering a-priori knowledge of interferences

— the first such result. We also show that the space costs required by previous algorithms can be

obtained by our analytical solution, which subsumes them as special cases. We also present a wait-

free protocol that utilizes the minimum space cost determined by our analytical solution. Our evaluation

studies and implementation measurements using the SHaRK RTOS kernel validate our analytical results.

I. INTRODUCTION

Most embedded real-time systems involve mutually exclusive, concurrent access to shared

data objects, resulting in contention for those objects. Resolution of the contention directly

affects the system’s timeliness, and thus the system’s behavior. Mechanisms that resolve such

contention can be broadly classified into: (1) lock-based—e.g., Priority Inheritance and Ceiling

protocols [1], Stack Resource Policy [2], DASA [3]; (2) wait-free—e.g., NBW protocol [4],

Chen’s protocol [5], [6], [7]; and (3) lock-free—e.g., [8].
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Lock-based protocols have several disadvantages such as serialized access to shared objects,

resulting in reduced concurrency and thus reduced resource utilization [8]. Further, many lock-

based protocols typically incur additional run-time overhead due to increased context switching

between activities blocked on shared objects (i.e., “blockers”) and activities that hold locks of

those objects (i.e., “lock holders”). The increased context switching occurs when lock-based

protocols preempt the currently executing blocker, execute the lock holder until the holder

releases the lock, and then resume the blocker’s execution. Another disadvantage of using locks is

the possibility of deadlocks that can occur when lock holders crash, causing indefinite starvation

to blockers. Further, many (real-time) lock-based protocols require a-priori knowledge of the

ceilings of the locks [1], [2], which may be difficult to obtain in some application contexts.

Furthermore, OS data structures (e.g., semaphore control blocks) must be a-priori updated

with that knowledge, resulting in reduced flexibility (e.g., recompilation to accommodate new

activities) [8].

These drawbacks have motivated research on wait-free and lock-free object sharing in real-

time systems. Wait-free protocols use multiple internal buffers1 (e.g., a circular buffer) for

writers and readers [4]. For the single-writer/multiple-reader (or SWMR) problem, wait-free

protocols typically use multiple buffers for the shared object, where the number of buffers used

is proportional to the maximum number of times the readers can be interfered by the writer,

when the readers are reading. The maximum number of interferences of a reader bounds the

number of times the writer can update the object while the reader is reading. Thus, by using as

many buffers as the worst-case number of interferences of readers, the readers and the writer

1We use the term internal here to explicitly indicate that a single wait-free buffer internally uses multiple buffers for its atomic

operations. In this paper, the buffers and the space cost implicitly mean the internal buffers and the cost of the internal buffers,

respectively, unless otherwise noted.
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can continuously read and write in different buffers, respectively, and avoid interference.

Lock-free protocols allow readers to concurrently read while the writer is writing (without

acquiring locks), but the readers check whether their reading was interfered by the writer. If so,

they read again. Thus, a reader continuously reads, checks, and retries until its read becomes

successful. Since a reader’s worst-case number of retries depends upon the worst-case number

of times the reader is interfered by the writer, the additional execution-time overhead incurred

for the retries is bounded by the number of interferences.

Both wait-free and lock-free protocols incur additional costs with respect to their lock-based

counterparts. Wait-free protocols generally incur additional space costs due to their multiple

buffer usage, which is infeasible in many small-memory, embedded real-time systems. Lock-

free protocols generally incur additional time costs due to their retries, which is antagonistic to

timeliness optimization.

Prior research have shown how to mitigate these space and time costs, so that they are feasible

for embedded real-time systems. An excellent survey of this prior research can be found in [7].

To provide context for our work, we summarize some important efforts here: In [4], Kopetz and

Reisinger present one of the earliest wait-free protocols, where buffer sizes in proportional to

worst-case interferences are used. In [8], Anderson et al. show how to bound the retry loops of

lock-free protocols through judicious scheduling. In [5], Chen and Burns present one of the most

space-efficient wait-free protocols, where the worst-case preemptions need not be a-priori known.

In [9], Sundell and Tsigas describe a wait-free protocol for the multiple-writer/multiple-reader

problem. In [7], Huang et al. improve the time and space costs of Chen’s protocol.

In this paper, we focus on wait-free synchronization for the SWMR problem in small-memory,

embedded real-time systems. We focus on wait-free, as opposed to lock-free, as majority of the

lock-free protocols have high computational costs [7]. We consider the SWMR problem, as it
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occurs in most embedded real-time systems [7], and focus on minimizing its space costs.

We present an analytical solution to the problem of determining the minimum number of

buffers that is required to ensure the safety and orderliness of wait-free synchronization in

SWMR. We call this problem, Wait-Free Buffer size decision Problem (or WFBP). Note that

the optimality in space that we provide is on the required number of internal buffers, and does

not include the control variables needed for the wait-free protocol’s operation. This is because

the space cost of internal buffers dominates that of the control variables, especially when the

data size becomes larger. We prove that our solution to WFBP subsumes the number of buffers

required by previous wait-free protocols including Chen’s [5] and NBW [4] protocols as special

cases. We analytically identify the conditions under which our protocol needs less (and equal)

number of buffers than other protocols. Further, we present a wait-free protocol that utilizes the

minimum buffer requirement determined by our solution.

To determine the buffer requirements under a broad range of reader/writer scenarios, we

conduct numerical evaluations. We also implement our protocol in the SHaRK RTOS [10]. Our

evaluations and implementation measurements confirm our solution to WFBP and validate our

analytical results.

Thus, the paper’s contributions include the analytical solution that we present for WFBP and

the wait-free protocol that uses the concomitant minimum number of buffers. Among the class

of wait-free protocols that consider a-priori knowledge of interferences, our optimal space lower

bound is the first such bound that is analytically established.

The rest of the paper is organized as follows: We present our analytical solution to WFBP

and our wait-free protocol in Section II. In Section III, we formally compare our protocol with

Chen’s and NBW protocols. We numerically evaluate our protocol in Section IV, and report our

implementation experience in Section V. We conclude the paper in Section VI.
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II. A SPACE-OPTIMAL WAIT-FREE PROTOCOL

A wait-free protocol solves the asynchronous single-writer/multiple-reader problem by en-

suring that each reader accesses the shared object without any interference from the writer. To

realize the wait-free mechanism, the protocol must hold two properties: safety and orderliness [5].

The safety property ensures that the shared object does not become corrupted during reading

and writing. The orderliness property ensures that all readers always read the latest data that is

completely written by the writer.

The basic idea to achieve the two properties is rooted in the three-slot fully asynchronous

mechanism for the single-reader/single-writer problem [11]. For this problem, Chen et al. show

that three buffers are required to keep the latest completely updated buffer for the next reading,

while a writer and a reader are occupying buffers respectively. This mechanism allows that a

reader can always obtain data from the buffer slot that is last completely updated, while the

writer is writing the new version of the shared data [5].

The buffers needed for the single-writer/multiple-reader problem consist of three types: buffers

for readers, a buffer for the latest written data, and a buffer for the next write operation.

The buffers for readers must satisfy safety—i.e., sufficient buffers must be available to avoid

interference between reading and writing. However, this does not imply that we need as many

buffers as there are readers.

The two buffers for writing are required to realize orderliness—i.e., the latest written data

must be saved so that a newly activated reader can access it at any time. In addition, the latest

written data must be kept until the writer completely writes the next data into another buffer.

We now discuss how to determine the minimum number of buffers that are needed for the

single-writer/multiple-reader problem in the following subsections:
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A. Protocol Structure and Task Model

Figure 1 shows a wait-free protocol’s common implementation. W.2 and R.2 show the code

sections of the writer and a reader that write and read data, respectively. W.1 is the code section

where the writer decides on the buffer for writing, and updates a control variable that indicates

the selected buffer. W.3 is the code section where the writer indicates completion of writing and

the buffer that has the latest data. In R.1, the reader checks for the latest data to read.

(a) Write (b) Read

Fig. 1. Typical Wait-Free Implementation

The buffer size required for the NBW protocol [4] and the improved protocols in [7] is

determined based on the temporal properties of tasks. These prior works consider the periodic

task model, where tasks concurrently share data objects. Aperiodic tasks are handled by a

periodic server, so the periodic model is not a limiting assumption. Assuming that all deadlines

are met (i.e., during under-load situations and precluding overloads), the maximum number of

preemptions of the reader by the writer task in the worst-case can be obtained. We consider the

same task model.

B. Number of Buffers in Use

We introduce some notations for convenience, most of which are similar to those in [5]. We

denote the total number of readers as M and the ith reader as Ri. The reader Ri’s jth instance
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of reading is denoted as R
[j]
i . The writer’s kth writing instance is denoted as W [k].

R
[j]
i (op) stands for a specific operation of R

[j]
i . For example, R

[j]
i (READING[i] = 0) implies

the execution of one statement in Chen’s algorithm [5]. W [k](op) also stands for the operation

in W [k]. If R
[j]
i reads what W [k] writes, we denote it as w(R

[j]
i ) = W [k].

As previously mentioned, safety and orderliness can be achieved with multiple buffers for

readers, one buffer for the latest written data, and another buffer for the next writing.

Fig. 2. Number of Buffers in Use

Suppose we have 4 readers and 1 writer, as shown in Figure 2. At time t1, w(R1)=W [2],

w(R2)=W [2], and w(R3)=W [1]. This implies that two buffers are being used by the readers. In

addition, one buffer is required to store and save the latest completely written data by W [4], and

another is needed for the next writing operation by W [5]. Thus, four buffers are being used in

total, at time t1.

At time t2, w(R1)=W [6], w(R2)=W [5], w(R3)=W [4], and w(R4)=W [6]. The latest written data

is by W [6], and W [7] is the next operation. Thus, the total number of buffers used at time t2 is

four, which is the minimum number required at t2 for ensuring safety and orderliness properties.

The basic intuition for determining the minimum number of buffers is to construct a worst-

case where the required number of buffers is as large as possible, when the maximum possible

number of interferences of all readers with the writer occurs. We map this problem to a problem
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called the Diverse Selection Problem (or DSP) and then solve it.

C. Diverse Selection Problem

The DSP denoted as D(R, ~R(~x)) is defined with the problem range R and the range vector

~R(~x) of all elements in the vector ~x. R has the lower and upper bounds defined as [l, u]. Each

element xi in the vector ~x has the range ri=[li, ui]. The solution to the problem D is represented

as a vector ~x =< x1, ..., xM > where the vector size n(~x) is M . Every xi must satisfy its

range constraint ri and the problem range constraint R. We define {~x} as a set including all

elements of ~x, but without duplicates. Thus, the size of {~x}, n({~x}), is less than or equal to

n(~x). The objective of DSP is to determine the maximum n({~x}) by selecting ~x, satisfying all

range constraints as diversely as possible.

Given a vector, ~v =< v1, ..., vi, ... >, we denote the number of vi’s having k value as H(~v, k),

and the maximum value among all vi elements as Top(~v). Given D(R, ~R~x), the optimal solution

of D when R = [t1, t2] is denoted as nmax
[t1,t2]({~x}).

For example, if ~v =< 1, 2, 2, 2, 6 > then, H(~v, 2) = 3 and Top(~v) = 6. An easy approach to

solve DSP is by considering all possible cases. The number of all possible cases is n(r1)× ...×
n(rM), where the ~R of the problem is given as < r1, ...rM >. By considering all cases, we can

select a vector ~x that maximizes n({~x}). However, such an approach would be computationally

expensive.

A more efficient approach to solve DSP can be found by an inductive strategy. Consider

a DSP D(R, ~R(~x)), where R = [1,∞] and ~R=< [1, u1], ..., [1, uM ] >. If all lower bounds of

elements of ~x are 1, we can define the upper bound vector ~u =< u1, ..., uM > instead of ~R, for

convenience. In the rest of the paper, we call the problem defined by D(R, ~u) as DSP. This is

simply because this assumption is well-mapped to the problem of deciding the minimum buffer
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size for the wait-free protocol.

Fig. 3. An Inductive Approach to DSP

The solution to the problem D(R, ~u) can be represented as nmax
[1,T op(~u)]({~x}). The idea to

decompose the problem is shown in Figure 3. If the solution to the problem D([6, 12], ~u) can be

derived from the solution to the problem D([7, 12], ~u), we can inductively determine the final

solution to the problem D([1, 12], ~u).

Theorem 2.1 (DSP for the Wait-Free Protocol): In the DSP D(R, ~u) with R = [1, N ],

nmax
[t+1]({~x}) =





nmax
[t] ({~x}) + 1, if

∑t+1
k=0 H(~u,N − k) > nmax

[t] ({~x})
nmax

[t] ({~x}), otherwise

where N = Top(~u), [t]=[N − t, N ], and 0 ≤ t < N . When t = 0, the nmax
[0] ({~x}) = 1.

Proof: Assume that we have the solution to the problem D([N − t, N ], ~u). When this

problem is extended to D([N − (t + 1), N ], ~u), the ranges of several variables xi overlap with

the problem range [N − (t + 1), N ]. The number of newly added variables that we need to

consider is H(~u,N − (t+1)). When the problem range is extended by 1, the maximum possible

increment of nmax
[t+1]({~x}) is 1. The increment happens only if the number of all xi which have
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their ri overlapped with [N − (t+1), N ] is greater than nmax
[t] ({~x}). In other words, this happens

when new elements appear in the extended problem scope, or there is an element duplicated

within [N − t, N ] at the previous step. Otherwise, nmax
[t+1]({~x}) has no change from before. The

increment means that the value of one element is determined as diversely as possible. The proof

is by induction on t.

Basis. We show that the theorem holds when t = 0. When the problem is D([Top(~u), T op(~u)], ~u),

there must be at least one element xi with the range [1, T op(~u)], and the maximum possible

value of nmax
[0] ({~x}) is 1. Hence, the basis for the induction holds.

Induction step. Assume that the theorem holds true when R = [N − t, N ]. We arrive at the

optimal solution of D([N − (t + 1), N ], ~u) with the optimal solution of D([N − t, N ], ~u) as

in the base step. Suppose that the derived solution nmax
[t+1]({~x}) is not optimal. Then, there must

exist another optimal solution nmax
[t+1]({~x}′). Clearly, nmax

[t+1]({~x}′) is greater than nmax
[t+1]({~x}). Now,

there are two possible cases:

Case 1. If H(~u,N − (t + 1)) > nmax
[t] ({~x}), then nmax

[t+1]({~x}) is nmax
[t] ({~x}) + 1, which is less

than nmax
[t+1]({~x}′). Therefore, nmax

[t] ({~x}) < nmax
[t+1]({~x}′)− 1. This means that there exists another

{~x} that has more than nmax
[t] ({~x}) elements. This contradicts the assumption that nmax

[t] ({~x}) is

optimal.

Case 2. If H(~u,N − (t + 1)) = n[t]({~x}), then nmax
[t+1]({~x}) is nmax

[t] ({~x}), which is less

than nmax
[t+1]({~x}′). Since no element’s range becomes newly overlapped and no element has its

duplicate, nmax
[t+1]({~x}′) = nmax

[t] ({~x}′). This means that there exists another nmax
[t] ({~x}′), which is

greater than nmax
[t] ({~x}). This contradicts the assumption that nmax

[t] ({~x}) is optimal.

Theorem 2.2 (Solution Vector for the DSP): In the DSP D(R, ~u) with R = [1, N ],

{~x}[t+1] =





{~x}[t] ∪ {N − (t + 1)}, if
∑t+1

k=0 H(~u,N − k) > nmax
[t] ({~x}),

{~x}[t], otherwise
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where N = Top(~u), [t]=[N − t, N ], and 0 ≤ t < N . When t = 0, {~x}[0] = {N}.

Proof: By Theorem 2.1, {~x} can be constructed by adding {N − (t + 1)} whenever

nmax
t ({~x}) increases by 1. Note that this {~x} is one of the solution vectors.

D. Similarity to WFBP

The DSP has similarity with the Wait-Free Buffer size decision Problem (or WFBP). In this

problem, we are given M readers and their maximum interferences as < Nmax
1 , ..., Nmax

M >. The

objective of WFBP is to determine the worst-case maximum number of buffers.

Fig. 4. A Worst-Case of the WFBP

Figure 4 illustrates how to construct the worst-case where the required number of buffers

are as large as possible with an example. For convenience, the index of the writer is reversed

compared with Figure 2. In this example, R1’s maximum interference is 5, which is illustrated in

a line. It means that w(R1) may belong to the set {W [1],...,W [6]}. We assume that the worst-case

happens at time t between W [2] and W [1], where W [2] writes the latest completely written data,

and W [1] is the next writing operation for which another buffer is needed.

For this reason, we restate WFBP as determining ~x =< w(R1), ..., w(RM) > that will

maximize n({~x}∪{W [1],W [2]}), where w(Ri) ∈ {W [1], ..., W [Nmax
i +1]}. If we abbreviate W [j] as

j, the problem is redefined as determining ~x =< x1, ..., xM > that will maximize n({~x}∪{1, 2}),
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where xi ∈ {1, ..., Nmax
i + 1}.

This is equivalent to DSP except that n({~x} ∪ {1, 2}) is used as the objective to maximize,

instead of n({~x}). Therefore, the final solution {~x} of a given WFBP is obtained with a sum

of the solution from a mapped DSP and a set {1, 2}. We claim that this is correct, because the

algorithm for DSP that we propose is designed to find {~x} which does not have 1 and 2 as

its elements, if possible. We can guarantee that in this way, even if the solution from DSP is

summed with {1} or {2}, it is still for the worst-case.

Corollary 2.3 (Space Optimality): If a solution to the WFBP can be obtained, then it must

be the minimum and space-optimal buffer size that satisfies the two properties, safety and

orderliness.

Proof: The solution is the number of buffers needed in the worst-case of the given problem.

Even with one less buffer than the obtained solution, we cannot realize all reading and writing,

and still satisfy safety and orderliness. Hence, the solution to the WFBP is the minimum and

space-optimal.

E. Algorithm for WFBP

We now present an algorithm, Algorithm 1, to solve the WFBP based on the previous sections.

The algorithm inputs include the number of readers M and the maximum interference Nmax[i].

The sum and the function doesExist(t) correspond to
∑

H(~u, ...) and H(~u, t) in Theorem 2.1.

To reduce the time complexity of doesExist(t), we sort all Nmax[i] before the main loop.

doesExist(t) uses a static variable, and does not search the entire array Nmax[i] each time. The

flag oni indicates whether or not the DSP solution includes i. If it does not include 1 or 2, the

required buffer size for the WFBP solution, n, is incremented.

The time complexity of this algorithm is O(MlogM + Nmax). We believe that this cost is
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Algorithm 1: Algorithm for WFBP
input : # of readers M; max interference Nmax[M]1
output : required buffer size n2

sum=n=0;3
on1=on2=false;4
for i = 1 to M do Nmax[i]++;5
sort( Nmax[1,...,M] );6
for t=Nmax[1] to 1 do7

sum += doesExist( t, Nmax[1,...,M] );8
if sum>n then9

n++;10
if t=2 then on2 = true;11
if t=1 then on1 = true;12

if on2=false then n++;13
if on1=false then n++;14

reasonable, as the algorithm is run off-line for determining the buffer needs.

F. A Wait-Free Implementation

The NBW protocol uses a circular buffer to realize wait-free synchronization. The idea behind

the circular buffer is that while a writer circularly accesses the buffers, the readers follow the

writer. However, we cannot use the circular type of buffer because a writer in our protocol needs

to determine a safe buffer, which can be any of the buffers.

The same situation arises with Chen’s protocol, where the writer can access anywhere. Thus,

to implement our protocol, we slightly modify Chen’s protocol. Our implementation scheme is

shown in Algorithms 2 and 3. In Algorithms 2 and 3, the GetBuf () function searches the empty

buffer to write to the buffers assigned by Algorithm 1.

Compared with the implementation in [7], our approach does not need to implement separate

protocols for “fast” readers and “slow” readers. Additionally, we achieve the speed improvement

by reducing the required buffer size, which reduces the number of iterations in GetBuf ()’s loop,

compared with the original Chen’s protocol [5].
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Algorithm 2: Modified Chen’s Protocol for Writer
Data: BUFFER [1,...,NB](NB: # of buffers) ; READING [1,...,n] (n: # of readers) ; LATEST1

GetBuf()2
begin3

bool InUse [1,...,NB];4
for i=1 to NB do InUse [i]=false;5
InUse[LATEST ]=true;6
for i=1 to n do7

j = READING [i];8
if j6=0 then InUse [j]=true;9

i=1; while InUse [i] do ++i;10
return i;11

end12

Writer()13
begin14

integer widx, i;15
widx = GetBuf();16
Write data into BUFFER [widx];17
LATEST = widx;18
for i=1 to n do19

Compare-and-Swap(READING [i],0,widx);20

end21

Algorithm 3: Modified Chen’s Protocol for Reader
Data: BUFFER [1,...,NB](NB: # of buffers) ; READING [1,...,n] (n: # of readers) ; LATEST1

Reader()2
begin3

integer ridx;4
READING [id]=0;5
ridx = LATEST;6
Compare-and-Swap(READING [id],0,ridx);7
ridx = READING [id];8
Read data from BUFFER [ridx];9

end10

III. FORMAL COMPARISON WITH CHEN’S AND NBW
A. Special Case Behavior

The buffer size that the NBW protocol [4] requires depends on the maximum number of

interferences that a reader can suffer from the writer. It does not depend on the number of

readers, because simultaneous reading by the readers accesses the same buffer, irrespective of

the number of readers. On the other hand, the buffer size that the Chen’s protocol [5] requires is
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directly proportional to the number of readers, and is independent of the number of interferences.

We now show that our protocol subsumes both Chen’s protocol and the NBW protocol as special

cases.

Lemma 3.1: The buffer size for Chen’s protocol [5] is a special case of the WFBP solution
given in Algorithm 1.

Proof: Assume that we are given M readers and no information about interferences. We can

map this problem to DSP, by setting R as [1,∞] and the upper-bounds of ~x as < ∞, ...,∞ >.

According to Theorem 2.2, n({~x}) cannot exceed n(~x). Thus, the worst-case buffer size is

obtained as (M + 2), that is n(~x)+n({1, 2}). This is exactly the same value as that obtained by

Chen’s protocol.

Lemma 3.2: The buffer size for NBW protocol [4] is a special case of the WFBP solution
given in Algorithm 1.

Proof: Assume that we are given infinite number of readers with a knowledge of Top(~u) =

Nmax. This problem can be modeled as the problem with R = [1, Nmax+1] and ∀i, ui = Nmax+1

for the worst-case. By Theorem 2.1, H(~u,N) = ∞, and whenever t increases, n({~x}) increases

by 1 until t and n({~x}) reaches to Nmax and Nmax +1, respectively. Thus, the worst-case buffer

size is obtained as Nmax + 1, i.e., n({1, ..., Nmax + 1} ∪ {1, 2}). This is exactly the same value

as that obtained by NBW protocol.

Theorem 3.3 (Upper Bound of the WFBP solution): In the WFBP,

nmax({~x}) ≤ min(M + 2, Nmax + 1),

where M is the number of readers and Nmax is the maximum number of interferences that a
reader can suffer.

Proof: Proof follows directly from Lemmas 3.1 and 3.2.

Chen’s protocol is attractive because the number of interferences need not be known a-priori.

On the other hand, NBW has the advantage that the required number of buffers can be further
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reduced if the number of interferences are much smaller than the number of readers. Additionally,

we note that the number of buffers needed by our algorithm is less than or equal to that of Chen’s

or NBW protocol.

B. Buffer Size Conditions

According to Theorem 3.3, our wait-free protocol always finds the number of required buffers

which is less than or equal to that of Chen’s protocol or the NBW protocol.

We now identify the precise conditions under which the required buffer size of our protocol

is equal to that of Chen’s or NBW. To derive the conditions, we observe two properties in the

WFBP. In the following theorem, we introduce a notation {{~x}}, which denotes the set including

all possible solutions {~x} for the given DSP.

Theorem 3.4 (Chen’s Tester): When the number of readers in the wait-free buffer size decision
problem is M and Nmax > M ,

{3, ...,M + 2} ∈ {{~x}}, if and only if nmax({~x}) ≥ M + 2.

Proof: We prove both necessary and sufficient conditions.

Case 1. Assume that when {3, ..., M + 2} ∈ {{~x}}, nmax({~x}) < M + 2. Since the size of

the optimal solution is less than M + 2, the size of {~x} cannot exceed M + 2. This contradicts

our assumption that {1, 2} ∪ {3, ...,M + 2} is a solution.

Case 2. Assume that the set {~x} is {x3, ..., xM+2}, in which xi’s are different between each

other and aligned in increasing order. Now, all xi must not be 1 or 2, otherwise nmax({~x}) is

less than M + 2. Therefore, x3 should be greater than or equal to 3, and x4 is greater than x3.

Inductively, xi+1 ≥ xi + 1, where 3 ≤ i < M + 2. In other words, since xi ≥ xi−1 + 1 ≥
xi−2 + 2 ≥ ..., the inequality ui ≥ xi ≥ i holds. For this reason, {3, ...,M + 2} satisfies the

range constraints of all elements.
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By Theorem 3.4, nmax({~x}) < M +2, if {3, ..., M +2} /∈ {{~x}}. This means that by checking

if {3, ...,M +2} is feasible for the problem, we can determine whether or not it requires M +2

buffers that Chen’s protocol needs.

Theorem 3.5 (NBW Tester): When the number of readers in the wait-free buffer size decision
problem is M and Nmax ≤ M ,

{2, ..., Nmax + 1} ∈ {{~x}}, if and only if nmax({~x}) ≥ Nmax + 1.

Proof: We prove both necessary and sufficient conditions.

Case 1. Assume that when {2, ..., Nmax + 1} ∈ {{~x}}, nmax({~x}) < Nmax + 1. Since the size

of the optimal solution is less than Nmax + 1, the size of {~x} cannot exceed Nmax + 1. This

contradicts our assumption that {1, 2} ∪ {2, ..., Nmax + 1} is a solution.

Case 2. Assume that the set {~x} is {x2, ..., xNmax+1}, in which xi’s are different between each

other and aligned in increasing order. Now, all xi must not be 1, otherwise nmax({~x}) is less than

Nmax+1. Therefore, x2 should be greater than or equal to 2, and x3 is greater than x2. Inductively,

xi+1 ≥ xi +1 where 2 ≤ i < Nmax +1. In other words, since xi ≥ xi−1 +1 ≥ xi−2 +2 ≥ ..., the

inequality ui ≥ xi ≥ i holds. For this reason, {2, ..., Nmax +1} satisfies the range constraints of

all elements.

We can also investigate if a given WFBP needs Nmax+1 buffers or less by checking feasibility

with {2, ..., Nmax + 1}. We call {3, ..., M + 2} and {2, ..., Nmax + 1} as “Chen’s tester” and

“NBW tester,” respectively.

From Theorems 3.4 and 3.5, we derive a decision procedure that determines the wait-free

protocol with the lowest buffer size. Figure 5 shows this procedure. To illustrate it, we use the

WFBP example in [7], which is also shown in Table I.

By our decision procedure, since Nmax > M , Chen’s protocol requires smaller number of

buffers than NBW. The next step is determining whether Chen’s tester, which is < 3, 4, ..., 9 >
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Fig. 5. Decision Procedure

in this problem, is feasible. It turns out that it is not feasible, as the second element 4 in the

tester is out of the range [1, 3] of reader 1. Hence, we expect to find smaller number of required

buffers than that of Chen’s protocol.

TABLE I

TASK SET

Task Nmax

Reader 0 2
Reader 1 2
Reader 2 2
Reader 3 3
Reader 4 3
Reader 5 14
Reader 6 49

Algorithm 1 determines that we need 6 buffers for this problem. We determine a vector {~x} =

{1, 2, 3, 4, 15, 50} as a worst-case candidate for the WFBP from Theorem 2.2. As mentioned

earlier, the solution means that one of the worst-cases occurs when we need buffers for writers

{W [1], W [2],W [3],W [4],W [15],W [50]}.

C. Comparison with Improved Chen’s Protocol

In [7], Huang et al. suggest a transformation mechanism to reduce the buffer size needs of

a given wait-free protocol. The transformation is applied to many wait-free protocols including

Chen’s protocol. The transformed Chen’s protocol is called Improved Chen’s protocol in [7].
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We cannot formally compare our protocol with Improved Chen’s protocol in terms of space

cost, because no analytical foundation is given for the transformation mechanism in [7]. Conse-

quently, a formal comparison is not possible, and only an experimental comparison is possible,

where the two protocols can be compared for as many cases as possible. We do this in Section IV.

Our experiments in Section IV reveal that the buffer size needs of our protocol and Improved

Chen’s are the same, for all the cases that we consider.

Of course, this does not imply that Improved Chen’s and ours always need the same number

of buffers, because it is impossible that our evaluation studies in Section IV cover all the cases.

Nevertheless, note that with Corollary 2.3, we guarantee that the buffer size needed for wait-free

cannot be reduced any further.

Additional advantage of our protocol is that it is not required to divide readers into fast and

slow groups and apply two separate reading operations as Improved Chen’s does.

D. Comparison of Time Complexity

Implementation of NBW and Chen’s protocols require the Compare-And-Swap (CAS) in-

struction. The CAS instruction is used to atomically modify control variables of the wait-free

protocol by combining comparison and swap operations into a single instruction. The instruction

is available in many modern processors and takes constant time.

NBW has no loop within both write and read operations. However, Chen’s protocol has 3

loops within the write operation and no loop within the read operation. With n buffers, the time

complexity of Chen’s writing operation is O(n).

Improved Chen’s protocol and our protocol are variations of Chen’s protocol, and hence have

similar time complexities as that of Chen’s writing and reading. According to Theorem 3.3, the

loop iteration in our protocol’s write operation cannot exceed M +2. Thus, the time complexity
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TABLE II

ASYMPTOTICAL TIME COMPLEXITIES

Wait-Free Protocol Read Write
NBW O(1) O(1)
Chen’s O(1) O(n)

Improved Chen’s O(1) O(n)
Ours O(1) O(n)

of our protocol is O(n), which is the same as that of Chen’s. Since the asymptotical speeds

are therefore similar, a speed improvement can be obtained (for Chen’s, Improved Chen’s, and

ours) by reducing the buffer size. Table II summarizes the asymptotical time complexities of the

protocols.

IV. NUMERICAL EVALUATION STUDIES

We conduct numerical evaluations to evaluate the buffer size needs of our protocol under a

broad range of reader/writer conditions, including increasing maximum interferences and readers.

We also consider NBW, Chen’s, and Improved Chen’s protocols for comparative study. We

consider Improved Chen’s protocol among all protocols in [7], because it is the most space-

efficient protocol in [7].

We exclude the Double Buffer protocol [7] from our study as it needs nearly two times the

buffer space than Chen’s protocol. (The Double Buffer protocol trades off space for time.) Thus,

our protocol will clearly outperform the Double Buffer protocol in terms of buffer needs.

A. Increasing Interferences

We consider a task set with 1 writer and multiple readers whose maximum number of

interferences Nmax
i is randomly generated with a normal distribution (with a fixed standard

deviation of 5), and by varying the average. The protocols are evaluated by their buffer size

needs — the actual amount of needed memory is the number of buffers times the message size

in bytes. Each experiment is repeated 100 times to determine the average buffer sizes.
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(c) M = 40

Fig. 6. Buffer Sizes Under Increasing Interferences With Normal Distribution for Nmax
i

Figure 6 shows the buffer size needs of each protocol as the average Nmax
i is increased from

5 to 45, for 20, 30, and 40 readers. From the figure, we observe that as Nmax
i increases, the

buffer size needs of NBW increases, whereas that of Chen’s protocol remains the same (for a

given reader size), since its buffer needs is proportional only to the number of readers. As the

number of readers increases from 20 to 40, Chen’s protocol needs increasing number of buffers.

Meanwhile, the number of buffers that our protocol requires never exceeds that of Chen’s and

NBW’s, as Theorem 3.3 holds. Interestingly, the number of buffers that Improved Chen’s protocol

requires is exactly the same as that of ours. Note that no analysis on the buffer size needs of

Improved Chen’s is presented in [7], whereas Theorem 3.3 gives the upper bound on the buffer

size needs of our protocol.

We observed exact similar trends for other fixed standard deviations for Nmax
i ’s distribution,

and other distributions for Nmax
i . Figure 7(a) shows the buffer size needs of each protocol, when

Nmax
i is generated with a normal distribution, with a fixed standard deviation of 10 (instead

of 5), and by varying the average Nmax
i from 5 to 45, for 40 readers. Figure 7(b) shows the

protocols’ buffer needs under the exact same conditions as those in Figure 7(a), except that

Nmax
i is now generated with an uniform distribution.
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Fig. 7. Buffer Sizes Under Different Nmax
i Distributions with 40 Readers

From the figures, we observe that our protocol’s buffer needs never exceed that of Chen’s and

NBW’s, and is the same as that of Improved Chen’s.

B. Heterogenous Readers in Multiple Groups

From Figure 6, we also observe that when most readers have small Nmax
i , the number of

buffers needed by our protocol approaches that of NBW’s. Moreover, when most readers have

larger Nmax
i , the number of buffers needed by our protocol approaches that of Chen’s protocol’s.

This motivates us to study the buffer size needs of our protocol under two groups of readers,

one that has small Nmax
i ’s and the other that has large Nmax

i ’s. (A similar evaluation is conducted

in [7], where readers are classified as “fast” and “slow.”) We divide tasks into the two groups

whose averages of the (normal) distribution for Nmax
i ’s are fixed as 5 and 45, respectively. We

then vary the ratio of the two groups. For example, 3:1 in the X-axis in Figure 8(a) means that

the readers having smaller Nmax
i are 3 times more than the readers having larger Nmax

i .

Figure 8 shows the buffer sizes of each protocol as the ratio is varied from 3:1 to 1:3, for

20, 30, and 40 readers. We observe that the buffers needed for NBW, Improved Chen’s, and

our protocol increase as the readers with larger Nmax
i increases. This result is consistent with

that in [7], where Improved Chen’s is shown to require less buffers, as fast readers with smaller
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(c) M = 40

Fig. 8. Buffer Sizes With 2 Reader Groups Under Varying Reader Ratio, for 20, 30, and 40 Readers

Nmax
i increases. The results confirm that ours and Improved Chen’s require the minimum buffer

size when considering two heterogenous reader groups.

We now consider a more complex scenario with three reader groups, called “fast,” “slow,”

and “medium,” which are not considered in [7]. The averages of the (normal) distribution for

Nmax
i ’s for the three groups are fixed as 5, 25, and 45, respectively, and the ratio of the three

groups are varied from 6:3:1 to 1:3:6. Figure 9 shows the results.
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Fig. 9. Buffer Sizes With 3 Reader Groups Under Varying Reader Ratio, for 20, 30, and 40 Readers

From the figure, we observe that as the number of fast readers increases, the number of buffers

needed decreases. Further, we observe that the buffer size required by Improved Chen’s is the

same as that of ours even when we include the “medium” reader group in our evaluation.
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V. IMPLEMENTATION EXPERIENCE

A wait-free protocol’s practical effectiveness is determined by its space and time costs. In

developing a wait-free protocol, we focus on optimizing space costs, and we establish the space

optimality of our protocol. Although reducing the protocol’s time costs is not our goal, we now

determine the time costs to establish our protocol’s effectiveness.

Our wait-free protocol (Algorithms 2 and 3) is a modification of Chen’s protocol, augmented

with the buffer size computed by Algorithm 1. Thus, we expect that our protocol incurs at most

as much time overhead as that of Chen’s. Moreover, the higher space efficiency that our protocol

enjoys can lead to higher time efficiency, because it reduces the search space for determining

the protocol’s safe buffer—e.g., GetBuf()’s loop in Algorithm 2.

To evaluate the actual time costs of our protocol, we implement our protocol in the SHaRK

(Soft Hard Real-Time Kernel) OS [10], running on a 500MHz, Pentium-III processor. Similar to

Section IV, we also implement Chen’s, Improved Chen’s, and NBW protocols for a comparative

study. We also consider lock-based sharing in this study. Note that all protocols in our study can

be adopted for both uni-processor and multi-processor systems, although we consider only the

performance in the uni-processor in this section.

We consider a task set with 20 readers and a writer, and use a message size of 8 bytes for an

inter-process communication (or IPC). We measure the average-case execution time (or ACET)

and the worst case execution time (or WCET) for performing an IPC. The execution time for

an IPC is the time needed for executing the code segment that accesses the shared object. With

traditional lock-based sharing, this code segment is the critical section. Note that a wait-free

protocol’s IPC execution time includes times for controlling protocol’s variables, accessing the

shared object, and potential interference from other tasks. Thus, WCET tends to be much larger
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than ACET.

In Section IV-B, we varied the ratio of two reader groups whose averages of the (normal)

distribution for Nmax
i ’s are fixed as 5 and 45, respectively. We now select two cases from which

the ratio of readers having smaller and larger Nmax
i are 4:1 and 1:4, respectively. These two cases

can be represented as 16 fast and 4 slow readers, and 4 fast and 16 slow readers, respectively,

for the purpose of Improved Chen’s [7], since that protocol needs the readers to be classified as

“slow” and “fast”. We fix the writer’s period as 0.2 msec and let the writer invoke 6,000,000

times during our experiment interval for computing the ACETs. The period of the 20 readers

ranges from 400 usec to approximately 10msec.
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Fig. 10. ACET of Read/Write in SHaRK RTOS

Figure 10 shows the measurements from our implementation. We observe that NBW has

the smallest ACET, lock-based sharing has the largest ACET, and Chen’s, Improved Chen’s,

and our protocol have almost the same ACET in our implementation. NBW has the smallest

ACET, because its implementation does not have any loop (and thus less computational costs)

inside both the reader and writer operations. Lock-based sharing has the largest ACET due to its

blocking times. Further, accessing and releasing locks in SHaRK is done through system calls,

which takes longer than wait-free protocols (which are implemented without system calls).
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Fig. 11. WCET of Read/Write in SHaRK RTOS

In [7], when the number of fast readers are increasing, the ACET of Improved Chen’s tends

to be shorter because the needed buffer size decreases and NBW, a part of Improved Chen’s,

performs faster. This trend does not appear in our experiments. This is because the expected speed

improvement is only (approximately) 0.1 usec. This difference is small enough to be affected

by the OS type, code optimizations, and measurement methodology, among other factors. We

observed the similar results in WCET in Figure 11. Although reducing the protocol’s time costs

is not our goal, we observe that variations of Chen’s including Chen’s, Improved Chen’s, and

ours have much the same ACET and WCET at least in our implementation and thus, we believe

that our protocol’s time costs is comparable to that of previous protocols.

We have suggested the decision procedure that determines the wait-free protocol having the

lowest buffer size in Section III-B. Before applying our protocol, we can determine which

protocol, among Chen’s, NBW, and ours, requires the least buffer size using the decision

procedure described in Figure 5. We now apply this decision procedure to the 16 fast/4 slow-

reader example considered previously.

Table III shows 16 fast/4 slow readers’ Nmax’s. At the first step in the decision procedure,

we can easily find that Nmax = 47 > M = 20. It implies that Chen’s protocol needs lower
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buffer size than NBW. Now, the next step is to check if Chen’s tester is feasible. Chen’s tester

is evaluated as {3,...,22} by Theorem 3.4.

TABLE III

DECISION PROCEDURE ON 16 FAST AND 4 SLOW READERS

Task Nmax
i + 1 Chen’s Tester Feasibility

Reader 0 48 22 O
Reader 1 47 21 O
Reader 2 47 20 O
Reader 3 47 19 O
Reader 4 10 18 X
Reader 5 9 17 X
Reader 6 9 16 X
Reader 7 9 15 X
Reader 8 8 14 X
Reader 9 7 13 X
Reader 10 7 12 X
Reader 11 6 11 X
Reader 12 6 10 X
Reader 13 4 9 X
Reader 14 3 8 X
Reader 15 3 7 X
Reader 16 3 6 X
Reader 17 3 5 X
Reader 18 3 4 X
Reader 19 3 3 O
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Fig. 12. Buffer Sizes

Table III indicates that Chen’s tester is not feasible because 18 in the Chen’s tester column

is not between 1 and 10, for example. Therefore, at the final step, we can conclude that our

protocol requires less buffers than Chen’s. This is true as shown in Figure 12, which shows the
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number of required buffer size for each protocol.

VI. CONCLUSIONS

In this paper, we consider the single-writer/multiple-reader problem that occurs in embedded

real-time systems. We present an analytical solution to the problem of determining the absolute

minimum buffer requirement of wait-free protocols for this problem — the first such bound

established for wait-free protocols that consider a-priori knowledge of interferences. We also

show that the space costs required by previous algorithms including Chen’s and NBW can also

be obtained by our solution, which subsumes them as special cases. We also present a wait-free

protocol that uses the minimum buffer size determined by our analytical solution. Our evaluation

studies and implementation measurements validate our analytical results.

Some aspects of the work are directions for further research. Examples include extending the

protocol for the multiple-writer/multiple-reader problem, and complex concurrent objects such

as (non-blocking) stacks and queues.
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