
1

On Open Nesting in
Distributed Transactional Memory

Alexandru Turcu, Roberto Palmieri and Binoy Ravindran

Abstract—Distributed Transactional Memory (DTM) is a recent but promising model for programming distributed systems. It
aims to present programmers with a simple to use distributed concurrency control abstraction (transactions), while maintaining
performance and scalability similar to distributed fine-grained locks. Any complications usually associated with such locks (e.g.,
distributed deadlocks) are avoided. In this article, we analyze the use of open nesting in the DTM setting. We extend two DTM
algorithms, Transactional Forwarding Algorithm (TFA) and SCORe with support for open nested transactions and we implement
them into two frameworks for running distributed transactions, such as Hyflow and Infinispan. We discuss the mechanisms
and performance implications of such nesting, and identify the cases where using open nesting is warranted and the relevant
parameters for such a decision. To the best of our knowledge, our work also contributes the first ever implementations of DTM
systems with support for open-nested transactions.

Index Terms—Nesting, Open Nesting, Distributed Transactions, Transactional Memory.

F

1 INTRODUCTION
Transactional Memory (TM) [12] is a promising model
for programming concurrency control that is aiming
to replace locks. Distributed locks, the traditional so-
lution for concurrency control in distributed systems,
can often lead to problems that are much harder to
debug than their multiprocessor counterparts. Issues
such as distributed deadlocks and livelocks can sig-
nificantly impact programmer productivity, as finding
and resolving the problem is not a trivial task. More-
over, it is easy to accidentally introduce such errors.
Additional difficulties arise when code composability
is desired, because locks would need to be exposed
across composition layers, contrary to the practice of
encapsulation. This makes building enterprise soft-
ware with support for concurrency especially difficult,
as such software is usually built using proprietary
third-party libraries, often without access to the li-
braries’ source code.

To address these problems, Distributed Transac-
tional Memory (DTM) was proposed as an alternative
concurrency control mechanism [13]. DTM systems
can be classified by the mobility of the transactions
or data. In the data-flow model [13], objects are
migrated between nodes to be operated upon by
immobile transactions. Alternatively, in the control-
flow model [21], objects are immobile and are accessed
by transactions using Remote Procedure Calls.

In TM, nesting is used to make code composability
easy. A transaction is called nested when it is enclosed
within another transaction. Three types of nesting

• Authors are with the Department of Electrical and Computer Engi-
neering, Virginia Tech, Blacksburg, VA, 24061. Alexandru Turcu is
now at Google.

models have been previously studied [19]: flat, closed
and open. They differ based on whether the parent
and children transactions can independently abort:

Flat nesting is the simplest type of nesting, and
simply ignores the existence of transactions in inner
code. All operations are executed in the context of
the outermost enclosing transaction, leading to large
monolithic transactions. Aborting the inner transac-
tion causes the parent to abort as well (i.e., partial
rollback is not possible), and in case of an abort,
potentially a lot of work needs to be rerun.

Closed nesting. With closed nesting, each transac-
tion attempts to commit individually, but inner trans-
actions do not publicize their writes to the globally
committed memory. Inner transactions can abort in-
dependently of their parent (i.e., partial rollback), thus
reducing the work that needs to be retried, increasing
performance.

Open nesting. With open nesting, operations are
considered at a higher level of abstraction. Open-
nested transactions are allowed to commit to the
globally committed memory independently of their
parent transactions, optimistically assuming that the
parent will commit. If however the parent aborts, the
open-nested transaction needs to run compensating
actions to undo its effect. The compensating action
does not simply revert the memory to its original
state, but runs at the higher level of abstraction. For
example, to compensate for adding a value to a set,
the system would remove that value from the set.
Open-nested transactions breach the isolation prop-
erty, thus potentially enabling significant increases in
concurrency and performance. However, to be used
correctly, logical isolation is still generally required,
and the burden for ensuring it now falls on the
programmers.

2

T1

T2

Flat subtx accessing shared data structure T1 successfully commits

T2 must abort while T1 is still executing
T2 may proceed after T1 commits

(a) Flat nesting

T1

T2

Closed subtx accessing shared data structure T1 successfully commits

T2's subtx must abort while T1 is still executing
T2's subtx may proceed after T1 commits

(b) Closed nesting

T1

T2

Open subtx accessing shared data structure

T1 successfully commits

T1 subtx commits and releases isolation

T2 subtx only has to abort
while T1 subtx is executing

T2 subtx may proceed as
soon as T1 subtx commits

T2 successfully
commits

(c) Open nesting

Fig. 1. Example showing the execution time-line for two
transactions under flat, closed and open nesting.

We illustrate the differences between the three
nesting models in Figure 1. Here we consider two
transactions, which access some shared data-structure
using a sub-transaction. The data-structure accesses
conflict at the memory level, but it is not a semantic
conflict (a semantic conflict arises when two opera-
tions on a data-structure lead to different outcomes
when commuted, see Section 3.3), and there are no
further conflicts in either T1 or T2. With flat nesting,
transaction T2 can not execute until transaction T1

commits. T2 incurs full aborts, and thus has to restart
from the beginning. Under closed nesting, only T2’s
sub-transaction needs to abort and be restarted while
T1 is still executing. The portion of work T2 executes
before the data-structure access does not need to be
retried, and T2 can thus finish earlier.

Under open nesting, T1’s sub-transaction com-
mits independently of its parent, releasing memory
isolation over the shared data-structure. T2’s sub-
transaction can proceed immediately after that, thus
enabling T2 to commit earlier than in both closed and
flat nesting. This example assumes the TM implemen-
tation aborts the minimum amount of work required
to resolve the conflict, thus leading to the maximum
performance for each nesting model (in practice, this
is accomplished by validating the read operations
and determining the minimal set of transactions that
should be aborted).

As a practical example of the usefulness of open
nesting, we can consider a sorted list of linked ele-
ments. The list is a data structure defining commu-

@Atomic T popFront () {
i f (t h i s . head == null) r e t r y ;
T r e s u l t = t h i s . head . value ;
t h i s . head = t h i s . head . next ;
return r e s u l t ;

}

Fig. 2. Example usage for retry construct. Transactions are
marked using the @Atomic annotation.

@Atomic T c h o o s e F i r s t A v a i l a b l e () {
t r y { return queue1 . popFront () ; }
orElse { return queue2 . popFront () ; }

}

Fig. 3. Example usage for try...orElse construct.

tative operations, which means that concurrent invo-
cations of the same operation (e.g., add) on different
elements are allowed to complete in parallel. Assume
now a transaction performing two add operations
atomically. With open nesting, each operation can be
executed in a separate sub-transaction so that all the
elements visited for reaching the point in the list
where the add should be performed will be discarded
once the sub-transaction commits. By doing so we
save possible aborts due to the invalidation on those
elements while the transaction executes the remaining
operations (e.g., the subsequent add). Adopting the
closed nesting model, those aborts cannot be avoided.

Besides providing support for code composability,
nested transactions are attractive when transaction
aborts are actively used for implementing specific
behaviors. For example, conditional synchronization
can be supported by aborting the current transaction
if a pre-condition is not met, and only scheduling the
transaction to be retried when the pre-condition is
met (for example, a dequeue operation would wait
until there is at least one element in the queue, as
shown in Figure 2). Aborts can also be used for
fault management: a program may try to perform an
action, and in the case of failure, change to a different
strategy (try...orElse, example in Figure 3). In both
these scenarios, performance can be improved with
nesting by aborting and retrying only the inner-most
sub-transaction.

Previous DTM works have largely ignored the sub-
ject of partial aborts and nesting [3, 4, 22]. While
they were studied in non-distributed TM, the cost
of network access in a distributed environment sig-
nificantly affects the behavior of nested transactions.
We develop a framework for extending existing DTM
algorithms with support for open nesting, and ap-
ply it to two different transaction execution proto-
cols. Specifically, we extend the TFA algorithm [22],
which provides atomicity, isolation, and consistency
properties for flat-nested DTM transactions, to sup-
port open nesting. The resulting algorithm is named
Transactional Forwarding Algorithm with Open Nest-

3

ing (TFA-ON). The second algorithm we extend is
SCORe [21], a scalable one-copy serializable partial
replication protocol with multi-version concurrency
control (MVCC), which provides One-Copy Serializ-
ability and executes read-only transactions without
requiring a distributed commit protocol. We call the
resulting algorithm SCORe-ON. We discuss the impli-
cations of open nesting on read-only and read-write
transactions.

These two algorithms were chosen as they cover a
significant portion of the design space while provid-
ing strong consistency. TFA is a non-replicated, data-
flow based, single-version protocol which potentially
revalidates transactions after every read. SCORe is a
partial replication, control-flow based, multi-version
protocol that is able to commit read-only transactions
without further network communication. Thus we can
show how open nesting is applicable to a wide range
of transactional algorithms.

We implement our extensions across two frame-
works: HyFlow [22, 22] and Infinispan [15]. To this
goal, we introduce new mechanisms such as ab-
stract locks, and commit and compensating actions
in both HyFlow and Infinispan. Our choice of frame-
works was again made strategically. On the one hand,
Hyflow is our in-house DTM framework research
prototype, was designed with support for nesting
in mind, and collects a variety of metrics to help
gain insight into the transaction behavior during ex-
ecution. On the other hand, Infinispan is a popular
open-source in-memory data-grid, with support for
distributed transactions. Infinispan is highly config-
urable, extensible but also complex, is supported com-
mercially and is used in production world-wide.

We test our implementation through a series of
benchmarks, which includes micro-benchmarks and
two commercial inspired benchmarks, and observe
throughput improvements of up to 167% in specific
cases. We identify the kinds of workloads that are a
good match for open nesting, and we explain how
the various parameters influence the gain (or loss) in
throughput.

To the best of our knowledge, this work con-
tributes the first DTM implementations with support
for open nesting1. Source code is publicly available at
hyflow.org.

The remainder of the paper is organized as follows:
Section 2 presents related work on nested transac-
tions. The section also overviews the TFA and SCORe
algorithms for completeness. In Section 3, we describe
our system model and multi-level transactions. Our
open nesting framework, TFA-ON and SCORe-ON are
presented in Section 4. Mechanisms and implementa-
tion details are described in Section 5. We report on
experimental studies in Section 6. Finally, we conclude
the paper in Sections 7.

1. A preliminary version of this paper appeared in [23]

2 RELATED WORK

2.1 Nested Transactions

Nested transactions (using closed nesting) originated
in the database community and were thoroughly de-
scribed by Moss in [17]. His work focused on the
popular two-phase locking protocol and extended it
to support nesting. In addition, he also proposed algo-
rithms for distributed transaction management, object
state restoration, and distributed deadlock detection.

Open nesting also originates in the database com-
munity [8], and was extensively analyzed in the
context of undo-log transactions and the two-phase
locking protocol [25]. In these works, open nesting is
used to decompose transactions into multiple levels
of abstraction, and maintain serializability on a level-
by-level basis. One of the early works introducing
nesting to Transactional Memory was done by Moss
and Hosking in [19]. They describe the semantics
of transactional operations in terms of system states,
which are tuples that group together a transaction
ID, a memory location, a read/write flag, and the
value read or written. They also provide sketches for
several possible HTM implementations, which work
by extending existing cache coherence protocols. Moss
further focuses on open-nested transactions in [18],
explaining how using multiple levels of abstractions
can help differentiate between semantic conflicts and
other conflicts, thus improving concurrency.

Moravan et al. [16] implement closed and open
nesting in their previously proposed LogTM HTM.
They implement the nesting models by maintaining a
stack of log frames, similar to the run-time activation
stack, with one frame for each nesting level. Hardware
support is limited to four nesting levels, with any
excess nested transactions flattened into the inner-
most sub-transaction. In this work, open nesting was
only applicable to a few benchmarks, but it enabled
speedups of up to 100%.

Agrawal et al. combine closed and open nesting by
introducing the concept of transaction ownership [1].
They propose the separation of TM systems into
transactional modules (or Xmodules), which own data.
Thus, a sub-transaction would commit data owned by
its own Xmodule directly to memory using an open-
nested model. However, for data owned by foreign
Xmodules, it would employ the closed-nesting model
and would not directly write to the memory.

From a different perspective, Herlihy and Koskinen
propose transactional boosting [11] as a methodology
for implementing highly concurrent transactional data
structures. Boosted transactions act as an abstraction
above the physical memory layer, internally employ-
ing open nesting and abstract locks.

In [6] the open nesting model has been extended
by Dhoke et al. to avoid the blocking nature of sub-
transaction’s commit by introducing an asynchronous
global commit, which proceeds in parallel with a local

4

speculative execution. This way, part of the overhead
of open nesting can be alleviated and the saturation
of the network does not represent a blocking factor
for the local computation.

2.2 Transactional Forwarding Algorithm
TFA [22] was proposed as an extension of the Trans-
actional Locking 2 (TL2) algorithm [7] for DTM. It is a
data-flow based, distributed transaction management
algorithm that provides atomicity, consistency, and
isolation properties for distributed transactions. TFA
replaces the central clock of TL2 with independent
clocks for each node and provides a means to reliably
establish the “happens before” relationships between
significant events. TFA uses lazy concurrency control,
buffering all operations in per-transaction read and
write sets, and acquiring the object-level locks at com-
mit time. Objects are updated once all locks have been
successfully acquired. Being a data-flow algorithm,
in TFA objects migrate to the node that successfully
commits a transaction which updates the respective
objects. Failure to acquire a lock aborts the transaction,
releasing previously acquired locks.

Each node maintains a local clock, which is incre-
mented upon local transactions’ successful commits.
An object’s lock also contains the object’s version,
which is based on the value of the local clock at the
time of the last modification of that object. When a
local object is accessed as part of a transaction, the
object’s version is compared to the starting time of the
current transaction. If the object’s version is newer, the
transaction must be aborted.

Transactional Forwarding is used to validate remote
objects and to guarantee that a transaction always
observes a consistent view of the memory (i.e., opac-
ity [9]). This is important in STM because operations
are not sandboxed, and thus observing an inconsis-
tent snapshot may lead to unrecoverable errors (e.g.,
division by zero). Opacity is achieved by attaching the
local clock value to all messages sent by a node. If a
remote node’s clock value is less than the received
value, the remote node would advance its clock to
the received value. Upon receiving the remote node’s
reply, the transaction’s starting time is compared to
the remote clock value. If the remote clock is newer,
the transaction must undergo a transactional forward-
ing operation: first, we must ensure that none of the
objects in the transaction’s read-set have been updated
to a version newer than the transaction’s starting time
(early-validation). If this has occurred, the transac-
tion must be aborted. Otherwise, the transactional
forwarding operation may proceed and advance the
transaction’s starting time.

We illustrate TFA with an example. In Figure 4, a
transaction Tk on node N1 starts at a local clock value
LC1 = 19. It requests object O1 from node N2 at LC1 =
24, and updates N2’s clock in the process (from LC2 =

16 to LC2 = 24). Later, at time LC1=29, Tk requests
object O2 from node N3. Upon receiving N3’s reply,
since RC3 = 39 is greater than LC1 = 29, N1’s local
clock is updated to LC1 = 39 and Tk is forwarded to
start(Tk) = 39 (but not before validating object O1 at
node N2). We next assume that object O1 gets updated
on node N2 at some later time (ver(O1) = 40), while
transaction Tk keeps executing. When Tk is ready to
commit, it first attempts to lock the objects in its write-
set. If that is successful, Tk proceeds to validate its
read-set one last time. This validation fails, because
ver(O1) > start(Tk), and the transaction is aborted
(but it will retry later).

2.3 SCORe
SCORe [21] is a control-flow based, scalable, one-
copy serializable partial replication protocol. It is gen-
uine, as only nodes replicating data touched by a
transaction are contacted during the execution and
commitment of the transaction. It also allows read-
only transactions to commit locally (without any re-
mote communication during the commit phase) by
ensuring transactions always read from a consistent
snapshot.

SCORe combines a local multi-version concurrency
control algorithm with a distributed logical clock
synchronization scheme. Each replica holds multiple
versions of the objects it maintains, which are tagged
with a scalar timestamp. The clock synchronization
scheme is used to (a) determine the snapshot visible
to transactions, and (b) agree on a final global serial-
ization order for read-write transactions.

All nodes maintain two scalar variables: commitId
stores the timestamp of the last read-write transaction
to commit on that node, and nextId holds the times-
tamp of the node will propose at the next commit
request. Each transaction is associated with a snapshot
identifier (sid). The sid is recorded at the first read
operation within each transaction. It is the greatest of
the commitId at the current node, and the commitId at
the node servicing the read (if different). The first read
operation in a transaction returns the latest version
of the object being read. All further reads may only
observe object versions whose tag number is sid, in
order to maintain a consistent snapshot.

SCORe commits transactions using an algorithm
that can be seen as a combination between a Two-
Phase Commitment (2PC) and the Skeen total order
multicast algorithm [10]. 2PC is used to validate the
optimistic execution of update transactions and to
ensure the global state is updated atomically. Skeen’s
algorithm is responsible for agreeing on a final com-
mit ordering across all nodes replicating a certain
object. Given that SCORe is a control-flow algorithm,
objects are immobile and do not migrate.

Finally, a node’s nextId is advanced whenever a
transaction with a larger sid reads from that node.

5

N1

N2

N3

xTk starts at LC=19
Tk requests O1 at LC=24

O1 is updated at LC=14
ver(O1)=14

RC=24 > LC=16
LC updated to 24

RC=14 < LC=24, OK

O2 is updated at LC=21
ver(O2)=21

RC=29 < LC=39

Tk requests O2 at LC = 29 RC=39 > LC=29; LC:= 39, must fwd txn
First validate ver(O1) < start(Tk)

OK, now start(Tk):=39

ver(O1)=14, still
LC updated to 39

other txn upd O1
ver(O1):=40

T1 tries to commit
T1 locks writeset
and validates readset

O1 is invalid because
ver(O1)=40, was 14

Tk aborts

ver(O1)=40

ver(O2)=21

...

Fig. 4. Transactional Forwarding Algorithm Example (from [24])

This effectively tracks data dependencies between
transactions and ensures that a transaction updating
object X is serialized after all transactions that have
observed a previous version of X.

3 SYSTEM MODEL
3.1 Base model
As in [13], we consider a distributed system with
a set of nodes {N1, N2, · · · } that communicate via
message-passing links. Let O = {O1, O2, ...} be the set
of objects accessed using transactions. Each object Oj

has a unique identifier, idj . For simplicity, we treat
them as shared registers which are accessed solely
through read and write methods, but such treatment
does not preclude generality. Each object has a set of
owner nodes, denoted by owners(Oj).

Let T = {T1, T2, ...} be the set of all transactions.
Each transaction has an unique identifier. A trans-
action contains a sequence of operations, each of
which is a read or write operation on an object. An
execution of a transaction ends by either a commit
(success) or an abort (failure). Thus, transactions have
three possible states: active, committed, and aborted.
Any aborted transaction is later retried using a new
identifier.

3.2 Nesting Model
Our nesting model is based on Moss and Hosk-
ing [19]. While their description uses the abstract
notion of system states, we describe our model in
terms of concrete read and write-sets, as used in our
implementation.

In the original versions of both TFA and SCORe,
each transaction maintains a redo-log of the oper-
ations it performs in the form of a read-set and a
write-set. When an object is read from the globally
committed memory, its value is stored in the read-
set. Similarly, when an object is written, the actual
value written is temporarily buffered in the write-set.
Subsequent reads and writes are serviced by these sets
in order to maintain consistency: inside a transaction,
two reads of the same object (not separated by a
write) must return the same value. On abort, the sets
are discarded and the transaction is retried from the
beginning. On commit, the changes buffered in the
write-set are saved to the globally committed memory.

With transactional nesting, let parent(Tk) denote
the parent (enclosing) transaction of a transaction Tk.
A root transaction has parent(Tk) = ;. A parent
transaction may execute open nested sub-transactions.

Transactional operations are similar for open nested
sub-transactions as they are for a root transaction
without any nesting. Reading an object Ok first looks
at the current transaction’s (Tk) read and write-sets.
If a value is found, it is immediately returned. Oth-
erwise, the object is fetched from the globally com-
mitted memory. Write operations simply store the
newly written value to the current transaction’s write-
set. The read and write-sets of a transaction Tk are
denoted by readset(Tk) and writeset(Tk), respectively.
Open-nested transactions commit to the globally com-
mitted memory just like root transactions do. They
optionally register abort and commit handlers to be
executed when the innermost open ancestor transac-
tion aborts or respectively, commits. These handlers
are described in Section 5.2.

3.3 Multi-level transactions
We now introduce the concept of multi-level trans-
actions. Consider a data-structure, such as a set im-
plemented using a skip-list. Each node in the list
contains several pointers to other nodes, and is in
turn referenced by multiple other nodes. When a
(successful) transaction removes a value from the
skip-list, a number of nodes will be modified: the
node containing the value itself, and all the nodes
that hold a reference to the deleted value. As a result,
other transactions that access any of these nodes will
have to abort. This is correct and acceptable if the
transactions exist for the sole purpose, and only for
the duration of the data-structure access operations. If
however, the transactions only access the skip-list inci-
dentally while performing other operations, aborting
one of them just because they accessed neighboring
nodes in the skip-list would be in vain. Such conflicts
are called false-conflicts: transactions do conflict at the
memory level, as one of them accesses data that was
written by the other. However, looking at the same
sequence of events from a higher level of abstraction
(the remove operation on a set, etc.), there is no
semantic conflict because the transactions accessed
different items.

6

It is therefore desirable to separate transactions
into multiple levels of abstraction. By making the
operations shorter at the lower memory level, iso-
lation at that level is released earlier, thus enabling
increased concurrency. This breaches serializability [2]
and must be used with care. In practice, it is sufficient
in most cases to ensure serializability at each ab-
straction level with respect to other operations at the
same level, while preserving conflicts at higher levels
(i.e., level-by-level serializability [25]). Level-by-level
serializability can be achieved by reasoning about
the commutativity of operations at the higher level
of abstraction. Two such operations are conceptually
allowed to commute if the final state of the abstract
data-structure does not depend on the relative execu-
tion order of the two operations [11]. For example, in
deleting two different elements from a set, the final
state is the same regardless of which of the deletes
executes first. In contrast, inserting and deleting the
same item from a set can not commute: which of the
two operations executes last will determine the state
of the set.

In order to achieve level-by-level serialization, non-
commutative higher-level operations, when executed
by two concurrent transactions, must conflict. Such
a conflict is called semantic, and it is essential for a
correct execution. One such mechanism for detecting
semantic conflicts is by using abstract locks (locks that
protect an abstract state as opposed to a concrete
memory location). Two non-commutative operations
would try to acquire the same abstract lock. The
first one to execute succeeds at acquiring the ab-
stract lock. The second operation would be forced
to wait (or abort) until the lock is released. Abstract
locks are acquired by open-nested sub-transactions at
some point during their execution. When their parent
transaction commits, the lock can be released. In case
the parent aborts, however, before the lock can be
released, the data-structure must be reverted to its
original semantic state, by performing compensating
actions that undo the effect of the open-nested sub-
transaction. Referring back to the set example, to undo
the effect of an insertion, the parent would have to
execute a deletion in case it has to abort.

3.4 Open nesting safety
Multi-level transactions become ambiguous when
open sub-transactions update data that was also ac-
cessed by an ancestor. As described by Moss [18],
TM implementations have multiple alternatives for
dealing with that situation (such as leaving the parent
data-set unchanged, updating it in-place, dropping
it altogether, and others), which may be confusing
for the programmers using them. We thus decide to
disallow this behavior in our implementations: open
sub-transactions may not update memory which was
also accessed by any of their ancestors. We thus im-
pose a clear separation between the memory locations

accessed by transactions at the multiple abstraction
levels. This separation should make the usage of open
nesting less confusing for programmers. Failure to
comply to this rule can easily be caught by the run-
time system and the programmer notified.

Furthermore, the open nesting model’s correctness
depends on the correct usage of abstract locking.
Should the programmers misuse this mechanism, race
conditions and other hard to trace concurrency prob-
lems will arise. For these reasons, previous works
have suggested that open nesting be used only by
library developers [20] – regular programmers can
then use those libraries to take advantage of open
nesting benefits.

4 OPEN NESTING ALGORITHMS: TFA-ON,
SCORE-ON
To add open-nesting to a DTM algorithm, one needs
to allow for sub-transactions that behave similarly
to root transactions, i.e., sub-transactions that com-
mit their changes directly to the globally committed
memory. However, such sub-transactions may interact
in non-trivial ways with their parents. This section
describes the TFA-ON and SCORe-ON algorithms by
clarifying these interactions.

4.1 Transactional Forwarding Algorithm with
Open Nesting (TFA-ON)
We describe TFA-ON with respect to the TFA algo-
rithm and N-TFA [24], its closed-nesting extension.
The low-level details of TFA were summarized in
Section 2.2, and we omit them here. In TFA-ON,
just as in TFA, transactions are immobile. They are
started and executed to completion on the same node.
Furthermore, all children of a given transaction Tk are
created and executed on the same node as Tk.

Open-nested sub-transactions in TFA-ON are sim-
ilar to top-level, root transactions, in the sense that
they commit their changes directly to the globally
committed memory. This affects the behavior of their
closed-nested descendants. Under TFA and N-TFA,
only the start and commit of root transactions were
globally important events. As a result, the node-local
clocks were recorded when root transactions started,
and the clocks were incremented when root transac-
tions committed. Also, transactional forwarding was
performed upon the root transaction itself.

Under TFA-ON, open-nested sub-transactions are
important as well: their starting time must be
recorded and the node-local clock incremented upon
their commit. Closed-nested descendants treat open-
nested sub-transactions as a local root: they validate
read-sets and perform transactional forwarding with
respect to the closest open-nested ancestor. Simplified
source code of the important TFA-ON procedures is
given in Figure 5. The procedure for accessing objects

7

c l a s s Txn {

/ / TFA�ON read�s e t v a l i d a t i o n r o u t i n e
v a l i d a t e () {

/ / v a l i d a t e r e a d s e t s from s e l f u n t i l
/ / i n n e r m o s t open a n c e s t o r
Txn t = t h i s ;
do {

i f (! t . ReadSet . v a l i d a t e (
innerOpenAncestor . s tar t ingTime))

abort () ; / / v a l i d a t i o n f a i l e d
t = t . parent ;

} while (t != innerOpenAncestor) ;
/ / v a l i d a t i o n s u c c e s s f u l

}

forward (i n t remoteClk) {
i f (remoteClk>innerOpenAncestor . s tar t ingTime))
{v a l i d a t e () ; / / a b o r t s txn on f a i l u r e

innerOpenAncestor . s tar t ingTime = remoteClk ;
}

}

/ / TFA�ON commit p r o c e d u r e
commit () {

i f (nestingModel == OPEN) {
i f (checkCommit ()) {

w r i t e S e t . commitAndPublish () ;
handlers . onCommit () ;

parent . handlers += myCommitAbortHandlers ;
} e lse handlers . onAbort () ;

} e lse i f (nestingModel == CLOSED) {
/ / merge r e a d S e t , w r i t e S e t , l o c k S e t and
/ / h a n d l e r s i n t o p a r e n t ’ s

}
}

/ / C a l l e d when a b o r t i n g a t r a n s a c t i o n due t o
/ / e a r l y�v a l i d a t i o n / commit f a i l u r e , e t c
abort () {

i f (! committing)
handlers . onAbort () ;

throw TxnException ;
}

/ / a c q u i r e s l o c k s , v a l i d a t e s read�s e t
checkCommit () {

t r y {
w r i t e S e t . acqLocks () ;
l o c k S e t . acqAbsLocks () ;
v a l i d a t e () ;
return true ;

} catch (TxnException) {
l o c k S e t . r e l e a s e () ;
w r i t e S e t . r e l e a s e () ;
return f a l s e ;

}
}

Fig. 5. Simplified source code for supporting Open Nesting in TFA’s main procedures.

is similar to the original TFA. Essentially, in TFA-
ON a sub-transaction is treated similarly to a root
transaction because it has to commit globally (which is
not the case of N-TFA). For this reason, the TFA-ON’s
logic associated to the commit of a sub-transaction is
more complex than the one of N-TFA.

When transactional forwarding is performed, all the
read-sets up to the innermost open-nested boundary
must be early-validated. Validating read-sets beyond
this boundary is unnecessary, because the transac-
tional forwarding operation that is currently under-
way poses no risk of erasing information about the
validity of such read-sets.

4.2 SCORe with Open Nesting (SCORe-ON)
For the most part, SCORe-ON transactions (both
parents and open-nesting children) behave similarly
to normal SCORe transactions, as described in Sec-
tion 2.3. However, due to snapshot reads (MVCC)
and the fact that SCORe commits read-only transac-
tions differently from read-write transactions, special
treatment is needed for the various parent/child com-
binations. We discus how SCORe-ON handles these
combinations bellow:

Read-write parent, read-write child. This is the
normal behavior where both parent and child un-
dergo the distributed commitment protocol. The child
acquires any needed abstract locks, which get passed
to the parent upon the sub-transaction’s commit.

Read-only parent, read-write child. In this situ-
ation, the parent must be treated as a read-write
transaction and undergo the distributed commitment
protocol. More specifically, the read-set must be val-
idated at commit time. Failure to do so may allow a

sub-transaction to make changes based on stale data,
thus breaking serializability.

Read-write parent, read-only child. To ensure cor-
rectness in this case, SCORe-ON must acquire abstract
locks for all read-only sub-transactions. This guaran-
tees a higher-level read operation can not become
stale, potentially leading the parent transaction exe-
cute an incorrect write operation. A simple way to
implement lock acquisition is as normal DTM read-
write operations, effectively transforming the child
into a read-write sub-transaction that must undergo
commit-time validation. Thus, the snapshot reads op-
timization can not be applied to any sub-transaction
that requires abstract locks. This again is needed for
maintaining correctness.

Read-only parent, read-only child. This case is
essentially a whole read-only transaction. In SCORe,
read-only transactions are executed using snapshot
reads and never need to abort. Applying open-nesting
semantics to this case would negate this optimization.
To avoid this, the programmer should instead use
normal flat nesting. If this case is not spotted at
design time, the system would unnecessarily acquire
abstract locks for read-only sub-transactions, slowing
transaction execution and reducing concurrency.

5 MECHANISMS AND IMPLEMENTATION
Beyond the necessary protocol modifications as de-
scribed in TFA-ON and SCORe-ON, several addi-
tional mechanisms are needed in order to support
open nesting in an actual implementation. These
mechanisms relate to dealing with abstract lock man-
agement and the execution of commit and compen-
sating actions.

8

5.1 Abstract locks
Abstract locks are acquired only at commit time, once
the open-nested sub-transaction is verified to be free
of conflicts at the lower level. Since abstract locks are
acquired in no particular order and held for indefinite
amounts of time, deadlocks are possible. Thus, we
choose not to wait for a lock to become free, and
instead abort all transactions until the innermost open
ancestor. This releases all locks held at the current
abstraction level.

We implemented two variants of abstract locking:
read/write locks and mutual exclusion locks. Locks
are associated with objects, and each object can have
multiple locks. Our data-structure designs typically
delegate one object as the higher level object, which
services all locks for the data-structure, and its value
is never updated (thus never causing any low-level
conflicts).

5.2 Defining transactions and compensating ac-
tions
Commit and compensating actions are registered
when an open-nested sub-transaction commits. They
are to be executed as open-nested transactions by the
innermost open-nested ancestor, when it commits, or
respectively, aborts.

We chose to use anonymous inner classes for defin-
ing transactions and their optional commit and com-
pensating actions. Compared to automatic or manual
instrumentation, this approach enables rapid proto-
typing as the code for driving transactions is simple
and resides in a single file. Thus, for using open-
nested transactions, one only needs to subclass our
Atomic<T> helper class and override up to three
methods (atomically, onCommit, onAbort). The de-
sired nesting model can be passed to the constructor
of the derived class; otherwise a default model will
be used. The performance impact of instantiating an
object for each executed transaction is insignificant in
the distributed environment, where the main factor
influencing performance is network latency.

We aimed to make the mechanism for defining
open nested transactions consistent across implemen-
tations. Specifically, the Atomic<T> acts as a compat-
ibility layer above both Infinispan and Hyflow, and
abstracts away the API differences between frame-
works — Infinispan uses a map-like interface for
accessing data (i.e, get and set), while Hyflow has
a directory for keeping track of objects (i.e., open
and register). Hyflow’s directory implementation was
reused in TFA/Infinispan, in order to support object
migrations, as required by TFA and the data-flow
model. Furthermore, our Atomic<T> layer relieves
the user from having to know the actual model cur-
rently in use (data-flow or control-flow).

Figure 6 shows how a transaction would look in
our implementations. Notice how the onAbort and

new Atomic<Boolean>(NestingModel .OPEN) {
private boolean i n s e r t e d = f a l s e ;
@Override boolean a tomica l ly (Txn t) {

BST bs t = (BST) t . open (” t ree�1”) ;
i n s e r t e d = bs t . i n s e r t (7 , t) ;
t . acquireAbsLock (bst , 7) ;
return i n s e r t e d ;

}
@Override onAbort (Txn t) {

BST bs t = (BST) t . open (” t ree�1”) ;
i f (i n s e r t e d) bs t . d e l e t e (7 , t) ;
t . releaseAbsLock (bst , 7) ;

}
@Override onCommit (Txn t) {

BST bs t = (BST) t . open (” t ree�1”) ;
t . releaseAbsLock (bst , 7) ;

}
} . execute () ;

Fig. 6. Simplified transaction for a BST insert operation.
Code performing the actual insertion is not shown.

onCommit handlers must request (open) the objects
they operate on. They cannot rely on the copy opened
by the original transaction, as this copy may be out-
of-date by the time the handler executes (automatic
re-open may be a way to address this issue).

5.3 Transaction context stack
Meta-data for each transaction (such as read and
write-sets, starting time, etc.) is stored in Transaction
Context objects. While originally in HyFlow and Infin-
ispan each thread had its own context object, in order
to support nesting, we arrange the context objects in
thread-local stacks. Each sub-transaction has a context
object on the stack. For convenience, we additionally
support flat-nested sub-transactions, which reuse an
existing object from the stack instead of creating a new
one for the current sub-transaction.

6 EXPERIMENTAL ANALYSIS

The goals of our experimental study are finding the
important parameters that affect the behavior of open
nesting, and based on those, identifying which work-
loads open nesting performs best in. We evaluate and
profile open nesting in our implementation. We quan-
tify any improvements in transactional throughput
relative to flat transactions and compare these with
the improvements enabled by closed nesting alone.
We focus in our study on micro-benchmarks with
configurable parameters.

6.1 Experimental settings
The performance of TFA-ON and SCORe-ON was ex-
perimentally evaluated using four distributed micro-
benchmarks, including three distributed data struc-
tures (skip-list, hash-table, binary search tree) and
an enhanced counter application, and two commer-
cial inspired benchmarks, such as TPC-C [5] and
ReTwis [14]. Each protocol was implemented in both

9

Hyflow and Infinispan, for a total of four implemen-
tations.

Our evaluation is focused mostly on TFA-
ON/Hyflow. Given that Hyflow is our DTM
framework research prototype, we were able to
easily collect a variety of metrics that allowed us to
perform a comprehensive analysis of open nesting
behavior. The remaining three implementations
(TFA-ON/Infinispan, SCORe-ON/Infinispan and
SCORe-ON/Hyflow) were evaluated at a higher
level, to confirm that our findings are still valid
across different base algorithms and different
software frameworks. Unfortunately, we cannot
compare our results with any competitor DTM, as
none of the two competitor DTM frameworks that
we are aware of support open nesting [3, 4].

For TFA-ON/Hyflow, we ran the micro-
benchmarks under flat [22], closed [24], and open
nesting for a set of parameters. We measured
transactional throughput relative to TFA’s flat
transactions. Each measurement is the average of
nine repetitions. Additionally, we quantify how much
time is spent under each nesting model executing the
various components of a transaction execution:
- Committed/aborted transactions.
- Committed/aborted sub-transactions (closed and

open nesting).
- Committed/aborted compensating/commit actions

(open nesting only).
- Waiting time after aborted (sub-)transactions (for

exponential back-off).
Other data that we recorded includes:
- Number of objects committed per (sub-)transaction.
- Which sub-transaction caused the parent transaction

to abort.
The skip-list, hash-table, and BST benchmarks in-

stantiate three objects each, then perform a fixed num-
ber of random set operations on them using increasing
number of nodes. Three important parameters char-
acterize these benchmarks:
- Read-only ratio (r) is the percentage of the total

transactions which are read-only. We used r 2
{20, 50, 80}.

- Number of calls (c) controls the number of data-
structure operations performed per test. Each op-
eration is executed in its own sub-transaction. We
used c 2 {2, 3, 4, 8}.

- Key domain size (k) is the maximum number of
objects in the set. Lower k values lead to increased
semantic conflicts. Unless otherwise stated, we used
k = 100.
The fourth micro-benchmark (enhanced counter) was

designed as a targeted experiment where the ac-
cess patterns of a transaction are completely config-
urable. Transactions access counter objects which they
read or increment. Transactions are partitioned into
three stages: the preliminary stage, the sub-transaction
stage, and the final stage. The first and last stages

(a) Skip-list

(b) Hash-table

Fig. 7. Performance relative to flat transactions, with c = 3
calls per transaction and varying read-only ratio. Both closed
nesting and open nesting are included. (TFA-ON/Hyflow)

are executed as part of the root transaction, while the
middle runs as a sub-transaction. Each stage accesses
objects from a separate pool of objects. The number
of objects in the pool, the number of accesses, and
the read-only ratio are configurable for each stage. We
also enable operation without acquiring abstract locks,
thus emulating fully commutative objects.

TPC-C is a popular benchmark modeled after a
commercial order-entry environment, and is repre-
sentative of modern online transactional processing
(OLTP) workloads. ReTwis is a clone of the popular
website Twitter, and approximates modern social-
networking inspired workloads. Both applications
were configured with medium/high contention work-
loads.

As testbed we used up to 48 nodes. Each node is an
AMD Opteron processor clocked at 1.9GHz. We used
the Ubuntu Linux 10.04 server OS and a network with
1ms end-to-end link delay.

6.2 Experimental results
We start with our TFA-ON/Hyflow experimental
study before we move on to the other implemen-
tations. For all the data-structure micro-benchmarks,
we observed that open nesting’s best performance
improvements occur at low read-only ratio work-
loads. For brevity, we only focus on skip-list and
hash-table in this paper. Figure 7 shows how open

10

(a) Hash-table 20% reads (b) Hash-table 50% reads

(c) Skip-list 20% reads (d) Skip-list 50% reads

Fig. 8. Performance relative to flat transactions at a fixed read-ratio with varying number of calls. Closed-nesting is depicted,
but the individual curves are not identified to reduce clutter. (TFA-ON/Hyflow)

nesting throughput climbs up to a maximum and
then falls off faster than either flat or closed nesting
as contention increases due to more nodes accessing
the same objects. Figure 7 also shows the effect that
read-only ratio has on the throughput. It is noticeable
that on read-dominated workloads, open nesting actu-
ally degraded performance. Closed-nesting constantly
stayed in the 0-10% improvement range throughout
our experiments (closed nesting behavior is uninter-
esting and will henceforth be either omitted from
the plots or shown without identification markers to
reduce clutter).

Fig. 9. Time spent in committed vs. aborted transactions,
on hash-table with r = 20 and c = 4. Lower lines (square
markers) represent time spent in committed transactions,
while the upper lines (circle markers) represent the total
execution time. The difference between these lines is time
spent in aborted transactions. (TFA-ON/Hyflow)

Focusing on write-dominated workloads (r = 20
and r = 50), Figure 8 shows how the maximum per-
formance benefit of open nesting generally increases
as the number of sub-transactions increases. For more
sub-transactions however, the benefit of open nesting
occurs at fewer nodes and falls off much faster with
increasing number of nodes. The maximum improve-
ments we have observed (with reduced key-domain,
k = 100) are 30% on skip-list with r = 20 and c = 4,
31% on hash-table with r = 20 and c = 8, and 29%
on BST with r = 20 and c = 8. On skip-list it is
noticeable that at high contention (c = 8) the region
of maximum benefit disappears and the performance
decreases monotonously.

These observations can be explained by examin-
ing how is the time spent when using open nest-
ing. Figure 9 shows how the time taken by success-
fully committed transactions under open nesting and
closed nesting increases at a similar rate. However,
open nesting has a significant overhead, caused by
the increased rate of commits. This effect is more
pronounced in read-dominated workloads, where ob-
ject updates are rare, and as a result, read-set early-
validations under flat-nesting are also rare (early-
validations are performed when a commit is detected
at another node). In open nesting however, the read-
set must be validated for every sub-transaction com-
mit, thus adding multiple network accesses to the
cost of successful transactions. Figure 10 shows that

11

(a) Hash-table

(b) Skip-list

Fig. 10. Overhead of successful open-nested transactions.
Plotted is the relative ratio of the average time taken by
successful open-nested transactions to the average time
taken by successful flat transactions. Closed-nested trans-
actions are also shown, with dotted markers and without
identification. (TFA-ON/Hyflow)

the average overheads of open nesting relative to
flat transactions (50-80% on hash-table and 40-50%
on skip-list) are significant and higher than that of
closed nesting (3-7% on hash-table and 5-16% on
skip-list). We observe the overheads are benchmark
dependent, and are lower for workloads which access
more objects in every sub-transaction. This is apparent
when comparing Figures 10(b) and 10(a), and further
experiments we have performed with higher nodal
levels on skip-list confirm our observation.

On the other hand, the time taken by aborted
transactions in open nesting (Figure 9) is much lower
at low node-counts, but increases rapidly for higher
node-counts. Examining the average time taken by
the various stages of a transaction (Figures 11(a)
and 11(b)), we see that the duration of transactions
(committed or aborted) does increase with increasing
number of nodes, but this increase is relatively small.
Moreover, individual failed transactions consistently
take less time than committed ones. Thus, the rapid
increase in total time taken by aborted transactions
(and therefore a decrease in overall throughput) can
only be explained if there is a significant increase
in the number of aborts. The data upholds this hy-
pothesis, as shown in Figure 12. Note that in our
data-structure benchmarks under open nesting, all

(a) Committed transactions

(b) Aborted transactions due to abstract lock ac-
quisition failure

Fig. 11. Breakdown of the duration of various components
of a transaction under open nesting, on hash-table with r =
20 and c = 4. (TFA-ON/Hyflow)

transaction (full) aborts are caused by abstract lock
acquisition failure. With respect to the top-level trans-
actions, abstract locks are acquired eagerly – when the
sub-transaction which performed the access commits.
When semantic conflicts are frequent, this strategy
will cause more aborts and lower performance com-
pared to TFA’s strategy, which defers all lock acquisi-
tions to the end of each top-level transaction.

Intuitively, the number of aborts is lower when
there are fewer sub-transactions competing for the
same number of locks, or when the number of avail-
able abstract locks is increased. These effects are also
illustrated in Figure 12. Increasing the number of calls
leads to a rapid increase in the number of aborts.
However, the key space k has a more pronounced
effect. Setting k = 1000 reduced the frequency of
semantic conflicts and abstract lock contention. As a
result, the number of aborts as compared to other
configurations in Figure 12 became negligible, and
thus the performance increase of open nesting is more
stable and more significant than for the cases we pre-
viously discussed. In Figure 13, we show throughput
increase up to 51% on skip-list (at c = 4 and r = 20)
and up to 167% on Hash-table (at c = 8 and r = 20).
Benefits for open nesting become possible even in
non-write-dominated workloads: with c = 3 on skip-
list, we have found 12% improvement at r = 80 and

12

(a) Hash-table

(b) Skip-list

Fig. 12. Number of aborted transactions under open nest-
ing, with various parameters. The figure shows the effect of
read-only ratio, number of calls, and key domain size. Note
that all aborts depicted in this plot are full aborts due to
abstract lock acquisition failure. The number of committed
transactions is fixed for each experiment. (TFA-ON/Hyflow)

21% improvement at r = 50.
In our enhanced counter micro-benchmark we

observed improvements consistent with our previ-
ous findings. However, these improvements only
manifested if the root transaction does not experi-
ence significant contention after the open-nested sub-
transaction commits. Any increase in contention at
this stage quickly leads to performance degradation.
This result is in agreement with the theory, as open
nesting releases isolation early, optimistically assum-
ing the parent will commit. Increased contention after
the open-nested sub-transaction contradicts this as-
sumption.

In the context of this benchmark we also briefly
experimented with fully commutative objects, by not
acquiring abstract locks at all. For our particular case,
this resulted in a further 20-30% performance benefit
for open nesting. Better improvements are however
entirely possible if the post-sub-transaction contention
is even lower (in our test, a majority of aborts were
caused by post-sub-transaction contention).

The evaluation of our other three implementations
are presented in Figures 14-17. The absolute numbers
differ due to differences in the underlying architecture
and benchmark configurations, but the general trends
are consistent to those in our comprehensive evalua-

(a) Skip-list

(b) Hash-table for r=20

Fig. 13. Throughput relative to flat nesting with increased
key space k = 1000 and write-dominated workloads r = 20.
(TFA-ON/Hyflow)

tion of TFA-ON/Hyflow. It is worth to mention that
some scalability bottleneck raises at high node count.
This is mainly because, given the uniform distribution
of shared objects in the system, the commit phase
of a sub-transaction involves more nodes when the
system’s size is large. As a results, more nodes have
to be contacted and thus transaction latency increases.

In TFA-ON/Infinispan (Figure 14) the relative
throughput sees an initial increase, followed by a
drop. The peak throughput is however wider and the
slopes in the graph are much gentler. This test was
configured with c = 3 and r = 0. To further investigate
such a performance drop, we measured the average
latency (including the aborted trials) and the abort
ratio of transactions in Figure 15. Hash-table and BST
do not show a significant amount of aborts, which
makes open-nesting less effective than skip-list. Given
that, at 24 and 48 nodes the cost of committing open-
nested transactions overweights the possible benefits,
which explains the drop in performance.

For both SCORe-ON implementations (Figures 16,
and 17) open nesting performs significantly worse at
low contention (fewer nodes), which can be attributed
by the inherent differences between TFA and SCORe
algorithms — since SCORe orders commit operations
using a commit queue, the overhead of extra commits
in the case of open nesting is greater. SCORe was
configured with the same settings as TFA, to make

13

Fig. 14. Relative throughput for TFA-
ON implementation in Infinispan.

Fig. 15. Latency and abort rate
for TFA-ON/Infinispan using 8, 24, 48
nodes. Results are normalized to the
lowest measurement per cluster.

Fig. 16. Relative throughput for
SCORe-ON implementation in Infin-
ispan using micro-benchmarks.

Fig. 17. Relative throughput for
SCORe-ON implementation in
Hyflow using micro-benchmarks.

Fig. 18. Relative throughput of
SCORe-ON and TFA in Hyflow using
TPC-C benchmark.

Fig. 19. Relative throughput of
SCORe-ON and TFA in Hyflow using
ReTwis benchmark.

the comparison fair. Objects were distributed across
nodes using a consistent hash function (as is standard
in Infinispan). The benchmark parameters were c = 7
and r = 0. We purposefully avoided read-only trans-
actions in these tests, as SCORe-ON would not need
to employ open nesting due to the consistent snapshot
reads (See Section 4.2).

To assess the performance of TFA-ON and SCORe-
ON when commercial inspired benchmarks are de-
ployed, we implemented the distributed version of
two well-known applications, namely TPC-C [5] (Fig-
ure 18) and ReTwis [14] (Figure 19). Both the applica-
tions have been integrated into the Hyflow framework

The performance of both the open nesting ap-
proaches using TPC-C is similar in terms of scala-
bility trend, but with different gains with respect to
the original (flat nesting) version of the code. The
reason of the showed speed up is mainly related
to the possibility of releasing a warehouse (i.e., stop
monitoring the modifications on the warehouse object
by removing it from the transaction read-set) immedi-
ately after its update and without keeping it until the
end of the transaction itself. Increasing the node count
increases also the contention, which becomes very
high given the characteristics of TPC-C. As a result,
the parallelism enabled by open nesting diminishes
along with the overall performance.

Figure 19 shows the results using ReTwis config-
ured with 500 users and 50 as maximum followers.
ReTwis behaves as a distributed hash-table where op-

erations include post, which appends a new message
to all of a user’s followers’ timeline, and get, which
retrieves said timeline for display. The overall perfor-
mance is determined by the post operation because it
modifies a significant number of objects. The benefits
stem from releasing isolation earlier, thus reducing
the probability of a conflict with another concurrent
post operation. SCORe-ON and TFA show similar
scalability, with a growing trend until the system
reaches its best throughput, and then a degradation
starting from 40 nodes. This drop in performance is
more accentuated on SCORe-ON, which observes a
rapid increase in the number of aborts at and above
40 nodes, due to the inherent characteristics of the
underlying commit protocol and the nature of the
workload (long transactions affecting many objects).

7 CONCLUSIONS
We presented TFA-ON and SCORe-ON, extensions to
two DTM algorithms with support for open nesting.
We determined that open nesting performance is lim-
ited by two factors: commit overheads and semantic
conflict rate. Semantic conflicts limit the scalability
of open nesting at higher node-counts, and depend
on the available key space for abstract locking. Com-
mit overheads determine the baseline performance of
open nesting, at lower node counts, under reduced
contention. We also confirmed that open nesting does
not apply well to workloads which incur contention
after the open-nested sub-transaction commits.

14

ACKNOWLEDGMENT
This work is supported in part by US National Science
Foundation under grants CNS 1116190, and CNS
1217385, and by US Air Force Office of Scientific
Research under grant FA9550-14-1-0187.

REFERENCES
[1] Kunal Agrawal, I.-Ting Angelina Lee, and Jim

Sukha. Safe open-nested transactions through
ownership. In PPOPP ’09.

[2] Philip A. Bernstein, Vassco Hadzilacos, and
Nathan Goodman. Concurrency Control and Recov-
ery in Database Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1987.

[3] Annette Bieniusa and Thomas Fuhrmann. Con-
sistency in hindsight: A fully decentralized stm
algorithm. In IPDPS ’10.

[4] Nuno Carvalho, Paolo Romano, and Luı́s Ro-
drigues. A generic framework for replicated
software transactional memories. In NCA ’11.

[5] TPC Council. TPC-C benchmark. 2010.
[6] Aditya Dhoke, Roberto Palmieri, and Binoy

Ravindran. On reducing false conflicts in dis-
tributed transactional data structures. In ICDCN,
pages 8:1–8:10, 2015.

[7] David Dice, Ori Shalev, and Nir Shavit. Transac-
tional locking ii. In DISC ’06.

[8] Hector Garcia-Molina. Using semantic knowl-
edge for transaction processing in distributed
database. ACM Trans. Database Syst., 8(2):186–213,
1983.

[9] Rachid Guerraoui and Michal Kapalka. On the
correctness of transactional memory. In PPoPP
’08.

[10] Rachid Guerraoui and André Schiper. Genuine
atomic multicast in asynchronous distributed
systems. Theor. Comput. Sci., 254(1-2):297–316,
March 2001.

[11] Maurice Herlihy and Eric Koskinen. Trans-
actional boosting: a methodology for highly-
concurrent transactional objects. In PPOPP ’08.

[12] Maurice Herlihy and J. Eliot B. Moss. Transac-
tional memory: Architectural support for lock-
free data structures. In ISCA ’93.

[13] Maurice Herlihy and Ye Sun. Distributed trans-
actional memory for metric-space networks. In
DISC ’05.

[14] Costin Leau. Spring data redis - retwis-j,
2013. http://docs.spring.io/spring-data/data-
keyvalue/examples/retwisj/current/.

[15] F. Marchioni and M. Surtani. Infinispan data grid
platform. PACKT Publishing, 2012.

[16] Michelle J. Moravan, Jayaram Bobba, Kevin E.
Moore, Luke Yen, Mark D. Hill, Ben Liblit,
Michael M. Swift, and David A. Wood. Support-
ing nested transactional memory in logtm. In
ASPLOS ’06.

[17] J. Eliot B. Moss. Nested Transactions: An Approach
to Reliable Distributed Computing. PhD thesis, MIT,
1981.

[18] J. Eliot B. Moss. Open nested transactions: Se-
mantics and support (poster). In Workshop on
Mem Perf Issues, 2006.

[19] J. Eliot B. Moss and Antony L. Hosking. Nested
tm: Model and architecture sketches. Sci Comp
Prog, 63(2):186–201, 2006.

[20] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai,
Antony L. Hosking, Richard L. Hudson, J. Eliot B.
Moss, Bratin Saha, and Tatiana Shpeisman. Open
nesting in software transactional memory. In
PPOPP ’07.

[21] Sebastiano Peluso, Paolo Romano, and Francesco
Quaglia. Score: A scalable one-copy serializable
partial replication protocol. In Middleware ’12.

[22] Mohamed M. Saad and Binoy Ravindran.
Hyflow: a high performance distributed software
transactional memory framework. In HPDC ’11.

[23] Alexandru Turcu and Binoy Ravindran. On open
nesting in distributed transactional memory. In
SYSTOR ’12.

[24] Alexandru Turcu, Binoy Ravindran, and Mo-
hamed M. Saad. On closed nesting in distributed
transactional memory. In TRANSACT ’12.

[25] Gerhard Weikum. Principles and realization
strategies of multilevel transaction management.
ACM Trans. Database Syst., 16(1):132–180, 1991.

Alexandru Turcu Alexandru Turcu received
the MEng in Digital Electronics in 2010,
from The University of Sheffield, UK, and
his PhD in Computer Engineering in 2015
from Virginia Tech, Blacksburg, Virginia. His
research interests include Distributed Sys-
tems, Transactional Memory and Transac-
tional Systems. He is currently a software
engineer at Google.

Roberto Palmieri received the BSc in com-
puter engineering, MSc and PhD degree in
computer science at Sapienza, University of
Rome, Italy. He is a Research Assistant Pro-
fessor in the ECE Department at Virginia
Tech. His research interests include explor-
ing concurrency control protocols for multi-
core systems, cluster and geographically dis-
tributed systems, with high programmability,
scalability, and dependability.

Binoy Ravindran is a Professor of Electri-
cal and Computer Engineering at Virginia
Tech, where he leads the Systems Software
Research Group, which conducts research
on operating systems, run-times, middle-
ware, compilers, distributed systems, fault-
tolerance, concurrency, and real-time sys-
tems. Ravindran and his students have pub-
lished more than 220 papers in these spaces,
and some of his group’s results have been
transitioned to the DOD. Dr. Ravindran is an

Office of Naval Research Faculty Fellow and an ACM Distinguished
Scientist.

