
1

Heterogenous Quorum-based Wakeup

Scheduling in Wireless Sensor Networks

Shouwen Lai, Student Member, IEEE, Binoy Ravindran, Senior

Member, IEEE, and Hyeonjoong Cho

Abstract

We present heterogenous quorum-based asynchronous wakeup scheduling schemes

for wireless sensor networks. The schemes can ensure that two nodes that adopt different

quorum systems as their wakeup schedules can hear each other at least once in bounded

time intervals. We propose two such schemes: cyclic quorum system pair (cqs-pair ) and

grid quorum system pair (gqs-pair ). The cqs-pair which contains two cyclic quorum systems

provides an optimal solution in terms of energy saving ratio for asynchronous wakeup

scheduling. To quickly assemble a cqs-pair, we present a fast construction scheme which is

based on the multiplier theorem and the (N, k, M, l)-difference pair defined by us. Regarding

the gqs-pair, we prove that any two grid quorum systems will automatically form a gqs-

pair. We further analyze the performance of both designs, in terms of average discovery

delay, quorum ratio, and energy saving ratio. We show that our designs achieve better trade-

off between the average discovery delay and quorum ratio (and thus energy consumption)

for different cycle lengthes. We implemented the proposed designs in a wireless sensor

network platform of Telosb motes. Our implementation-based measurements further validate

the analytically-established performance trade-off of our designs.
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1 INTRODUCTION

Wireless sensor networks (WSNs) have recently received increased attention for a

broad array of applications such as surveillance, environment monitoring, medical

diagnostics, and industrial control. As wireless sensor nodes usually rely on portable

power sources such as batteries to provide the necessary power, their power man-

agement has become a crucial issue. It has been observed that idle energy plays

an important role for saving energy in wireless sensor networks [1]. Most existing

radios (i.e., CC2420 [2]) used in wireless sensor networks support different modes,

like transmit/receive mode, idle mode, and sleep mode. In idle mode, the radio

is not communicating but the radio circuitry is still turned on, resulting in energy

consumption which is only slightly less than that in the transmitting or receiving

states. Thus, a better way is to shut down the radio as much as possible in idle

mode [1].

In order to save more idle energy, it is necessary to introduce a wakeup mech-

anism [3] for sensor nodes in the presence of pending transmissions. The major

objective of a wakeup mechanism is to maintain network connectivity while reducing

the idle state energy consumption. Existing wakeup mechanisms fall into three cate-

gories: on-demand wakeup [4], [5], scheduled rendezvous [6], [7], and asynchronous

wakeup [8], [9], as pointed out by the previous work [9].

In on-demand wakeup mechanisms [4], [5], [10], out-of-band signaling is used

to wake up sleeping nodes in an on-demand manner. For example, with the help

of a paging signal, a node listening on a page channel can be woken up. As page

radios can operate at lower power consumption, this strategy is very energy efficient.

However, it suffers from increased implementation complexity.

In scheduled rendezvous wakeup mechanisms, low-power sleeping nodes wake

up at the same time periodically to communicate with one another. Examples include

the S-MAC protocol [6], [7] and the multi-parent schemes protocol [3].

The third category, asynchronous wakeup [9], [11], is also well studied. Compared

to the scheduled rendezvous wakeup mechanism, asynchronous wakeup does not

require clock synchronization. In this approach, each node follows its own wakeup

schedule in idle state, as long as the wakeup intervals among neighbors overlap. To
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meet this requirement, nodes usually have to wakeup more frequently than in the

scheduled rendezvous mechanism. However, there are many advantages of asyn-

chronous wakeup, such as easiness in implementation and low message overhead

for communication. Furthermore, it can ensure network connectivity even in highly

dynamic networks.

The quorum-based wakeup scheduling paradigm, also called quorum-based power

saving (QPS) protocol [8], [12], has recently been proposed as a solution for asyn-

chronous wakeup scheduling. In a QPS protocol, the time axis on each node is evenly

divided into beacon intervals. Given an integer n, a quorum system defines a cycle

pattern, which specifies the awake/sleep scheduling pattern during n continuous

beacon intervals for each node. We call n the cycle length, since the pattern repeats

every n beacon intervals. A node may stay awake or sleep during each beacon

interval. QPS protocols can guarantee that at least one awake interval overlaps

between two adjacent nodes, with each node being awake for only O(
√

n) beacon

intervals.

Most previous works only consider homogenous quorum systems for asynchronous

wakeup scheduling [8], [12], which means that quorum systems for all nodes have

the same cycle length and same pattern. However, many WSNs are increasingly

heterogenous in nature—i.e., the network nodes are grouped into clusters, with

each cluster having a high-power cluster head node and low-power cluster member

nodes [13]. Thus, it is desirable that heterogenous sensor nodes (i.e., clusterheads and

cluster members) have heterogenous quorum-based wakeup schedules (or different

cycle lengthes).

We denote two quorums from different quorum systems as heterogenous quorums

in this paper. If two adjacent nodes adopt heterogenous quorums as their wakeup

schedules, they have different cycle lengthes and different wakeup patterns. The

heterogeneous quorum-based power saving problem (or h-QPS; defined formally in

Section 2.4) is therefore how to guarantee that two nodes with heterogenous quorums

as their wakeup schedules can discover each other within bounded delay in the

presence of clock drift.

In this paper, we present the heterogenous quorum system pair which can be applied
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as a solution for the problem of heterogeneous quorum-based power saving (h-

QPS, defined in Section 2.4) in wireless sensor networks, and propose two designs:

cyclic quorum system pair (cqs-pair) and grid quorum system pair (gqs-pair). For cqs-pair,

a fast constructing scheme is proposed via the multiplier theorem and (N, k, M, l)-

difference pair defined by us. The cqs-pair is an optimal design in terms of energy

saving ratios given a pair of cycle lengths (n and m, n ≤ m). The fast constructing

scheme can greatly improve the speed of finding an optimal quorum comparing with

previous exhaustive methods [14]. We also analyze the performance of cqs-pair in

aspects of expected delay (n−1
2

< E(delay) < m−1
2

), quorum ratio, energy saving ratio,

and practical issues on how to support multicast/broadcast. Regarding gqs-pair, the

prove that any two grid quorum systems can form a gqs-pair [14].

Comparing with the work in [9], our contributions are in three aspects: (1) we

explicitly propose a formal algorithm based on Multiplier Theorem [15] for quick

quorum scheduling assembling (i.e. O(n2)), especially for the case of n = q2 + q + 1.

This is the first formal algorithm for cyclic quorum construction; and (2) we propose a

solution to the heterogeneous cyclic quorum design which is referred as asymmetric

design and is claimed to be NP-complete in [9]. Although our work cannot address

the general case of asymmetric design, it provide a solution to a simple and practical

scenario: there are only two different schedules for the entire network; and (3) we

explicitly analyze the performance of cqs-pair and gqs-pair and highlight the trade-

off between average neighbor discovery and energy consumption ratio, which was

not done in previous work [9]. Comparing with our preliminary results in [16],

we propose an additional heterogenous quorum system pair, qps-pair and analyze

its performance in terms of average discovery delay and energy saving ratio. We

also present more implementation details over a wireless sensor network platform

of Telosb motes, and present extensive experimental evaluations to validate the

analytically-established performance trade-off of our designs.

With the help of the heterogenous quorum system pair, sensor nodes can achieve better

trade-off between energy consumption and average discovery delay. For example, in

a tiered topology [17], the cluster-heads or gateway nodes can select a quorum from

the system with smaller cycle length as their wake up schedules, to obtain smaller
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discovery delay. In addition, all members in a cluster can choose a quorum from the

system with longer cycle length as their wakeup schedules, in order to save more

idle energy.

The rest of the paper is organized as follows: In Section 2, we outline basic

preliminaries of quorum-based power-saving protocols. The detailed design of het-

erogenous quorum systems pair is discussed in Section 3. We present our cqs-pair

construction scheme in Section 4, and analyze the performance of cqs-pair and gqs-

pair in Section 5. We describe our implementation in Section 6, and report our

experimental measurements in Section 7. Finally, we overview past and related works

in Section 8 and conclude in Section 9.

2 PRELIMINARIES

2.1 Network Model and Assumptions

We represent a multi-hop wireless sensor network by a directed graph G(V, E),

where V is the set of network nodes (|V | = N ), and E is the set of edges. If node

vj is within the transmission range of node vi, then an edge (vi, vj) is in E. We

assume bidirectional links. The major objective of quorum-based wakeup scheduling

is to maintain network connectivity regardless of clock drift. Here, we use the term

“connectivity” loosely, in the sense that a topologically connected network in our

context may not be connected at any time; instead, all the nodes are reachable from

a node within a finite amount of time.

We also make the following assumptions: (1) All time intervals/slots have equal

lengthes (this is for convenient presentation); (2) At the beginning of a beacon inter-

val, beacon messages will be sent out so that nodes can hear each other; and (3) The

overhead of turning on and shutting down radio is negligibly small.

As for the first assumption, the length of one time interval depends on application-

specific requirements. For example, for a radio compliant with IEEE 802.15.4, the

bandwidth is approximately 128kb/s and a typical packet size is less than 512KB.

Given this, the slot length (i.e., the beacon interval) can be approximately 50ms.

Regarding the second assumption, the beacon message is adopted by a node to

inform its neighbors that it is awake.
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The third assumption, also adopted by previous works [8], [9], is for convenience

in theoretical analysis.

2.2 Quorum-based Power-Saving Protocols (QPS)

We use the following definitions for quorum system. Given a cycle length n, let

U = {0, · · · , n − 1} be an universal set. We will also use definitions from [15] to

denote Zn as an finite field of order n and (Zn, +) as an Abelian Group.

Definition 1: A quorum system Q under U is a superset of non-empty subsets of U ,

each called a quorum, which satisfies the intersection property: ∀G,H ∈ Q : G∩H 6=
∅.

Definition 2: Given an integer i ≥ 0 and quorum G in a quorum system Q under

U , we define the rotation of G by i by G + i = {(x + i) mod n : x ∈ G}.

Definition 3: A quorum system Q under U is said to have the rotation closure

property if ∀G,H ∈ Q, i ∈ {0, 1, ...n− 1}: G ∩ (H + i) 6= ∅.

The formal definition of a quorum system satisfying rotation closure property is

given in Definition 4.

Definition 4: Let A be a set in (Zn, +). For ∀g ∈ Zn, if A ∩ (A + g) 6= ∅, then

{A,A + 1, · · · , A + n − 1} is a quorum system which satisfying the rotation closure

property, and is defined as C(A,Zn).

There are two widely used quorum systems, grid quorum system and cyclic quorum

system, that satisfy the rotation closure property.

Grid quorum system [14]. In a grid quorum system, shown in Figure 1, elements

are arranged as a
√

n × √n array (square). A quorum can be any set containing a

column and a row of elements in the array. The quorum size in a square grid quorum

system is 2
√

n − 1. An alternative is a “triangle” grid-based quorum in which all

elements are organized in a triangle fashion. The quorum size in “triangle” quorum

system is approximately
√

2
√

n.

Cyclic quorum system [14]. A cyclic quorum system is based on the ideas of cyclic

block design and cyclic difference sets in combinatorial theory [15]. The solution set

can be strictly symmetric for arbitrary n. For example, the set {1, 2, 4} is a quorum

from a cyclic quorum system with cycle length = 7. Figure 1 illustrates three quorums
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Fig. 1. Cyclic Quorum System (left) and Grid Quorum System (right): Each arrange-

ment is a schedule. The slots with dark color correspond to wakeup slots and slots

marked by white color are sleeping slots. The overlap means two schedules have

wakeup slots in same position.

from a cyclic quorum system with cycle length 7. Based on Definition 4, the cyclic

quorum system containing the quorum {1, 2, 4} can be denoted as C({1, 2, 4},Z7) =

{{1, 2, 4}, {2, 3, 5} · · · , {7, 1, 3}}.

Previous work [8] has defined the QPS (quorum-based power-saving) problem as

follows: Given an universal set U = {0, 1, ...n − 1} (n > 2) and a quorum system Q
over U , two nodes that select any quorum from Q as their wakeup schedules must

have at least one overlap in every n consecutive time slots.

Theorem 1: Q is a solution to the QPS problem if Q is a quorum system satisfying

the rotation closure property.

Theorem 2: Both grid quorum systems and cyclic quorum systems satisfy the ro-

tation closure property and can be applied as a solution for the QPS problem in

wireless sensor networks.

Proofs of Theorems 1 and 2 can be found in [8].

2.3 Neighbor Discovery under Partial Overlap

Since sensor nodes are subject to clock drift, the time slots are not exactly aligned

to their boundaries in practical deployments. In most cases, two nodes only have

partial overlap during a certain time interval. It has been shown that two nodes that

adopt quorum-based wakeup schedules can discover each other even under partial

overlap.
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Fig. 2. Neighbor discovery under partial overlap

Theorem 3: [9] If two quorums ensure a minimum of one overlapping slot, then

with the help of a beacon message at the beginning of each slot, two neighboring

nodes can hear each others’ beacons at least once.

Theorem 3’s proof is presented in [9]. An illustration is given in Figure 2. Suppose

that node A’s quorum and node B’s quorum intersect with each other in the first

element and that the clock drift between the two nodes is ∆t (1 slot < ∆t < 2 slots).

We can see that node A’s 1st beacon message in the current cycle (beacon messages

are marked with solid lines) will be heard by node B during node B’s 2nd time slot

interval in its current cycle. Meanwhile, node B’s 2nd beacon message in the current

cycle will be heard by node A during its nth time slot interval in the previous cycle

(beacon messages are marked with dash lines).

This theorem ensures that two neighboring nodes can always discover each other

within bounded time if all beacon messages are transmitted successfully. This prop-

erty also holds true even in the case when two originally disconnected subsets of

nodes join together as long as they use the same quorum system.

2.4 Heterogeneous Quorum-Based Power Saving (h-QPS)

We introduce the h-QPS (heterogeneous quorum-based power saving) problem in

this section. In WSNs, it is often desirable that different nodes wakeup according

to heterogeneous quorum-based schedules. There are several reasons for this. First,
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many WSNs have heterogeneous nodes such as cluster-heads, gateways, and relay

nodes [18]. They often have different requirements regarding average neighbor dis-

covery delay and energy saving ratio. For cyclic quorum systems, generally, cluster-

heads should wakeup based on a quorum system with small cycle length, and

member nodes should wakeup based on a longer cycle length. Second, WSNs that

are used in applications such as environment monitoring typically have seasonally-

varying power saving requirements. For example, a sensor network for wild fire

monitoring may require a larger energy saving ratio during winter seasons. Thus,

they often desire variable cycle-length wakeups during different seasons.

However, in the transition from a lower duty cycle to a larger duty cycle due

to seasonal change, some early updated nodes may have larger cycle (i.e., n=13),

whereas its neighbor may be still operating with original low cycle (i.e., n=7). In this

scenario, two neighbor nodes have heterogeneous wakeup scheduling, we should

address the non-empty intersection problem to secure neighbor discovery in such

scenario.

We define the h-QPS problem as follows. Given two heterogeneous quorum sys-

tems X over {0, 1, · · · , n − 1} and Y over {0, 1, · · · , m − 1} (n ≤ m), design a pair

(X ,Y) in order to guarantee that:

1) two nodes that select two quorums G ∈ X and H ∈ Y as their wakeup schedules,

respectively, can hear each other at least once within every m consecutive slots;

and

2) X and Y are solutions to QPS, individually.

The problem is non-trivial since the super problem of asymmetric design [9] is NP-

complete. Our approach is not to address the whole problem of asymmetric design

where there are non-empty intersection among multiple quorum systems (i.e. ≥ 3),

but to consider a simple scenario where there are only two different systems.

A solution to the h-QPS problem is important toward ensuring connectivity when

we want to dynamically change the quorum systems between all nodes. For example,

suppose that all nodes in a WSN initially wakeup via a larger cycle length. When

there is a need to reduce the cycle length (e.g., to meet a delay requirement or due to

changing seasons), the sink node can send a request to the whole network gradually
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through some relay nodes. If a source node changes its wakeup scheduling first but

the relay nodes keep unchanged, the two nodes may have heterogeneous wakeup

scheduling. The connectivity between them will be lost when the two heterogeneous

wakeup schedules do not have non-empty intersection property.

Although cqs and qps can be applied as a solution for the QPS problem, that does

not necessarily mean that any pair of such systems can be a solution to the h-QPS

problem. We will show this in Section 3.2.

3 HETEROGENOUS QUORUM SYSTEM PAIR

3.1 Heterogeneous Rotation Closure Property

First, we define a few concepts to facilitate our presentation.

Definition 5: (p-extension). Given two positive integers n and p, for a set A =

{ai|1 ≤ i ≤ k, ai ∈ Zn}, the p-extension of A is defined as Ap = {ai + j ∗ n|1 ≤
i ≤ k, 0 ≤ j ≤ p−1, ai ∈ Zn}. For a quorum system Q = {A1, · · · , Am}, the p-extension

of Q is defined as Qp = {Ap
1, · · · , Ap

m}.

Since time axes is infinite, the physical meaning of p-extension of a schedule is

same as the original schedule. Thus, p-extension is just a different logical presen-

tation for a specified schedule of a quorum system. Example: Let A = {1, 2, 4} in

(Z7, +). Now, A3 = {1, 2, 4, 8, 9, 11, 15, 16, 18} in (Z21, +). If a quorum system Q =

{{1, 2, 4}, {2, 3, 5}, · · · , {7, 1, 3}}, then we have Q2 = {{1, 2, 4, 8, 9, 11}, {2,
3, 5, 9, 10, 12}, {3, 4, 6, 10, 11, 13}, · · · , {7, 1, 3, 14, 8, 10}}.

Definition 6: (Heterogeneous rotation closure property). Given two positive integers

N and M where N ≤ M and p = dM
N
e, consider two quorum systems X over the

universal set {0, · · ·N−1} and Y over the universal set {0, · · ·M−1}. The pair (X ,Y)

is said to satisfy the heterogeneous rotation closure property if :

1) ∀G ∈ X p, H ∈ Y , i ∈ N+: G ∩ (H + i) 6= ∅, and

2) X and Y satisfy the rotation closure property (Definition 1), respectively.

Example: Let A = {1, 2, 4} in (Z7, +) and B = {1, 2, 4, 10} in (Z13, +). Consider

two cyclic quorum systems QA = C(A,Z7) and QB = C(B,Z13). Now, QA
2 =

C({1, 2, 4, 8, 9, 11},Z14). We can verify that any two quorums from QA
2 and QB
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Fig. 3. Heterogenous rotation closure property between two cyclic quorum systems:

A with cycle length of 7 and B with cycle length of 21. A quorum from A’s p-extension

Ap will overlap with a quorum from B.

must have non-empty intersection. Thus, the pair (QA,QB) satisfies the heterogeneous

rotation closure property.

Lemma 1: If two quorum systems X and Y satisfy the heterogeneous rotation

closure property, then the pair (X ,Y) is a solution to the h-QPS problem.

Proof: According to Definition 6, if two quorum systems X and Y satisfy the

heterogeneous rotation closure property, a quorum G from X and a quorum H

from Y must overlap at least once within the larger cycle length of X and Y . Thus,

two nodes can hear each other if they select G and H as their wakeup schedules,

respectively, based on Theorem 3. This implies that (X ,Y) is a solution to the h-QPS

problem.

Example: In Figure 3, there are two cyclic quorum systems C(A,Z7) and C(B,Z21).

Since they have different cycle lengthes, we extend A’s cycle by 3 (3 = d21
7
e) times

and denote its extension as Ap. Now, Ap will have an intersection with B within 21

time slot intervals. We can further verify that B and its rotations will overlap with

Ap. Thus, (C(A,Z7), C(B,Z21)) has the heterogeneous rotation closure property and it

can be a solution to the h-QPS problem.

Negative example: In Figure 4, A = {3, 5, 6} and B = {7, 9, 14, 15, 18} are from two

cyclic quorum systems C(A,Z7) and C(B,Z21). We extend A’s cycle by 3 (3 = d21
7
e)

times and denote its extension as Ap = {3, 5, 6, 10, 12, 13, 17, 19, 20}. Now, Ap ⋂
B = ∅,

which means that (C(A,Z7), C(B,Z21)) does not stratify the heterogeneous rotation

closure property and it can NOT be a solution to the h-QPS problem.
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A ={3,5,6}

{ 9 8}

cycle length =7

B={7,9,14,15,18}

B =

cycle length =21

p
A (P=3)

p
A ={3,5,6,10,12,13,17,19,20}

Fig. 4. Two quorums do not satisfy heterogenous rotation closure property although

they are from cyclic quorum systems respectively.

3.2 Cyclic Quorum System Pair (CQS-Pair)

In this section, we present one design of heterogenous quorum systems: cqs-pair

which is based on the cyclic block design concept and cyclic difference sets in

combinatorial theory [15]. We first review two definitions which were originally

introduced in [14].

Definition 7: (N, k, λ)- difference set. A set D : {a1, ..., ak}( mod N), ai ∈ [0, N−1],

is called a (N, k, λ)-difference set if for every d 6= 0 , there are exactly λ ordered pairs

(ai, aj), ai, aj ∈ D such that ai − aj ≡ d (modN).

We now introduce a new definition which is extended from (N, k, λ)- difference

set.

Definition 8: (N, k, M, l)-difference pair. Suppose N ≤ M and p = dM
N
e. Suppose

there are sets A : {a1, · · · ak} in (ZN , +) and B : {b1, · · · bl} in (ZM , +). The pair (A,B)

is defined as a (N, k, M, l)-difference pair if ∀d ∈ {0, · · · ,M − 1}, there exists at least

one ordered pair bi ∈ B and ap
j ∈ Ap such that bi − ap

j ≡ d (mod M).

Consider an example where A = {1, 2, 4} and B = {1, 3, 6, 7} be two subsets in

(Z7, +) and (Z13, +), respectively. Then (A,B) is a (7, 3, 13, 4)-difference pair, since for

A2 ({1, 2, 4, 8, 9, 11}) and B, there exists at least one ordered pair bi ∈ B and ap
j ∈ Ap

such that bi − ap
j ≡ d (mod M) for ∀d ∈ {0, · · · ,M − 1}.

1 ≡ 3− 2 2 ≡ 6− 4 3 ≡ 1− 11 4 ≡ 6− 2 5 ≡ 6− 1

6 ≡ 7− 1 7 ≡ 3− 9 8 ≡ 6− 11 9 ≡ 7− 11 10 ≡ 1− 4

11 ≡ 6− 8 12 ≡ 1− 2 13 ≡ 1− 1

(mod 13)

Definition 9: cyclic quorum system pair (cqs-pair). Given two cyclic quorum X =
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C(A,ZN) and Y = C(B,ZM), suppose N ≤ M . We call (X ,Y) a cqs-pair if: ∀(A+ i)p ⊆
X p and (B + j) ⊆ Y , (A + i)p ∩ (B + j) 6= ∅.

Theorem 4: Given two cyclic quorum X = C(A,ZN) and Y = C(B,ZM) (N ≤ M ),

the pair (X ,Y) is a cqs-pair if and only if: (A,B) is a (N, k, M, l)-difference pair.

Proof: We first prove the following claim (sufficient condition): if (A,B) is a

(N, k, M, l)-difference pair, we have ∀(A+i)p ⊆ X p and (B+j) ⊆ Y , (A+i)p∩(B+j) 6=
∅. Without loss of generality, we assume that j > i regarding two sets Bi and Ap

j ,

where p = dM
N
e. Consider the rth element of Bi and sth element of Ap

j , denoted by

bi,r and ap
j,s, respectively. We will now show that bi,r = ap

j,s.

Let the rth element of B be br and the sth element of Ap be ap
s. Then bi,r − ap

j,s =

(br − ap
s + i − j) mod M . According to the definition of (N, k, M, l)-difference pair,

there must be some r and s such that br − ap
s ≡ j − i (mod M). Therefore, we can

always choose a pair of r and s such that bi,r − ap
j,s ≡ 0 (mod M). This implies that

Bj ∩ AP
i 6= ∅.

Now we prove the another claim (necessary condition): if ∀(A + i)p ⊆ X p and

(B + j) ⊆ Y , (A+ i)p∩ (B + j) 6= ∅, we have that(A, B) is a (N, k, M, l)-difference pair.

We prove the necessity by contradiction. Assume that Bj ∩AP
i 6= ∅, but (A,B) is not

a (N, k, M, l)-difference pair. Then, there exists a number ∈ {0, · · · ,M − 1}, say t, for

which bi − ap
j 6= t (mod M), ∀i, j.

Consider the rth element of Bt and the sth element of Ap. We have bt,r − ap
s ≡

br − ap
s + t (mod M). Since Bt ∩ AP

i 6= ∅, bt,r − ap
s = 0 for some r and s. This implies

that br − ap
s ≡ t (mod M) for some r and s, which contradicts the derivation of

bi − ap
j 6= t (mod M) ∀i, j from the assumption. Therefore, the theorem holds.

Corollary 1: Given a cyclic quorum system X , (X ,X ) is a cqs-pair.

Theorem 5: The cyclic quorum system pair (cqs-pair) is a solution to the h-QPS

problem.

Proof: According to the definition of cqs-pair, a cqs-pair satisfies the heteroge-

neous rotation closure property. Thus, the cqs-pair can be a solution to the h-QPS

problem according to Lemma 1.

Example 1: Let A = {1, 2, 4} and X = C(A,Z7); B = {7, 9, 14, 15, 18} and Y =

C(B,Z21). The pair (X ,Y) is a cqs-pair, as illustrated in Figure 3. Also, both (X ,X )
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and (Y ,Y) are cqs-pairs.

Example 2: Let A = {3, 5, 6} and B = {7, 9, 14, 15, 18}. The pair (X ,Y) is not a

cqs-pair, although X and Y are cqs, respectively, as illustrated in Figure 4.

3.3 Grid Quorum System Pair

Now, we introduce another design, grid quorum system pair (gqs-pair) of heterogenous

quorum systems.

Definition 10: Grid quorum system pair (gqs-pair). If a quorum in a grid quorum

system contains one row and one column of elements, the gqs-pair is a pair consisting

of any two qps.

Lemma 2: The gqs-pair satisfies the heterogeneous rotation closure property and

can be a solution to the h-QPS problem.

Proof: It has been proven in [8] that the grid quorum system satisfies the rotation

closure property. Thus, we only need to prove that for two grid quorum systems X
over {0, · · · , n − 1} and Y over {0, · · · ,m − 1} (n ≤ m, p = dm

n
e), ∀Gp ∈ X p, H ∈ Y ,

i ∈ {0, · · ·M − 1}, there is Gp ∩ (H + i) 6= ∅ or (G + i)p ∩H 6= ∅.

Consider a quorum G from X which contains all elements in the column c, namely

c,c +
√

n,· · · ,c +
√

n(
√

n − 1), where 0 ≤ c <
√

n. Then, a quorum (G + i)p from the

p− extension of X contains elements, which has the largest distance of
√

n between

any two consecutive elements. (G + i)p must have an intersection with H since H

contains a full row which has
√

m (≥ √
n) consecutive integers. Thus, the grid quorum

system pair satisfies the heterogeneous rotation closure property and can be a solution

to the h-QPS problem.

An illustration on the heterogeneous rotation closure property of the gqs-pair is

given in Figure 5. There are two grid quorum systems in Figure 5, A with the size

of 4×4 and B with the size of 6×6. Without considering clock drift, we can see that

A’s quorums will intersect with B’s quorums in the 10th, 3rd, 7th, and the 12th slot.

4 CONSTRUCTION SCHEME FOR CQS-PAIR

It is straightforward to construct a gqs-pair since it contains two arbitrary grid quorum

systems. Therefore, we only discuss the construction of cqs-pair, which is non-trivial.
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Fig. 5. An example grid quorum system pair and its rotation closure property: grid

quorum system A has a grid 4 × 4 and B has a grid 6 × 6. A quorum from A and a

quorum from B overlap at 3 slots with B’s cycle length.

In previous works, exhaustive search has been used to find an optimal solution for

the cyclic quorum design [14]. This is not practical when cycle length (n) is large. In

this section, we first present a fast construction scheme for cyclic quorum systems

and then apply it to the design of a cqs-pair.

4.1 Multiplier Theorem

We introduce a few concepts to facilitate our presentation.

Definition 11: Let D be a (v, k, λ)-difference set in an Abelian group (G, +) of order

v. For an integer m, we define

mD = {mx : x ∈ D}

Then, m is called a multiplier of D if mD = D + g for some g ∈ G. Also, we say that

D is fixed by the multiplier m if mD = D.

Example: The set D = {0, 1, 5, 11} is a (13, 4, 1)-difference set in (Z13, +). Then,

3D = {0, 2, 3, 7} = D + 2, and hence 3 is a multiplier of D.

Definition 12: Automorphism. Suppose (X,A) is a design. A transform function α

is an automorphism of (X,A) if

[{α(x) : x ∈ A} : A ∈ A] = A

.
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Definition 13: Disjoint cycle representation: The disjoint cycle representation of a

set X is a group of disjoint cycles in which each cycle has the form (x α(x) α(α(x)) · · · )
for some x ∈ X .

Suppose the automorphism is x 7→ 2x mod 7. The disjoint cycle representation of

Z7 is as follows: (0) (1 2 4) (3 6 5).

Theorem 6: (Multiplier Theorem). Suppose there exists a (v, k, λ)-difference set D.

Suppose also that the following four conditions are satisfied:

1) p is prime;

2) gcd(p, v) = 1;

3) k − λ ≡ 0 (mod p); and

4) p > λ.

Then p is a multiplier of D.

Theorem 7: Suppose that m is a multiplier of a (v, k, λ)-difference set D in an

Abelian group (G, +) of order v. Then there exists a translate of D that is fixed

by the multiplier m.

The proofs of Theorem 6 and Theorem 7 are given in [15]. According to the

Theorem of Singer Difference Set, there must exist a (q2 + q + 1, q + 1, 1)-difference

set when q is a prime power. Thus, we only consider the (q2 + q + 1, q + 1, 1)-design,

where q is a prime power, in our construction scheme.

In the following, we first give an example to illustrate the application of the

Multiplier Theorem for the construction of difference sets.

Example. We use the Multiplier Theorem to find a (21, 5, 1)-difference set. Observe

that p = 2 satisfies the conditions of Theorem 6. Hence 2 is a multiplier of any such

difference set. By Theorem 7, we can assume that there exists a (21, 5, 1)-difference

set in (Z21, +) that is fixed by the multiplier 2. Therefore, the automorphism is α(x) 7→
2x mod 21. Thus, we obtain the disjoint cycle representation of the permutation

defined by α(x) of Z21 as follows:

(0) (1 2 4 8 16 11) (3 6 12) (5 10 20 19 17 13) (7 14) (9 18 15)

The difference set we are looking for must consist of a union of cycles in the list

above. Since the difference set has a size five, it must be the union of one cycle of
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length two and one cycle of length three. There are two possible ways to do this,

both of which happen to produce the difference set:

(3 6 7 12 14) and (7 9 14 15 18)

With the Multiplier Theorem, we can quickly construct (q2+q+1, q+1, 1)-difference

sets, where q is a prime power. This mechanism significantly improves the speed of

finding the optimal solution relative to the exhaustive method in [14].

After obtaining the difference sets, we use Theorem 4 to build a cqs-pair.

4.2 Verification Matrix

Armed with Theorem 4, we adopt a verification matrix to check the non-empty

intersection property of two heterogeneous difference sets.

Suppose that A = {a1, a2, · · · , ak} in (ZN , +) and B = {b1, b2, · · · , bl} in (ZM , +)

where N ≤ M and p = dM
N
e. The verification matrix is defined as a pk × l matrix

Ml×pk whose element mi,j is equal to (bi − ap
j ) mod M , where ap

j ∈ Ap, as shown

below:

Ml×pk =




b1 − ap
1 · · · b1 − ap

pk

... bi − ap
j · · ·

bl − ap
1 · · · bl − ap

pk




We can check whether (A,B) is a heterogeneous cyclic coterie pair by checking whether

Ml×pk contains all elements from 0 to M − 1 or not. If the checking result is true, it

means that:

∀d ∈ {0, · · · ,M − 1}, ∃bi ∈ B and ap
j ∈ Ap, bi − ap

j ≡ d (mod M).

This indicates that (A,B) is a heterogeneous cyclic coterie based on Theorem 4. Other-

wise, (A,B) is not a heterogeneous cyclic coterie. (An example of the verification matrix

will be shown in Section 4.4.)

If two quorum systems C(AN ,ZN)) and C(BM ,ZM)) are cyclic quorum systems,

respectively, we can verify whether the pair [C(AN ,ZN)), C(BM ,ZM)] is a cqs-pair

by checking whether or not the verification matrix constructed from A and B contains

all elements from 0 to M − 1.
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4.3 Construction Algorithm

In our proposed algorithm for constructing a cqs-pair, we only consider cyclic quo-

rum systems with a cycle length of (q2 + q + 1, q + 1, 1), where q is a prime power.

This is because, we can prove that when q is a prime power, there must exist a

(q2 + q + 1, q + 1, 1)-difference set in (Zq2+q+1,q+1,1, +) [15].

We describe our algorithm for constructing a cqs-pair at a high-level of abstraction

in Algorithm 1. The input of the algorithm is two numbers n and m, which satisfy

n = q2 + q + 1 and m = r2 + r + 1 and where q and r are prime powers.

By employing our construction algorithm, for two different integers n and m that

satisfy n = q2+q+1 and m = r2+r+1 (q and r being two prime powers, n ≤ m), it will

take O(n2) and O(m2) time to build the disjoint cycle representations, respectively. After

that, the algorithm will check u × v × l × pk ≈ uvm3/2n−1/2 elements, since l ≈ √
m

and k ≈ √
n, where u and v are numbers of (n, k, 1)-difference sets and (m, l, 1)-

difference sets, respectively. Thus, the total time complexity is O(uvm3/2n−1/2 + m2)

for constructing a cqs-pair with input parameters n and m (n ≤ m).

4.4 A Complete Application Example

As an example, consider n = 7 and m = 21. By the Multiplier Theorem, we can

easily obtain two (7, 3, 1)-difference sets {1, 2, 4} and {3, 6, 5} in (Z7, +). Similarly,

there are two (21, 5, 1)-difference sets, {3, 6, 7, 12, 14} and {7, 9, 14, 15, 18} in (Z21, +).

Let A7 = {1, 2, 4}, B7 = {3, 6, 5}, A21 = {3, 6, 7, 12, 14}, and B21 = {7, 9, 14, 15, 18}.

Totally, there are four pairs of (7, 3, 1)-difference sets and (21, 5, 1)-difference sets.

First, we check the pair (C(A7,Z7), C(A21,Z21)). The constructed verification matrix

is as follows: 


2 1 20 16 15 13 9 8 6

5 4 2 19 18 16 12 11 9

6 5 3 20 19 17 13 12 10

11 10 8 4 3 1 18 17 15

13 12 10 6 5 3 20 19 17




We find that 7 and 14 are not in the matrix. Thus, the pair (C(A7,Z7), C(A21,Z21)) is

not a cqs-pair. Similarly, we can check that (C(B7,Z7), C(B21,Z21)) is not a cqs-pair.
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Algorithm 1 Constructing cqs-pair
Require: n = q2 + q + 1 and m = r2 + r + 1, q, r are prime powers

n ← q2 + q + 1

m ← r2 + r + 1

pa ← Multiplier of (n, k, 1)-difference set

pb ← Multiplier of (m, l, 1)-difference set

αn(x) ← pa · x (mod n)

αm(x) ← pb · x (mod m)

Construct the disjoint cycle representation for Zn with αn(x)

Construct the disjoint cycle representation for Zm with αm(x)

u ←#Num of unions of disjoint cycle being (n, k, 1)-difference set

{A1, · · · , Au} ← the set of unions of disjoint cycles being (n, k, 1)-difference set

v ←#Num of unions of disjoint cycle being (m, l, 1)-difference set

{B1, · · · , Bv} ← the set of unions of disjoint cycles being (m, l, 1)-difference set

for i = 1 to u do

for j = 1 to v do

Mi,j ← verification matrix (Ai, Bj)

Xi ← C(Ai,Zn)

Yj ← C(Bj,Zm)

if Mi,j contains all elements from 0 to m− 1 then

(Xi,Yj) is a cqs-pair

else

(Xi,Yj) is not a cqs-pair

end if

end for

end for
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But (C(A7,Z7), C(B21,Z21)) and (C(B7,Z7), C(A21,Z21)) are cqs-pairs, respectively.

The cqs-pair can be applied to WSNs for dynamically changing the quorum system

(i.e., the cycle length) at each node, in order to meet end-to-end delay constraints

and without loosing network connectivity. Table 1 shows the available pairs for cycle

lengthes ≤ 21.

TABLE 1

cqs-pair (for n,m ≤ 21)

cycle length

7 13 21

A7 = {1, 2, 4} A13 = {0, 1, 3, 9} A21 = {3, 6, 7, 12, 14}
B7 = {3, 5, 6} B13 = {0, 2, 6, 5} B21 = {7, 9, 14, 15, 18}

C13 = {0, 4, 12, 10}
D13 = {0, 7, 8, 11}

7

(C(A7,Z7), C(A7,Z7)) (C(A7,Z7), C(A13,Z13)) (C(A7,Z7), C(B21,Z21))

(C(B7,Z7), C(B7,Z7)) (C(A7,Z7), C(B13,Z13)) (C(B7,Z7), C(A21,Z21))

(C(B7,Z7), C(C13,Z13))

(C(B7,Z7), C(D13,Z13))

13

(C(A13,Z13), C(A13,Z13)) (C(B13,Z13), C(A21,Z21))

(C(B13,Z13), C(B13,Z13))

(C(C13,Z13), C(C13,Z13))

(C(D13,Z13), C(D13,Z13))

5 PERFORMANCE ANALYSIS

5.1 Average Discovery Delay

We denote the average discovery delay as the time between data arrival and discovery

of the adjacent receiver (i.e., the simultaneous wake-up of two nodes). Note that this

metric does not include the time for delivering a message.

Suppose that the length of one time slot is 1.

Theorem 8: The average discovery delay between two nodes that wakeup based

on quorums from the same cyclic quorum system adopting the (n, k, 1)-difference set

is:

E(Delay) =
n− 1

2
.
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Proof: Let the k elements in (n, k, 1)-difference set be denoted as a1, a2, · · · , ak.

If a node has a message that arrived during the ith time slot, the expected delay

(from data arrival to the simultaneous wake-up of two nodes) is 1
k
(a1 − i) mod n +

1
k
(a2 − i) mod n + · · · + 1

k
(ak − i) mod n. If a message has arrived, the probability of

the message arriving during the ith time slot is 1
n

. Thus, the expected delay (average

delay) is:

E(Delay) =
1

n
[
1

k
(a1 − 1) mod n +

1

k
(a2 − 1) mod n + · · ·+ 1

k
(ak − 1) mod n

+
1

k
(a1 − 2) mod n +

1

k
(a2 − 2) mod n + · · ·+ 1

k
(ak − 2) mod n

+ · · · · · ·

+
1

k
(a1 − n) mod n +

1

k
(a2 − n) mod n + · · ·+ 1

k
(ak − n) mod n]

=
1

nk
· (k · 1 + k · 2 + · · ·+ k · n− 1) =

n− 1

2

Corollary 2: The average discovery delay between two nodes that wakeup based

on a cqs-pair in which two cyclic quorum systems have cycle lengthes n and m (n ≤ m),

respectively, is:
n− 1

2
< E(Delay) <

m− 1

2
.

Corollary 2 indicates that the average discovery delay between two nodes that adopt

a cqs-pair is bounded. When the average one-hop delay constraint is D, we must

meetm−1
2
≤ D.

Theorem 9: The average discovery delay between two nodes that wakeup based

on quorums from the same grid quorum system with a grid of
√

N ×√N elements is:

E(Delay) =
(N − 1)(

√
N + 1)

3
√

N
.

The detail proof is presented in Appendix A.

Corollary 3: The average discovery delay between two nodes that wakeup based

on a gqs-pair in which two grid quorum systems adopt a grid of
√

n × √n and a

grid of
√

m×√m, respectively, is:

(n− 1)(
√

n + 1)

3
√

n
< E(Delay) <

(m− 1)(
√

m + 1)

3
√

m
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.

The proof for Corollary 3 is not difficult so that we omit it.

5.2 Optimal Quorum Ratio and Energy Conservation

We define quorum ratio, denoted φ, as the proportion of the beacon intervals that is

required to be awake in each cycle. Correspondingly, the energy conservation ratio

of a node is 1− φ.

As claimed in [14], Cqs is an optimal design where the optimality means given a

schedule with cycle length n, cqs design has the minimum quorum size k to make

sure there is always not-empty intersection between this schedule and any rotations

of the schedule. This is not difficult to explain. As discussed in Section 4, a cqs

design is based on (q2 + q + 1, q + 1, 1)-difference set which means given a qualified

set A = {a1, ..., ak}( mod N), there is exactly one ordered pairs (ai, aj), ai, aj ∈ A such

that ai − aj ≡ d (modN) for every d 6= 0. Any reduction of elements in A will lead

that ai − aj ≡ d (modN) for every d 6= 0 cannot be met. Thus, given a cycle length

n where n = q2 + q + 1 and q is a prime power, for a cqs schedule which is based

on a (n, k, 1)-difference set, its quorum ratio is the minimum one among all possible

designs.

We restrain to the case of n = q2 +q+1 is because the authors in [15] have proved

that a (q2 + q + 1, q + 1, 1)-difference set exists and that the optimal quorum ratio is

φ = q+1
q2+q+1

for such a cyclic quorum system.

For a cqs-pair, the quorum ratios for systems in the pair which are based on (N, k, M, l)-

difference pair are:

φ1 =

√
4N − 3 + 1

2N
and φ2 =

√
4M − 3 + 1

2M

respectively, where n = q2 + q +1 and q is a prime power. Since cqs has optimal quo-

rums ratio, the two systems in the cqs-pair have optimal quorum ratio respectively.

For a grid quorum system with
√

n×√n grid, the quorum ratio is:

φ =
2
√

n− 1

n
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and the corresponding energy saving ratio is:

1− φ = 1− 2
√

n− 1

n
.

Recalling the average discovery delay in Section 5.1, we can observe that there is

a trade-off between the average delay and the quorum ratio. Larger the cycle length

of a quorum system, larger is the discovery delay, but smaller is the quorum ratio.

6 IMPLEMENTATIONS OF CQS-PAIR AND QQS-PAIR

We implemented heterogenous quorum systems in a WSN platform comprised of

Telosb motes [19]. There are three key issues in converting the Cqs-pair and Qqs-

pair concepts into practical implementations. The first key issue is to ensure that two

nodes can discover each other in the presence of clock drift. The second one is that

a node should keep awake if there is pending data for receiving or for transmitting.

The third issue is how to support multicast or broadcast.

6.1 Beacon Messages

Previous work on the implementation of QPS protocol over IEEE 802.11 adopts the

concept of ATIM (Ad hoc Traffic Indication Map) windows [12], in which a node can

optionally enter the sleep mode if it receives no ATIM frame in an ATIM window.

In our implementation, we do not use the notion of ATIM windows. We define

the time interval that a node is scheduled to be awake as an active slot, and the time

interval that the node is scheduled to sleep as a silent slot. In an active slot, a node has

to transmit its own beacon message to inform its neighbors about its wakeup status,

and listen to beacons from other nodes for which it may have buffered packets that

are waiting for transmission.

In our scheme, to ensure the correctness of the protocol, a node remains awake

throughout its entire active slot. It may be possible for nodes to be only partially

awake during their active slots – such optimizations can be considered in future

works. In a silent slot, a node will shut down its radio.

The beacon message contains three fields:{indic, node id, time stamp}. The indic

field can have only two types of value: indic=0, which indicates that the message
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Fig. 6. Power Management at the Transmitter Side: Communication Schedule and

Wakeup schedule

is a beacon message, and indic = 1, which indicates that the message is data. The

node id field is used to distinguish among different nodes. The time stamp field is

used to identify whether or not two beacon messages are identical.

Collision is inevitable in some case if all nodes send beacons simultaneously at

the beginning of an interval. The collisions in the proposed protocol can be detected

if a node does not hear any beacon messages in a cycle (i.e., 7 consecutive slots for

(7,3,1)-design). To avoid collisions, each beacon can be led by a random backoff, i.e.,

k +1/2 slots where 0 < k < n (n is the cycle length).

6.2 Power Management

The goal of power management is to facilitate effective communication while saving

as much energy as possible. In our power management scheme, a node determines

its desirable communication schedule, i.e., when it should go to sleep or wake up. The

relationship between the wakeup schedule and the communication schedule devised

by a power management policy for a sender is illustrated in Figure 6.

At the MAC-layer, we propose a reservation mechanism for communication on top

of the proposed quorum-based heterogenous wakeup scheduling scheme (cqs-pair
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or gqs-pair). Each node has two states, idle mode and active mode. In the idle mode, a

node will follow its wakeup schedule to wake-up or to sleep. We also call this mode

as power saving mode. Once there is data for receiving or for transmitting, the node

will enter into the active mode as shown in Figure 6.

In the active mode, a sender maintains a table of timers for all its neighbors. The

timers are triggered once the sender receives beacon messages from the neighbors.

The initial value of each timer is one time slot. The sender will also record its own

wakeup schedule via a timer. If both the sender and the receiver is in an active slot,

then they can communicate. If the sender enters into a silent slot but there are more

packets for transmission and the receiver is still in an active slot, then the sender

will keep awake in its next slot. If there are more packets for transmission, but the

receiver will enter a silent slot, then the sender will send a keep-awake message to

the receiver at the end of the transmission of the current packet. The receiver that is

being requested to stay awake will then send back an acknowledgment, indicating

its willingness to remain awake in its next slot.

The power management scheme at the receiver side is simpler than that at the

sender side. In active mode, if there is no keep-awake message, the receiver will

continue communication until the end of its current slot interval; otherwise, it will

keep awake in its next slot.

6.3 Multicast and Broadcast

Quorum-based asynchronous wakeup protocols cannot guarantee that more than

one receiver is awake when a sender wishes to multicast or broadcast.

There are multiple ways to support multicast and broadcast. One method is to

adopt relatively prime frequencies among all nodes for wakeup scheduling. This

method does not need synchronization between the sender and all the receivers. The

sender only needs to notify m receivers to wake-up via the pairwise relative primes

p1, p2,..., pm, respectively. Then each receiver generates its new wakeup frequency

based on the received frequency. Through Chinese Remainder Theorem [20], [21], it

can be proven that the m receivers must wakeup simultaneously at the I th beacon

interval (0 ≤ I ≤ p1× p2...× pm). The sender can then transmit a multicast/broadcast
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message at this interval.

Another way to multicast/broadcast is by using synchronization over quorum-

based wakeup schedules. The sender can book-keep all neighbors’ schedules, and

synchronize their schedules so that neighboring nodes wake up in the same set of

slots with the use of Lamport’s clock synchronization algorithm [22]. When all nodes

are awake simultaneously, the senders then send a message to multiple neighbors

simultaneously.

The first mechanism has the advantage that no synchronization is needed between

a sender and multiple receivers. But it cannot bound the average delay. The second

approach can bound the average delay but it needs book-keeping and synchroniza-

tion over asynchronous wakeup schedules.

For multicast/broadcast, we set a threshold L. If the number of multicast packets

exceed the threshold L, the sender will send a Multicast-Notify to all neighbor re-

ceivers, requesting them to stay awake. Otherwise the sender will send the multicast

data to each receiver one by one, by unicasting. The value of the threshold L depends

on the configuration of time slot lengthes and packet lengthes.

To reduce the time of waiting before actual transmission, the Multicast-Notify

message contains a field to notify all receivers on how long they should wait. The

value of this field is the time between when the message is sent and when all receivers

are awake.

7 PERFORMANCE EVALUATION

We evaluated the performance of our schemes through numerical studies and by

real implementation over a WSN platform of Telosb motes [23]. In our experiments,

a set of nodes was deployed. The radio range was configured to 10 meters for each

node. There was one sink node which acted as the base station. The sink node

communicated with a laptop computer (through a wireless USB serial port), which

recorded performance measurements. The detailed radio parameters such as data

rates default to the data sheet of TelosB [23].

We built our wakeup scheduling schemes over the basic CSMA/CA protocol. We

used MintRoute [24] as the routing protocol for end-to-end transmission. Traffic
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load was generated by a Poisson distribution [25] with rates in the range 10-100

packets/sec. Each packet only contains one Active Message whose size is defined in

TinyOS 2.0 [19].

Two important performance metrics were measured in our experimental study:

(1) quorum ratio and energy saving ratio; and (2) average neighbor discovery delay.

7.1 Performance Trade-off

We first evaluated the quorum ratio and average neighbor discovery delay by nu-

merical analysis.

The performance of a cyclic quorum system is shown in Figure 7. There is a trade-off

between quorum ratio and average discovery delay since they have reverse changing

trends under increasing cycle lengthes.
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Fig. 7. Quorum Ratio and Average Discovery Delay for Cyclic Quorum Systems

(Numerical Results)

The performance of a grid quorum system is shown in Figure 8. The grid quorum

system’s quorum ratio is bigger than that of the cyclic quorum system with identical

cycle length, but the average discovery delay is approximately 2/3 of that of the

corresponding cyclic quorum system.

7.2 Impact of Heterogeneity

For heterogenous quorum-based wakeup scheduling, like cqs-pair or gqs-pair, the

cycle lengthes of two quorum systems are different. We evaluated the impact of
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Fig. 8. Quorum Ratio and Average Discovery Delay for Grid Quorum Systems

(Numerical Results)

heterogeneity of two different cycle lengthes on the average discovery delay between

two neighbor nodes.

For this set of experiment, we focused on the cqs-pair since it is an optimal design.

We fixed the traffic load between two nodes at 10 packets/sec in the experiment.

We varied the cycle lengthes of two neighbor nodes in two (different) quorum

systems in a cqs-pair. The cycle length of one node was varied from 7 to 58. The

neighbor node, which used a counterpart cyclic quorum system, had its cycle length

varied from 7 to 21. We do not show the impact on the energy consumption ratio

when the cycle lengthes of cqs-pair were varied, since the energy consumption ratio

of a node is mainly dependent upon its own cycle length, which has already been

evaluated in Section 7.1.
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Fig. 9. Impact of Heterogeneity

Figure 9 shows how the average discovery delay changes with different cqs-pairs.
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When one part in a pair keeps its cycle length constant and the counterpart increases

its cycle length, the average discovery delay between them almost increases linearly.

7.3 Impact of traffic load

In this section, we report our experiments on measuring the impact of traffic load

on the performance of cqs-pair and comparisons with the basic CSMA/CA MAC

protocol. We varied the traffic load from 10 packets/sec to 100 packets/sec in the

experiments. The cycle lengthes of cyclic quorum systems in the cqs-pair were chosen

among 7, 13 and 21.

Figure 10 shows how the energy consumption ratios of nodes adopting different

cyclic quorum systems increase under increasing traffic load between two neighbor-

ing nodes. The rationale is that higher traffic loads will cause a node to increase its

wakeup time ratio in our implementation. When the traffic load is low, the impact

is insignificant because a node will maintain its current wakeup schedule, without

adding more wakeup slots into its communication schedule for transmitting or for

receiving packets.
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Fig. 10. Impact of Traffic Load: Energy Consumption Ratio

Figure 11 shows that the average discovery delay decreases with the increasing of

traffic load. This is because, the communication schedule of a node will have more

active slots, when compared with its quorum-based wakeup schedule during high

traffic load. With more slots staying awake, the average discovery delay between

two neighboring nodes will be significantly reduced.
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Fig. 11. Impact of Traffic Load: average discovery delay

8 PAST AND RELATED WORKS

Wakeup mechanisms for wireless sensor networks can be broadly classified into three

categories. We summarize and overview them as follows.

On-Demand Wakeup [4], [26]. The implementation of on-demand wakeup schemes

typically requires two different channels: a data channel and a wakeup channel for

awaking nodes as and when needed. This allows for the immediate transmission

of a signal on the wakeup channel if a packet transmission is in progress on the

other channel, thus reducing the wakeup latency. The drawback is the additional

cost for the second radio. The STEM (Sparse Topology and Energy Management)

work [4] uses two different radios for wakeup signals and data packet transmissions,

respectively. The key idea is that a node remains awake until it has not received any

message destined for it for a certain period of time. STEM uses separate control

and data channels, and hence the contention among control and data messages is

alleviated. The energy efficiency of STEM is dependent on that of the control channel.

Scheduled Rendezvous Schemes [6], [27], [28]. These schemes require that all

neighboring nodes wake up at the same time. Different scheduled rendezvous pro-

tocols differ in the way network nodes sleep and wakeup during their lifetimes.

The simplest way is by using a Fully synchronized pattern, like that in the S-MAC

protocol [6]. In this case, all nodes in the network wakeup at the same time according

to a periodic pattern. A further improvement can be achieved by allowing nodes to

switch off their radio when no activity is detected for at least a timeout value, like

that in the T-MAC protocol [27]. The disadvantages include the complexity and the
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overhead for synchronization.

Asynchronous wakeup [9], [29]. This was first introduced in [12] in the context

of IEEE 802.11 ad hoc networks. The authors proposed three different asynchronous

sleep/wakeup schemes that require some modifications to the basic IEEE 802.11

Power Saving Mode (PSM). More recently, Zheng et al. [9] took a systematic approach

toward designing asynchronous wakeup mechanisms for ad hoc networks (which

is also applicable for WSNs). They formulate the problem of generating wakeup

schedules as a block design problem and derive theoretical bounds under different

communication models. The basic idea is that each node is associated with a Wakeup

Schedule Function (WSF) that is used to generate a wakeup schedule. For two

neighboring nodes to communicate, their wakeup schedules must overlap regardless

of their clock difference.

For the quorum-based asynchronous wakeup design, Luk and Wong [14] designed

a cyclic quorum system using difference sets. However, they perform an exhaustive

search to obtain a solution for each cycle length N , which is impractical when N is

large.

Asymmetric quorum design. In the clustered environment of sensor networks, it

is not always necessary to guarantee all-pair neighbor discovery. The Asymmetric

Cyclic Quorum (ACQ) system [30] was proposed to guarantee neighbor discovery

between each member node and the clusterhead, and between clusterheads in a

network. The authors also presented a construction scheme which assembles the

ACQ system in O(1) time to avoid exhaustive searching. ACQ is a generalization

of the cyclic quorum system. The scheme is configurable for different networks to

achieve different distribution of energy consumption between member nodes and

the clusterhead.

However, it remains a challenging issue to efficiently design an asymmetric quo-

rum system given an arbitrary value of n. One previous study [9] shows that the

problem of finding an optimal asymmetric block design can be reduced to the

minimum vertex cover problem, which is NP-complete. However, the ACQ [30] con-

struction is not optimal in that the quorum ratio for symmetric-quorum is φ = dn+1
2
e

and the quorum ratio for asymmetric-quorum is φ
′
= d

√
n+1

2
e. Another drawback is
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that it cannot be a solution to the h-QPS problem since the two asymmetric-quorums

cannot guarantee the intersection property.

Transport layer approach. Wang et al. [31] applied quorum-based wakeup schedul-

ing at the transport layer which can cooperate with any MAC-layer protocol, al-

lowing for the reuse of well-understood MAC protocols. The proposed technique

saves idle energy by relaxing the requirement for end-to-end connectivity during

data transmission and allowing the network to be disconnected intermittently via

scheduled sleeping. The limitation of this work is that each node adopts the same

grid quorum system as its wakeup schedule, and the quorum ratio is not optimal

when compared with that of cyclic quorum systems.

9 CONCLUSIONS

In this paper, we presented a theoretical approach for heterogeneous asynchronous

wakeup scheduling in wireless sensor networks. We first defined the h-QPS problem—

i.e., given two cycle lengthes n and m (n < m), how to design a pair of heterogeneous

quorum systems to guarantee that two adjacent nodes that select heterogenous quo-

rums from the pair as their wakeup schedules can hear each other at least once

in every m consecutive time slots. We proposed two designs for heterogeneous

asynchronous wakeup scheduling: the cyclic quorum system pair (cqs-pair) and the

grid quorum system pair (gqs-pair). We also presented a fast construction scheme

to assemble a cqs-pair. In our construction scheme, we first quickly construct an

(n, k, 1)-difference set and an (m, l, 1)-difference set. Based on two difference sets A

in (Zn, +) and B in (Zm, +), we can construct a cqs-pair (C(A,Zn), C(B,Zm)) when

A and B can form a (n, k, m, l)-difference pair.

The performance of a cqs-pair and a gqs-pair were analyzed in terms of average

delay, quorum ratio, and energy saving ratio. We show that the average delay be-

tween two nodes that wakeup via heterogenous quorums from a cqs-pair is bounded

between n−1
2

and m−1
2

, and the quorum ratios of the two quorum systems in the pair

are optimal, respectively, given their cycle lengthes n and m. For a gqs-pair with
√

n × √n grid and
√

m × √m grid, the average discovery delay is bounded within
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(n−1)(
√

n+1)
3
√

n
< E(Delay) < (m−1)(

√
m+1)

3
√

m
, while the quorum ratios are 2

√
n−1
n

and 2
√

m−1
m

,

respectively.

There are several directions for future work. One direction is to further improve

the energy saving ratios. Another direction is to extend the cqs-pair to cqs m-pair

in which m cyclic quorum systems have the heterogenous rotation closure property

with one another.

APPENDIX

PROOF OF THEOREM 9

Proof: Let L =
√

N . Suppose there are two grid quorum systems Qa and Qb that

adopt
√

N ×√N grid.

Given a quorum from Qa (i.e., itha row plus jth
a column), and a quorum from Qb

(i.e., ithb row plus jth
b column), when ib < ia, the discovery delay is:

delay =





(ib − 1)L + ja − 1, jb 6= ja

ja − 1, jb = ja

When ib ≥ ia, the discovery delay is:

delay =





(ia − 1)L + j − 1, jb 6= ja

ja − 1, jb = ja

The probability of a quorum in Qb to select the ithb row and jth
b column is 1/L2.

Thus, when the quorum from Qa contains the itha row plus jth
a column, the average

discovery delay between Qa and Qb is:

D =
1

L
[(L− 1)

(i− 2)(i− 1)

2
+ (j − 1)(i− 2) + (i− 1

2
)(L− i + 1)(L− 1)]

Therefore, the expected discovery delay (from data arrival to two nodes waking-up
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simultaneously) is:

E(Delay) =
1

L2

L∑

i=1

L∑

j=1

D (1)

=
1

L3
{

L∑

i=1

1

L
[(L− 1)

(i− 2)(i− 1)

2
+ (j − 1)(i− 2) + (i− 1

2
)(L− i + 1)(L− 1)]}

(2)

=
L− 1

2L2

L∑

i=1

[(i− 2)(i− 1) + (i− 2) + (2i− 1)(L− i + 1)] (3)

=
L− 1

2L2

L∑

i=1

[(2L + 1)i− i2 − L− 1] (4)

=
(L2 − 1)(L + 1)

3L
(5)

=
(N − 1)(

√
N + 1)

3
√

N
. (6)
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