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Abstract. Reachability is an important problem in program analysis.
Automatically being able to show that – and how – a certain state is
reachable, can be used to detect bugs and vulnerabilities. Various re-
search has focused on formalizing a program logic that connects precon-
ditions to post-conditions in the context of reachability analysis, e.g.,
must+, Lisbon Triples, and Outcome Logic. Outcome Logic and its vari-
ants can be seen as an adaptation of Hoare Logic and Incorrectness Logic.
In this paper, we aim to study 1.) how such a formal reachability logic
can be used for automated precondition generation, and 2.) how it can
be used to reason over low-level assembly code. Automated precondition
generation for reachability logic enables us to find inputs that provably
trigger an assertion (i.e., a post-condition). Motivation for focusing on
low-level code is that low-level code accurately describes actual program
behavior, can be targeted in cases where source code is unavailable, and
allows reasoning over low-level properties like return pointer integrity.
An implementation has been developed, and the entire system is proven
to be sound and complete (the latter only in the absence of unresolved
indirections) in the Isabelle/HOL theorem prover. Initial results are ob-
tained on litmus tests and case studies. The results expose limitations:
traversal may not terminate, and more scalability would require a com-
positional approach. However, the results show as well that precondition
generation based on low-level reachability logic allows exposing bugs in
low-level code.
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1 Introduction

Reachability is an important problem in program analysis. Being able to auto-
matically show that a certain state is reachable allows us to detect bugs and
vulnerabilities in code. Currently most reachability analysis approaches target
high-level code [22, 7, 27]. However, high-level code is still an abstraction over
the actual program behavior. The actual execution is defined by the assembly
code produced by compilation. It is at this level where we can fully reason over
properties such as memory safety and return pointer integrity, which are the ma-
jor cause of software vulnerabilities [23]. For example, an out-of-bounds memory
write not prevented by memory unsafe languages such as C can overwrite the
return address stored on the stack, before a function returns. Other vulnerabil-
ities and exploitation techniques such as return-oriented-programming (ROP)
are also only detectable at the lowest level [5]. An ROP attack is executed by
chaining together instructions already present in memory, to perform arbitrary
operations. In addition, reasoning over low-level code opens up the ability to
reason over reachability in programs where source code is unavailable.

Reasoning over low-level code also has its drawbacks. For starters, memory is
not structured, and treated as an array-like structure. As a result, a write or read
of a pointer can access any region in memory, go out of bounds or overlap with
existing pointers. Control flow is also unstructured. Program execution can jump
to any point in the code, and jumps can be dynamic. Resolving these indirections
is a challenge. Formal semantics are often unavailable for low-level architectures,
requiring any analysis to deal with uncertainty. The aforementioned challenges
will be addressed in this paper. Another challenge is obtaining assembly or low-
level code from binaries [32]. We consider this out of scope, since this problem
is more or less orthogonal.

Logics that reason over reachability triples have been studied extensively
under various names (must+ [2, 3], Backwards Under-Approximative Triples [24],
Lisbon Triples [26], Outcome Logic [34]). They revolve around triples of the
following definition:

⟨P ⟩ p ⟨Q⟩ ≡ ∀σ ∈ Σ · P (σ) =⇒ ∃σ′ ∈ Σ · σ p−−→ σ′ ∧ Q(σ′)

Here, p is a program under investigation and Q is a postcondition. Intuitively,
the triple formulates that any state σ satisfying the precondition P will reach the
postcondition with at least one of its execution paths. It is herein different from
commonly known program logics such as Hoare Logic [19] which reasons over
program correctness, and Reverse Hoare Logic [33] and Incorrectness Logic [26]
which both reason over total reachability. A more thorough discussion on the
relation between these logics, can be found elsewhere [25, 34]. From now on, we
will refer to this kind of triples as reachability triples.

In this paper, we consider postcondition Q to be fixed and thus study the
problem: can we define a function τ that given program p and postcondition Q
computes a precondition such that ⟨τ(p,Q)⟩ p ⟨Q⟩ holds? Moreover, we consider
program p to be low-level code.
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The relevance of such a function τ , is that it allows the generation of inputs
that lead to unwanted states. In low-level code, an unwanted state can be a can-
didate for an exploit. For example, a state in which the top of the stack frame
is overwritten is unwanted, as it may lead to an exploit. Taking as postcondi-
tion such an unwanted state and applying function τ can either show that the
unwanted state is unreachable, or provide information on how to reach it.

The first step is to formalize an academic programming language similar to
the well-known While [19] language. Whereas While is intended to be an ab-
stract model of high-level programming languages, this paper proposes jump as
an abstract model of low-level representations of executable behavior such as as-
sembly or LLVM IR [21]. The language jump is characterized by being low-level,
having unstructured control flow (jumps instead of loops) and an unstructured
flat memory model. Moreover, it is non-deterministic, allowing us to model the
uncertainty of the semantics of various constructs found in executables. Even
state-of-the-art research into semantics of instruction sets are not able to pro-
vide deterministic semantics for all instructions [17, 12]. Any static analysis over
low-level code thus must be able to deal with the non-determinism caused by
undefined behavior of instructions.

We then define a function τ in two forms: 1.) in Isabelle/HOL [25, 19, 11],
and 2.) a mirrored implementation in Haskell. The Isabelle/HOL version allows
a formal proof of soundness and completeness; we know that the search space
describes only actual reachability evidence, and that it describes all possible
ways to reach the intended state.

Algorithmically, the approach presented in this paper boils down to back-
wards symbolic execution (BSE) [10, 9, 13, 15]. What this paper aims to do, is
to relate backwards symbolic execution to a program logic, analogous to how
forwards symbolic execution is related to Hoare logic. By formulating BSE as a
precondition-transformation function over reachability triples, we can formally
reason over soundness and completeness.

Limitations of this approach include that the search space becomes infinite.
This is a necessary consequence of soundness and completeness. However, finding
one path from assertion to initial state suffices and thus there is no need for full
search space traversal to find bugs and vulnerabilities. Various research exists
that combine BSE with dealing with loops, but the focus of this paper is to
show how precondition-generation for reachability logic allows finding unwanted
states in low-level code. Additionally, the characterisation of unwanted states,
i.e., which postcondition to start with, is now chosen manually. Automating this
characterisation is out of scope.

The Haskell implementation allows experimentation on several litmus tests,
as well as on two larger case studies. It shows how a search space is generated,
traversed and preconditions are found. Application of this approach to large
real-world programs is explicitly left as future work. All results, source code and
the formalized proof of correctness in Isabelle/HOL are publicly available4.

In summary, this paper presents the following contributions:

4 https://github.com/niconaus/low-level-reachability
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– A formal foundation for reasoning over reachability in low-level languages.
– A sound and complete precondition-generation algorithm for (single-path)

reachability triples.

This paper is the first to provide a formal foundation for reasoning over
reachability in low-level languages, in particular, formulate BSE as precondition-
transformation function over reachability triples.

Section 2 introduces the jump language. Section 3 presents the reachability
triples precondition generation mechanism. Litmus tests are described in Sec-
tion 4 and Section 5 presents two case studies. Related work is discussed in
Section 6 before we conclude in Section 7.

2 The jump language

The jump language is intended as an abstract representation of low-level lan-
guages such as LLVM IR [21] or assembly. It has no explicit control flow; instead
it has jumps to addresses. It consists of basic blocks of elementary statements
that end with either a jump or an exit. Blocks are labeled with addresses. Mem-
ory is modeled as a mapping from addresses to values. Variables from a set V
represent registers and flags. The values stored in variables and memory are
words (bit-vectors) of type W.

The following design decisions have been made regarding jump.

Non-determinism We explicitly include non-determinism through an Obtain
statement that allows to retrieve some value out of a set. Non-determinism allows
modeling of external functions whose behavior is unknown, allows dealing with
uncertain semantics of assembly instructions and allows modeling user-input and
IO. The Obtain statement is the only source of non-determinism in jump.

Unstructured memory Memory essentially consists of a flat mapping of addresses
to values. There is no explicit notion of heap, stack frame, data section, or global
variables. This is purposefully chosen as it allows to reason over pointer aliasing.
For example, it allows Reachability Triples to formulate statements as “the initial
value of this pointer should be equal to the initial value of register rsp” which
is interpreted as a pointer pointing to the return address at the top of the stack
frame. Note that registers are treated as variables in jump.

No structured control flow All control flow happens either through jumps, condi-
tional jumps or indirect jumps. Indirect control flow is typically introduced by a
compiler in case of switch statements, callbacks, and to implement dynamic dis-
patch. Note that a normal instruction such as the x86 instruction ret implicitly
is an indirect jump as well.

Definition 1. A jump program p is defined as the pair (a0,blocks) where a0
is the entry address, and blocks a mapping from addresses to blocks. A block is
defined by the grammar in Figure 1.
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Block
b ::= s; b | Exit Sequence, exit

| Jump a | CJump e a1 a2 | IJump e Jump, conditional jump, indirect jump

Statement
s ::= Assign v e Variable assignment

| Obtain v Where e Nondeterministic assign
| Store e1 e2 Store v in address e

Expression
e ::= w | v | *e | e1 ⊕ e2 | ¬ e Value, variable, deref, bin op, not

⊕ ∈ {+,−,×,%, <,≤,=, ̸=, >,≥,∧,∨, . . .} Binary operators

Fig. 1: The jump language syntax.

A block consists of a sequence of zero or more statements, followed by either
a jump, conditional jump, indirect jump or Exit, where Exit merely indicates
that a program has ended. The conditional jump jumps to the address a1 only
if the given expression evaluates to non-zero, otherwise to address a2. The in-
direct jump calculates the value of e and jumps to the block at that address.
Statements can be assignments or stores. A deterministic assignment writes the
value of expression e to variable v. A nondeterministic assignment, denoted as
Obtain v Where e, obtains some value w that satisfies e[v := w], and writes it
to variable v. Note that since expressions can read from memory, using the C-
style *e notation, an assignment can model a load instruction. A store writes the
value that results from evaluating e2 into the memory location that is obtained
by evaluating e1. Expressions consist of values, variables, dereferencing, binary
operations and negation.

The state consists of values assigned to variables and memory. Memory is
defined as an array-like structure. Two memory operations are provided, namely
reading and writing. Function write is of type A ×W ×M → M and function
read is of type A×M → W.

We assume values can bijectively be cast to addresses and we do so freely.

Definition 2. A state σ is a tuple (mem, vars) where mem is of type M and
vars are of type V → W.

Semantics are expressed through transition relations −→J, −→B and −→S

that respectively define state transitions induced by programs, blocks, and state-
ments (see Figure 2). For example, notation p : σ−→J σ

′ denotes a transition
induced by program p from state σ to state σ′. Notation σ ⊢ e = w denotes the
evaluation of expression e in state σ to value w.

The semantics are largely straightforward. A program defined by an entry
address a0 and a mapping blocks from addresses to basic blocks, is evaluated
by evaluating the block pointed to by the entry address. A conditional jump is
evaluated by evaluating the condition, and then the target block. Indirect jumps
are evaluated in a similar manner, by evaluating the expression to obtain the
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prog
blocks(a0) : σ−→B σ′

(a0,blocks) : σ−→J σ
′

seq
s : σ−→S σ

′ b : σ′ −→B σ′′

s;b : σ−→B σ′′

exit

Exit : σ−→B σ

jump
blocks(a) : σ−→B σ′

Jump a : σ−→B σ′

IJump
σ ⊢ e = a blocks(a) : σ−→B σ′

IJump e : σ−→B σ′

CJumpLeft
σ ⊢ e ̸= 0 blocks(a1) : σ−→B σ′

CJump e a1 a2 : σ−→B σ′

CJumpRight
σ ⊢ e = 0 blocks(a2) : σ−→B σ′

CJump e a1 a2 : σ−→B σ′

assign
(mem, vars) ⊢ e = w

Assign v e : (mem, vars)−→S (mem, vars[v/w])

store
(mem, vars) ⊢ e1 = a (mem, vars) ⊢ e2 = w

Store e1 e2 : (mem, vars)−→S (write(a,w,mem), vars)

ndassign
(mem, vars) ⊢ e[v/w] ̸= 0

Obtain v Where e : (mem, vars)−→S (mem, vars[v/w])

load
(mem, vars) ⊢ e = a
read(a,mem) = w

(mem, vars) ⊢ *e = w

Fig. 2: Semantics of jump. Rules for evaluation of expressions are omitted, except
for the dereference operator.

block to jump to. The nondeterministic assignment ndassign is non-standard,
and evaluates expression e after substituting the variable v for some value w. For
any value w where expression e evaluates to non-zero, a transition may occur. A
store evaluates expression e1 producing some address a, and evaluates e2 and
writes its value to the corresponding region in memory. A load uses function
read to read from memory. All other expression evaluations are omitted because
they are standard.

3 Precondition generation

Precondition generation has its basis in reachability triples, as defined in Sec-
tion 1. Motivation for choosing reachability triples as our underlying logic, is
that it is the only program logic triple that is suitable for generating inputs
automatically. Hoare Logic [19] requires reasoning over all paths, and thus needs
manually written loop invariants. Reverse Hoare Logic [33] and Incorrectness
Logic [26] allow for an over-approximation of the set of input states, leading
to false positives. For a more in-depth discussion on the differences between
these logics, and the advantage of using reachability triples, we refer to work by
Zilberstein et al. [34].

Using the reachability triple definition from Section 1, we can now define our
precondition generation function. The central idea is to formulate a transforma-
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tion function τ that takes as input 1.) a program p, and 2.) a post-condition Q,
and produces as output a disjunctive set of preconditions. This transformation
function follows the recursive structure of jump, i.e., we formulate functions τJ ,
τB and τS that perform transformations relative to a program, a block and a
statement respectively.

Predicate
P ::= ∃ i ∈ N · e ∧ P | e Existential quantification, expression

Predicates P are expressions (true if and only if they evaluate to non-zero),
but can also contain outermost existential quantifiers. The predicate ∃i ∈ e · P
means there exists a value w for i such that both e[i/w] and P [i/w] hold.

When applied statement-by-statement, the τ -functions populate the precon-
dition search space. This search space is an acyclic graph, with symbolic predi-
cates as vertices and the initial postcondition as the root. It contains a labeled
edge (Q, s, P ) if and only if application of function τS for statement s and post-
condition Q produces a set containing precondition P .

Given a program p and a postcondition Q defined in the predicate language
above, a transformation is sound if it generates preconditions P that form a
reachability triple. Soundness means that a generated precondition actually rep-
resents an initial state that non-deterministically leads to the Q-state. To define
soundness, we first define the notion of a reachability triple relative to blocks,
instead of a whole program as in Section 1:

Definition 3. A reachability triple for block b is defined as:

⟨P ⟩ b ⟨Q⟩ ≡ ∀σ ∈ Σ · P (σ) =⇒ ∃σ′ · b : σ−→B σ′ ∧ Q(σ′)

We restate this definition to stress that a reachability triple over block b intu-
itively means that precondition P leads to the desired state when running the
block and subsequent blocks jumped to, until an exit, i.e, not just running the
instructions within block b itself. This is due to the nature of the transition re-
lation −→B (see Figure 2). A similar definition can also be made for statements:
a reachability triple ⟨P ⟩ s ⟨Q⟩ for statement s is defined for transition relation
−→S and thus concerns the execution of the individual statement s only.

Definition 4. Function τJ is sound, if and only if, for any program p and post-
condition Q:

∀P ∈ τJ(p,Q) · ⟨P ⟩ p ⟨Q⟩

Similarly, soundness is defined for blocks and statements, with the only difference
that the precondition for blocks and statements is constructed by combining the
predicate and path condition in conjunction.

Figure 3 shows the transformation functions. Function τP starts at the entry
block of the program. The program is then traversed in the style of a right
fold [30]: starting at the entry block, the program is traversed up to an exit point,
from which postcondition transformation happens. Function τB is identical to
standard weakest precondition generation in the cases of sequence and exit. In
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Program:
τJ(p,Q) = τB(blocks(a0), Q)

Block:
τB(s;b, Q) =

⋃
{τS(s, P ) | P ∈ τB(b, Q)}

τB(Jump e a1 a2, Q) = {P1 ∧ e | P1 ∈ τ b(blocks(a1), Q)}
∪{P2 ∧ ¬e | P2 ∈ τ b(blocks(a2), Q)}

τB(IJump e, Q) = {P ∧ e ≡ a | P ∈ τ b(blocks(a), Q), a ∈ dom(blocks)}
τB(Exit, Q) = {Q}
Statement:
τS(Assign v e, Q) = {Q[v/e]}
τS(Obtain v Where e, Q) = {∃i ∈ e ·Q[v/i]}
τS(Store e v,Q) = {Q′ ∧ ϕ | (Q′, ϕ) ∈ τstore(e, v,Q)}

Fig. 3: Precondition generation functions

the case of a conditional jump, two paths are explored. Either path could lead
to a precondition, as long as the branching conditions remain satisfiable. In case
of an indirect jump, all possible addresses that can be jumped to, are explored.

Function τS is standard in case of deterministic assignment. In case of nonde-
terministic assignment, according to the execution semantics, some value i needs
to be found that fulfills the condition e. That existentially quantified value is
substituted for variable v in the post-condition.

In the case of memory assignment, predicate transformation is a bit more
complex. Consider the following example:

Store x 42; Store y 43 ⟨*x = 42⟩

If memory regions x and y alias, then *x will be 43 after execution. The post-
condition *x ≡ 42 can only hold if x and y are separate.

We explicitly encode assumptions about memory separation into the gener-
ated preconditions. The τ store function listed in Figure 4 takes care of this. It
takes as input expression e1 that describes a memory pointer, expression e2 which
is the value to be written, and the postcondition P . It returns a set of tuples
(Q,ϕ) where Q is the precondition and ϕ provides the pointer-relations under
which that substitution holds. For example, we have τstore(a1, v, *a2 = 42) =
{(*a2 = 42, a1 ̸= a2), (v = 42, a1 = a2)}. This indicates two possible substitutions
when transforming postcondition into precondition:

⟨*a2 = 42⟩ Store a1 v ⟨*a2 = 42⟩ if a1 ̸= a2
⟨v = 42⟩ Store a1 v ⟨*a2 = 42⟩ if a1 = a2

All other cases of τ store merely propagate the case generation.
There are no special rules for dealing with loops. Instead, loops are unrolled

by the precondition generation. In the case of infinite iterations, the reachability
search space will be infinitely large. To deal with this search space, we order and
prune the space. Theorem 1 states a basic property of reachability triples that
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τstore(e1, e2, w) = {(c,True)}
τstore(e1, e2, v) = {(x,True)}
τstore(e1, e2, *ep) = {(*ep, e1 ̸= ep), (e2, e1 = ep)}
τstore(e1, e2,¬ ep) = {(¬ e′p, ϕ) | (e

′
p, ϕ) ∈ τstore(e1, e2, ep)}

τstore(e1, e2, ep1 ⊕ ep2) = {(e′p1 ⊕ e′p2, ϕ1 ∧ ϕ2) | (e′p1, ϕ1) ∈ τstore(e1, e2, ep1)
, (e′p2, ϕ2) ∈ τstore(e1, e2, ep2)}

τstore(e1, e2,∃i ∈ ep · P ) = {(∃i ∈ e′p · P ′, ϕ1 ∧ ϕ2) | (e′p, ϕ1) ∈ τstore(e1, e2, ep)
, (P ′, ϕ2) ∈ τstore(e1, e2, P )}

Fig. 4: Case definitions for precondition of store

is used for the purpose of pruning. Section 4 describes how the space is ordered
to manage large search spaces.

Theorem 1 (Preservation of unsatisfiability). For any program p and con-
ditions P and Q such that ⟨P ⟩ p ⟨Q⟩,

(∀σ′ ·Q(σ′) =⇒ False) =⇒ (∀σ ·P (σ) =⇒ False)

The above can directly be concluded from the definition of a reachability
triple, as given at the beginning of this section. Once an unsatisfiable condi-
tion is generated, the precondition generation can be halted, and the condition
discarded.

We validate our precondition generation function by proving it is both sound
and complete. Theorems 2 and 3 define these respective properties.

Theorem 2 (Soundness of precondition generation). Functions τP , τB
and τS are sound.

Theorem 3 (Completeness of precondition generation).

termination(p,P) no_indirections(p)
⟨P ⟩ p ⟨Q⟩ =⇒ ∃P ′ ∈ τJ(p,Q) ∧ (P =⇒ P ′)

Having both soundness and completeness means that the reachability space
defines all and only valid preconditions for a certain program and postcondition.

Both theorems, including 1.) the syntax and semantics of jump, 2.) the syntax
and semantics of the predicates, and 3.) the functions τ have been formally
proven correct in the Isabelle/HOL theorem prover. The proof, including a small
example of precondition generation within Isabelle/HOL, constitutes roughly
1000 lines of code. Proof scripts are publicly available5. To prove completeness,
Theorem 3 imposes two restrictions. One, we require execution of a program p
under a state described by P to terminate. If a program does not terminate,
it is impossible to construct a P ′ for this program, and therefore completeness
does not hold. Two, we show the theorem holds for programs without indirect
5 https://github.com/niconaus/low-level-reachability
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jumps. The predicate no_indirections(p) ensures that the jump program does
not contain an IJump instruction. In practice however, this premise has little to
no impact. Every jump program containing indirect jumps, can be converted to
one with only direct jumps, by encoding a jump-table like structure using blocks
and conditional jumps. Given that P is a precondition for program p and post-
condition Q, the precondition generation will generate a P ′ that is non-strictly
weaker than P . An equivalent of Theorem 3 also holds for τS and τB .

4 Litmus tests

This section presents two litmus tests that demonstrate the application of reach-
ability triples and its precondition generation algorithm to low-level code. We
have a prototype implementation available in Haskell, in which we have tested
these examples6.

The prototype implements the τ functions similar to how they are presented
above. The τ functions are defined as non-deterministic functions, building up a
tree as a search space. Branches at the same level originate from a conditional,
and deeper branches indicate a jump. On top of that, basic simplification is
applied to the generated predicates, to make them more readable.

The precondition search space can be infinitely large. The implementation
builds up the search space as a tree structure. This orders the search space,
making it feasible to search the infinite space in a structured way. Although some
rudimentary ordering is done, efficiently searching and reducing the reachability
space is explicitly left as future work. The implementation includes an SMT
solver, for deciding the satisfiability of the computed preconditions.

4.1 Infinite reachability space: Long division

Our first litmus test demonstrates conditional jumps, loops, infinite reachability
space and post-condition pruning. Figure 5 lists the program blocks on the left.
The blocks are labeled #0 though #3, with block #0 the entry point. Variables x
and y signify the input. The program divides x by y, by means of long division.
If x is larger than y, the result of the division is returned in variable i. The
variable x is updated, and after execution holds the remainder from division.

In this case, we want to derive that a state is reachable which clearly should
not be, to show that there is a bug in the program. The program behaves incor-
rectly when after execution, the remainder stored in x is equal to or larger than
the divisor y. We use this, x ≥ y, as our postcondition.

The right side of Figure 5 represents precondition generation. Conditions
shown in this Figure are left unsimplified for the purpose of illustration. We
start back to front. Exit does not alter the postcondition, so we just copy it.
Then, we either execute block 0, 1 or 2, depending on what condition holds. If
we came directly from block 0, then x < y must hold, so our precondition is

6 https://github.com/niconaus/low-level-reachability
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#0 :
CJump (x < y) #3 #1

x ≥ y ∧ x < y

(x − 2y) ≥ y
∧¬((x − 2y) > y)
∧((x − y) > y) ∧ ¬(x < y)

(x − 3y) ≥ y
∧¬((x − 3y) > y)
∧((x − 2y) > y)
∧(x − y) ≥ y ∧ ¬(x < y)

#1 :
Assign i 1;
Assign x (x − y);
CJump (x ≥ y) #2 #3

(x − y) ≥ y
∧¬((x − y) ≥ y)

(x − 2y) ≥ y
∧¬((x − 2y) > y)
∧((x − y) ≥ y)

(x − 3y) ≥ y
∧¬((x − 3y) > y)
∧((x − 2y) > y)
∧(x − y) ≥ y

#2 :
Assign x (x − y);
Assign i (i + 1);
CJump(x > y) #2 #3

(x − y) ≥ y
∧¬((x − y) > y) (x − 2y) ≥ y

∧¬((x − 2y) > y)
∧((x − y) > y) · · ·

#3 : Exit

x ≥ y

x ≥ y

 

 

Fig. 5: Precondition generation for long division example. A dashed arrow leads
to an unsatisfiable precondition.

x ≥ y ∧ x < y, which is false, indicated by the lightning bolt. If we came from
block 1, then ¬(x ≥ y) must have held. Block 1 updates x with x − y, leading
to the precondition (x − y) ≥ y ∧ ¬((x − y) ≥ y). Note that this precondition
is unsatisfiable. From Theorem 1, we know that we can halt exploration of this
particular path.

The last block to look at, is block 2. To arrive here, we must have had that
¬(x > y). The body of block 2 updates x, and we end up with (x − y) ≥
y ∧ ¬((x− y) > y). Here, we see the loop unfolding at work. We have executed
the loop body once, and the τ function generates two alternatives. We exit the
loop, indicated by the arrow pointing up, or we run another iteration, indicated
by the arrow pointing right.

Ending the loop at this point again leads to a precondition that is satisfiable.
Completing the calculation, leads us to the first viable precondition for the post-
condition x ≥ y.

The precondition function τ does not stop at this point. A second unrolling
step is shown in the Figure. It will continue to unroll the loop an infinite amount
of times, making the reachability space infinitely large. By ordering the space
as shown in this example, we can perform a breadth first search, starting with
the smallest number of unrolling. While this does make the space more manage-
able, the search space is still potentially infinite. In such a case, if no satisfiable
precondition exists, breadth first search will never terminate.
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#0 : Assign y 0;
CJump
(x < 1 || x > 4)
#9 #1

0 > 0
∧(x < 1 ∨ x > 4)

0 > 0 ∧ x = 9
∧x ≥ 1 ∧ x ≤ 4

0 > 0 ∧ x = 3
∧x ≥ 1 ∧ x ≤ 4

5 > 0 ∧ x = 2
∧x ≥ 1 ∧ x ≤ 4

5 > 0 ∧ x = 4
∧x ≥ 1 ∧ x ≤ 4

#1 : IJump x

5 > 0 ∧ x = 2

∧x = 1

5 > 0 ∧ x = 4

∧x = 1

y > 0 ∧ x = 9

∧x = 1

y > 0 ∧ x = 3

∧x = 1

#2 : Jump #4
5 > 0

#3 : Jump #9

y > 0

#4 : Assign y 5;
Jump #9

5 > 0

#9 : Exit
y > 0

y > 0

    

   

Fig. 6: Precondition generation for indirect jump example.

4.2 Indirect Jumps

Our next litmus test demonstrates how reachability triples and its precondition
generation deals with indirect jumps. Switch-statements consisting of many cases
are often compiled into jump tables. These are typically combined with a guard
for values not handled by the jump table. Figure 6 shows a model of this.

Execution starts at block 0. Here, y is set to 0, and the conditional jump
checks if x is smaller than 1 or larger than 4. If so, we jump to exit. If not, we
jump to block 1, which is the start of our guard. The indirect jump jumps to
the block label stored in x. Blocks 2, 3, and 4 signify the guard options.

As a postcondition, we select y > 0. This postcondition does not necessarily
encode a program error, but does allow us to demonstrate how our approach
deals with indirection.

Starting at block 9, we again work our way up the execution back to front.
We refrain from a step-by-step explanation of the precondition generation, and
instead focus on the behavior of precondition generation involving indirection.
Block 1 contains the indirect jump. As can be seen from the precondition gen-
eration graph, we have to explore every possible jump target when we get to
block 1, including a jump to itself. This generates a large number of paths, but
many of these explorations generate unsatisfiable preconditions. Potentially, an
indirect jump can jump to any address, but in practice, the number of paths
explored is limited by the conditions that must hold.
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5 Case Studies

In this section, we present our results of applying precondition generation to two
bigger examples. Out goal with these examples is to demonstrate the feasibility
of our approach, but we leave application to real-world binaries as future work.

5.1 Faulty Partitioning for Quicksort

The core of any quicksort algorithm is the partitioning algorithm. One well-
known partitioning algorithm is the one invented by Tony Hoare [18] which
selects a pivot element and then transforms an input data set into two smaller
sets, depending on relative ordering of elements in the data set to the pivot.
This scheme seems superficially very simple, but it is very easy to get wrong.
For instance, the following algorithm has a superficially plausible variant of this
partitioning scheme, which is “nearly correct”.

void quicksort(int a[], size_t N) {
if(N <= 1) return;
int pivot = a[rand()%N];
int i = 0, j = N-1;
while(i <= j) {

while(i < j && a[i] <= pivot) i++;
while(i <= j && a[j] >= pivot) j--;
swap(&a[i++], &a[j--]);

}
quicksort(a, j+1);
quicksort(a+i, N-i);}

The partitioning scheme can be translated into a jump program relatively
easily; selection of the pivot can be modeled using a non-deterministic assign.

We are interested in detecting out-of-bounds memory access. We add bounds
checks to the program, and thus our postcondition is (i < 0)∨ (i ≥ N). Running
the resultant program through our implementation for an array of size 3 will
then generate an exploit-precondition: the program can go out of bounds if the
following condition holds:

∃i.0 ≤ i ≤ 2 ∧ a[i] ≤ a[0] ∧ a[i] ≤ a[1] ∧ a[i] ≤ a[2] ∧ a[0] > a[i]

Informally, this conditions says that a[0] is not the minimal element of the
array. The reason for this is that if the minimal element is chosen as a pivot, and
a[0] is not equal to it, the first inner loop will simply fall through, and after
the second loop, i will become −1, pointing outside the array before the swap
occurs. A fix for this would be make the swap conditional, replacing it with:

if(i <= j) swap(&a[i++], &a[j--]);
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This will in fact prevent any out-of-bound memory access. However, another
way any version of quicksort can fail dramatically is when the recursive calls
are performed with incorrect parameters. For example if i = 0 or j = N at the
end of the partitioning scheme, we will end up in a infinite recursive loop. If we
specify this as a post-condition of the partitioning scheme, we find that the same
preconditions are generated as before.

The functional correctness of the partitioning scheme can also be examined—
that is, is it actually the case that all the elements moved towards the the left-
hand side of the array are less-or-equal to the pivot, and that the elements to the
right are greater-or-equal than the pivot? To examine this, we can specify as an
exploit condition that the input to the first recursive invocation of quicksort
contains an element greater than the pivot; this finds no satisfiable conditions (as
it is not true). However, specifying this for input sent to the second invocation
of quicksort instead, our prototype will essentially start generating counter-
examples. For example, if the first element is the pivot, and strictly less than
the middle element but strictly higher than the third element, partitioning fails.

5.2 Karatsuba

Several assembly routines for multiplying multi-precision integers on an 8-bit
AVR controller were verified by Schoolderman [29]. It was discovered that some
of these routines could compute incorrect results if their arguments aliased with
the memory location intended to store the result. A full verification like this
appears to require significant effort; however, if we are only interested in finding
aliasing bugs, reachability triples seem ideally suited to find these.

We focused on the smallest routine exhibiting the problem: the 48 × 48 →
96-bit multiplication routine as originally developed by Hutter and Schwabe
[20]. This routine computes a product of two 48-bit integers using Karatsuba’s
method, splitting its inputs into two 24-bit halves, and performing a three 24 →
48-bit multiplications with these, combining the results.7 In the process, the
lowest 24-bits of the result are known early on and written to memory before
the upper half of the inputs is read, causing an aliasing bug.

To model this in jump, registers and the carry flags are modeled as jump
variables, whereas the memory space is modeled using jump addresses. Every
AVR instruction is modeled by a sequence of jump statements. For example,
the instruction ADD a0, a1 can be expressed by the sequence:

Assign tmp (a0 + a1);

Assign a0 (tmp mod 256);

Assign carry (tmp / 256)

Adding the appropriate binary operators to the syntax of Figure 1, every
instruction required for the program (which are only a handful) can be modeled,
7 To be more precise, this method uses the fact that (2wXh + Xl)(2

wYh + Yl) =
(1 + 2w)(2wXhYh +XlYl)− 2w(Xl −Xh)(Yl − Yh)
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allowing the entire multiplication routine (consisting of 136 instructions) to be
expressed as a jump program. The memory accesses, which operate on three
bytes at a time, were modeled as a single memory operations on a three-byte
memory region.

As seen in Section 4, generated preconditions can be fairly verbose, and we
expected that in this case as well. To remedy this somewhat, we extended the
Haskell implementation with constant folding and other simplifications to more
efficiently manage the search space of possible preconditions, and pruning areas
of the search space which can easily be determined to be impossible. In a more
production-oriented setting, SMT solving and/or a robust expression simplifier
can be used to do this more efficiently than our naive Haskell implementation.

For the precondition, we look at the case X · Y where X = Y = 224. Clearly
the expected result should be X ·Y = 248, i.e. the 96-bit result should consist of
12 bytes, all of which contain 0, except for the seventh byte which should hold
1. As a postcondition, we therefore specify that this byte does not hold 1.

Running the jump version of the 48-bit Karatsuba code through our analysis
resulted in a handful of preconditions. Some of these simplify to False, as they
express impossible aliasing conditions—an SMT solver would be able to discard
these easily. However, 7 preconditions remained which are completely plausible
and satisfiable, which fall into three categories:

– X, Y alias, and their high 24-bits overlap with the low 24-bits of the result
– X, Y are disjoint, and of them partially overlaps with the result as before
– X, Z are partially aliased, and one of them partially overlaps with the result

Which are exactly the case we would expect: the issue is being caused by
either (or both) inputs sharing their high 24-bits with the low 24-bits of the
output location. Had we not chosen the fixed input values for X and Y , this
case would have generated more complex preconditions, however, this case shows
that there is an easy instance where these would be satisfied.

6 Related work

As mentioned in Section 1, the relation described by reachability triples has been
studied before under different names. Möller, O’Hearn and Hoare [24] describe
what they call Backwards Under-Approximative Triples. They do not develop
a precondition generation algorithm for these triples, but merely reflect on the
triples with regards to over-approximate triples.

The must+ relation used in works by Ball (et al.) [2, 3] also describes an
under-approximative transition relation in the context of abstract interpretation.
A must+ transition is defined such that if an abstract transition exists, given
a concrete state that relates to the abstract state before execution, a concrete
post-state also exists. Instead of doing precondition generation, their aim is to
use this relation in a model transition system, to ultimately generate test cases
that cover the entire reachable state space.



16 Naus et al.

Zilberstein et al. [34] refer to this exact same relation as Outcome Logic (OL).
They argue why OL is better suited for reasoning over reachability, compared to
existing program logics. Deduction rules are presented, and the paper includes
several example proofs over Outcome Logic triples.

To the best of our knowledge, these logics and triples have never been applied
to automatically reason over reachability in low-level code.

Many other approaches to do reachability analysis exist. Dynamic logic [16]
allows reasoning over the execution of a program. Use of modal operators □ and
♢ allows for reasoning that something is necessarily the case or possibly the case,
respectively. For example, stating ⟨p⟩a means that after performing program p,
it is possible for a to hold. Reachability triples go beyond this by including the
state before execution in the relation, crucial for the intended purpose, as well
as defining precondition generation.

Rosu et al. [28] and the continuation of that work by Ştefănescu et al. [31]
introduce Reachability Logic for non-deterministic languages. Their logic serves
as a proof system that allows for user-assisted reachability proofs over programs.
Reachability Logic is language agnostic, and has its basis in Hoare Logic. As
mentioned in Section 2, Hoare Logic is unsuitable for automatically generating
reachability evidence, and these arguments also extend to Reachability Logic.

Recent work by Asadi et al. [1] describes an under-approximative reachability
analysis for linear and polynomial systems. They define the reachability problem
as a finite system of linear inequalities and use Farkas’ lemma [14] to solve it.
Their approach is able to handle theoretical benchmarks that were previously
beyond reach. For the purpose of automatic reachability analysis for low-level
programs however, their system is too restrictive.

Symbolic execution is another popular method for reasoning over reachabil-
ity. Symbolic execution runs a program with symbols instead of actual input.
Running the program with these symbolic inputs results in a complete overview
of the programs behavior. Symbolic execution is extensively used for software
testing [4, 6, 7]. Cadar and Sen [8] provide a great overview of the applications
of symbolic execution for this purpose. The biggest downside of symbolic exe-
cution is that it describes the complete program behavior, and therefore quickly
becomes infeasible, due to the many paths to be described.

Symbolic backward execution (SBE) attempts to mitigate the downside of
reasoning over all possible paths by targeting a specific program point. Char-
reteur and Gotlieb present a method for generating test input based on SBE
for Java bytecode [11]. Dinges and Agha augment this approach with concrete
execution as well [13]. As mentioned earlier, SBE relates to reachability triples,
as Hoare logic relates to forward symbolic execution. SBE provides a concrete
algorithm, and potential optimizations such as loop invariant generation, to com-
pute preconditions. Our work provides a formal foundation for reasoning over
reachability in low level languages, as opposed to a purely algorithmical solution.
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7 Conclusion

In this paper, we have studied automated reachability analysis over low-level
code based on formal logic. We define low-level code as code with unstructured
control flow, unstructured memory model and non-determinism. The use of for-
mal logic based on reachability triples allows us to prove that generated pre-
conditions will lead to a certain post-condition. The formal logic is based on
reachability triples, which under various names have been studied earlier in re-
lated work [2, 3, 24, 26, 34]).

The precondition generation that has currently been implemented is rela-
tively naive, and may get stuck in an infinite search. In order to apply this kind
of reasoning to real-world programs, we believe that further research on efficient
ways of traversing the program and compositional reasoning are needed.
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