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Abstract. We present BIRD: A Binary Intermediate Representation
for formally verified Decompilation of x86-64 binaries. BIRD is a generic
language capable of representing a binary program at various stages of
decompilation. Decompilation can consist of various small translation
passes, each raising the abstraction level from assembly to source code.
Where most decompilation frameworks do not guarantee that their trans-
lations preserve the program’s operational semantics or even provide any
formal semantics, translation passes built on top of BIRD must prove
their output to be bisimilar to their input. This work presents the math-
ematical machinery needed to define BIRD. Moreover, it provides two
instantiations — one representing x86-64 assembly, and one where reg-
isters have been replaced by variables — as well as a formally proven
correct translation pass between them. This translation serves both as
a practical first step in trustworthy decompilation as well as a proof of
concept that semantic preserving translations of low-level programs are
feasible. The entire effort has been formalized in the Coq theorem prover.
As such, it does not only provide a mathematical formalism but can also
be exported as executable code to be used in a decompiler. We envision
BIRD to be used to define provably correct binary-level analyses and
program transformations.

Keywords: Formal Methods, Decompilation, Static Analysis

1 Introduction

Verification of software on the binary level has numerous advantages: the trusted
code base (TCB) is reduced [13], and applicability is widened to software where

⋆ This is the author’s version of the work posted here per the publisher’s guidelines for
your personal use. Not for redistribution. The final authenticated version is published
in the Proceedings of the 17th International Conference on Tests and Proofs (TAP
2023), Leicester, United Kingdom, July 18-19, 2023.
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source code is not available. The latter may occur in the context of legacy sys-
tems, third-party proprietary software, or software that was (partially) hand-
written in assembly. However, binary-level verification is notoriously difficult: at
this low level of abstraction, there are no variables, no structured control flow,
no typing information, no a priori function boundaries, etc. Methods typically
are either interactive or tailored towards specific low-level properties. Mostly,
binary-level verification consists of static analysis tools that are based on heuris-
tics, rather than based on a formal foundation.

Hypothetically, if one could decompile binaries to high-level code then a large
body of research in formal methods at the source code level becomes directly
applicable. This would require a formally proven sound decompiler: a decom-
piler whose output is shown to be semantically equivalent to the original binary.
Even for the big players in this field [11,18,23,21], decompilation is considered
to be more of an art form than an exact science. Typically, decompilers do not
produce a semantically equivalent program and a human-in-the-loop is needed
to interpret the decompiler’s hints to do reverse engineering based on experi-
ence [4,5,25].

We argue for the need for formally verified decompilation. Such an approach
should consist of numerous small translation steps that each lift the program
to a representation with a higher level of abstraction. Each such step should be
accompanied by a mathematical proof of correctness that shows the step to be
semantics-preserving.

In this paper, we present BIRD : a Binary Intermediate Representation for
formally verified Decompilation. It serves as the data structure on which provably
semantics-preserving translations on the level of assembly programs can be im-
plemented. BIRD is a generic, optionally SSA-based language that can represent
an x86-64 program at various stages of decompilation. The concept of storage
cells abstracts over registers and their aliasing behavior, and variables that have
strong non-aliasing semantics. Annotations can be used to augment storage cells
with additional information that may be needed for them to operate correctly.
An annotation can carry low-level information like the original bit-pattern or
higher-level data like typing information. Lastly, labels can be multi-byte values
as in the original binary or more abstract identifiers like in assembly dialects
such as relocatable Netwide Assembler (NASM) . Figure 1 (which is elaborated
in Section 5) shows how BIRD can be used as an intermediate representation
(IR) during decompilation. Each of the rectangular boxes contains a represen-
tation of the original binary; each of the arrows constitutes a translation step.
BIRD is sufficiently generic to model all these representations. It requires – by
construction – all translation steps to be semantics-preserving.

We then show two example instantiations for BIRD: 1. the original x86-64
assembly as found in the binary after disassembly (storage cells are registers, no
annotations are needed), and 2. the early BIRD language in which registers are
replaced by variables. In Figure 1, the contributions of this paper are marked in
bold. We aim to provide both an IR allowing translation steps in decompilation
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Fig. 1: Overview of an example micro-step decompiler using BIRD

to be tackled in a formal and semantics-preserving fashion, as well as a practical
first step toward formally proven correct decompilation.

All definitions are implemented in the Coq theorem prover [6]. With this
formal approach, the TCB shrinks to our definitions of the semantics of assembly
and the core of Coq itself. The Coq code1 can be exported to Haskell, making
the translation executable [17].

2 Related Work

While not directly applicable to the tasks of decompilation, the Static Single
Assignment (SSA) form [7] IRs used in modern compilers have served as inspi-
ration for the design of BIRD. One of the most popular such IRs is the LLVM
IR [14] which is used in real-world compilers such as clang. LLVM is imple-
mented in C++ and does not focus on formally proven transformations, but work
by Zakowski et al. formalizes an executable semantics for a subset of the IR in
Coq [26]. The Multi-Level Intermediate Representation (MLIR) [15] aims to
support different requirements in a unified framework. Similar to BIRD Instan-
tiation, MLIR supports user-defined dialects. As such MLIR is very extensible,
but giving formal semantics to it is difficult. The CompCert project [16] investi-
gates compilation of C code in a formally proven correct way. Our work mirrors
their graph structure for SSA RTL [1] in that the nodes are instructions that
are annotated by phi-nodes.

In the field of decompilation, most work focuses on retrieving an approxima-
tion of a high-level program that may produce the input binary. Ghidra [18] is a
large scale reverse engineering suite developed by NSA’s Research Directorate.
It offers support for a wide variety of assembly dialects which it translates into
high P-Code and then into C. Recent work by Naus et al. [19] provides formal
semantics for an augmented version of P-Code and shows that the current ver-
sion cannot be given an executable semantics. Ghidra is fundamentally unable

1 Made available here: https://doi.org/10.5281/zenodo.7928215

https://doi.org/10.5281/zenodo.7928215


4 D. Engel, F. Verbeek and B. Ravindran

to produce an output of which it can be formally proven that it preserves the se-
mantics of the input program. The Binary Analysis Platform (BAP) [2] aims to
decompile binaries in order to analyze them. Similar to our work, it transforms
assembly code into an intermediate language on which state-of-the-art program
analyses can be executed. Currently, x86, ARM, MIPS and PowerPC are sup-
ported by BAP. As noted by the authors, the lifting process cannot be proven
correct as “the semantics of the x86 ISA is not formally defined”. Instead, the
authors aim to catch bugs through randomized testing. The Interactive Disas-
sembler (IDA) [11] is a disassembler for a large variety of executable formats,
including MS-DOS, EXE, ELF, etc. It lifts these binaries into assembly-level
programs, but with additional plugins, C code can be generated [9]. No formal
argument is given on why this C code represents the same program as the orig-
inal binary. Binary Ninja [23] is another reverse-engineering platform which
lifts a range of assembly dialects into several internal IR to analyze them and
produce decompiled code. Similarly to the other large decompilation tools, no
formal semantics are defined for these languages and as such, no soundness can
be proven.

Recent work in the field aims at guaranteeing that the decompiled output is
recompilable and semantically equivalent to the input. Schulte et al. [22] use
an evolutionary search through a large database of “big code” to arrive at a
high-level program. This output can then be recompiled to measure how many
bytes are equivalent with the input. The authors report that on a test bed of 19
programs, 10 could be decompiled by this technique to full byte equivalence, the
remaining programs matched to > 80%. Phoenix [3] uses a more conventional
approach based on semantics preserving structural analysis to arrive at an out-
put whose control flow graph (CFG) is provably equivalent to the input’s CFG.
However, no formal criteria are defined on what constitutes a “semantics pre-
serving” analysis, nor are there formal arguments on why their transformations
are correct.

Dasgupta et al. [8] provide formal semantics for more than 774 different
x86 instructions. It is implemented in the K framework to define a correct-by-
construction deductive verifier. As such, it can be used to analyze assembly pro-
grams directly and perform provable correct transformations on these programs.
It cannot represent a higher-level language than x86, thus transformations that
lift the abstraction (such as variable recovery) are not possible within this frame-
work. Kennedy et al. [12] provide formal semantics for a subset of x86 in the Coq
theorem prover. They define macros to write higher-level assembly-like code di-
rectly inside Coq and assemble it into bytes. Parts of this translation are proven
to be correct. This formalization also focuses on having x86 as the highest level
language and thus cannot support higher abstractions. However, due to being
formalized within Coq, its value types serve as a practical foundation on which
BIRD is built.
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Fig. 2: Word parts of a full qword

3 Formalization

All the mathematical structures presented in this section are implemented in the
Coq theorem prover. For the sake of simplicity, we will not distinguish between
the different universes of Coq’s type theory and use T to mean a type of any
level and P to mean the type of propositions. Relations of type R : T1 → . . .→
Tn → P use the set-theoretical notation R ⊆ T1 × . . . × Tn. We make use of
Coq’s standard library and write B for booleans, N for natural numbers, L(T )
for lists of T and O(T ) for optionals of T . The Some constructor of optionals
is left implicit and ∅ is the empty element of monoids like lists and optionals.
We also use the bits library [12] which defines the primitive type for bytes (8
tuple of B) together with its operations. We do not use bits’ bigger types (16,
32, 64 tuple of B) as they are inconvenient for byte-granular operations. Instead,
we define Vn as n tuples of bytes. The type S := BYTE | WORD | DWORD | QWORD
contains the valid sizes for values (1, 2, 4, 8 bytes respectively). Word parts
WP := qword | dword | word | right-byte | left-byte correspond to
the parts on which a register can be accessed (Figure 2 visualizes these access
patterns).

3.1 Generic BIRD

All definitions for the generic IR BIRD are polymorphic in the types

– Storage cells (C) which serve as the primitive objects into which values can be
written. They are themselves writable and they form the basis for addresses.

– Cell annotations (A) which express additional information for the cells such
as read/write patterns or data types.

– Labels (L) which are the locations at which data and instructions can be
found. We require labels to be isomorphic to V8 so that their values can be
stored in memory and pointer arithmetic can be performed.

Additionally, the semantics requires functions over storage cells and their state
(Γ , to be defined later) to be provided to describe how they are accessed.

– A function of type PartFunc := (C×A)→WP to assign each annotated cell
a word part to describe how they are narrowed and widened by reads and
writes.
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– A function of type ReadFunc := Γ → C → V8 to describe how a raw cell is
read from its state.

– A function of type WriteFunc := Γ → C → V8 → Γ to describe how a raw
cell is written into its state.

Definition 1 (BIRD). A binary intermediate representation for decompilation
(BIRD) is a tuple of these generic elements.

bird := ⟨C : T,A : T,L : T, p : PartFunc, r : ReadFunc, w : WriteFunc⟩

For all of the following elements, we define shorthand instantiations. For exam-
ple, given a BIRD ir = ⟨C,A,L, p, r, w⟩, the type of programs in ir is defined
Prog(ir) := Prog(C,A,L).

Syntax BIRD programs are organized in overapproximating CFGs over instruc-
tions. The edges represent possible transitions from one instruction to another.
The nodes in the graph are generic labels. Each label is assigned an instruction
and any number of phi-assignments.

Instructions (Instr(ls)) are dependently typed in their program’s labels ls.
We categorize instructions into plain operations (OP), stack operations (PUSH,
POP), and control flow operations (JMP, CALL, RET). Plain operations contain an
opcode (Op), a number of sources (S⃗rc) to read from, a number of destinations
(D⃗st) to write to, and optionally a successor label (∈ ls). The successor label
points to the next instruction to be executed, if no successor label is given, the
instruction terminates the program. The stack operations contain the source to
be pushed onto the stack or the destination into which the stack top is popped.
They also contain a pair of cells to read the current and write the updated
stack pointer value. The jump instruction contains a condition (Cond) deciding
whether to jump to one of the true labels (ls⊤) or to the false label (l⊥, the next
instruction in the assembly), and a source from which the jump target is read.
Similar to the jump, the call contains a return label (lr) which is pushed on the
stack and a number of possible callee labels (lsc) and a source from which the call
target is read. Like the stack instructions, both the call and the return contain
a pair of cells to update the stack pointer. The return contains a list of possible
return labels (lsr). A phi-instruction (Φ) consists of exactly one destination cell
to which it writes and any number of sources from which one is read.

Sources (Src) are either an immediate qword value, a cell from which some
bytes are read, an expression over cells for which the value is computed, an
address from which some bytes are read from memory or the current value of
the instruction pointer. Destination (Dst) are only cells or addresses. Expres-
sions (Expr) are formed over cells, qword offsets, cell scalings (∈ {1, 2, 4, 8}) and
arithmetic operations thereof. All elements of an expression are optional and can
be left empty. Addresses (Addr) are expressions together with a size describing
the number of bytes to be read. Absolute addresses (AbsAddr) are labels and as
such are isomorphic to qwords.
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Program Prog ::= ⟨ls : L(L), entry ∈ ls,
CodeΦ(ls),CodeInstr (ls)⟩

Node in program Node(p) ::= ⟨l : L | l ∈ p.ls⟩
Instruction CodeInstr (ls) ::= ⟨l : L | l ∈ ls⟩ → Instr(ls)
mapping CodeΦ(ls) ::= ⟨l : L | l ∈ ls⟩ → Φ

Instructions Instr(ls) ::= | OP⟨Op, S⃗rc, D⃗st , l ∈ ls ∪ {∅}⟩ – plain ops
| PUSH⟨Src, ⟨C, C⟩, l ∈ ls⟩ – stack ops
| POP⟨Dst , ⟨C, C⟩, l ∈ ls⟩
| JMP⟨Cond ,Src, l⊥ ∈ ls, ls⊤ ⊆ ls⟩ – cf ops
| CALL⟨Src, ⟨C, C⟩, lr ∈ ls, lsc ⊆ ls⟩
| RET⟨⟨C, C⟩, lsr ⊆ ls⟩

Operation Op ::= MOV | ADD | CMP | . . . | XCHG
codes Cond ::= JMP | JZ | JNZ | . . . | JC

Phi node Φ ::= L(Dst ‘=’ L(Src))
Operands Src ::= Addr | C × A | Expr | V8 | rip± V8

Dst ::= Addr | C × A
Addresses Addr ::= S ‘- PTR’ ‘[’ Expr ‘]’

Expr ::= C ± (1|2|4|8) ∗ C ±AbsAddr

Fig. 3: Syntax definitions for the generic BIRD language. Everything is polymor-
phic in C, A and L.

A dependently typed mapping from all labels of a program to their instruc-
tions is called code (CodeInstr ), the dependent mapping to the phi instructions
is called phi-code (CodeΦ). The type of nodes (Node(p)) describes all labels that
are in a program p and similar to (phi-)codes, it is indexed by the labels. A
program (Prog) is a tuple of labels and the (phi-)code for the (phi-)instructions
of these labels, and an entry label at which program execution starts. Figure 3
summarizes this syntax.

Notably, programs are not organized in functions to form a call graph, they
only contain instructions to form a control flow graph. At this level of repre-
sentation, function boundaries have not yet been established and a RET is not
guaranteed to return to its caller. As a consequence, exploits such as return-
oriented programming are expressable in this format.

Semantics Figure 4 describes the formal semantics of BIRD. Before these can
be explained, we first introduce the constituents used to define these seman-
tics: reading, writing and denotations. Reading and writing from the state re-
quires evaluation of the expressions used in operands of instructions, and up-
/downcasting of values. We thus first define these.

Definition 2 (Up- Downcast). A qword q : V8 can be downcasted to any Vn

with a word part p by extracting the correct bytes (notation ⇓p b). For exam-
ple, ⇓left-byte ⟨b1, . . . , b8⟩ = b7. Symmetrically, the upcasting operator (notation
⇑p b) transforms a Vn to a V8 by filling all other bytes with 0. For example,
⇑word ⟨b1, b2⟩ = ⟨0, 0, 0, 0, 0, 0, b1, b2⟩.
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Definition 3 (Update). Given a word part p : WP, an old value o : V8 and a
new value n : V8, the update (notation o ⊗p n) computes an updated V8 value.
Intuitively, this corresponds to the writing behavior of x86 registers.

⟨o1, . . . , o8⟩ ⊗left-byte ⟨n1, . . . , n8⟩ := ⟨ o1, o2, o3, o4, o5, o6, n7, o8 ⟩
⟨o1, . . . , o8⟩ ⊗right-byte ⟨n1, . . . , n8⟩ := ⟨ o1, o2, o3, o4, o5, o6, o7, n8 ⟩
⟨o1, . . . , o8⟩ ⊗word ⟨n1, . . . , n8⟩ := ⟨ o1, o2, o3, o4, o5, o6, n7, n8 ⟩
⟨o1, . . . , o8⟩ ⊗dword ⟨n1, . . . , n8⟩ := ⟨ 0, 0, 0, 0, n5, n6, n7, n8 ⟩
⟨o1, . . . , o8⟩ ⊗qword ⟨n1, . . . , n8⟩ := ⟨ n1, n2, n3, n4, n5, n6, n7, n8 ⟩

Definition 4 (Denotation). The denotation for the operators Op is given by
a computation for the actual value (or multiple computations for instruction like
XCHG), and an effect for the change to the flags. Given an op : Op, the denotation
(notation J op K) returns these two functions. For example, the computation of
the add instruction computes the sum of both values, ignoring the carry flag. The
side effect writes the carry bit into CF and populates ZF.

J ADD K := ⟨ λv1, v2 7→ v1 + v2, – computation
λv1, v2, σ 7→ let ⟨sum, carry⟩ := v1 + v2 – side effect

in σ[CF← carry][ZF← sum = 0] ⟩

For a condition c : Cond , the denotation returns a predicate. For example, the
predicate for JMP is always true, the one for JZ returns the ZF.

J JMP K := λσ 7→ true J JZ K := λσ 7→ σ[ZF]

Definition 5 (State). The semantics of BIRD programs is given over states
(Σ). States consist of a state for cells (Γ ), a state for the memory (Θ), a state for
flags (Ξ) and the label of the next instruction to be executed (rip). The cell-state
maps each cell to a qword value where individual bytes can be extracted using the
cell’s word part, the memory-state maps each absolute address to one byte, bigger
regions can be read and written to by multiple read and write applications, the
flags-state maps the flags (ZF, OF, . . . ) to one bit.

Σ := ⟨Γ,Θ,Ξ, rip : L⟩ Γ := C → V8 Θ := AbsAddr → V1 Ξ := Flag → B

For a full state σ = ⟨γ, θ, ξ, rip⟩ : Σ, reading takes a s : Src and returns the
correct Vn for the source by dispatching to a substate.

σ[s] :=



v if s is an immediate v

e|read(γ) if s is an expression e

⟨b0, · · · , bs−1⟩ if s is an address ⟨s, e⟩, bi = γ(e|read(γ) + i)

⇓part(c,a) (read(γ, c)) if s is an annotated cell ⟨c, a⟩
rip+ d if s is a rip relative rip+ d
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Writing is defined similarly, but cells are updated based on their old value

σ[d← v] :=



⟨γ, θ′, ξ, rip⟩ if s is an address ⟨s, e⟩
where θ′ = θ[e|read(γ)+i 7→ vi], i ∈ {0, .., 7}

⟨γ′, θ, ξ, rip⟩ if s is an annotated cell ⟨c, a⟩
where γ′ = write(γ, c, v′)

and v′ = σ[⟨c, a⟩]⊗part(c,a) (⇑part(c,a) v)

Here, the expression evaluation (e|f ) takes an expression e and a cell evaluation
function f : C → V8 to compute the value of e.

[b± s ∗ i± d]|f := f(b)± s · f(i)± d

The semantics for executing nodes in a program is given by a small step relation
p ⊢ ⟨σ, k⟩ ⇒ ⟨σ′, k′⟩ ⊆ Prog × Node(p) × Σ × O(Node(p)) × Σ which describes
executing node k in state σ to arrive in state σ′ where k′ needs to be executed
next. The execution of the phi instructions is given by the relation p ⊢ σ Φk′

k σ′ ⊆
Prog × Σ × Σ × Node(p) × Node(p) which assigns the phi’s nth source to its
destination if k is the nth predecessor of k′. Figure 4 shows the rules for these
relations. The transitive closure has one case for terminal and one for nonterminal
nodes. The nonterminal rule implements the transitivity and is interleaved with
the execution of the phi instructions. For two nodes s and k where k is the
nth predecessor of s, the phi rule executes all phi assignments by evaluating to
their nth source. An OP instruction is executed by first running the operation’s
main effect and then the side effect to populate the flags. If the instruction has
no successor labels, program execution halts. Depending on the evaluation of a
JMP’s condition, it jumps to the next instruction k⊥ or one of its jump targets
ks⊤. A PUSH first writes its target into the memory at the current stack pointer
value ssp and then sets the new stack pointer dsp to the old value minus the size
of the target. A POP does the opposite by first incrementing the stack pointer
and then writing the value read from memory to its target. A CALL essentially
pushes the label of the next instruction onto the stack and then jumps to its
target. Similarly, a RET pops the label of the next instruction from the stack and
then jumps to it.

Definition 6 (Program semantics). The semantics of a whole program is
given by the transitive closure of the entry node’s small step semantics.

p ⊢ σ1 ⇓ σ2 := p ⊢ ⟨σ1, p.entry⟩ ⇒∗ ⟨σ2, ∅⟩

Translation A translation is a function between programs of two BIRDs to-
gether with a semi-decider on program equivalence. When this semi-decider re-
turns true then the input and output of the translation must be bisimilar. A
translation step then returns the translated program if it is bisimilar to the
input program or nothing if no bisimilarity could be proven.
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terminal
p ⊢ ⟨σ1, k⟩ ⇒ ⟨σ2, ∅⟩
p ⊢ ⟨σ1, k⟩ ⇒∗ ⟨σ2, ∅⟩

nonterminal

p ⊢ ⟨σ1, k1⟩ ⇒ ⟨σ2, k2⟩
p ⊢ σ2 Φk3

k2
σ3

p ⊢ ⟨σ3, k3⟩ ⇒∗ ⟨σ4, k4⟩
p ⊢ ⟨σ1, k1⟩ ⇒∗ ⟨σ4, k4⟩

phi

is−predn(k, s) phi = phi(s)
σ2 = run−phis(n, phi, σ1)

p ⊢ σ1 Φs
k σ2

run−phis(n, ps, σ) :=
foldr(run−phi(n), σ, ps)

run−phi(n, ⟨d, s⟩, σ) :=
σ[⟨d,qword⟩ ← σ[⟨sn,qword⟩]]

op

instr(k1) = OP(op, s⃗, d⃗, k2)
σ2 = σ1[rip← k2] ⟨f⃗ , e⟩ = J op K

σ3 = σ2[d⃗← f⃗(σ2[s⃗])]
σ4 = e(σ3[s⃗], σ3)

p ⊢ ⟨σ1, k1⟩ ⇒ ⟨σ4, k2⟩
jump

instr(k1) = JMP(c, s, k⊥, ks⊤)
σ2 = σ1[rip← k⊥] f = J c K
f(σ2) =⇒ k2 ∈ ks⊤ ∧ k2 = σ2[s]

¬f(σ2) =⇒ k2 = k⊥

p ⊢ ⟨σ1, k1⟩ ⇒ ⟨σ2, k2⟩

push

instr(k1) = PUSH(s, ssp, dsp, k2)
v = σ2[s] n = size(s) σ1[dsp] ≥ s

σ2 = σ1[rip← k2]
σ3 = σ2[n-PTR[ssp]← v]

σ4 = σ3[dsp ← σ3[ssp]− n]

p ⊢ ⟨σ1, k1⟩ ⇒ ⟨σ4, k2⟩
pop

instr(k1) = POP(d, ssp, dsp, k2)
v = σ3[n-PTR[ssp]] n = size(d)

σ2 = σ1[rip← k2]
σ3 = σ2[dsp ← σ2[ssp] + n]

σ4 = σ3[d← v]

p ⊢ ⟨σ1, k1⟩ ⇒ ⟨σ4, k2⟩

call

instr(k1) = CALL(d, ssp, dsp, kr, ks)
σ1[ssp] ≥ 8 k2 = σ2[d] k2 ∈ ks

σ2 = σ1[rip← kr]
σ3 = σ2[QWORD-PTR[ssp]← k2]
σ4 = σ3[dsp ← σ3[ssp]− 8]

p ⊢ ⟨σ1, k1⟩ ⇒ ⟨σ4, k2⟩
ret

instr(k1) = RET(ssp, dsp, ks)
k2 = σ1[QWORD-PTR[ssp]] k2 ∈ ks

σ2 = σ1[rip← k2]
σ3 = σ2[dsp ← σ2[ssp] + 8]

p ⊢ ⟨σ1, k1⟩ ⇒ ⟨σ3, k2⟩

Fig. 4: Formal semantics for BIRD programs. From top to bottom: The transitive
closure for (phi-)instruction semantics, the phi semantics, and the small step
semantics for instructions.

Definition 7 (Bisimulation). Given two BIRDs ir1, ir2 and two programs
p1 : Prog(ir1), p2 : Prog(ir2), the programs are considered bisimilar (p1 ∼ p2)
if there exists a relation R ⊆ Σ(ir1)×Σ(ir2) such that R and R−1 are simula-
tions. R is a simulation, if for every ⟨σ1, σ2⟩ ∈ R and σ′

1 : Σ(ir1)

p1 ⊢ σ1 ⇓ σ′
1 =⇒ ∃σ′

2, p2 ⊢ σ2 ⇓ σ′
2 ∧R(σ′

1, σ
′
2)
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Definition 8 (Translation). Given two birds ir1, ir2, we define translations
and translation steps

translation := ⟨τ : Prog(ir1)→ Prog(ir2), (≡) ⊆ Prog(ir1)× Prog(ir2)⟩
translation−step(⟨τ,≡⟩) := λp 7→ if p ≡ τ(p) then τ(p) else ∅

where translations have the requirement

∀p, p ≡ τ(p) =⇒ p ∼ τ(p)

The composition of two steps step1, step2 is defined as the monadic bind.

step1 ◦ step2 := λp 7→ if step1(p) = p′ then step2(p
′) else ∅

Note that if a translation step returns the translation of an input program then
the translation is bisimilar to the input. This, combined with transitivity of
bisimulation, ensures that if the composition of two steps returns the translation
of an input program then the composed translation is bisimilar to the input.

3.2 Instantiation 1: X86

For X86 assembly, the storage cells are registers and no annotations (a.k.a the
unit tuple) are needed. Reading and writing is implemented with the aliasing
semantics of registers.

Definition 9 (Register). Registers are the general-purpose registers Reg ::=
rax | eax | . . . | r15b. A register’s word part is given as follows

partreg(rax,_) := qword partreg(eax,_) := dword partreg(ax,_) := word

partreg(al,_) := right-byte partreg(ah,_) := left-byte . . .

Definition 10 (Register read, write). Given a register state γ : Reg → V8

and a register r : Reg, reading is the function application

readreg(γ, r) := γ(r)

and writing is the aliasing function update

writereg(γ, r, v) := Wregs(γ, aliases(r), v)

Wregs(γ, rs, v) := fold((λγ′, r 7→ γ′[r 7→ v]), γ, rs)

aliases(rax) := [rax, eax, ax, al, ah], . . .

Definition 11 (Well formed X86 state). A register state γ : Reg → V8 is
well formed if all aliasing registers contain the same V8 value.

wf(γ) := ∀r1r2, aliases(r1) = aliases(r2) =⇒ γ(r1) = γ(r2)

Definition 12 (X86 BIRD). The X86 language is the IR with registers, no
annotations, absolute addresses as labels and the aforementioned aliasing seman-
tics for registers.

X86 := ⟨Reg , ⟨⟩,AbsAddr ,partreg , readreg ,writereg⟩
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3.3 Instantiation 2: Early BIRD

For the Early BIRD language, the storage cells are mutable variables and the
annotations are the word parts corresponding to the word parts of the regis-
ters from which the variable originates. Reading and writing have no aliasing
semantics.

Definition 13 (Mutable Variable). A mutable variable is a string identifier
Var := string. Its word part is determined entirely by its annotation

partvar(_, a) := a

Definition 14 (Variable read, write). Given a variable state γ : Var → V8

and a variable var : Var , reading is again the function update and writing is the
non-aliasing function update

readvar (γ, var) := γ(var) writevar (γ, var , v) := γ[var 7→ v]

Definition 15 (Early BIRD). The Early BIRD language is the IR with vari-
ables, word parts as annotations, absolute addresses as labels and the aforemen-
tioned non aliasing semantics for variables

EarlyBIRD := ⟨Var ,WP,AbsAddr ,partvar , readvar ,writevar ⟩

4 X86 To Early BIRD

1 MOV R8D, EDI
2 LEA RAX, [R8 - 1]
3 INC R8B

(a) Original X86 code

1 MOV R8(dword), DI(dword)
2 LEA AX(qword), [R8 - 1]
3 INC R8(right byte)

(b) Corresponding Early BIRD code

Fig. 5: Example of the reg2var translation.

In this section, we define the translation reg2var where the function τ is
overloaded for all syntactical elements. We then define a congruence relation
∼= between X86 states and Early BIRD states and extend τ to also translate
states. These two definitions serve as the bisimulation relation and the method
to compute new related states needed for definition 7. Based on these defini-
tions, we show that τ always produces bisimilar states, thus the semi-decider on
program equivalence is the constant true function. Figure 5 shows an example
X86 program together with its reg2var transformation.

Definition 16. For (annotated) registers, τ returns (annotated) cells. All alias-
ing registers are mapped to the same variable

τ(rax) := “AX ′′ τ(eax) := “AX ′′ . . . τ(r15w) := “15′′ τ(r15b) := “15′′
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and the resulting variables annotation is the word part of the registers

τ(⟨r : Reg , a : unit⟩) := ⟨τ(r),partreg(r, a)⟩

Sources are translated by translating the contained data, all other syntactical
elements work similarly.

τ(s) :=



v if s is an immediate v

τ(e) if s is an expression e

⟨s, τ(e)⟩ if s is an address ⟨s, e⟩
τ(⟨r, a⟩) if s is an annotated register ⟨r, a⟩
rip+ d if s is an rip relative rip+ d

All nodes that appear in a program p : Prog(X86) also appear in the program
τ(p) because τ does not change the control flow structure, only the instructions.
As such, we can implicitly cast any node from Node(p) to Node(τ(p)). In par-
ticular, the statements p ⊢ ⟨σ1, k⟩ ⇒ ⟨σ′

1, k
′⟩ and τ(p) ⊢ ⟨σ2, k⟩ ⇒ ⟨σ′

2, k
′⟩ have

meaningful semantics.

Definition 17 (Reg2Var congruence). The relation ∼= between a X86 state
σ1 and an Early BIRD state σ2 requires the memory, flags and rip of both
states to be identical. For the cells, the values of all registers must match their
translated counterparts.

σ1
∼= σ2 := ∀(a : AbsAddr), σ1[a] = σ2[a] ∧ ∀(f : Flag), σ1[f ] = σ2[f ]

∧ ∀(c : Reg × unit), σ1[c] = σ2[τ(c)] ∧ σ1[rip] = σ2[rip]

This will be the bisimulation relation R for Definition 7.

Definition 18. The translation for states τ : Σ(X86)→ Σ(EarlyBIRD) keeps
memory, flags and rip unchanged and evaluates all variables by forwarding to
the corresponding register.

τ(⟨γ, θ, ξ, rip⟩) := ⟨⟨γ′, θ, ξ, rip⟩⟩
γ′ := λ(v : Var) 7→ γ(r), where τ(r) = v

For the rest of the section, we can assume such an r with τ(r) = v to exist as all
variables in this transformation originate from registers. This will be the state
σ′
2 for Definition 7.

To show bisimilarity between any program p and its translation τ(p), we first
need to show that state congruence preserves all values. First, we show that
registers and their translation have the same value (Lemma 1), that expressions
and their translation evaluate to the same value (Lemma 2) and that reading
from a source is the same as reading from its translation (Lemma 3). We then
show that writing preserves congruence (Lemma 4). Based on these, we show
that executing (phi-)instructions preserves the small-step semantics (Lemmas 5,6
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and 7), and extend this to the transitive closure (Lemma 8). Finally, we show
that the semantics of the entire program is preserved (Corollary 1) and thus,
∼= is a bisimulation (Theorem 1). For the rest of the section, we always assume
X86-states to be well-formed.

Lemma 1. Given two states σ1, σ2, for all registers r and annotations a

σ1
∼= σ2 =⇒ σ1[⟨r, a⟩] = σ2[τ(⟨r, a⟩)]

Proof. Unfolding the definitions, we need to show ⇓part(r,a) γ1(r) =⇓τ(⟨r,a⟩)
γ2(τ(r)). By definition, part(r, a) and τ(⟨r, a⟩) are equal. By a case analysis
on r, we need to show cases such as γ1(EAX) = γ2(“AX ′′). This is true by the
assumption σ1

∼= σ2. ⊓⊔

Lemma 2. Given two states γ1, γ2, for all expressions e = [d± b± s ∗ i]

γ1 ∼= γ2 =⇒ e|read(γ1) = τ(e)|read(γ2)

Proof. Unfolding the definition of expression evaluation, we need to show d ±
γ1[b]± s · γ1[i] = d± γ2[τ(b)]± s · γ2[τ(i)]. By Lemma 1, we have γ1[b] = γ2[τ(b)]
and γ1[i] = γ2[τ(i)]. ⊓⊔

Lemma 3. Given two states σ1, σ2, for all sources s

σ1
∼= σ2 =⇒ σ1[s] = σ2[τ(s)]

Proof. Case analysis over s. For an immediate v, τ(s) = v and ∀σ, σ[v] = v. For
an expression e, Lemma 2 shows that evaluation of e and τ(e) yield the same
result. For an address ⟨s, e⟩, s stays the same and the evaluation of e and τ(e)
are equal. Reading from ⟨s, e⟩ in σ1 and τ(⟨s, e⟩) in σ2 is the same by σ1

∼= σ2.
For an annotated register ⟨r, a⟩, Lemma 1 shows the goal. For a rip relative
rip+ d, equality follows from σ1

∼= σ2. ⊓⊔

Lemma 4. Given two states σ1, σ2, for all destinations d and values v

σ1
∼= σ2 =⇒ σ1[d← v] ∼= σ2[τ(d)← v]

Proof. Case analysis over d. For an annotated register ⟨r, a⟩, we only need to con-
sider the cell state parts as all other state parts are unchanged by the write. We
need to show writereg(γ1, r, a, v) = writevar (γ2, τ(⟨r, a⟩), τ(r), v). By Lemma 1 we
know that the old values of r in γ1 and τ(r) in γ2 are equivalent, thus updating
with v results in the same value. Again, by Lemma 1, we know that reading from
r and τ(r) after writing results in the same value. For an address ⟨s, e⟩, we only
need to consider the memory state part. By Lemma 2, we know that e and τ(e)
evaluate to the same value, thus the same memory update is performed. Also by
Lemma 2, Reading after the the memory update yields the same value. ⊓⊔
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Lemma 5. Given two states σ1, σ2, a list of source registers s, a destination
register d and a natural number n, we have

σ1
∼= σ2 =⇒ run−phi(n, ⟨d, s⟩, σ1) ∼= run−phi(n, τ⟨d, s⟩, σ2)

Unfolding the definitions, we need to show

σ1[d← σ[⟨sn,qword⟩]] ∼= σ2[τ(d)← σ[⟨map(τ, s)n,qword⟩]]

By Lemma 3, we know that σ1[⟨sn,qword⟩] and σ2[⟨map(τ, s)n,qword⟩] eval-
uate to the same v : V8. The remaining σ1[d ← v] ∼= σ2[τ(d) ← v] follows from
Lemma 4. ⊓⊔

Lemma 6. Given a program p : Prog(X86), two nodes in the program k1, k2,
two states σ1, σ

′
1, a state σ2, and σ′

2 := τ(σ′
1), we have

σ1
∼= σ2 ∧ p ⊢ σ1 Φk2

k1
σ′
1 =⇒ τ(p) ⊢ σ2 Φk2

k1
σ′
2

Proof. Inversion on the phi step relation. We have an n, such that is−predn(k1, k2)
and σ′

1 = run−phis(n, phi(k2), σ1). We show σ′
2 = run−phis(n, τ(phi(k2)), σ2) by

an induction on phi(k2) and application of Lemma 5. ⊓⊔

Lemma 7. Given a program p : Prog(X86), two nodes in the program k1, k2,
two states σ1, σ

′
1, a state σ2, and σ′

2 := τ(σ′
1), we have

σ1
∼= σ2 ∧ p ⊢ ⟨k1, σ1⟩ ⇒ ⟨k2, σ′

1⟩ =⇒ τ(p) ⊢ ⟨k1, σ2⟩ ⇒ ⟨k2, σ′
2⟩

Proof. We show the OP rule as an example. All other rules are similar. Doing
an inversion, we get 1. p, instr(k1) = OP(op, s⃗, d⃗, k2), 2. σa = σ1[rip ← k2],
3. ⟨f⃗ , e⟩ = J op K, 4. σb = σa[d⃗← f⃗(σa[s⃗])] and 5. σ′

1 = e(σb[s⃗], σb). We need to
show:

– σa
∼= σ′

a where σ′
a = σ2[rip← k2]. Follows by definition of writing to rip.

– σb
∼= σ′

b where σ′
b = σ′

a[τ(d⃗)← f⃗(σ′
a[τ(s⃗)])]. Follows from Lemmas 3 and 4.

– σ1
∼= σ′

2 where σ′
2 = e(σ′

b[τ(s⃗)]). Follows from Lemmas 3 and 4.
⊓⊔

Lemma 8. Given a program p : Prog(X86), two nodes in the program k1, k2,
two states σ1, σ

′
1 a state σ2, and σ′

2 := τ(σ′
1), we have

σ1
∼= σ2 ∧ p ⊢ ⟨k1, σ1⟩ ⇒∗ ⟨k2, σ′

1⟩ =⇒ τ(p) ⊢ ⟨k1, σ2⟩ ⇒∗ ⟨k2, σ′
2⟩

Proof. Induction over p ⊢ ⟨k1, k2⟩ ⇒∗ ⟨σ1, σ
′
1⟩ with σ2 generalized. The termi-

nal base case follows by Lemma 7 and the nonterminal inductive case follows
from Lemmas 6, 7 and the induction hypothesis. ⊓⊔

Corollary 1. Given a program p : Prog(X86) and the states σ1, σ
′
1, σ2 and σ′

2 :=
τ(σ′

1), we have

σ1
∼= σ2 ∧ p ⊢ σ1 ⇓ σ′

1 =⇒ σ′
1
∼= σ′

2 ∧ τ(p) ⊢ σ2 ⇓ σ′
2
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Proof. σ′
1
∼= σ′

2 follows by definition of τ , the rest by Definition 6 and Lemma 8.
⊓⊔

Theorem 1. Given a program p : Prog(X86), we have p ∼ τ(p)

Proof. We need to provide a relation R ⊆ Σ(X86 ) × Σ(EarlyBIRD), such that
both R and R−1 are simulations. We choose R := (∼=).

∀⟨σ1, σ2⟩ ∈ (∼=),∀σ′
1, p ⊢ σ1 ⇓ σ2 =⇒ ∃σ′

2, σ2
∼= σ′

2 ∧ τ(p) ⊢ σ2 ⇓ σ′
2

We provide σ′
2 := τ(σ′

1), the remaining

σ1
∼= σ2 ∧ p ⊢ σ1 ⇓ σ′

1 =⇒ σ′
1
∼= τ(σ′

1) ∧ τ(p) ⊢ σ2 ⇓ τ(σ′
1)

is exactly Corollary 1. The case for (∼=)−1 is similar. ⊓⊔

The first step in the translation chain (Figure 1) is the reg2var step between
the X86 and the EarlyBIRD languages. Its translation is implemented by the τ
function defined in this section. By Theorem 1, this translation step always pro-
duces an EarlyBIRD program whose semantics are equivalent to the semantics
of the original X86 program. Thus, the semi-decider for program equivalence
between input and output of the τ function is the constant true function. By
Definition 8, we obtain a provably correct translation step.

5 Conclusion

In this paper, we presented the mathematical framework BIRD to describe low-
level programs in a generic assembly language, translations between different
instantiations of that language, and the soundness criteria thereof. We presented
two example instantiations: X86 and Early BIRD with their full formal seman-
tics, and showed a translation step to replace the registers of the former with
mutable variables of the latter and proofed soundness of this translation.

As such, BIRD is the first of its kind as it allows decompilation to be per-
formed in an exact and provably correct way that requires no human interven-
tion. Opposed to most of the competing platforms, it does not aim to produce
human-readable code and instead produces machine analyzable code.

For usage in a real-world decompiler, the limited set of instructions presented
in this paper can be extended by leveraging work such as [8,10,12,24]. By imple-
menting the language definition and transformation in Coq, we are able to use
its language extraction feature to produce around 500 lines of Haskell code to
be used in our internal x86-64 decompilation suite.

Apart from the reg2var translation that was introduced here, we see three
more steps as the immediate future work that can directly build upon BIRD.
Figure 1 shows a hypothetical compiler that uses these steps to leverage the
low-level assembly into fully typed, SSA-based programs.
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ssa, mem2var SSA-form programs are often used by static analysis tools to
better reason about mutable variables. In its current state, an Early BIRD pro-
gram still uses mutable variables, but the generic definition supports the
definition of immutable SSA variables too. Notably, phi nodes with their
semantics based on incoming edges are defined as part of Figure 4. The
register-based variables can already be SSA transformed, but there still re-
main memory accesses that make statically analyzing an assembly program
hard. We argue that these memory accesses need to be replaced by SSA
variables wherever possible.

symbolization The Early BIRD language uses V8 values as the labels for all
instructions. As such, they can be the result of computations to implement
indirect jumps. If one was to reorder instructions in the program, or in-
sert new ones, these V8 labels would no longer match and indirect jumps
would break. A symbolization step can introduce more abstract, position-
independent labels. This would allow for semantics preserving, structure al-
tering translations.

type inference The registers modeled so far (and thus the variables) are based
on 1,2,4 and 8 byte integers. There is no information yet on signedness of
values or whether or not they form more complex compound data struc-
tures, but such information can be used to guide program analyses [20]. An
extension of the current framework may see the introduction of floating point
instructions and SIMD registers.
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