
Self-organizing and Self-reconfigurable

Event Routing in Ad Hoc Networks

with Causal Dependency Awareness

GUANHONG PEI and BINOY RAVINDRAN

Virginia Tech

and

E. Douglas Jensen

The MITRE Corporation

Publish/subscribe (P/S) is a communication paradigm of growing popularity for information dis-
semination in large-scale distributed systems. The weak coupling between information producers

and consumers in P/S systems is attractive for loosely coupled and dynamic network infrastruc-
tures such as ad hoc networks. However, achieving end-to-end timeliness and reliability properties
when P/S events are causally dependent is an open problem in ad hoc networks.

In this paper, we present, evaluate benefits of, and compare with past work, an architecture
design that can effectively support timely and reliable delivery of events and causally related
events in ad hoc environments, and especially in mobile ad hoc networks (MANETs).

With observations from both realistic application model and simulation experiments, we reveal
causal dependencies among events and their significance in a typical use notional system. We
also examine and propose engineering methodologies to further tailor an event-based system to
facilitate its self-reorganizing capability and self-reconfiguration. Our design features a two-layer
structure, including novel distributed algorithms and mechanisms for P/S tree construction and
maintenance. The trace-based experimental simulation studies illustrate our design’s effectiveness
in both cases with and without causal dependencies.

Categories and Subject Descriptors: C.2.2 [Computer Communication Networks]: Network
Protocols; C.2.4 [Computer Communication Networks]: Distributed Systems

General Terms: Design, Performance

Additional Key Words and Phrases: Self-organizing, Self-reconfigurable, Event-based Systems,
Ad Hoc Networks, MANET, Wireless Networks, Causal Dependency, Publish/Subscribe

This article is based on the paper that appeared as “On A Self-organizing MANET Event
Routing Architecture with Causal Dependency Awareness,” Guanhong Pei, Binoy Ravindran,
and E.D. Jensen, Second IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), Venice, October 20-24, 2008.
Authors’ contact information: Guanhong Pei, Dept. of ECE, Virginia Tech, Blacksburg, VA

24061, U.S.; email: somehi@vt.edu; Binoy Ravindran, 2040 Torgersen, Dept. of ECE, Virginia
Tech, Blacksburg, VA 24061, U.S.; email: binoy@vt.edu; E.D. Jensen, The MITRE Corporation,
Bedford, MA 01730, U.S.; email: jensen@mitre.org.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c⃝ 20YY ACM 1556-4665/20YY/08-0001 $5.00

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY, Pages 1–30.

2 ⋅ Guanhong Pei et al.

1. INTRODUCTION

The publish/subscribe paradigm [Fiege et al. 2006] communicates on the basis of
either the message content or the message source being of interest to destinations
– as opposed to the source specifying the recipient(s). Publish/subscribe commu-
nication has been used in computing systems (notably for defense and industrial
automation) since at least the early 1970’s (e.g., [Consolver et al. 1975]). Only since
the middle of this decade has it gained rapidly increasing interest – for example,
the Object Management Group has developed a publish/subscribe standard named
the Data Distribution Service [OMG 2007].
Publish/Subscribe (P/S) systems can be considered to be a form of event-based

systems, in the sense that the information injected to and propagated through the
system can be treated as events. An entity in the system can act either or both as
information producers (publishers) and consumers (subscribers). The subscribers
declare their interests by subscriptions to certain events, most commonly specified
by the content or the topic of the events (with different expressive power), and pub-
lishers produce events of information to the system. The event routing mechanism
implemented in the P/S system (usually middleware) then takes charge of the event
delivery according to the subscriptions. In short, a P/S system is an information
dispatching system which does not explicitly involve the use of network addresses.
P/S systems are usually thought of in the context of disseminating data, but

they can also be used for control information. Indeed, the data/control dichotomy
in general is often an over-simplification, since the same information can be data at
one time and place, and control at another time and place. This fact plays a role
in our motivation for the work described in this paper.

1.1 P/S and Ad Hoc Networks

Many problems pertaining to P/S in a wired network system have been proposed
and solved. With increasing popularity and availability of wireless devices, extend-
ing the applications of P/S into wireless environments becomes a pressing need.
The advantages of this extension are due to the natures of both P/S systems and
wireless ad hoc networks.
In essence, a wireless ad hoc network is formed by wireless devices communicating

without a fixed network infrastructure, either because it is difficult to build a wired
infrastructure due to environmental, economical, or resource constraints, or because
the existing wired infrastructure is not functioning due to damage from war or
natural disaster. Devices discover and “talk” to others within range to form a
network. Connections may be multi-hop. New properties such as broadcasting and
signal conflicts arise from the use of wireless MACs.
The weak coupling between information producers’ and consumers’ identities

in a P/S system provides P/S the advantages of asynchronous, multipoint com-
munication, hence freeing the communicating entities from temporal and spacial
requirements for connection. Therefore P/S is appealing in loosely coupled net-
work contexts such as ad hoc networks, and especially mobile ad hoc networks
(MANETs) [Corson and Macker 1999] because of the ease with which components
can be added, removed or changed at runtime.
A MANET, as a subclass of ad hoc networks, is a collection of (usually) mobile

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 3

wireless devices with dynamically changing membership and multi-hop topologies
composed of wireless links. By its nature, a MANET is a self-organizing adaptive
network, and thus needs to be formed and maintained in a distributed manner
without centralized support or fixed infrastructures [Sarkar et al. 2007].
The P/S scheme is adopted in various types of ad hoc networks with different

configurations. In a sensor network context, for instance, sensor nodes may host
temperature sensors in a plant and subscribe to all the application events querying
about temperature data of that location; an actuator or monitor may only be
interested in receiving all the messages concerning a temperature greater than 1,000
degrees centigrade, to activate an alarm.

Fig. 1. Example Scenario

An interesting notional scenario for the use of P/S in a MANET is illustrated by
Figure 1. It begins when a a commander either makes (i.e., invokes) or publishes a
service request to “agents” to find out something about the situation in a particular
combat region. Note that although making a request for information by publishing
it is a departure from the conventional P/S mindset of publishing only ”data”, it
can be a natural and effective technique. Typically there is a mission-critical time
constraint for him to obtain that information — the information’s utility [Jensen
et al. 1985] to the mission degrades after a certain amount of time following his
service request.
To obtain the information: two forms of imagery are obtained by subscription

from surveillance platforms, and fused by recipient agents; re-scoped down to the
geographical region of interest (perhaps by publishing it to a service which does
that); re-sized to fit on soldiers’ PDA screen (perhaps by publishing the re-scoped
information to a service which re-sizes it); published to, and annotated by, one
or more soldiers in that region; then sent by those soldiers to a ground-to-space
relay and from there to a satellite and then to the commander making the original
service request (and probably other interested commanders). Most, if not all, of
these communications can effectively be in the form of publishes and subscribes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

4 ⋅ Guanhong Pei et al.

More application examples, in the settings of sensor networks, unmanned aerial
vehicles, etc., can be found in [Costa and Picco 2005; Pleisch and Birman 2006;
Marques et al. 2006a; Huang and Garcia-Molina 2003; Caporuscio et al. 2003].
Currently, the P/S mindset, and hence P/S concepts and techniques, are focused

on minimizing latency (sometimes called delay) and thus maximizing throughput as
the primary performance metric. This is in contrast to the real-time mindset, and
hence concepts and techniques, that are focused on satisfying time constraints, con-
ventionally by minimizing response times (or, increasingly, focused on maximizing
accrued utility [Clark 1990]). Although throughput and response time are conjugate
metrics, latency plays a fundamental role in both. To compare our P/S research
results with those of others, we necessarily employ that communities’ performance
metric. Time constraints such as those in our motivating notional scenario, and
latencies, can be mapped between each other.
The potential advantages of the P/S interaction model atop ad hoc networks

are not fully realized by the state of the art predominant industrial and aca-
demic solutions, such as TIB/RV [Oki et al. 1993], SCRIBE [Castro et al. 2002],
SIENA [Carzaniga et al. 2001], REDS [Cugola et al. 1998], Kyra [Cao and Singh
2004], IBM’s Gryphon [Banavar et al. 1999], IBM’s WS-Notification [Graham et al.
2004], and RTI’s DDS [Castellote and Bolton 2002] based on OMG’s DDS [OMG
2007].
In the context of P/S in ad hoc networks, many of the previous efforts have

focused primarily on throughput and overhead. Timeliness and reliability, which
are important for many ad hoc-based applications, have not been well addressed.
Furthermore, as one of the key issues in ad hoc networks, full mobility support also
needs to be accommodated. Some previous efforts have been made [Fiege et al.
2003; Caporuscio et al. 2003; Muthusamy et al. 2005] assuming either that only a
subset of nodes in the network can roam and act as clients or that the clients are
always one hop away from the fixed infrastructure. They therefore focus only on
a restricted subset of the problem space. A more general and common scenario in
mobile ad hoc networks is that every node in the network is potentially mobile, can
join, leave the system, and have access to the publish/subscribe service (e.g., by
running P/S middleware), while also acting as a broker for message forwarding and
matching to make the service available.
In addition, MANETs are subject to significantly greater run-time uncertainties

and resource constraints than are traditional fixed-infrastructure networks, includ-
ing:

(1) frequent link breakages and temporary network disconnections;

(2) temporary node unavailability and node joins or departures at unpredictable
times; and

(3) mobility-induced resource constraints on the overall architecture, such as limits
on bandwidth, latency, and energy consumption.

1.2 Event Causal Dependencies

To garner the most timeliness and reliability from the P/S system in real-world ad
hoc applications, we explore architectural real-time support for event causal depen-
dencies, an important property of many emerging ad hoc-based applications that

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 5

are suited for P/S-style communication. This refers to the existence of multiple pub-
lication and subscription hops that are causally related (e.g., topic-wise), resulting
in an event causal chain or event causal graph. We illustrate this above with a mo-
tivating scenario from the military domain (similar scenarios can be found in other
application domains such as automotive [Marques et al. 2006b] and e-health [Lupu
et al. 2008] systems, etc.). To better understand causal dependency, we should also
note that logical implication is not equivalent to event causal dependency in a P/S
system because of the lack of temporal relationships [Pfaltz 2006].
The conventional ideas about timely and reliable P/S event delivery are always

on a single publish-hop basis, by which we mean the travel of an event from its
publisher to its subscriber(s), perhaps transparently through network devices such
as routers. Thus that neglects a common phenomenon of event causal dependencies,
which refers to the existence of multi-publish-hop — i.e., an event causal chain or
even an event causal graph constructed based on the event causal dependencies.
To better understand these concepts, let us consider again the example scenario in
a P/S system in MANETs.

Fig. 2. Example Causal Graph

Figure 2 shows the underlying causal relationship graph for the Figure 1 scenario.
The timeliness and reliability of the event delivery from the causal event initiator
(commander in Figure 1 above) to the last publisher in the whole chain (satellite
in Figure 1), is mission critical and is challenging due to the MANET dynamics.
This scenario raises fundamental yet unsolved problems:

(1) What interconnection architecture is appropriate for P/S service in MANETs
that can handle causal dependencies?

(2) How to self-organize mobile nodes into an interconnection topology with sup-
port for reliable and timely delivery of causally-dependent messages?

(3) How to reliably and timely route causally-dependent messages?

In this paper, we address these questions. Without loss of the potential to be
adopted in generic ad hoc networks, we consider a MANET, where every node in the
network has mobility and can access a P/S service. Based on analysis, we present an

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

6 ⋅ Guanhong Pei et al.

event routing architecture design called SOMER (Self-Organizing MANET Event
Routing) that supports timely and reliable data delivery across causally-dependent
event chains. Key aspects of SOMER include algorithms and mechanisms for P/S
tree construction and maintenance with self-organizing and self-configurable ca-
pabilities. Our simulation-based experimental results show that SOMER achieves
30%–100% timeliness improvement and up to 30% reliability improvement over
previous solutions.
To the best of our knowledge, this is the first work to consider causally-dependent

networked P/S systems. Thus, the paper’s contribution is the SOMER architecture.
The remainder of this paper is organized as follows. Section 2 discusses related

work and identifies SOMER’s unique aspects. Then we illustrate the advantages of
a hierarchical tree-based interconnection through an analytical model in Section 3.
Section 4 presents SOMER’s basic design. In Section 5, we discuss how we design
architectural support for causal awareness. Section 6 reports our experimental
results, including comparison with past work. Section 7 concludes the paper with
discussion and future work.

2. RELATED WORK

Typically, in MANETs, a structured interconnection topology is used; most recent
representative work [Huang and Garcia-Molina 2003; Picco et al. 2003; Cao and
Shen 2007; Mottola et al. 2008] presents algorithms for constructing and main-
taining an event routing tree as the interconnection topology under a filter-based
routing scheme. There are also structure-less approaches—e.g., [Baldoni et al. 2005]
employs a form of informed flooding-based event routing using Euclidean distances.
It is also interesting to note various approaches used in P/S systems atop wired

networks. For example, a distributed hash table configuration is used to facilitate
the interconnection topology [Ratnasamy et al. 2001; Stoica et al. 2003; van Renesse
and Bozdog 2004; Costa and Frey 2005]. Some approaches do not maintain any
deterministic data structure on the topology at a peer. In this case, event routing
is neither filtering-based nor rendezvous-based, like in [Costa et al. 2004; Datta
et al. 2004]; they employ probabilistic flooding and gossiping, respectively.

2.1 Tree-based vs. Non-tree Approaches

We refer to a tree-based interconnection topology as an approach to interconnect mo-
bile nodes with an acyclic structure. We refer to non-tree approaches as the ones
that use either rendezvous-based or flooding-/gossip-based approaches. The fun-
damental difference between the tree-based topology and the non-tree approaches
is that the interconnection topology of non-tree approaches tends to poorly match
the underlying physical topology, because of the loose coupling among the nodes.
The impact on the message delivery is that latency can be very high and sometimes
unpredictable, as information might pass across many nodes, some of which might
be slow or have long physical paths between them in the underlying network. Also,
in the case of large periods of message multicast peer-to-peer networks may suf-
fer congestions and inefficient use of bandwidth with non-tree-based connections.
By contrast, a tree-based topology can more efficiently and effectively meet the
end-to-end timeliness requirement [Junginger and Lee 2004; Carzaniga and Hall
2006]. However, in order to meet the demands of large scale MANETs, we need a

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 7

more advanced tree-based architecture to handle node failures, link breakage, node
joins and departures, while still maintaining the same or increased timely message
delivery.

2.2 Existing MANET Tree-based P/S Architecture

To the best of our knowledge, for MANETs, most tree-based P/S interconnection
approaches either employ a single P/S tree structure in the whole network, or build
one P/S tree for each publisher. The latter case can accommodate only a limited
number of designated publishers, and thus suffers from a lack of scalability.
The single-tree strategy is typically used; and due to the resemblance between

multicast and P/S in MANETs, in [Mottola et al. 2008] the P/S tree is derived from
multicast tree construction and maintenance mechanisms of MAODV (Multicast
Ad hoc On-Demand Distance Vector Routing Protocol) [Royer and Perkins 2000;
1999].
In large scale MANETs, as the average distance increases between the root and

a node in the P/S tree, it becomes much harder to handle failures and topology
changes. Moreover, although the single-tree architecture is fully based on the ge-
ographical topology, there still exists a possibility that a publisher’s message may
not reach some of its subscribers via the physically shortest route. That is because
the length of the path is hard to upper bound, and is independent of the length of
the physically shortest route.
A hierarchical tree-based interconnection in a MANET self-organizes all the nodes

into non-overlapping trees and has specific mechanisms for inter-tree communica-
tion. The roots of the trees function as the inter-tree brokers. In Section 3, we will
show the advantages of a hierarchical tree-based interconnection topology over a
single P/S tree approach through both qualitative and quantitative analysis.
Motivated by all the above observations, we consider a tree-based approach and

explore a hierarchical architecture design for causally related event delivery. The
idea of using hierarchical architecture in ad hoc networks is not new. For exam-
ple, [Pleisch and Birman 2006] presents a scalable P/S system called SensTrac based
on a tree-based hierarchical structure.
SOMER is uniquely novel and different from [Pleisch and Birman 2006] in several

aspects including:

(1) Tree Construction. SensTrac uses static clustering via nodes’ geographic co-
ordinates using GPS. In contrast, SOMER uses dynamic clustering, allowing
nodes to be clustered on-the-fly;

(2) Inter-tree Communication. SensTrac uses AODV to find routes among root
nodes (leaders), and uses gossip to disseminate information among root nodes,
whereas SOMER uses restricted flooding among root nodes, which is more
suitable for a mobile environment;

(3) In SensTrac, the query (subscriber) node subscribes to the information of its
area of interest (AOI) which is bounded by a given square, whereas our sub-
scription model is more general;

(4) In SensTrac, the query node is the only subscriber, and does not act as a broker,
and the publishers are only the sensors in the AOI, whereas we do not have
those limitations on subscribers or publishers;

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

8 ⋅ Guanhong Pei et al.

(5) In SensTrac, nodes are stationary and only the query node can move, whereas
we allow every unit to be mobile;

(6) SensTrac does not support system reconfiguration for causal dependencies (due
to its static node clustering mechanism which has no capability to handle causal
dependencies similar to that of SOMER).

3. HIERARCHICAL TREE-BASED MODEL

Suppose that the system (i.e., a MANET) has already completed self-organization
and remains stationary. To build an analytical model from which we get our first
motivations, we make the following assumptions:

∙ All nodes are homogeneous and evenly distributed within a 2-dimensional area;
and

∙ Each node has the same number of immediate neighbors and thus each tree has
the same number of immediate neighboring trees. Let the number of neighbors
of any node be NNeigℎbor .

3.1 Graph Theory Preliminaries

An r-tree is a tree with root r. Let T (r) denote such a tree. The level of a vertex v in
T (r) is the length of the path rT v. Each edge of T (r) joins vertices on consecutive
levels, and it is convenient to think of these edges as being oriented from the lower
to the higher level, so as to form a branching. Each vertex except v on the path
rT v, is called an ancestor of v, and each vertex of which v is an ancestor is a
descendant of v. Two vertices are related in T if one is an ancestor of the other.
The immediate ancestor of v is its predecessor or parent, denoted p(v), and the
vertices whose predecessor is v are its successors or children. A leaf of a tree is
the node which has no successors. We refer to the process of going from a non-root
node to the root by way of its parent as “going upward,” and going the reverse way
as “going downward.”
Suppose NNeigℎbor is subject to a normal distribution with mean 6 and standard

deviation of 4. Obviously, only 4 and 6 are the possible number of neighbors that
can produce an evenly distributed physical topology. For example, if NNeigℎbor = 5,
we cannot find a topology to maintain the equality of the distances between any
two neighboring nodes, thus violating the even distribution assumption.

NNeigℎbor = 4, 6 (1)

The network can be represented by a connectivity graph N(V,E, P), where V =
{v1, ..., vn} is the set of nodes, E is the set of links, and P = {p1, ..., pk} is the set
of publishers. Also, let n denote the number of nodes and k denote the number of
publishers. Let DT denote the density of root nodes and T = {t1, ...tt} denote the
set of trees. Let the longest distance from the tree root to a node in its territory
be R (i.e., the radius). Let the distance between any pair of neighboring nodes
be denoted as distMin. We assume that 0.5distCST < distMin < distCST , where
distCST is the one-hop wireless transmission range (carrier sensing range), such
that a node should only receive the signal from an immediate neighbor.
From Equation 1, we can derive that the network connection links form either

a grid-like (NNeigℎbor = 4) or a beehive-like (NNeigℎbor = 6) structure. Figure 3

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 9

Fig. 3. Network Model Structures

illustrates this, where the solid dots denote nodes in the network, and the red
hexagons and squares with nodes at the angles cover the set of immediate neighbors
of the center node.
Assume that a straight path can be established between any pair of neighboring

trees’ roots. It can be seen that for any root node to reach another root node, if
their trees are not neighbors, it needs a route by way of other root nodes, and this
route takes at most one turn along the route. Let � denote the angle of the turn if
there is one. Now,

� =

{

120o, for NNeigℎbor = 6
145o, for NNeigℎbor = 4

(2)

Let s(pi, vj) be one of pi ∈ P ’s subscriber which is associated to the tree rooted
at vj ∈ V . We estimate the average distance from a node to its tree root to be R

2 .
Let lengtℎ(u, v) denote the length of the path between two nodes u and v. Now,
the length of the path between pi and s(pi, vj) is:

lengtℎ(pi, s(pi, vj)) = lengtℎ(pi, r(pi))+
lengtℎ(r(pi), vj) + lengtℎ(vj, s(pi, vj))

= R
2 + lengtℎ(r(pi), vj) +

R
2

= R+ lengtℎ(r(pi), vj)

(3)

Let dist(u, v) denote the straight-line distance between two nodes u and v. We
can bound the length of the path between pi and s(pi, vj) as:

lengtℎ(r(pi), vj) ≤ dist(r(pi),vj)
∣ sin �∣ ⇒ lengtℎ(pi, s(pi, vj))

≤
{

R+ 2√
3
dist(r(pi), vj), for NNeigℎbor = 6

R+ 2√
2
dist(r(pi), vj), for NNeigℎbor = 4

(4)

For a large-scale MANET, dist(pi, s(pi, vj)) is approximately dist(r(pi), vj). There-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

10 ⋅ Guanhong Pei et al.

fore,

lengtℎ(pi, s(pi, vj))

≤
{

R+ 2√
3
dist(pi, s(pi, vj)), for NNeigℎbor = 6

R+ 2√
2
dist(pi, s(pi, vj)), for NNeigℎbor = 4

= R+ 2
√
2√

NNeigℎbor

dist(pi, s(pi, vj))

(5)

3.2 Path Overhead Ratio

We define the path overhead ratio (POR) as the extra number of hops required by
the path over that of the straight line distance. The number of hops is proportional
to the path length, and hence:

PORSOMER ≤ lengtℎ(pi,s(pi,vj))−dist(pi,s(pi,vj))
dist(pi,s(pi,vj))

= 2
√
2√

NNeigℎbor

+ R
dist(pi,s(pi,vj))

− 1
(6)

By applying this POR in a large-scale network where R ≪ dist(pi, s(pi, vj)), we
obtain:

PORSOMER ≤ 2
√
2

√

NNeigℎbor

− 1 (7)

Fig. 4. Advantage over Single-tree Model

Figure 4 shows the path from pi to s(pi, vj) with red lines. In the figure, the blue
solid nodes are root nodes and the solid hexagons denote the abstract territories of
the trees rooted at the center nodes.
This analysis shows that for the hierarchical tree-based architecture, POR can be

bounded and is small (
√
2−1 or 2√

3
−1); whereas for single-tree-based and structure-

less approaches, the length of the path cannot be bounded and sometimes could be
very high. Thus, the benefits of the hierarchical tree-based architecture include the
following:

(1) event delivery can be completed in a shorter and more predictable time;

(2) short and bounded path length implies lower probability for a delivery to fail,
despite frequent link breakages and node failures; and

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 11

(3) the multi-tree structure gives enough leeway to devise multi-path event delivery
schemes through the use of multiple neighboring trees and multiple border leaf
nodes among the trees.

4. BASIC ARCHITECTURE DESIGN

4.1 Overview

SOMER’s design employs the hierarchical tree-based interconnection as shown in
Figure 5.

Fig. 5. Architecture Overview

At the lower layer (inner-tree level), nodes are self-organized into multiple P/S
trees rooted at several root nodes across the network. At the top layer (inter-tree
level), root nodes act as super publisher/subscriber nodes and constitute an overlay
network.

4.2 Inner-tree Level Interconnection

The publish/subscribe tree (PST) is constructed distributively in a request/reply
fashion. Any node v0 that has not joined a PST broadcasts the join request message
and waits for its immediate neighbors that are currently in a P/S tree to reply with
a join reply message. After a timeout for the neighbors’ reply expires, if the node
gets any replies, it greedily selects the best candidate neighbor from the replies as
its parent according to the parent evaluation metric (PEM); otherwise, it continues
to broadcast new join request messages. Each node in the system can only join one
PST.

4.2.1 Inner-tree Subscription and Publication. Each node v0 has its own sub-
scription interest set s(v0), termed inherent subscription. On joining the tree, node
v0 sends a subscription message containing s(v0) upward toward the grafting node
for each of its ancestors to match, and subsequently publish information to v0,
which is now a leaf in that tree. We define a non-leaf node u0’s effective sub-
scription S(u0) as the “combined” subscription formed by merging u0’s inherent
subscriptions with all of its descendants’ subscriptions. Thus, the grafting node

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

12 ⋅ Guanhong Pei et al.

of node v0 is the closest node (in terms of number of hops) in the upward path,
whose effective subscription overlaps with that of v0. In this way, each non-leaf
node maintains data structures for its successors’ subscription interests, and in u0’s
parent p(u0)’s view, u0 is a child that has the subscription interest of S(u0).

4.2.2 Parent Evaluation Metrics (PEM). PEM is the key mechanism for con-
structing and maintaining the PST. There are various PEMs, including:

∙ Shortest-path Metric (SM);

∙ Publication-overhead-aware Metric (PM); and

∙ Combination Metric (CM) of SM and PM.

SM is a most straightforward metric, in which a node chooses the neighbor at the
lowest level as its parent. PM uses the subscription information of the other nodes
in the tree to decrease the total number of messages needed to complete the deliv-
ery of one publication. In [Huang and Garcia-Molina 2003], the authors propose
a publication-overhead-aware metric that requires a’ priori knowledge of the exact
rates of invocation (publication) for each category of subscription; otherwise the
lack of that knowledge will cause high inaccuracy in a distributed system where the
rates of invocation vary over time or even are unpredictable as is the case in our mo-
tivating scenarios. Thus, their metric not only suffers from the requirement to have
that global information to function properly, but also implies that the PEM they use
is limited to topic-based publish/subscribe systems. Note that in a content-based
system, subscriptions are so finely grained that events are not classified according
to any predefined categories but rather according to the properties of the events
themselves. The PM in [Cao and Shen 2007] requires periodic messages to go up-
wards (towards the root) in the tree through a probabilistically chosen candidate
parent until it reaches a new grafting node. However, in a large-scale network where
subscription interests vary greatly, especially for a content-based system, finding a
grafting node may require traversing a significantly long distance and incurring
much higher overhead than SM. In [Cao and Shen 2007], the authors claim an ad-
vantage of less “overhead” over the MAODV-based PST approach. However, by
“overhead,” they only count the messages used for publication without considering
the considerable overhead incurred for a better path detection initiated periodically
by each node other than the root (level-0) and level-1 nodes.
In [Huang and Garcia-Molina 2003], the authors also give a combination metric

(CM) which calculates the product of the level of a candidate node and the predicted
publication overhead to evaluate each of the candidate parent nodes. However, as
long as the aforementioned problems with PM exist, the combination metric still
suffers from some impractical requirements for it to work properly.
Based on these observations, we choose Shortest-path Metric (SM), like the

MAODV-based PST approaches and [Pleisch and Birman 2006]. Obviously, SM
inherently improves the timeliness of event delivery.

4.3 Inter-tree Level Interconnection

A natural question that arises for this distributed architecture is which nodes should
be the roots, given no centralized administration. Another question is how the
inter-tree communication mechanism is designed to facilitate event routing.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 13

4.3.1 Root Node Selection and Tree Merging. A node’s role (either root or non-
root) in the system is designated for the first time when the P/S middleware is
initiated.

4.3.1.1 Root Selection. We use a random-number-based strategy for distributed
root selection. Let DT denote the density of roots. In fact, DT has a significant
influence on the performance of the architecture, as shown in Section 6. Given
the size range of a MANET, which often is known at least approximately based
on the MANETs application, we can select the best DT based on experimental
studies, which is reasonable. And in fact, as shown in Section 6 with the following
tree merging and new root selection mechanisms, the system will self-adapt to the
initial topology, self-adjust and converge to a stable state, without preselecting a
value forDT . However, a better initialDT value shortens the system self-adaptation
time.
A random number Rand within the range of 0 to RandMax is produced by the

P/S middleware on each node. For a node v, that is:
{

v is a root node, if 0 < Rand(v) ≤ DT ⋅RandMax

v is a non-root node, otherwise

4.3.1.2 Tree Merging. To deal with the degradation of performance caused by
roots lying geographically too close (e.g., one or two hops away from each other),
a tree merging mechanism is employed.

input: local node i’s level number level(i), level number level(v) of foreign node v,
r(v)’s address

r2rdistance ← level(i) + level(v) + 1;1

if r2rdistance > Merging Tℎres then2

if i ∕= r(i) then3

Send merging message with r(v)’s address to r(i) to initiate tree merging4

process;
else5

Initiate tree merging process(r(v)’s address);6

/* Function tree merging process() */

tree merging process(r(v)’s address):7

if My address is higher than r(v)’s address then8

I will remain as a root;9

initiate the partition merging process;10

else11

I will wait for the other root to initiate the partition merging and I will resign12

Fig. 6. Tree Merging Algorithm

A commonly used tree maintenance technique is the periodic refresh message
broadcast with a sequence number, from the root throughout the tree. Every node
rebroadcasting this message replaces the level value field with its own level value.
Whenever a node v0 receives a foreign tree node u0’s refresh message, it calculates
the root-to-root distance between r(v0) and r(u0) from the level numbers of v0 and
u0. If the root-to-root distance falls below a threshold Merging Tℎres, either v0 or

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

14 ⋅ Guanhong Pei et al.

u0 sends a merging request message to the root, and the merging process is initiated.
The tree merging process is similar to the partition merging in MAODV [Royer and
Perkins 2000], in which the root with a higher ID retains its role and takes over the
other tree. Figure 6 describes the tree merging algorithm.

4.3.1.3 New Root Node Selection. New root node selection is required based
on the following considerations. To better accommodate MANET dynamics, it is
important to observe that the topology changes due to node mobility , and failures
can cause the distances among the roots to change. Such dynamics together with
tree merging can cause the number of trees (i.e., the number of root nodes) to
decrease. Thus, schemes must be designed for handling root node failures and
mobility, and for controlling the tree sizes to be below a certain upper threshold.
The basic idea is to select a new root and start a new tree to overcome those adverse
conditions.

input: local node i’s level number level(i)

/* For random number based strategy */

if level(i) > New Root Tℎres or Out Period-timer expires then1

Rand(i) ← new random value;2

if 0 < Rand(i) < DT ⋅ RandMax ⋅� then /* � > 1 */3

I become a root;4

else if Out Period-timer expires then5

start Out Period-timer again;6

Fig. 7. New Root Node Selection Algorithm

When a node v’s level is above a certain predefined threshold New Root Tℎres,
or it has not been a member of any tree for a certain time frame Out Period, the
node checks the possibility of advancing itself to a root. A new random number
will be produced raising the probability of the node being accepted as a root. After
the new root’s “birth”, it broadcasts invitations to “crop” tree members from other
trees, until the level value of its leaf nodes is no smaller than that of at least one of
the leaf nodes’ neighboring foreign nodes. This algorithm is illustrated in Figure 7.
Note that in a reliable wireless network with little topology change, our tree

merging and new root selection strategies for system maintenance would introduce
very little additional traffic overhead.

4.3.2 Inter-tree communication.

4.3.2.1 Inter-tree Route Establishment. Similar to the mechanism for tree merg-
ing, whenever a node v0 receives a foreign tree node u0’s refresh message, it calcu-
lates the root-to-root distance between r(v0) and r(u0) from the level numbers of
v0 and u0. If the new root-to-root distance is smaller than the current value, node
v0 records u0 as the next hop destination for inter-tree routing, and send a route
report message upwards. On receiving the route report message, v0’s parent p(v0)
checks its local root-to-root distance value. If the new value reported is better,
p(v0) will also update its record and send a route report message upwards. In this

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 15

way, the root will always keep the freshest feasible route for inter-tree communica-
tion. Further, a node only registers the next hop destination and the corresponding
root-to-root distance for inter-tree routing, requiring only small memory usage.
When an inter-tree message (e.g., a publication or notification message) arrives at
a foreign node u0, u0 will simply forward this message upward to its root. Now, we
claim that the route established between two roots of the neighboring trees is the
shortest.

Theorem 4.3.1. The path p, which is established for inter-tree communication
between the roots a and b of two neighboring trees, is the shortest one.

Proof. Assume that the inter-tree path p connecting T (a) and T (b) established
in SOMER is not the shortest one. Then there exists a distinct path p′ such that

lengtℎ(p′) < lengtℎ(p).

Let the last node of T (a) that lies on p be va, and the last node of T (b) that lies
on p be vb; in the same way we have v′a and v′b for p′. Then we obtain:

lengtℎ(p′) = lengtℎ(a, v′a) + lengtℎ(v′b, b) + 1
< lengtℎ(p) = lengtℎ(a, va) + lengtℎ(vb, b) + 1.

Also, we have:

lengtℎ(a, va) = level(va), lengtℎ(vb, b) = level(vb),
lengtℎ(a, v′a) = level(v′a), lengtℎ(v

′
b, b) = level(v′b).

According to our inter-tree route establishment process, if there is such a path that
level(v′a)+ level(v′b) < level(va)+ level(vb), then we should have already found that
path based on the level numbers, resulting in a contradiction. Thus, the assumption
does not hold and the theorem is true.

4.3.2.2 Inter-tree Overlay Event Routing. Advertisement messages are widely
used in P/S systems. On joining a P/S tree, a node sends both its subscription
and publication interests to the root nodes. From the top layer view, root nodes
can be treated as super publishers/subscribers, with the effective subscription and
the effective publication capabilities. Event routing at the inter-tree level is based
on periodic advertisement messages flooding across root nodes such that the root
nodes’ effective P/S interests are propagated across the top layer. Though the
flooding among root nodes incurs message overhead, it is worth it when node mo-
bility is high. (We show in Section 6 that the overhead is reasonable.) When a
root node r0 receives an advertisement message forwarded by a neighbor root r1
originally from r2, r0 updates r2’s P/S interests and the inter-tree route entry for
r2, and updates the corresponding next-hop root-address with r1’s address. In this
way, the inter-tree routing uses the shortest reverse path to effectively propagate
event notifications.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

16 ⋅ Guanhong Pei et al.

5. SELF-RECONFIGURING ARCHITECTURAL FACILITATION FOR EVENT CAUSAL
DEPENDENCIES

5.1 Self-Construction of Causal Graph – From Event Causal Dependency to Node
Causal Dependency

The architectural P/S system management is done at an entity level, with the
abstraction from a transaction level. That means in this architecture, nodes are
being manipulated to maintain the system structure, while causally-related events
flows act as the momentum behind. That reflects that a conceptual transition from
event causal dependency to node causal dependency is necessary. As the example
in Section 1 shows, a node causal graph is a graph comprised of causally-related
nodes of the P/S system, created by mapping the event message graph onto the
physical system of nodes.
We must be careful when extending the concept of causality from events to the

nodes in a network where events are generated and consumed. The two necessary
conditions for an event b to be a “causal child” of event a are:

∙ b subscribes to a’s publication; and

∙ b’s receipt of a’s publication event message is the sufficient condition for b to
publish to its subscribers.

In turn, a is b’s “causal parent”. The corresponding causal relationship is denoted
by a ⇒ b. For instance, given a causal dependency specification as “(a ⇒ b)∧ (a ⇒
c) ∧ (a ⇒ d) ∧ (b ⇒ e) ∧ (c ⇒ e)”, the corresponding causal graph is shown in
Figure 8.

Fig. 8. Event Causal Graph

Event causal dependencies are deemed strictly anti-symmetric (which may be
different from some logical causal relationships) and transitive. However, the anti-
symmetry does not hold among the networked causally related nodes. In Figure 1
we can find the retro-causal relationships between nodes.
To simplify the problem, we make careful assumptions on the the composition of

the causal graph.

(1) We assume that a node can only be either a “causal descendant” or a “causal
ancestor” of another node but not both. This preserves the acyclicity of the
node causal graph. In fact, if that happens we can always break the retro-causal
ties by splitting all of them from the original causal graph and creating new
disjoint causal graphs.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 17

(2) The causal graph can be reduced to a causal tree if we assume that there is
at most one “causal parent” for each causally-related node. However, that
abstraction is too strong . A more general and simplifying assumption is that
all of one’s “causal parents” (if there is any) are at the same level (we set the
original event source node to be at Level 0; then one level up as one descendant
down on the causal graph).

(3) We do not place any assumption on the number of causal graphs that the
system may have (i.e., the system can have any number of original event source
nodes and any number of disjoint causal graphs).

(4) In this way, the whole causal graph is reduced to a set of disjoint acyclic directed
causal graphs. On this quasi-tree-like logical structure, we borrow the self-
explaining concepts of “root” and “leaf” that are used for the tree structures.

Now, advertising the subscription/publication interests throughout the system
enables the root nodes of the physical trees to build the causal graph for the whole
system.

5.2 Self-reconfiguration with Awareness of Event Causal Dependencies

The original physical trees stop their natural growth when each node has joined
in a tree. The tree merging and new root selection strategies confine the tree
sizes with Merging Tℎres and New Root Tℎres. However, this may not be the
“ultimate” solution for a system with event causal dependencies. We explore further
performance improvements based on the following observations and discussion.

(1) A physical tree of a comparatively larger size typically has more neighboring
trees, implying increasing possibilities to establish direct inter-tree connection
with more other trees. Consequently, the probability increases for a causally-
involved node to get to its causal children through fewer intermediate forward-
ing nodes.

(2) One physical tree’s expansion means other neighboring trees’ contraction, as if
trees are contending for nodes which can only belong to one tree at any given
time. The policy for resolving trees’ contention for nodes must be carefully
designed. The goal is to shorten the event notification time along the P/S
causal chains that originate at the “causal root” until they reach the “causal
leaves” in the causal quasi-tree-like graph.

(3) For a given physical tree, if it contains more “causal nodes” at lower levels in
the causal graph, or a larger number of causal nodes, it should be given greater
preference in the resource contention resolution policy for physical expansion.
That is because lower level causal nodes in the causal graph usually have greater
influences on the subsequent event notification deliveries that directly or indi-
rectly depend on those nodes in the corresponding causal chains. For instance,
in Figure 1, any delay that occurs for the event notification delivery between
the commander and the agents will have an impact on every subsequent causal
chain, whereas the soldier-relay link will only have an influence on one causal
chain.

(4) Furthermore, for the causal nodes covered by a physical P/S tree, if a large
number of their causal descendants are already covered by the same tree, there

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

18 ⋅ Guanhong Pei et al.

is a higher possibility that the tree’s expansion will no longer contribute to the
timely and reliable event delivery across the causal graph.

Here, we define a tree’s expansion potential (EP) as the metric for evaluating the
potential benefit of a tree’s expansion for event delivery across the causal graph.
For a physical tree T , let NCausal(T) be the number of causal nodes that T cov-
ers, Avg levCausal(T) be the average level value in the quasi-tree-like causal graph
containing the causal nodes covered by T , and
 be the percentage of causal de-
scendants that is covered by T for all the causal nodes in T . Now, EP (T) is given
by:

EP (T) =
(NCausal(T (v)) + �)

(Avg levCausal(T) + �) ⋅ (
 + �)
. (8)

Here, � is a parameter with a constant positive value to offset the variables that
could be zero.
It is the leaf nodes which actually carry out the expansion (i.e., contending)

through periodically requesting neighbor foreign nodes for a comparison of each
other’s local expansion potential (LEP). Because we need to also constrain the
tree’s branches from abnormal growth, a node v’s LEP is:

LEP (v) = EP (T (v))
(level(v)+�)

= (NCausal(T (v))+�)
(Avg levCausal(T (v))+�)⋅(
+�)⋅(level(v)+�)

(9)

For two nodes u and v involved in such contention, the one with the higher LEP
will win, and the loser will join the winner tree as a child of the winner. It is
possible that a node may constantly change its affiliation. To avoid that situation,
we stop two nodes from contending when:

1

1 + �
≤ LEP (v)

LEP (u)
≤ 1 + � (10)

Here, � is a parameter to tune the contention severity.
The result of the contention may change the size of a tree. The contention

is allowed to take place only when the merging threshold or new root selection
threshold is not violated.

6. EXPERIMENTAL EVALUATION

We conducted sets of simulation experiments using NS-2 with the Random Trip
Mobility Model package [Boudec and Vojnovic 2005] to generate sets of random
MANET topologies.

6.1 Simulation Environment Setup

Our simulation environment is built with each node having its own subscription
interest. A randomly selected set of nodes acts as publishers. We used the model of
Number Intervals [Huang and Garcia-Molina 2003] for P/S pattern generation. We
used a large number interval as the interest pool, and a node’s subscription interest
is represented by a random subset of the interest pool. We call it a match when the
number associated with a published event falls into the range of a node’s interest.
We do not restrict publishers to have constant event injection rates. The publishers

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 19

either choose a constant rate or a randomly varying rate to publish. Table I details
the simulation settings.

Table I. Simulation Settings
Parameter Range/Value

Simulation Area
1000m × 1000m –
3300m × 3300m

Network Size 50 – 250 nodes

Simulation Period 1000s

Node Wandering Velocity 0 – 10 m/s

Pause Time 1s – 3s

MAC Protocol
IEEE 802.11

with 2Mbps Bandwidth

Root Node Density (DT) 1% – 18%

Wireless Transmission Range 200m

Proportion of Publishers 30% – 40%

Proportion of Causal Nodes 5% – 15%

Proportion of Causal Nodes 10%

Tree Refresh Period 10s

Advertisement Period 10s

Transmission Jitter 5% – 10%

Advertisement Period 10s

Merging Tℎres 1 – 3

New Root Tℎres 5 – 10

Out Period 15s

Tree Contention Tuner (�) 0.2 – 0.4

6.2 Architecture Evaluation and Analysis

6.2.1 Influence of DT . As mentioned in Section 4, DT is a parameter that can
affect the system’s convergence time.
To evaluate the values of DT , we deactivated the tree merging and new root

selection mechanisms to ensure that the number of roots does not change during the
experiments. Using delivery time as the performance metric, we measured the time
cost in 250-node networks for both single-publish-hop and complete causal graph
event delivery. We normalized the delivery time with respect to the minimum value
in each case, so that the trend can be clearly observed.
As expected, the curves in Figure 9 exhibit the same trend. Further, we observe

that at DT = 9%, both the curves reach the minimum value, indicating that 9%
is the best value for DT under current settings. When DT decreases from 9%, the
time cost increases because there would be fewer root nodes which act as brokers in
the top-layer overlay, degrading the efficiency of the inter-tree route. On the other
hand, as the number of trees increases, a publisher and one of its subscribers in the
same tree could be separated to be in two trees. Consequently, the event messages
from the publisher would have to make a detour through at least two root nodes to
reach the subscribers, in contrast with the fact that the messages only need to go
through one root node if they were in the same tree. For a given network topology,
we can find the best DT . However, doing so requires some a’ priori knowledge of

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

20 ⋅ Guanhong Pei et al.

Fig. 9. Timeliness Performance under Different DT w/o Tree Merging/New Root Selection

the system. We will show in the following results that we can avoid calculating and
preselecting the best DT .

6.2.2 Tree Merging and New Root Selection. Recall that through the tree merg-
ing and new root selection strategies, the system interconnection is self-reorganized,
thereby optimizing the tree distribution toward timely event delivery.

Fig. 10. Effectiveness of Tree Merging and New Root Selection

From Figure 10, we observe that after these strategies take effect, the average
time cost for single-publish-hop event delivery is effectively lowered and the system
has stable performance as the initial density of root nodes (DT) varies all the way
from 1% to 16%. (We used 200-node networks for these experiments.) This implies
that our strategies are stable. The decrease in the event delivery time is due to the

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 21

new root selection strategy when the initial DT is small. The tree merging strategy
reduces the delivery time while the initial DT is comparatively large.

6.2.3 Event Delivery with Awareness of Causal Dependencies. To evaluate the
effectiveness of SOMER’s causal awareness design, we performed two sets of exper-
iments via:

(1) deactivating the tree merging and new root selection mechanisms to observe
the “pure” performance gain from system self-reconfiguration for causal event
delivery; and

(2) reactivating those two mechanisms, and evaluating the performance gain with
every part of SOMER working together.

(a) Timeliness Improvement

(b) Reliability Improvement

Fig. 11. Improvement from Causal Event Delivery Architectural Support

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

22 ⋅ Guanhong Pei et al.

Figure 11 is produced by the first set of experiments with 250-node network sce-
narios. We tested the timeliness and reliability improvement from the architectural
support for causal event delivery. The performance metrics we used are event de-
livery time across the causal graphs and the causal event delivery ratio. The causal
event delivery ratio is the success ratio of event delivery through one causal chain.
To test reliability, we used node failure rate as a variable, with node wandering
speed randomly ranging from 0 to 10m/s.
We observe in Figure 11(a) that our design yields as much as over 15% improve-

ment at around the best DT (9%). In Figure 11(b), we observe that SOMER’s
causality awareness mechanisms also enhance the success ratio of causal event de-
livery and thus the system reliability. Because the tree merging and new root selec-
tion mechanisms were deactivated during this set of experiments, the performance
is still much lower than that of SOMER as a whole.
In the second set of experiments, we evaluate the timeliness gain with all the

algorithms and mechanisms of SOMER working together as a whole. Because
trends of reliability gain would be similar to those of timeliness gain, we only show
the results for the timeliness gain here by varying the network size and the tree
contention severity tuning parameter �.
We first explored the space of � by obtaining the average performance gain with

network sizes increasing from 50 to 250 for a given value of �. From Figure 12(a),
we observe a peak performance gain around � = 0.325. When � increases this gain
reduces due to the degradation of tree contention severity such that the system
has less self-reconfigurability for causal event delivery. The gain also reduces as
� decreases because the overhead incurred by severe tree contention adds to the
system instability and thus partly negates the performance gain.
Figure 12(b) illustrates that SOMER achieves around 10% performance gain,

and higher when the network size scales up. This trend corresponds to Equation 6,
which states that the upper bound of the path overhead ratio usually decreases
for larger size networks. Thus, our experiments illustrate that SOMER’s design is
scalable and effective toward reducing the total event delivery time across a causal
graph.

6.2.4 Timely and Reliable Event Delivery. We compared SOMER’s timeliness
and reliability against significant past MANET P/S works including:

∙ SP-COMBO [Huang and Garcia-Molina 2003], a PST protocol with a combina-
tion of shortest path and publication-overhead-aware metrics;

∙ DSAPST [Cao and Shen 2007], a distributed subscription-aware PST protocol;
and

∙ PS-MAODV [Mottola et al. 2008], an MAODV-based PST protocol.

The network size was varied with a constant DT in the experiments. We omitted
SensTrac from our comparison due to the significant differences between SensTrack
and SOMER as described in Section 2. Note that none of the past work addresses
event causal dependencies.

6.2.4.1 Timeliness. We measured and calculated the timeliness performance in-
dex by reciprocating the measured time cost for event delivery. Then we normalized

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 23

(a) Timeliness Gain under Different �

(b) Timeliness Gain with Different Network Size

Fig. 12. Timeliness Gain

each protocol’s performance to the worst one’s performance. In this way, we can
also observe the trend of relative performance as the network size changes.
Figure 13 illustrates SOMER’s advantage in timely delivery over others. DSAPST

performs the worst because the way it constructs the PST is mainly based on a
publication-overhead-aware metric as discussed in Section 4.
By normalizing with respect to DSAPST’s performance, we can clearly observe

SOMER’s performance gain over the others. SOMER outperforms PS-MAODV,
which is the second best, with at least a 30% improvement. As the network size
scales up, SOMER’s improvement over PS-MAODV increases up to around 100%,
illustrating SOMER’s superior scalability. This is due to the increase of the number
of trees that can be used as top-layer brokers to make the route closer to the straight

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

24 ⋅ Guanhong Pei et al.

Fig. 13. Comparison of Timely Delivery

line path between two nodes.

6.2.4.2 Reliability. We measured reliability through delivery ratio, which is cal-
culated as the number of copies of event messages successfully received by their
subscribers over the number of copies of event messages that should arrive at all of
their subscribers, given no failures or no topology changes. We used node failure
rate as a variable to assess system reliability, with node roaming speed randomly
ranging from 0 to 10m/s. Figure 14 shows that SOMER can survive a 12% node
failure rate with over 75% event delivery ratio. The highest performance improve-
ment of SOMER is over 10% higher delivery ratio than that of PS-MAODV.

Fig. 14. Comparison of Delivery Ratio under Node Failure

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 25

Note that SOMER also provides 30% higher delivery ratio over the other two
rivals. SOMER’s improvements are due to its inherent distributed multi-tree struc-
ture, and also due to its tree merging and new root selection strategies that effec-
tively counter network unreliability.

6.2.4.3 Network Traffic Load. For a structured architecture, the traffic load of
a P/S system has two sources:

∙ Structure Maintenance Messages; and

∙ P/S Messages.

Fig. 15. Network Traffic Load with Low P/S Load

In tree-based structures, the maintenance messages are those used for maintaining
trees. P/S messages include the event notification messages, subscription/unsub-
scription messages, and advertisement messages if there are any. We measured the
number of messages incurred for each source type throughout the entire simulation
period. The number of messages increases whenever a message is produced or for-
warded. We observed that, among PS-MAODV, DSAPST, and SP-COMBO, only
PS-MAODV had relatively acceptable timeliness and reliability. Thus, we com-
pared SOMER and PS-MAODV with respect to the network traffic load incurred
under the same simulation scenarios and publication patterns.
First, we conducted simulations with a low P/S traffic load. Figure 15 shows that

SOMER introduces slightly more maintenance messages due to the neighbor-tree
route setup and tree merging and new root selection processes. We also observe that
SOMER spends slightly more P/S messages (at most about 10%) than PS-MAODV.
This is due to the periodic advertisement messages on the top-layer overlay.
Interestingly, we observe that SOMER outperforms PS-MAODV under a higher

P/S traffic load, as shown in Figure 16. Here, we omit the statistics of mainte-
nance messages because they almost do not change when the traffic load increases.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

26 ⋅ Guanhong Pei et al.

Fig. 16. Network Traffic Load with High P/S Load

SOMER is able to reduce the number of P/S messages by dispatching the events
along shorter paths from publishers to subscribers. Also, its higher robustness
avoids considerable message retransmissions. More injected events means a larger
reduction in the number of P/S messages.

7. CONCLUSION, DISCUSSION AND FUTURE WORK

This paper is based on a more general perspective of P/S systems than is usual.
First, it recognizes that P/S information need not be confined to data information
but may instead (or indeed, also) be control information. Second, it takes a higher
level system view of P/S —normally P/S is considered to take place by one hop
(not counting transparent network devices such as switches and routers) from the
publisher to the subscribers, but there are cases where receipt of subscribed infor-
mation causes subscribers to subsequently publish, resulting in causal dependency
graphs of publishes. Such graphs raise a variety of interesting issues, including
end-to-end timeliness, that to our knowledge have not been addressed before.
In this paper, we begin to address some of those issues by presenting SOMER, a

self-organizing and self-reconfigurable event routing architecture for a class of P/S
events that have causal dependencies and time constraints. This architecture is
oriented toward ad hoc mobile networks. Referring back to our motivating notional
example in Section 1, the SOMER architecture’s reconfigurability will make the
multi-hop causal P/S event flow be more timely and reliable throughout, and par-
ticularly back to the commander as the causal event sequence initiator in Figure 1.
Causal dependencies are common in modern event-based systems. For instance,

complex causal dependencies can be found in a customized event-based financial
service system with multiple agents servicing multiple investors. Investors trigger
the service whenever they have request/requirement updates to push into the service
system. An agent servicing a certain number of investors changes their subscription
to the financial indexes information and system computing resources accordingly.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 27

The customer portfolio module subscribes to the investment decisions that investors
have made, and agents also subscribe to changes in the portfolios of their customers.
Whenever a new event arrives at an agent from the financial indexes information
module, the agent analyzes all the data and makes suggestions with risk and profit
probabilities. When at the agent side there is an event matching an investors
criteria, a warning signal will be triggered (published) out to the corresponding
investor. Such causal event flows can also be found in event-based sensor networks,
where sensors are used to detect anomalies and send messages through a gateway
to a corresponding control unit; then either actuators are triggered or a false alarm
is cleared. Please refer to [Tsai and Chen 2008; Leguay et al. 2008] for details of
similar use cases.
Causal dependencies in event-based systems need more attention from both

academia and industry given their common use but neglected study. Tasks that
lie in a causal chain sometimes are of more significance when the causal chain as
a whole influences decision making or situation handling. Any causal link’s failure
(including timeliness failure) in the middle of a causal chain may cause the fail-
ure of the end goal of the causal chain, similar to the occurrence of a failure in
a chain of RPCs or remote method invocations. Failures in a causal graph have
more complex potential impacts, and require more sophisticated recovery schemes.
Mechanisms are thus needed to (1) recognize causal links; (2) build causal graphs;
(3) determine the critical causal links or chains; (4) tune system performance based
on the knowledge of causal dependencies.
There exist different approaches to addressing those problems, from a system

designer’s view, a software developer’s view, or a system administrator’s view:

(1) here in the design of SOMER, we present a system design approach;

(2) from a software developer’s point, software add-ons may be plugged in for P/S
middleware;

(3) from a system administrator’s point, system configuration strategy profiles can
be created and maintained by a system administrator or distributively by ap-
plication users.

However, to the degree that the problem can be solved during the system design
phase, then a crisp software development cycle and simpler system administration
schemes, will result in less expensive system and application software development
and system administration.
So far, we have only dealt with deterministic time-sensitive causal dependencies;

there are also probabilistic causal dependency links, delay-tolerant causal depen-
dency links, etc. By probabilistic, we mean that an event may probabilistically
cause a subsequent event to successfully occur. By delay-tolerant, we mean that
a causal descendent event may take some time to occur, or may not have a strin-
gent timeliness requirement. Thus, there remains a large design space to explore
for further understanding and improving causal P/S systems, their performance,
and their reliability. It is likely that application-specific approaches may also be
required for certain cases.
SOMER, as it is, may offer insights for subsequent event routing protocol designs.

And it can be easily extended with real-time scheduling strategies and multi-path
schemes. The current version of SOMER includes some presumptions:

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

28 ⋅ Guanhong Pei et al.

(1) The design and evaluation of SOMER’s framework is implicitly based on the
premise that all the nodes in the system are, or can be treated as, homogeneous.
When nodes are heterogeneous (i.e., under different configuration, performing
different tasks, or using different hardware, etc.), the performance of the system
may deviate from the current results due to possible different nodal processing
time, network interface buffer length, and network connection type, etc. To
make SOMER more adaptable, more system configuration and performance
data are needed.

(2) The system causal graphs are assumed to be such that all of one’s “causal par-
ents” are at the same level. We can weaken this assumption to adapt SOMER
to any general causal graph by splitting those causal links and extracting over-
lapping or non-overlapping subgraphs from the original causal graph; then the
nodes can have logical shadow replications among subgraphs. And similarly for
case of the retro-causal arcs, instead of creating new disjoint causal graphs, we
may consider using subgraph extracting to “break” those arcs. The graph split-
ting or subgraph extracting algorithm must be carefully designed such that the
system reconfiguration mechanism can be effective at improving the timeliness
and reliability of causal event deliveries.

Event, and particularly P/S event, routing in ad hoc networks is still an emerging
area. Interesting issues which call for both academic and industrial research include,
but are not limited to: (1) the co-existence and mutual facilitation between a typi-
cal ad hoc network routing scheme and an event routing scheme; (2) self-organizing
protocols for event routing under opportunistic channel communication; (3) geo-
graphic routing induced event routing, etc.
In the near future, we plan to study design alternatives such as structure-less

topology approaches and the tradeoffs among timeliness, reliability and system load.
In the long run, we will address the algorithms and system design for processing
more general causal graphs with more types of causal dependencies.

REFERENCES

Baldoni, R., Beraldi, R., Cugola, G., Migliavacca, M., and Querzoni, L. 2005. Structure-
less content-based routing in mobile ad hoc networks. In IEEE International Conference on
Pervasive Services. 37–46.

Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R. E.,
and Sturman, D. C. 1999. An efficient multicast protocol for content-based
publish-subscribe systems. In the 19th IEEE International Conference on Dis-
tributed Computing Systems. IEEE Computer Society, Washington, DC, USA, 262.
http://www.research.ibm.com/distributedmessaging/gryphon.html.

Boudec, J.-Y. L. and Vojnovic, M. 2005. Perfect simulation and stationarity of a class of
mobility models. In IEEE INFOCOM. 2743–2754.

Cao, F. and Singh, J. P. 2004. Efficient event routing in content-based publish-subscribe service
networks. In IEEE INFOCOM. 929–940.

Cao, X. and Shen, C.-C. 2007. Subscription-aware publish/subscribe tree construction in mobile
ad hoc networks. In IEEE 13th International Conference on Parallel and Distributed Systems.
1–9.

Caporuscio, M., A.Carzaniga, and A.L.Wolf. 2003. Design and evaluation of a support service
for mobile, wireless publish/subscribe applications. IEEE Transactions on Software Engineer-
ing 29, 1059–1071.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

Ad Hoc Event Routing Architecture w/ Causal Dependency Awareness ⋅ 29

Carzaniga, A. and Hall, C. P. 2006. Content-based communication: a research agenda. In

the 6th International Workshop on Software Engineering and Middleware. ACM, 2–8. Invited
Paper.

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. 2001. Design and evaluation of a wide-
area event notification service. ACM Transactions on Computer Systems 19, 3, 332–383.
http://www.inf.unisi.ch/carzaniga/siena/.

Castellote, G.-P. and Bolton, P. 2002. Distributed real-time applications now have a data
distribution protocol. RTC Magazine. http://www.rti.com/docs/RTC Feb02.pdf.

Castro, M., P.Druschel, Kermarrec, A., and Rowston, A. 2002. Scribe: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas in
Communications.

Clark, R. K. 1990. Scheduling dependent real-time activities. Ph.D. thesis, Carnegie Mellon
University.

Consolver, G., Ackley, D., Rickard, M., McAfee, R., and Shipchandler, T. 1975. Dis-
tributed processor/memory architectures design program. Tech. rep., TEXAS INSTRUMENTS
INC. DALLAS. February. Available at: http://www.stormingmedia.us/28/2846/A284610.

html.

Corson, S. and Macker, J. 1999. Routing Protocol Performance Issues and Evaluation Con-
siderations (RFC 2501). Network Working Group.

Costa, P. and Frey, D. 2005. Publish-subscribe tree maintenance over a dht. In DEBS. IEEE
Computer Society, 414–420.

Costa, P., Migliavacca, M., Picco, G. P., and Cugola, G. 2004. Epidemic algorithms for
reliable content-based publish-subscribe: An evaluation. In the 24th IEEE International Con-
ference on Distributed Computing Systems. 552–561.

Costa, P. and Picco, G. P. 2005. Semi-probabilistic content-based publish-subscribe. In the
25th IEEE International Conference on Distributed Computing Systems. 575–585.

Cugola, G., Nitto, E., and Fuggetta, A. 1998. Exploiting an event-based infrastructure
to develop complex distributed systems. In the 20th International Conference on Software
Engineering. 261–270.

Datta, A., Quarteroni, S., and Aberer, K. 2004. Autonomous gossiping: A self-organizing
epidemic algorithm for selective information dissemination in wireless mobile ad-hoc networks.
In International Conference on Semantics of a Networked World. 126–143.

Fiege, L., Gartner, F., Kasten, O., and Zeidler, A. 2003. Supporting mobility in content-
based publish/subscribe middlewares. In ACM/IFIP/USENIX International Middleware Con-
ference. 103–122.

Fiege, L., Muhl, G., and Pietzuch, P. R. 2006. Distributed Event-based Systems. Springer-
Verlag B&H.

Graham, S., Niblett, P., Chappell, D., Lewis, A., Nagaratnam, N., Parikh, J., Patil,

S., Samdarshi, S., Sedukhin, I., Snelling, D., Tuecke, S., Vambenepe, W., and Weihl,

B. 2004. Publish-subscribe notification for web services (version 1.0). IBM’s White Paper.
http://www.ibm.com/developerworks/webservices/library/specification/ws-pubsub/.

Huang, Y. and Garcia-Molina, H. 2003. Publish/subscribe tree construction in wireless ad-hoc
networks. In the 4th IEEE International Conference on Mobile Data Management. Springer-
Verlag, 122–140.

Jensen, E. D., Locke, C. D., and Tokuda, H. 1985. A time-driven scheduling model for real-time
operating systems. In Real-Time Systems Symposium. IEEE, 112–122.

Junginger, M. and Lee, Y. 2004. A self-organizing publish/subscribe middleware for dynamic
peer-to-peer networks. IEEE Network 18, 1, 38–43.

Leguay, J., Lopez-Ramos, M., Jean-Marie, K., and Conan, V. 2008. Service oriented archi-
tecture for heterogeneous and dynamic sensor networks. In the 2nd international conference
on Distributed event-based systems. ACM, New York, NY, USA, 309–312.

Lupu, E., Dulay, N., Sloman, M., Sventek, J., Heeps, S., Strowes, S., Strowes, S., Twidle,

K., Twidle, K., Keoh, S.-L., and Schaeffer-Filho, A. 2008. Amuse: autonomic management
of ubiquitous e-health systems. Concurr. Comput.: Pract. Exper. 20, 3, 277–295.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

30 ⋅ Guanhong Pei et al.

Marques, E. R. B., Goncalves, G. M., and Sousa, J. B. 2006a. Seaware: a publish/subscribe

based middleware for networked vehicle systems. In the 7th IFAC Conference on Manoeuvring
and Control of Marine Craft. 20–22.

Marques, E. R. B., Goncalves, G. M., and Sousa, J. B. 2006b. The use of real-time publish-
subscribe middleware in networked vehicle systems. In the 1st IFAC Workshop on Multivehicle
Systems.

Mottola, L., Cugola, G., and Picco, G. P. 2008. A self repairing tree topology enabling
content-based routing in mobile ad hoc networks. IEEE Transactions on Mobile Computing .

Muthusamy, V., Petrovic, M., and Jacobsen, H. 2005. Effects of routing computations in
content-based routing networks with mobile data sources. In MobiCom. ACM, 103–116.

Oki, B., Pfluegel, M., Siegel, A., and Skeen, D. 1993. The information bus —an architecture
for extensive distributed systems. In ACM Symposium on Operating Systems Principles. ACM.

OMG. 2007. Data distribution service for real-time sys-
tems (version 1.2). Object Management Group’s Specification.
http://www.omg.org/technology/documents/formal/data distribution.htm.

Pfaltz, J. L. 2006. Using concept lattices to uncover causal dependencies in software. In ICFCA.
233–247.

Picco, G. P., Cugola, G., and Murphy, A. L. 2003. Efficient content-based event dispatching
in the presence of topological reconfiguration. In the 23rd IEEE International Conference on
Distributed Computing Systems. IEEE Computer Society, 234–243.

Pleisch, S. and Birman, K. 2006. Senstrac: Scalable querying of sensor networks from mobile
platforms using tracking-style queries. In IEEE MASS. 306–315.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. 2001. A scalable
content-addressable network. In SIGCOMM. 161–172.

Royer, E. M. and Perkins, C. E. 1999. Multicast operation of the ad-hoc on-demand distance
vector routing protocol. In MobiCom. ACM, 207–218.

Royer, E. M. and Perkins, C. E. 2000. Multicast Ad hoc On-Demand Distance Vector
(MAODV) Routing (INTERNET DRAFT). Mobile Ad Hoc Network Working Group.

Sarkar, S. K., Basavaraju, T., and Puttamadappa, C. 2007. Ad Hoc Mobile Wireless Net-
works: Principles, Protocols and Applications. Auerbach.

Stoica, I., Morris, R., et al. 2003. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking 11, 17–32.

Tsai, W.-C. and Chen, A.-P. 2008. Service oriented architecture for financial customer rela-
tionship management. In the 2nd international conference on Distributed event-based systems.
ACM, New York, NY, USA, 301–304.

van Renesse, R. and Bozdog, A. 2004. Willow: Dht, aggregation, and publish/subscribe in one
protocol. In IPTPS. 173–183.

Received December 2008;

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Month 20YY.

