
Offloading Datacenter Jobs to RISC-V Hardware for
Improved Performance and Power Efficiency

Balvansh Heerekar
Virginia Tech

Blacksburg, VA, USA
balvansh@vt.edu

Cesar Philippidis
Rasec Tech

San Jose, USA
cesar@rasec.tech

Ho-Ren Chuang
Virginia Tech

Blacksburg, VA, USA
horenc@vt.edu

Pierre Olivier
The University of Manchester

Manchester, UK
pierre.olivier@manchester.ac.uk

Antonio Barbalace
University of Edinburgh

Edinburgh, UK
antonio.barbalace@ed.ac.uk

Binoy Ravindran
Virginia Tech

Blacksburg, VA, USA
binoy@vt.edu

Abstract

The end of Moore’s Law has brought significant changes in
the architecture of servers used in data centers, increasingly
incorporating new ISAs beyond x86-64 as well as diverse
accelerators. Further, single-board computers have become
increasingly efficient and can run certain Linux applications
at significantly lower equipment and energy costs compared
to traditional servers. Past research has demonstrated that
offloading applications at runtime from x86-based servers to
ARM-based single-board computers can result in increases
in throughput and energy efficiency. The RISC-V architec-
ture has recently gained significant commercial interest, and
OS-capable single-board computers with RISC-V cores are
increasingly available at the commodity scale.

In this paper we propose a system that offloads jobs from
an x86 server to a RISC-V single-board computer at runtime,
with the goals of improving job throughput and energy saved.
Towards this, we port the Popcorn Linux multi-ISA toolchain
and runtime framework to RISC-V, enabling the live migra-
tion of applications between an x86 Xeon server and a SiFive
HiFive RISC-V board. We further propose a scheduling pol-
icy, Lowest Slowdown First (LSF) that drives the offloading
of long-running and stateful datacenter background jobs
from the server to the board, to alleviate workload conges-
tion on the server. LSF’s policy relies on monitoring jobs’
performance on the server, predicting the slowdown they
would suffer if running on the board, and migrating the jobs
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with the lowest estimated slowdown. Our evaluation shows
that LSF yields up to 20% increase in throughput while also
gaining 16% more energy efficiency for compute-intensive
workloads.
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1 introduction

As CPUs cannot get faster any easier, modern computers in-
clude a plethora of heterogeneous processing units alongside
the main CPU. While the CPU is still in charge of the control
path, various types of computations can be offloaded to het-
erogeneous processing units such as GPUs, TPUs, and FPGAs.
Heterogeneous processing units have been introduced to ac-
celerate specific classes of computations; hence, improving
application performance. Heterogeneous processing units
can also reduce energy consumption, for example in mobile
phones and laptops with microarchitectural heterogeneity,
including ARM big.LITTLE and Intel P-core/E-core.

An interesting emerging data point in the heterogeneous
computing landscape is instruction set architecture (ISA) het-
erogeneity, such as general-purpose CISC (e.g., x86-64) and
RISC (e.g., ARM64) cores integrated together in the same
hardware. An exemplar case is “smart” I/O devices such
as Smart NICs [46] and Smart SSDs [37]. These currently
integrate mostly ARM CPUs, and are expected to embed
CPUs of more diverse ISAs in a near future, e.g. RISC-V [12].
When these smart devices are attached to a host machine,
generally integrating an Intel x86-64 CPU, the result is a
heterogeneous-ISA system. The research community has
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been actively investigating heterogeneous ISA systems to
understand their performance, energy, and security advan-
tages [3, 8, 19, 21, 25, 29, 32, 42].
Hardware resource sharing is a common practice used

in data centers to improve overall resource utilization and
reduce costs. Major factors that drive up data center costs
include server acquisition, power consumption, and equip-
ment cooling costs [9]. Significant research works focused
on reducing these costs. An interesting research direction
in this space is to augment high-performance servers with
low-cost embedded boards in order to improve performance
and energy efficiency at a low cost, instead of buying addi-
tional servers. We showed in past research [29] that an x86-
based server can be connected to one or more low-cost ARM-
based embedded boards that are a fraction of the server’s
price/power consumption. Such a setup enables the offload-
ing of certain jobs from the server to the boards to alleviate
the server’s resource congestion. This allows job throughput
to be increased by up to 67%, and energy consumption to be
reduced by up to 56%.
Continuing that line of work, we are motivated to inves-

tigate whether and how RISC-V-based embedded boards,
when coupled with x86 servers, may increase the overall
throughput and reduce energy consumption. While RISC-V
is based on the same RISC principles as ARM, it has recently
gained traction due to its open-source nature. The cost of
producing CPUs with ARM processors includes the cost asso-
ciated with procuring the IP from ARM for production. This
is avoided in the case of RISC-V as the ISA is open-source and
royalty-free. This has caused significant industry interest in
RISC-V. For example, several storage device manufacturers
are incorporating RISC-V-based CPUs in their newer storage
device products [13, 38].
To support this motivation, we conducted experimental

studies to understand the difference in application execution
times and energy consumption on an x86 server (Intel Xeon
E5-2637v3) and a RISC-V board (SiFive HiFive). The experi-
ments (Section 4) focused on compute-intensive benchmark
programs that are representative of datacenter background
jobs. The results revealed that for some programs, the execu-
tion time slowdown on the RISC-V board is relatively small,
whereas it is very high for a few other programs. We also
observed that programs with higher slowdowns do consume
more energy (see Figure 3): although the power consump-
tion (in watts) of the SiFive board in activity is much lower
than that of a server, the execution time of these programs
is so long on the board that the total energy consumed ends
up higher than on a server. Thus, we conclude that a setup
consisting of a low-cost, low power RISC-V embedded board
attached to an x86 server can be optimized for consolidation
by selectively offloading to the board the jobs that would
suffer the lowest slowdowns.

To enable such a setup, we fist port a heterogeneous ISA
systems software infrastructure, Popcorn Linux [4, 6], to the
RISC-V architecture, to allow runtime execution migration
of an application between an x86-64 and a RISC-V machine.
Popcorn Linux consists of an LLVM-based compilation and
linking toolchain that produces multi-ISA binaries, a run-
time system software that dynamically rewrites ISA-specific
program state from one ISA/ABI format to another, and a
Linux-based operating system (OS) that enables process and
thread migration and distributed shared memory across ISA-
different processors. Popcorn Linux’s original version only
supports machines with the x86-64 and aarch64 ISAs, and the
port to RISC-V necessitated the update of several software
components in the build toolchain and runtime.
Next, building upon our x86-RISC-V cross-ISA runtime

migration mechanism, we develop an application job sched-
uler that targets job consolidation on a setup made of an
x86 server and a RISC-V board. The scheduler implements a
policy called Lowest Slowdown offloaded First (LSF), which
relies on monitoring job performance on the server using
performance counters, and estimating from these measure-
ments job performance on the board. These predictions can
then be used to optimize offloading decisions.
Our work targets datacenter compute-intensive work-

loads, also known as background jobs. These jobs are long-
running [27] (from minutes to days) and stateful, hence of-
floading cannot be achieved by killing and restarting regular
native binaries [16], as the loss of progress would be unac-
ceptable: such jobs require runtime migration. We integrate
LSF into Popcorn Linux’s runtime system and evaluate its
efficiency using a set of micro- and macro-benchmarks rep-
resentative of datacenter background workloads. Our evalu-
ation platform includes a SiFive HiFive RISC-V board that
is connected to an Intel Xeon E5-2637v3 server using a low-
speed Ethernet switch (1 Gbps). The evaluation shows that
LSF can obtain up to 20% throughput increase and up to 16%
energy efficiency. We consider these gains significant as the
cost of a SiFive board is at minimum 3X less than that of a
Xeon server.

The contributions presented in this paper as follows:
(1) The port of the multi-ISA Popcorn Linux toolchain and

runtime framework to RISC-V, enabling live migration
of a program from an x86 to a RISC-V machine.

(2) A job scheduler driving the migration of workloads
from an x86 server to a RISC-V board, targeting job
consolidation.

(3) The evaluation of that scheduler, demonstrating job
throughput increases and a lowering in energy con-
sumption vs. single-ISA setups.

This paper is organized as follows: Section 2 presents
some background information about Popcorn Linux. Sec-
tion 3 presents our port of Popcorn Linux to the RISC-V ISA,
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Figure 1: Popcorn Linux’s architecture. Popcorn runs

an instance of the Linux kernel on each ISA, and in-

stances communicate to expose a single system im-

age to applications. Applications are compiled through

Popcorn’s toolchain into multi-ISA binaries that can

run on top of that system images, i.e. their threads can

span/transparently migrate between cores of different

ISAs.

and Section 4 describes our application job scheduler. We
evaluate the performance and power consumption benefits
of the scheduler in Section 5. Related works are discussed in
Section 6, before concluding in Section 7.

2 Background: Popcorn Linux

2.1 Overview

To enable the execution migration of an application at run-
time between heterogeneous ISA processors, several capa-
bilities are needed. First, a compilation and linker toolchain
producing binaries that can execute on such processors is
required. Second, the underlying operating system must pro-
vide the ability to migrate threads between heterogeneous
ISA processors. Third, to provide fast migration with on-
demand data transfer, and to allow different threads of a sin-
gle multi-ISA application to span ISAs, the OS should have
the capability to provide distributed virtual shared memory
across heterogeneous ISA processors. Popcorn Linux [3] is
a system software stack, i.e., an OS, compiler, and runtime
system, that provides all these features.

Popcorn Linux, whose architecture is presented in Figure 1,
uses a replicated OS kernel model [5] wherein one OS kernel

instance is run on each machine of an ISA-heterogeneous
cluster of networked computers. The kernel instances com-
municate with each other via message passing over the local
network, to coordinate and ensure consistency of a part of the
kernel state. In particular, they provide a single system image
including a globally consistent namespace for CPUs, appli-
cation address spaces, and process IDs. The OS also provides
all the necessary support for threads to dynamically migrate
and execute across processors of different ISAs [20, 24], in-
cluding the abstraction of distributed shared virtual memory
(across ISAs) as a first-class Linux kernel abstraction [28, 36].

The OS is implemented as a collection of kernel subsys-
tems with designated functionalities: a Virtual Memory Area
(VMA) server that builds a migrated process’s VMA by raising
page faults, a process server that implements threadmigration,
termination, and cancellation services, and a page server that
handles page faults and message invalidation requests/re-
sponses for implementing distributed shared virtual memory.
The OS’s messaging layer for kernel-to-kernel communica-
tion is implemented as a high-performance, low-latency in-
kernel messaging layer that consists of a messaging interface,
a transport layer, and various device drivers that support
different interconnects (e.g., Ethernet, RDMA, PCIe).

2.2 Building Multi-ISA Binaries

Popcorn’s compilation and linking toolchain produces bi-
naries that can execute on heterogeneous ISA processors.
Figure 2 shows a high-level overview of this toolchain. The
toolchain extends the LLVM compiler infrastructure, takes
as input unmodified C files, and generates a multi-ISA bi-
nary that contains a single data section (.data), multiple
code sections (.text), one per ISA, and state transformation
metadata that enables rewriting of the program’s ISA-specific
state from one ISA/ABI format to another, thereby enabling
program’s execution migration between ISA-different CPUs.
To enable a common data section, we assume the same align-
ment and sizes for primitive C types, as well as the same
endianness, across all considered ISAs (true for all modern 64-
bit ISAs). The same memory allocator (i.e., heap algorithm)
is used on all ISAs.

Execution migration across ISA-different CPUs is semanti-
cally consistent only at an equivalence point [43], i.e., a point
in the program that generates an identical application state
independently of the ISA in which it has been compiled for.
An LLVM pass, part of the toolchain, can automatically insert
migration points at equivalence points (which are function
boundaries) in the application. Additionally, the pass deter-
mines all the live variables at each migration point (using
LLVM’s stack map mechanism). Since each ISA’s backend
(i.e., the register allocator) may make a different decision
about where to store these live variables (i.e., stack slot or
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Figure 2: Popcorn Linux compiler and linker toolchain. The toolchain takes an application’s sources as input and

outputs a multi-ISA binary capable of migrating at runtime between different ISAs. A modified LLVM compiler

instruments the program at the intermediate representation level with metadata that will allow architecture-

specific state transformation at migration time. A modified linker finalizes the binary by creating two distinct

code segments (one per ISA), with possible targets of function pointers (function addresses) aligned at the same

virtual addresses, and a single data section with a format compatible with both ISA.

register), the pass also instruments the LLVM intermediate
representation to inform each ISA’s backend to generate in-
formation about the destination of the live variables at each
migration point. These destinations need to be preserved
if the application were to be migrated to a different archi-
tecture at a migration point to ensure that the application
resumes after migration in a consistent state and with high
performance.
Apart from the live variables and their destinations, the

compiler also notes the information about the callee saved
registers and the frame sizes. To correlate all the call site
information at runtime, each site is also assigned a unique
identifier. In the final step, the linker takes in all the object
files and produces a multi-ISA binary that has an aligned
virtual address space, i.e., all static variables, global vari-
ables, and functions are given the same virtual address. This
alignment is done using a post-processing script that gen-
erates custom linker scripts. By aligning the virtual address
space and using the same dynamic memory allocator on all
ISAs, pointers remain valid across migrations. The gener-
ated multi-ISA binary also contains the metadata required
for transforming the application’s program state across ISAs
during migration.

2.3 Runtime Cross-ISA Thread Migration

When an application is executed, its threads execute nor-
mally until they hit a migration point, which is a call to Pop-
corn Linux’s run-time system. The run-time system checks
if a cross-ISA migration for the thread in question has been
requested. This is done by issuing a system call to check a
per-thread flag that is used to signal migration by Popcorn’s
scheduler. If a migration is requested, the run-time system
takes a snapshot of the thread’s current stack and registers,
and begins the transformation of the stack and register set
from the source ISA/ABI format to the destination ISA/ABI
format. The first step is to unwind the stack, check all the

activations that are active, and load each of these functions’
metadata. The stack is then traversed, moving all the ac-
tive live values to the destination ISA location. Non-stack
memory (e.g. global variables and heap allocations) will be
transferred on demand later when the application resumes
on the target machine.
With the transformed register set, the run-time system

issues a special system call to the OS, which migrates the out-
ermost function’s transformed register set to the destination
machine. The OS kernel on the destination machine creates
a new thread with the transformed register set and returns
the thread to the user space. The thread then resumes its
execution on the destination machine as if returning from a
system call.
After a thread is migrated from a source to a destina-

tion machine, the migrated thread does not have any pages
mapped into its memory, and all memory accesses, there-
fore, result in page faults. When page faults occur, the OS
page fault handler (on the destination machine) intercepts
them, enabling it to observe the page data accessed by the
thread. The destination OS kernel informs the source OS
kernel about the missing page data, which are unmapped
from the source and sent to the destination where they are
mapped into the thread’s address space.

3 Popcorn Linux’s RISC-V Extension

Popcorn is originally a distributed operating system kernel
based on Linux [5], which was extended to run on hetero-
geneous hardware with partially overlapping ISAs, i.e., an
Intel Xeon and Intel Xeon Phi platform [6]. Subsequently,
Popcorn Linux for fully non-overlapping ISAs, i.e., x86 and
ARM CPUs, was developed [3], integrating a toolchain made
of LLVM, GNU binutils, the gold linker, and the Musl C
standard library in order to create multi-ISA binaries i.e. ap-
plications able to migrate at runtime between machines of
different ISAs. That version of Popcorn was subsequently
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enhanced to support an advanced distributed shared mem-
ory implementation across ISAs [21, 26] and the migration
of containers [2, 47]. It is the first time since the inception
of multi-ISA (x86-ARM) Popcorn [3] that the toolchain is
ported to a new ISA, and we describe the port in the rest of
this Section.

Popcorn Linux’s port to 64-bit RISC-V processors targets
the RV64G subset of the RISC-V ISA [45], providing hardware
support for atomic, multiplication, and single and double
precision floating point instructions. Conceptually, integer
multiplication and floating-point support could be emulated
in software, but that has been left as a future project.
Porting the Popcorn software ecosystem to RISC-V was

not a straightforward switch from the existing x86-64/ARM64
version, and involved changing part of the toolchain (e.g. the
linker) as well as updating the version of other tools. There
are three major components involved in this port, compiler,
runtime, and operating system, all described below.

3.1 RISC-V Compiler Toolchain

The RISC-V compiler toolchain is based on LLVM version 9
and utilizes the binutils BFD linker. From a historical stand-
point, it should be noted that this port utilized the first ver-
sion of LLVM that supported the RISC-V ISA. As such, port-
ing Popcorn Linux to an ISA with more mature compiler
support may not have involved as much effort. This pro-
cess was completed within six months by a single engineer.
Likewise, the binutils BFD linker is selected for this port out
of necessity, as the original Popcorn Linux linker, gold, has
largely been abandoned by the binutils developer community,
and it did not support RISC-V.

After rebasing the Popcorn Linux code generation patches
from LLVMversion 3.4 to LLVMversion 9, the first task in the
RISC-V port is to add support to generate stackmapmetadata
for the RISC-V ISA. Stack map metadata essentially contains
debug information to encode the locations of variables both
in hardware registers and on the stack. Stack maps required
all variables to be accessed relatively to the frame pointer
register. However, RISC-V LLVM aggressively avoids using
the frame pointer. Therefore, in the RISC-V port of Popcorn
Linux toolchain, we force the utilization of frame pointer-
based addressing for Popcorn applications.
Next, the RISC-V LLVM port needs to be updated to dis-

able usage of the small data (.sdata) segment for global
variables because x86-64 does not support it. By design, Pop-
corn Linux requires all the global variables and functions to
be placed at common addresses across multi-ISA executa-
bles. As such, each multi-ISA application is compiled with
the -ffunction-sections and -fdata-sections compiler
flags, placing each function and global variable into its own

section, that can later be aligned at link stage. This necessi-
tates preventing LLVM from utilizing architecture-specific
data segments. By utilizing the .sdata segment, the RISC-
V ISA can access those variables using the gp register, and
therefore generate more compact code when accessing global
variables.

The key challenge in porting Popcorn Linux to utilize
the binutils BFD linker is to align thread local storage (TLS)
symbols at the same addresses on x86-64 and RISC-V. The
GNU TLS implementation [14] provides two variants for TLS
data layout. Most ISAs utilize variant I, but RISC-V and x86,
utilize variant II. All Popcorn Linux ISAs utilize a modified
version of variant I, because that is what ARM utilizes. For-
tunately, this does not involve any compiler changes, but
it does require the linker and C library to collaborate with
their interpretation of TLS data. In terms of the BFD linker
port, this only involves minimal changes to the way that the
linker interprets offsets for TLS relocations.

The last RISC-V-specific linker change involves disabling
the relocation relaxations. The RISC-V ISA was specifically
designed for simplicity. Unlike other ISAs that support a
plethora of addressing modes, RISC-V only supports three
addressing modes. As such, the RISC-V ISA relies heavily
on the linker to perform relocation relaxations to optimize
the executable code for size. For example, instead of using
two instructions to perform a jump, if the linker knows that
offset to the jump target can fit within a single instruction,
then it will only generate one instruction to perform the
jump. These aggressive relaxations present a challenge in the
RISC-V port in the context of the post-processing script that
generates the custom linker scripts used to align symbols
at the same addresses in both ISAs. Different alignments
cause the relocations to be relaxed differently, and hence
the symbol alignment can be off in different executables. We
disable this optimization to ensure the proper alignment of
symbols across ISAs.

The modifications brought by the Popcorn toolchain over
a standard binary, such as disabling the small data section
and aligning symbols introduce a certain performance and
memory overhead. To our experience in most cases this
overhead has been shown to be acceptable, and we believe
improving the toolchain on that aspect is orthogonal to the
contributions presented in this paper.

3.2 RISC-V Runtime Environment

The core Popcorn Linux runtime libraries, including the stack
transformation and migration libraries are mostly written
in C, but it does also contain snippets of assembly code to
handle critical migration functionality when the stack is
unavailable during its rewriting. Those aforementioned li-
braries utilize objects with callback functions to facilitate
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stack rewriting and initiate migration. Porting the Popcorn
Linux runtime environment to the RISC-V ISA involves repli-
cating a lot of boilerplate code in both the stack transfor-
mation and migration libraries. Besides for some assembly
routines, most of the changes involve populating data struc-
tures with RISC-V-specific register information and adding
code to register the RISC-V ISA as a target.
The Linux kernel 5.2 version is the basis for the RISC-V

effort described in this paper. The port retains the Musl C li-
brary version 1.1.18. Official support for RISC-V was added in
Musl 1.1.23. Rather than rebase the Popcorn Linux patches to
Musl 1.1.23, the RISC-V functionality is backported to Musl
1.18. Notable RISC-V changes in the backport involve adding
assembly directives to place each function in a separate sec-
tion, adding Popcorn-specific system calls, and changing
RISC-V TLS layout to variant II.

Lastly, the post-processing data alignment and stack map
metadata tools have to be updated to support RISC-V. The
changes to the stack map metadata tool are relatively triv-
ial, as the stack map metadata is itself generic and ISA-
independent. The changes to the data alignment tool are
more involved, as a new linker script template needs to be
introduced for RISC-V. Specifically, the placement of the
RISC-V ELF segments has to match that of x86.

3.3 RISC-V Linux Kernel

We utilize the 5.2 Linux kernel for both x86 and RISC-V for
the RISC-V port. One issue preventing migration between
x86 and RISC-V is the size of the virtual address space. In-
tel x86-64 processors support 47 bits of addressable virtual
memory whereas 64-bit RISC-V hardware only supports 38
bits of virtual memory at the time of development. As a
consequence, the x86 Linux kernel was modified to only sup-
port 38 bits of virtual memory. Without this change, the x86
stack may not be addressable on RISC-V if located above the
limit of a 38-bit virtual address space. Beyond that, due to
different cache writeback strategies, Popcorn Linux’s page
server subsystem (which handles page faults and related dis-
tributed shared memory chores) needs to be more aggressive
in flushing the page cache on RISC-V processors.
Due to a technical limitation in the RISC-V port of Pop-

corn Linux (lack of synchronization at migration points),
our system currently only supports single-threaded appli-
cations. It is however not a fundamental issue, and other
research works have demonstrated cross-ISA migration of
multi-threaded applications [2, 47].

4 Offloading from x86 to RISC-V CPUs

With the Popcorn Linux software stack extended for the
RISC-V architecture, we consider a use case inspired by
HEXO [29]: augment high-performance x86 servers with

inexpensive RISC-V-based embedded boards, as a way to
improve performance and energy consumption at a low cost
vs. purchasing additional servers. Olivier et al. [29] connect
to an Intel Xeon (x86-64-based) server ARM-based single
board computers that are a fraction of the server’s price.
The study shows that offloading jobs from the server to the
boards helps alleviate the server’s resource congestion, and
can yield as a result throughput increase of 67% and energy
efficiency gains of 56% for certain workloads. Since data cen-
ter costs are dominated by the costs for server acquisition,
power consumption, and equipment cooling [9], such gains
in performance and energy efficiency obtained by coupling
servers and single board computers have a value proposition
in reducing capital costs. Therefore, armed with Popcorn
Linux’s extension for RISC-V, we consider offloading jobs
from an x86 server to a RISC-V-based embedded board to
improve throughput and energy efficiency.
The intuition behind HEXO’s idea is that, although all

workloads will suffer a slowdown when executing on the sin-
gle board computer vs. on the server, that slowdown is highly
variable among programs, and for certain jobs it will be infe-
rior to one order of magnitude. To investigate this hypothesis,
we conducted two experiments to understand the difference
in application execution times and energy consumption on
an x86 server (Intel Xeon E5-2637v3) and RISC-V (SiFive Hi-
Five) board. We used the NAS Parallel Benchmarks (NPB)
suite [1] which is representative of long-running compute-
intensive workloads from the domain of high-performance
computing that may run as background jobs in the data-
center. The suite include computation kernels: integer sort
(IS), embarrassingly parallel (EP), discrete 3D fast Fourier
transform (FT), unstructured adaptive mesh (UA), conjugate
gradient (CG), and multi-grid (MG), as well as pseudo appli-
cations: block tri-diagonal solver (BT), scalar penta-diagonal
solver (SP) and lower-upper Gauss-Seidel solver (LU). A sin-
gle instance of each benchmark program (serial version)
is executed on each machine, and we measure the execu-
tion times and energy consumption. We also use a set of
memory-intensive micro-benchmarks, that allocate a fixed
large amount of memory and then access it in a specific pat-
tern such that each operation results in a cache miss, i.e. a
memory fetch. The memory is accessed in step sizes that
are factors of the cache line size to create different execu-
tion loads. As the step size increases, the number of memory
fetches (cache misses) increases, impacting negatively the
total execution time. This pattern of accessing the memory
is repeated for a fixed number of iterations for all step sizes
to increase the overall execution time and generate enough
memory load. We consider step sizes of 16, 32, and, 64 bytes,
and name the respective micro-benchmarks as cache_step_16,
cache_step_32, and cache_step_64.
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Figure 3: Execution time slowdown and energy sav-

ings experienced by the NPB benchmark suite and

a set of memory-intensive micro-benchmarks when

running on the SiFive RISC-V board vs. on an In-

tel Xeon E5-2637v3 server. The micro-benchmarks

cache_step_16/32/64 are abbreviated as cs16/32/64. Stars

represent good candidates for offloading, showing low

slowdown and high energy savings.

Figure 3 shows on its X axis the execution time slowdown
factor the benchmarks suffer when running on the SiFive
board compared to execution on the Xeon server. The over-
all slowdown range is wide: from 3.6x to 38x. We observe
that the slowdown is relatively small for some of the pro-
grams: it is less than 10x for IS, BT and EP. Conversely, the
slowdown can be very high for certain programs: for SP, LU,
cache_step_16, MG and UA it is superior to 20x. This is not
surprising as the SiFive board has weakermicro-architectural
properties (e.g., lower clock speeds). However, it is important
to consider the slowdown range in perspective: the SiFive
board costs ($999) only one-third, approximately, of the Xeon
server ($3,049). Furthermore, it is a prototype board, and the
cost of next-generation RISC-V boards is likely to get much
lower due to its royalty free ISA as well as higher manu-
facturing volumes resulting in economies of scale: in fact,
several RISC-V-based single-board computers with prices ex-
pected to be below $100 have been announced or are already
available [34, 40].
Overall, programs with lower slowdowns are the ones

demonstrating the highest energy savings, which can be eas-
ily explained by the fact that longer execution times means
higher energy consumption. Still, there are a few noteworthy
outliers, such as CG: although it has a higher slowdown vs.
FT or cache_step_32/64, CG presents higher energy savings

than these programs. This may indicate a lower power con-
sumption (in watts) for CG during the entirety or part of its
execution on the board, compared to other programs.
The Y axis of Figure 3 shows the energy saved for the

benchmarks when running on the SiFive board compared to
execution on the Xeon server. Values are normalized to the
power consumption when running on the server, i.e. 1 on
the y-axis represents the Xeon’s energy consumption. Some
programs consume significantly less energy on the board:
the energy consumption reduction for IS is 5x, and more
than 2x for EP and BT. Other programs, among those with
high slowdowns, consume more energy on the board: SP,
LU, UA, and cache_step_16. This is because the execution
time of these programs is so high on SiFive that it offsets the
board’s lower power consumption.

From these experiments, we can conclude that by attach-
ing such a RISC-V board to a Xeon server and offloading
lower slowdown applications (which overall are also the ones
showing the highest energy savings) to the board, consolida-
tion benefits can be obtained, i.e. higher job throughput or
lower power consumption for a fixed workload. Still, because
certain jobs present such a high slowdown on the board, of-
floading them would undoubtedly be detrimental. Hence,
offloading needs to be selective, and we need a scheduler.

Integrating low-power RISC-V processors in the datacen-
ter raises the question of the form this integration would
take, in terms of form factors, space available in server cabi-
nets, thermal constraints, etc. We consider these issues to be
orthogonal to LSF’s objective, which is to enable the runtime
migration of software between traditional servers and RISC-
V machines, independently of the way these are integrated.
Still, a possibility for a transparent integration would be to
have RISC-V compute nodes in the form of boards present
within traditional (e.g. x86) servers, connected through PCI
Express (note that RISC-V-based smart I/O devices are al-
ready here and connected similarly).

4.1 The LSF Scheduler

The key idea of LSF’s scheduler is to assume that all jobs ini-
tially start on the server and are monitored there so that the
system can build an estimation of the slowdown they would
suffer if offloaded to the RISC-V board. LSF estimates the
slowdown by monitoring hardware performance counters
and using a simple linear regression technique. To assess the
efficiency of that approach, we profiled all applications from
the NPB benchmark suite on the server, and gathered data
from the following performance counters: last level cache
misses per second, number of instructions per second, cache
loads per second, and number of branches per second. We
found a good correlation between the number of instruc-
tions per second observed for an application running on the
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server, and the slowdown suffered by that application when
executing on the board: the correlation coefficient 𝑟 = 0.80.
This indicates a relationship between the slowdown and this
metric: by monitoring it, the scheduler can dynamically esti-
mate slowdown information for each job. This differs from
HEXO’s scheduler [30] that, for an x86 server and ARM64 sin-
gle board computer setup, used the amount of last level cache
references per second to predict slowdown. That choice was
explained by the relatively slow memory subsystem of the
ARM64 board used in that research effort, something which
seems to be less of a problem with the RISC-V machine we
use.

LSFworks as follows.We assume that LSF has been trained
on a set of applications representative of the jobs it will have
to schedule at runtime, in our case the NPB benchmarks. We
also assume that a particular (set of) performance counter(s)
can be found to have a good correlation coefficient with the
slowdowns jobs will suffer should they be offloaded from the
server to the board: in our case, the number of instructions
per second. All jobs start on the server, and when a job be-
gins its execution, LSF checks the server’s load in terms of
the number of available cores. Due to the compute-intensive
and single-threaded nature of the workloads we target, we
do not consolidate more than one job per core. If no cores
are available on the server, LSF selects a victim job to be of-
floaded to the board. Based on our previous observation, the
victim job is one that has the lowest number of instructions
per second among the currently running set and has been
executing the longest on the server. This effectively means
that the scheduler offloads the job that will suffer the lowest
estimated slowdown when moved to the RISC-V board.

LSF performs bookkeeping tasks such as tracking the avail-
able cores, the currently running set of jobs, and each job’s
instructions per second, amount of time it has been executing,
and on which cores. This information is updated at differ-
ent scheduling events including job arrival and departure,
offloading decisions, and periodic events that notify jobs’
performance metrics. When an application has completed
its execution, LSF is notified of this event. The system then
updates the usage of the servers accordingly and waits for
the next event.

LSF’s implementation follows an event-based client-server
model using socket communication (Figure 4). The Popcorn
Linux compiler was modified to include client code in all
applications. A userspace server, containing the scheduler
code, listens for connections and waits to offload jobs. Once
a victim job is selected for offloading, the scheduler notifies
it through sockets. The job’s client code then sets a shared
flag which is checked on the job’s next migration event and
triggers Popcorn’s runtime system for cross-ISA state trans-
formation and execution migration.

Figure 4: The LSF scheduler’s client/server model for

offloading jobs in a heterogeneous-ISA systemwith x86

and RISC-V CPUs. Flag represents the target machine

where a job is scheduled for execution.

Table 1: Details of the hardware setup used in evalua-

tion.

Machine Xeon SiFive HiFive Unleashed

CPU model Xeon E5-2637v3 U54 RISC-V
ISA x86-64 RV64IMAFDC
CPU Frequency 3.5 (Turbo 3.70) GHz 1.5 GHz
Cores 4 (8 HT) 4
RAM 64 GB 8 GB
Power (idle) 60 W 4.15 W
Price $3049 $999

The design of LSF is driven by simplicity. It enables, as
we demonstrate in evaluation, notable gains on the set of
CPU/memory-intensive programs we profiled to determine
the correlation between application behavior and the slow-
down observed on the board vs. on the server. It is likely
that more diverse applications or the use of RISC-V boards
of various specifications would necessitate different estima-
tion methods. We scope out advanced estimation techniques
(e.g. ML-based approaches, or considering specialized work-
loads such as SIMD-intensive applications), as well as various
other scheduling policies (e.g. offloading to the board even
if the x86 server is not saturated to save power) and their
comparison to LSF as future work.

5 Evaluation

5.1 Methodology

We conducted an experimental study to evaluate LSF’s gains
on throughput and energy efficiency. Our hardware consists
of an Intel Xeon x86 server and a SiFive RISC-V board [39]
that are connected using a 1 Gbps Ethernet switch. The
specifications of both computers are given in Table 1. Both
machines run Popcorn Linux kernel 5.2.21. Our baseline is a
single Xeon server, allowing us to quantify LSF’s throughput
and energy gain for one-third of the capital cost of a second
Xeon server. For both machines we measure the entire power
consumed by the system with the help of a HOBO Plug Load
Data Loggers [31]. To calculate the idle power consumption,
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Figure 5: LSF’s throughput gain over a single Xeon

server with a queue of single job instances.

we measure the average power consumed by the server and
the RISC-V board when idle for a period of 10 minutes.

Our workload consists of macro- and micro-benchmarks.
Regarding macro-benchmarks, we use the NPB [1] suite
(classes A and B). In terms of micro-benchmarks we use the
memory-intensive applications cache_step_16, cache_step_32,
cache_step_64, previously described in Section 4.

5.2 Job Throughput

We ran two sets of throughput experiments. In the first ex-
periment, we feed the system with an "infinite" queue of
jobs, each job being an instance of the same benchmark, and
we repeat the experiment varying the benchmark with NPB
IS, EP, BT, FT, LU, SP and UA. We ran each experiment for
75 minutes and counted the number of jobs that finished
executing, in order to compute the total job throughput. This
experiment represents a specific case when job instances
with the same slowdown are launched on the server.

Figure 5 shows LSF’s throughput increase over the baseline
single Xeon server without the capacity to offload jobs. The
benchmark BT has the highest throughput increase of 20%.
Interestingly, IS’s throughput gain is lesser than BT’s and
EP’s, although these have higher slowdowns (see Figure 3).
This is because IS and EP have a relatively short execution
time and their migration overhead partially offsets the po-
tential performance benefit of offloading when compared to
BT. The other benchmarks have gains proportional to their
slowdowns. In particular, SP has the lowest throughput gain

Table 2: Consolidated set of benchmark programs.

Set
characteristics Set Benchmark composition NPB

Class
Lowest Slowdown
(<11%)

low-A
NPB BT, EP, IS

A

low-B B

Medium Slowdown
(11% - 21%)

med-A NPB FT, cache_step_32,
cache_step_64

A

med-B B

Highest Slowdown
(>21%)

high-A NPB CG, LU, MG, SP, UA,
cache_step_16

A

high-B B

Mixed set of low
and high 
slowdown
applications

mix-A
NPB BT, NPB SP

A

mix-B B

NPB entire suite npb-A NPB BT, CG, EP, FT, IS, LU,
MG, SP, UA

A

NPB entire suite +
Micro Benchmarks

full-A NPB BT, CG, EP, FT, IS, LU,
MG, SP, UA, cache_step_16,
cache_step32, cache_step_64

A

full-B B

of 1.9%, due to its high slowdown when executing on the
board (more than 35x, see Figure 3).

In our second experiment, the queue we feed to the system
now contains a mix of NPB programs (both classes A and B)
and of the previously presented micro-benchmarks. Table 2
shows the individual queues (sets) composition. These sets
were carefully constructed to consolidate different slowdown
ranges:

• Sets low-A and low-B contain programs with less than
10% slowdown (LSF’s best case).

• Sets mid-A and mid-B contain programs with 11%-20%
slowdown (a “middle case” for LSF).

• Sets high-A and high-B contain programs with greater
than 21% slowdown (LSF’s worst case).

• Sets mix-A and mix-B contain programs with the best
and worst slowdowns.

• We also defined three other sets, npb-A, full-A, and full-
B that included all the micro- and macro-benchmark
programs.

To measure the job throughput, we ran the sets containing
programs from the A class of NPB (low-/med-/high-/mix-
/npb-/full-A) for 75 minutes. The sets containing programs
from the B class (low-/med-/high-/mix-/full-B) were run for
480 minutes as their execution time is longer. By increasing
the experimental duration, we ensure that LSF can migrate
multiple sets of applications to the SiFive board.
Figure 6 shows the throughput gain for the consolidated

sets. Set low-A has a gain of 19.5% and low-B has a gain of
20%, which is similar to the throughput gain for an infinite
queue of BT-only instances (Figure 5). When combining the
best and worst case (BT and SP) for both classes A and B,
LSF’s gain is 16.6%, which is less than BT-only’s throughput
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Figure 6: LSF’s throughput gain over a single Xeon

server with a queue of consolidated sets.

increase. This is because when the jobs are first launched
and no profiling information is available, some of the SP
instances are migrated to the SiFive board.

Sets med-A and med-B represent the middle case and have
a gain of 4.4% and 2.8%, respectively. Sets high-A and high-B
which represent LSF’s worst case with the highest slowdown
programs, have throughput gains of 4.12% and 3.34%, re-
spectively. These sets have a higher throughput gain than
SP-only’s, as they also contain programs with slowdown less
than SP’s that are more likely to be offloaded to the SiFive
board.

Sets npb-A, full-A, and full-B have gains of 12.28%, 13.84%,
and 11.8%, respectively. The overall throughput is less than
the combination of best and worst case. This is because BT
has the longest time for execution during which no infor-
mation about its instructions per second metric is available.
Therefore, LSF offloads programs with the lowest instruc-
tions per second metric available during that time. Overall,
sets with NPB/class A and sets with NPB/class B show a
similar trend.

5.3 Energy Efficiency

We also measured SiFive’s and Xeon’s energy consumption
for the experiments which throughput numbers are given
in Figures 5 and 6. For each set, we calculated the energy
efficiency by dividing the total number of programs that com-
pleted their execution during the evaluation time interval
(75 minutes) by the total energy consumed by the machines
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Figure 7: LSF’s energy efficiency gain over a single Xeon

server with a queue of single job instances.
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Figure 8: LSF’s energy efficiency gain over a single Xeon

server with a queue of consolidated sets.

(in kilo-joules), respectively, during the time interval. This
gives us the number of jobs completed per kilo-joule.
The energy savings for the job queues made of single

job instances are presented on Figure 7, and the savings
for consolidated mixes of jobs are presented on Figure 8.
From Figure 7, we observe that LSF’s increase in energy
efficiency is less than its throughput increase. This is largely
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due to high-slowdown programs, i.e., those with a slowdown
higher than 10x (e.g., FT, LU, SP, UA, cache_step_16). Their
large execution times offset SiFive’s low power consumption
(SiFive’s idle power is 4.15W compared to Xeon’s 60W) and
they end up consuming more energy than when running on
Xeon. Still, some queues leads to energy savings, e.g. more
than 14% for BT, and 5% for EP.

From Figure 8, we observe that sets low-A and low-B with
the lowest-slowdown programs have a 16.5% and 14.9% en-
ergy efficiency gains, respectively, which is higher than BT-
only’s. This is because these sets also contain other programs
which consume relatively less energy on the Xeon than BT.
For sets high-A and high-B with the highest-slowdown pro-
grams, the energy efficiency gain is better than SP-only’s
as the energy efficiency loss is partially offset by other pro-
grams in the set. The sets mix-A and mix-B have a relatively
high energy efficiency. This is because these sets execute a
high ratio of BT (vs. the other program in the set, SP), as
this program present a very low slowdown on the board.
This results overall in high energy efficiency for mix-A and
mix-B.
The sets npb-A containing all of NPB/class A, and full-A

containing all the micro- and macro-benchmarks (class A)
follow a similar trend: full-A has a higher energy efficiency
gain than npb-A as it executes a higher ratio of programs
with better energy efficiency. The set full-B containing all
the micro- and macro-benchmarks (class B) has an energy
efficiency gain of 5.78%. Similar to full-A, it is lower than
the best case for class B applications and the set high-A
containing BT and SP applications.
In summary, our evaluation shows that LSF can achieve

throughput gains of up to 20%, as well as energy efficiency
gains of up to 16%. We consider these gains significant as
the cost of a SiFive board is only one-third of Xeon’s. We
anticipate future gains to be even more significant as the
next generations of RISC-V boards are likely to cost even less
(due to higher manufacturing volumes), to be more power
efficient, and to embed network cards which speed is on par
with that of modern datacenter networking equipment (the
HiFive board’s NIC has a speed of 1 Gbps).

6 Related Work

Past and related works in LSF’s problem space can be broadly
classified into two categories: a) scheduling in single-ISA
heterogeneous systems and b) scheduling in multi-ISA het-
erogeneous systems.

6.1 Single-ISA Heterogeneous Scheduling

The problem of single-ISA heterogeneous scheduling has
been extensively studied, in part due to ubiquitous com-
modity-scale hardware in that category such as the ARM

big.LITTLE architecture. The common scheduling principle
of approaches in this category is to estimate an application’s
performance on one class of cores using its performance
(or other metrics) on another class of cores and use that
estimate to guide scheduling decisions. For example, a typi-
cal approach is to predict an application’s slowdown when
executed on the “wimpier” core using its observed perfor-
mance metrics on the “beefier” core and use that estimate
to decide what threads to execute on which cores. For in-
stance, Koufaty et al. [22] propose bias scheduling, an ap-
proach that characterizes an application’s slowdown using
the internal and external stalls faced by its threads. Such
information is then used to match applications to cores with
appropriate performance and micro-architectural properties.
Van Craeynest et al. [41] present with fairness-aware sched-
uling a proportional fair scheduling approach, wherein the
scheduler balances threads by giving equal time to all threads
on a core, which indirectly ensures that all the threads expe-
rience similar degrees of slowdown.
Petrucci et al. [33] present lucky scheduling, a lottery-

based approach originally developed by Waldspurger and
Weihl [44], wherein an application’s resource usage is moni-
tored using performance counters such as instructions per
second and LLC misses, which are then used to proportion-
ally allocate “tickets”: the larger the number of its tickets, the
greater is the application’s chance of executing on a beefier
core. Jibaja et al. [17] present theWASH scheme, a scheduling
algorithm that is trained offline using performance metrics
to predict slowdowns. At runtime, the predicted slowdown
and other monitored performance data such as criticality,
thread sensitivity, and priority are used to guide schedul-
ing decisions. Scheduling approaches that use applications’
memory and cache contention to make scheduling decisions
have also been studied [7, 11, 15, 23].

6.2 Multi-ISA Heterogeneous Scheduling

Scheduling in Multi-ISA heterogeneous systems has received
relatively less attention. Barbalace et al. [3] first presented
Popcorn Linux for fully non-overlapping ISAs, presenting
two scheduling policies. Unlike the principle of predicting
application performance and using that prediction to guide
scheduling decisions, these policies use a simpler approach.
The first policy balances the number of threads on both ma-
chines (i.e., x86 and ARM), while the second policy runs
a greater number of threads on the beefier machine (i.e.,
x86). In contrast, Karaoui et al. [19] use a slowdown-based
scheduling policy: high-slowdown applications are placed
on beefier cores and low-slowdown ones on wimpier cores,
and applications are migrated from wimpier to beefier cores
when the latter’s queue becomes empty. Pang et al. [32] di-
vide an application into different regions depending on their
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slowdown, and assign regions to cores depending on the
slowdown faced when executing on that core. Both Karaoui
et al. [19] and Pang et al. [32] assume knowledge of applica-
tion slowdown before execution.
LSF represents an adaptation of the principles defined

by HEXO’s scheduler [29], predicting an application’s slow-
down on an ARM-based embedded board using last-level
cache references per second observed on an x86 server, which
is shown to have a high degree of correlation with the pre-
dicted slowdown (correlation coefficient, 𝑟 = 0.95). Appli-
cations with (predicted) low slowdown are migrated to the
board in priority. Additionally, HEXO’s scheduler considers
factors such as available memory and cores on the embedded
board in decidingwhich jobs to offload to the board. Contrary
to HEXO’s scheduler, LSF predicts an application’s slowdown
on the RISC-V board using the number of instructions per
second observed on the x86 server.

Past work has also investigated how the quality ofmachine
learning (ML)-based performance predictors affects sched-
uler’s performance, in both single-ISA and ISA-heterogeneous
systems. Note that both LSF and the HEXO scheduler can be
viewed as using ML-based performance predictors, although
they are simple linear regression models. Prodromou et al.
[35] conduct a quantitative evaluation and show that some
schedulers exhibit large tolerance in prediction error. More-
over, they identify that the processor’s degree of diversity,
including both ISA and microarchitectural properties, has
the most significant influence on the level of prediction error
that schedulers can tolerate.

7 Conclusion

This paper explores the idea of pairing low-power RISC-V as
co-processors to energy-hungry x86 CPUs processing long-
running stateful background jobs in the datacenter, with
the goal of improving performance and energy footprint. To
evaluate this idea we update and port the Popcorn Linux ker-
nel and LLVM compiler to RISC-V. We further introduce the
Lowest-Slowdown-offloaded-First Heterogeneous-ISA sched-
uler (LSF), driving the migration of long-running compute-
intensive workloads at runtime between a RISC-V CPU and
an x86 CPU. This is achieved by predicting the job perfor-
mance on the RISC-V embedded board and migrating the
applications which face the least amount of slowdown when
executing on the RISC-V itself. We use a SiFive RISC-V board
and an Intel Xeon E5-2367 x86 server to evaluate the LSF
scheduler. Our evaluations show that LSF achieves through-
put gains of up to 20% while getting energy efficiency of 16%.
The cost of RISC-V single-board computers is expected to
decrease in the future as economies of scale start to kick in,
and we are hopeful that this will strengthen the benefits of
LSF.

Perspectives of future work include running with LSF
more diverse applications, and studying advanced slowdown
prediction methods on such programs. Further, as the LSF
scheduler uses one of the first-generation RISC-V boards,
with SiFive and other vendors releasing new RISC-V boards
and servers, investigating the throughput gain and energy
efficiency on such newer hardware and designing “portable”
schedulers Jibaja et al. [18] is another promising direction.
Another interesting future research area relates to the con-
cept of ISA affinity: past research showed that phases of a
program can be identified as performing better on different
ISAs [10, 42]. In that context, LSF could be used to schedule
tasks on the optimal ISA at phase boundaries.

This work is available online under an open source license
at the following URL: http://popcornlinux.org/.
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