
Scaling Shared Memory Multiprocessing
Applications in Non-cache-coherent Domains

Ho-Ren Chuang
Virginia Tech, USA

horenc@vt.edu

Robert Lyerly
Virginia Tech, USA

rlyerly@vt.edu

Stefan Lankes
RWTH Aachen University, Germany

slankes@eonerc.rwth-aachen.de

Binoy Ravindran
Virginia Tech, USA

binoy@vt.edu

ABSTRACT
Due to the slowdown of Moore’s Law, systems designers
have begun integrating non-cache-coherent heterogeneous
computing elements in order to continue scaling performance.
Programming such systems has traditionally been difficult
– developers were forced to use programming models that
exposed multiple memory regions, requiring developers to
manually maintain memory consistency. Previous works pro-
posed distributed shared memory (DSM) as a way to achieve
high programmability in such systems. However, past DSM
systems were plagued by low-bandwidth networking and uti-
lized complex memory consistency protocols, which limited
their adoption. Recently, new networking technologies have
begun to change the assumptions about which components
are bottlenecks in the system. Additionally, many popular
shared-memory programming models utilize memory consis-
tency semantics similar to those proposed for DSM, leading
to widespread adoption in mainstream programming.

In this work, we argue that it is time to revive DSM as a
means for achieving good programmability and performance
on non-cache-coherent systems. We explore optimizing an
existing DSM protocol by relaxing memory consistency se-
mantics and exposing new cross-node barrier primitives. We
integrate the new mechanisms into an existing OpenMP run-
time, allowing developers to leverage cross-node execution
without changing a single line of code. When evaluated on an
x86 server connected to an ARMv8 server via InfiniBand, the
DSM optimizations achieve an average of 11% (up to 33%)
improvement versus the baseline DSM implementation.

SYSTOR ’20, June 2–4, 2020, Haifa, Israel
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of The 13th ACM International Systems and Storage Conference
(SYSTOR ’20), https://doi.org/10.1145/3383669.3398278.

CCS CONCEPTS
• Software and its engineering → Software design tech-
niques; • Computer systems organization → Cloud com-
puting.

KEYWORDS
System Software, DSM, Heterogeneous Architectures, Shared
Memory Programming, InfiniBand

ACM Reference Format:
Ho-Ren Chuang, Robert Lyerly, Stefan Lankes, and Binoy Ravin-
dran. 2020. Scaling Shared Memory Multiprocessing Applications
in Non-cache-coherent Domains. In Proceedings of The 13th ACM
International Systems and Storage Conference (SYSTOR ’20). ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3383669.
3398278

1 INTRODUCTION
Data volume is expected to increase by 40% every year of the
next decade [25]. This indicates that there is an urgent need
for more computational power to deal with such a large data
volume. Meanwhile, 42 years of microprocessor trends [39]
show we are facing hardware limitations, the slowdown of
Moore’s Law, the end of Dennard Scaling, and the Dark
Silicon effect [17] caused by per-chip power budgets. Two
main solutions to continue scaling performance are clusters
of systems integrated via high-speed interconnects [1, 28,
31, 33, 34] and specialized hardware [14, 15, 19, 22, 24, 30,
31]. Recent market trends also show that high-end servers
with different Instruction Set Architectures (ISAs) such as
ARM and PowerPC are pushing into datacenters [4]. For
example, Amazon’s Web Services (AWS) provide bare metal
ARM servers [3]. Using these emerging systems brings power
efficiency [4] and performance benefits [26].

Recently there has been increasing interest in coupling sys-
tems with non-cache-coherent domains, or simply domains or

https://doi.org/10.1145/3383669.3398278
https://doi.org/10.1145/3383669.3398278
https://doi.org/10.1145/3383669.3398278

SYSTOR ’20, June 2–4, 2020, Haifa, Israel H-R. Chuang, R. Lyerly, S. Lankes, and B. Ravindran

nodes, together in datacenters [4]. Systems with non-cache-
coherent domains are usually heterogeneous. Examples in-
clude mobile Systems on Chip (SoCs) with same-ISA het-
erogeneous CPUs [31], Xeon/Xeon Phi platforms [5, 24],
ARM-based SmartNICs [9] on a different-ISA server, and
heterogeneous-ISA servers interconnected via high-speed
networking [4, 34]. Coupling diverse architectures together
allows users to obtain better performance [5, 19, 26, 34],
increase energy efficiency [4, 30, 31, 45], or provide other ca-
pabilities such as improved tail latency [21] and security [44].
However, developing applications for such architectures is
difficult, as developers traditionally have been forced to use
programming models exposing separate physical memory
regions, such as the message passing interface (MPI) [20]
or compute unified device architecture (CUDA) [41]. Thus
the question arises – how can developers target non-cache-
coherent systems with both good programmability and high
performance?

Current networking hardware trends have revived inter-
est in using Distributed Shared Memory (DSM) to program
non-cache-coherent systems [1, 4, 5, 19, 30, 31, 34]. Be-
cause DSM extends the shared-memory abstraction across
discrete computing elements, users can run existing applica-
tions across multiple domains as-is. Previous DSM systems,
however, were plagued by networking limitations [2]. Ad-
ditionally, many optimizations proposed to improve DSM
scalability relied on weakening the memory consistency mod-
els of the DSM [2], making correctly programming such
systems challenging. Besides, new networking technologies
continue to improve in both latency and throughput – com-
mercially available InfiniBand adapters provide 200 Gbps
bandwidth [23]. This has motivated re-investigating DSM as
many assumptions about the performance characteristics of
such systems are changing.

As shared memory multiprocessors have become main-
stream, developers have turned to parallel programming mod-
els such as Intel Threading Building Blocks (TBB) [38], In-
tel Cilk [37], and OpenMP [16] to easily leverage multiple
CPU cores for data- and task-parallel computation. These
programming models provide a set of primitives to easily
spawn multiple threads, distribute parallel work, and synchro-
nize execution. When using these primitives, developers must
write their applications in accordance with the programming
model’s memory consistency semantics. Oftentimes they use
weak memory consistency, where updates are only made visi-
ble after synchronization operations. This forces developers
to write computations that avoid such data races and thus are
amenable to parallelization.

Together with the aforementioned trends in networking, we
argue it is time to re-investigate using DSM to target systems
with multiple non-cache-coherent domains. In particular, we

argue that DSM systems can be optimized using weaker con-
sistency semantics and run existing shared-memory (SHM)
parallel programs with high performance on these emerging
systems. Using DSM allows developers to run existing ap-
plications on non-cache-coherent systems as-is, rather than
requiring a full re-write to a new programming model like
MPI or PGAS languages [10, 12, 33].

In this work, we explore changing the DSM consistency
model and implementation to better optimize cross-domain
execution. We found several bottlenecks in previous works [4,
34, 40]: significant numbers of invalidation messages, false
page sharing, large numbers of read page faults, and large
synchronization overheads. To solve these problems, we pro-
pose efficient DSM protocol primitives that delay and batch
invalidation messages, aggressively prefetch data pages, and
perform cross-domain synchronization with low overhead.
We follow the existing shared memory multiprocessing pro-
gramming model to design our Operating System level (OS-
level) DSM primitives, which can be easily adopted in parallel
programming runtimes. For developers familiar with program-
ming in such relaxed consistency models or for existing legacy
applications, our system transparently brings further perfor-
mance improvement. To prove the applicability of the new
primitives, we developed a runtime based on OpenMP [16].
Thus, we seamlessly support cross-domain execution of exist-
ing OpenMP applications without changing any line of code.
We evaluated a prototype on two heterogeneous-ISA nodes.

The main contributions of this paper are as follows:
• We design an efficient multiple writer DSM protocol,

which allows many writers to concurrently write to the
same page without coherency;

• Because a multiple writer protocol may not pay off
in all scenarios, we describe a heuristic named smart
regions that selects the best consistency protocol for a
given OpenMP work-sharing region;

• We provide a profiling and prefetching mechanism to
further reduce the number of read page faults in work-
sharing regions;

• We design and implement a low overhead multi-domain
synchronization primitive for avoiding redundant page
transfers caused by traditional shared memory synchro-
nization in a DSM setting;

• To demonstrate that our design can be easily adopted
by SHM parallel programming models, we incorporate
the new primitives into an existing OpenMP runtime,
allowing existing applications written in OpenMP to
benefit from the new mechanisms without changing a
single line of code;

• We present a prototype based on Linux and evaluate it
on a setup consisting of an Intel Xeon x86 and Cavium

Scaling Shared Memory Multiprocessing Applications in Non-cache-coherent Domains SYSTOR ’20, June 2–4, 2020, Haifa, Israel

Table 1: Invalidation messages for a SC-based DSM.

Application Execution Time (s) # of Invalidation
Messages on x86 (ARM)

Avg. Time (us) Per Msg.
on x86 (ARM)

Worst-case Total
Invalidation Time (s)

Ideal Total
Invalidation Time (s)

LUD 180 539162 (631648) 71 (171) 146 2
CG-D 1396 3840819 (3968198) 424 (891) 1396 101.8
BT-C 453 7053388 (7165938) 277 (806) 453 122.1
SP-C 752 11541815 (11390493) 277 (804) 752 199.8

ThunderX ARMv8 interconnected by 56 Gbps Infini-
Band, and achieve on average an 11% speedup versus
the baseline DSM implementation.

Our complete Linux kernel implementation is available at
https://github.com/ssrg-vt/popcorn-kernel/tree/tso-adv.

2 MOTIVATION
In DSM, the main sources of overhead are fetching pages
and maintaining page access permissions across nodes. The
consistency model dictates when these operations occur. Prior
works [4, 5] use sequential consistency (SC), a multiple-
reader/single-writer protocol, for cross-node memory con-
sistency. The DSM system relies on the processor’s memory
management unit (MMU) to detect remote memory accesses,
which are handled by the DSM system inside the OS page
fault handler. With SC, if a node reads a remote page, the
DSM fetches the page data and sets “shared” permissions
across the network; other nodes with the page are also set to
have shared permissions. If a node writes to a page, the DSM
system fetches the page (if not already present) and sets “ex-
clusive” permissions; other copies of the page on other nodes
are invalidated. The latency from cross-node page fetches and
permissions maintenance is a well-known DSM problem [36].

Invalidation Messages. In an invalidation-based DSM pro-
tocol [18], memory consistency is maintained by sending in-
validation messages when acquiring exclusive write access.
While processing invalidations, both local and remote CPUs
do not perform any useful work. In order to understand the
impact of invalidation latency on performance, we collected
the total number of invalidation messages and measured how
long each message took when running several applications on
the setup described in Table 2. The results are shown in Ta-
ble 1. The second column lists the time to run the application
across both machines using 16 threads on the Xeon and 96
threads on the Cavium (16 + 96 threads). The third column
records the number of invalidation messages generated by
each node. The fourth column shows the average time for
each invalidation message from each node. Because of the
asynchronous and parallel nature of DSM, we estimate the ap-
proximate invalidation overhead in the ideal case in which all
invalidation requests are handled concurrently (on both nodes)
and the worst case in which all invalidation requests are han-
dled serially. The results are shown in the last two columns,
respectively. Compared with application execution time, we

observe that the worst case invalidation time for applications
consumes either most or all of the application execution time.
Even in the ideal case, for CG-D, BT-C and SP-C (Section 5)
the invalidation overheads consume, on average, 20% of the
application’s execution time. This demonstrates the impact of
cross-node invalidations on performance.

False Page Sharing. With concurrent cross-node execu-
tion, multiple threads executing a work-sharing region may
write to disjoint sections but not the same variable of the same
page. This incurs invalidation and page transfer overheads
even though threads do not write to the same addresses on
the page. For example, in Figure 1, writes W2, W4, W5, and
W6 all write to different variables located on the same page.
In this case, the page will bounce between the nodes as they
contend for page data and access permissions. The proces-
sors will spend time handling redundant remote page faults
instead of application computation. This false page sharing
impacts each application differently. For example, 4% of write
page faults in lower-–upper decomposition (LUD) (Section 5)
are caused by threads on separate nodes writing to disjoint
sections of a page when using SC.

Cross-Domain Barrier Synchronization. Another prob-
lem arises from synchronizing threads across nodes with tra-
ditional SHM primitives. On a single node, synchronization
primitives in user-space are often implemented using atomic
instructions and wait operations like Linux’s fast user-space
mutex (futex). On multiple nodes, these traditional primi-
tives can be transparently handled by DSM and futex delega-
tion [28]. However, atomic operations to the same variable
cause both read and write page faults. These overheads cause
cross-node synchronization overheads to balloon as the DSM
moves the page repeatedly between different nodes. As shown
in Figure 3, barriers using traditional SHM primitives on top
of DSM take 846 microseconds, a 20x slowdown versus bar-
riers on the Cavium and even worse for the Xeon. This can
have significant impacts on applications – for example, CG-D
and hotspot (Section 5) have 18703 and 10800 barriers during
their execution, respectively.

3 DESIGN
Our goal is to reduce DSM overhead so as to leverage remote
computing power with minimal communication. Two large
sources of overhead caused by using SC are invalidation
messages and false page sharing (Section 2). Because these

https://github.com/ssrg-vt/popcorn-kernel/tree/tso-adv

SYSTOR ’20, June 2–4, 2020, Haifa, Israel H-R. Chuang, R. Lyerly, S. Lankes, and B. Ravindran

Node 0

Node 1 TimeW1

W2 W5

(W4) (W6)

R1

Barrier & work-sharing end
MW merging phase end

(SC begin)

(Default-owner node)

Exclusive Shared No permission Copy Diff

XOR =

XOR =

Work-sharing begin
MW parallel phase begin

(SC end)

Barrier begin
MW parallel phase end

MW merging phase begin

Figure 1: Example of DSM traffic before work-sharing regions (SC) and during work-sharing regions (MW).

are intrinsic to SC, the only way to reduce consistency traffic
is to switch to a relaxed model that can delay invalidations
and front-load page fetches (Sections 3.1 and 3.2). Also, to
reduce redundant communication caused by traditional cross-
node synchronization, the DSM includes a new cross-node
synchronization primitive (Section 3.4).

3.1 Multiple Writer Protocol
We propose the Multiple Writer (MW) protocol to allow mul-
tiple nodes to concurrently write to the same page without
cross-node consistency. This allows delaying invalidation
messages until the end of a work-sharing region, or simply a
region, where all invalidations are exchanged to fix up pages
and permissions. For pages written by two or more nodes, the
DSM layer detects and propagates updates between nodes. It
accomplishes this through Copy-on-Write (COW) – when a
node encounters a write page fault, the DSM layer saves a
copy of the original version of the page. When propagating
writes, the DSM compares the updated page to the original
and sends updates to other nodes. This allows updates to
be delayed until the end of the work-sharing region and fits
directly with parallel programming models.

Upon entering a work-sharing region, the DSM switches
from SC to MW and execution enters the MW parallel phase.
At this point the DSM layer designates one node as the default-
owner and all other nodes as non-default-owners. This facili-
tates an optimization in propagating updates – rather than an
all-to-all exchange for page updates, the default-owner pulls
in updates from all other nodes (all-to-one) and performs
the merge; subsequent accesses to the page by non-default-
owners must reacquire the page and permissions. Because
the default-owner merges updates from all other nodes, only
non-default-owners perform COW to generate diffs. At the
end of the work-sharing region, the DSM layer enters the
MW merging phase. It begins by exchanging invalidations
encountered during the region and determines which pages
need merging. Then, the DSM layer generates “differences”

(diffs) of the COW pages and sends them to the default-owner.
The default-owner merges the diffs, and the DSM system
transitions back to SC.

Take Figure 1 for example. It focuses on a single page case.
Node0 represents a non-default-owner node and Node1 is
a default-owner node. Both nodes are initially outside the
work-sharing region and have the page mapped read-only, as
per the SC model. When Node1 first attempts write operation
W1, it causes a page fault due to the lack of write permissions.
During fault handling, Node1 sends an invalidation message
to Node0 to revoke Node0’s page permissions. Node0 drops
the page and permissions and sends an acknowledgement
(ACK) message back to Node1. After receiving the ACK,
Node1 gains exclusive write access and writes to the page.
Next, Node0 performs a read operation R1. Since Node0 does
not have any permissions for the page, it sends a message to
Node1 asking for the page and shared permissions. Node1
downgrades its exclusive permissions to shared permissions
and sends the page data back to Node0. At this point both
nodes have the same shared read-only page. Both nodes have
the latest version of the page.

When the nodes enter the work-sharing region, the DSM
transitions from SC to the MW. Node0 issues W2 generating
a write fault. The DSM system first checks whether Node0 is
the default-owner node. In this example, since Node0 is not, it
makes a copy of the page (COW) and changes the permissions
to be exclusive without cross-node coherency. After this initial
duplication, writes to the page will not incur page faults for
the duration of the MW parallel phase. This saves the latency
of sending invalidation messages and permission changes
caused by different interleavings of writes W2, W4, W5, or
W6.

When the application encounters either an explicit or im-
plicit barrier (end of work-sharing region), the DSM system
enters the MW merging phase. First, the DSM batches all
delayed invalidation requests into a single message and dis-
tributes invalidations across all nodes. Pages written by only

Scaling Shared Memory Multiprocessing Applications in Non-cache-coherent Domains SYSTOR ’20, June 2–4, 2020, Haifa, Israel

one node are simply invalidated on other nodes by the DSM.
However, for pages written by multiple nodes (i.e., the page
written by W2 and W5 on Node0, and W4 and W6 on Node1),
the DSM layer must generate a diff from the copy created
during the first write fault. Non-default-owner Node0 creates
a diff by applying an exclusive OR (XOR) operation between
the original and updated version of the page. The DSM trans-
fers the diff to Node1, which merges the diff with its copy
of the page. After all invalidations and merges have been
performed, the work-sharing region ends and the DSM transi-
tions back to SC. Note that COW pages are only used during
the MW merge phase if nodes write to the same page and
therefore necessitate a merge; however, the DSM layer cannot
predict whether this will happen and must copy the page, even
for pages eventually only updated by a single node.

3.2 Profiling Page Prefetching
Similar to the MW protocol, the primary goal of aggressive
page prefetching is to reduce the number of read page faults.
Resolving read page faults incurs long latency – the CPU
must undergo a mode switch and the DSM system must trans-
fer each page between nodes using the communication layer.
Rather than fetching pages on-demand during the middle of
computation, the DSM layer prefetches pages in batches at
the beginning of a work-sharing region to both reduce inter-
ruptions during computation and better utilize the available
network bandwidth. Currently, the prefetcher profiles read op-
eration patterns during the initial execution of a work-sharing
region and prefetches the same pages before the next invoca-
tion of the same region.

3.3 Smart Regions
The MW protocol’s benefit does not come for free. For a
non-default-owner node, an extra memory copy is required
upon the first write to a page. Also, the DSM must record
all written pages and copied pages in a list. During the MW
merging phase, the DSM iterates over the lists to find conflicts
that need merging. If the number of invalidation messages is
not significant, the MW overheads may cause a performance
hit versus SC. Many compute-intensive applications have
repetitive regions exhibiting similar DSM consistency traffic.
The DSM system records each region’s behaviour, and if
the number of invalidation messages is not above a certain
threshold, the DSM system smartly skips switching to MW
protocol for subsequent executions of the region.

3.4 Cross-Node Barrier Synchronization
One way to provide synchronization across nodes is to del-
egate futex operations based on DSM [28]. It allows trans-
parently handling existing SHM synchronization primitives.
When a thread enters a synchronization barrier, it atomically

fetches and increases a shared counter to determine if it is the
last arriving thread. During this process, the DSM layer grabs
the page containing the counter and invalidates its permissions
on other nodes. Subsequent threads entering the synchroniza-
tion repeat this process until the last thread arrives. Threads
waiting on conditions call a wait futex operation to wait in
an in-kernel queue. Once awoken, they load a user-space fu-
tex variable to synchronize on the counter. The last arriving
thread invokes a wake futex operation and increments the
user-space futex counter (a write operation). The futex vari-
able is automatically synchronized by the DSM layer, causing
redundant page faults on multiple nodes.

To synchronize the in-kernel futex wait queue, futex opera-
tions must be delegated to the same node. Before waiting in
the queue, futex waits verify that the user-space futex address
still matches the wait condition and then sleeps until a futex
wake on the same address. While verifying these conditions,
the DSM layer locks the pages to prevent any access. This
process may cause up to 2 more pages faults due to the lack
of read permissions. All in all, when multiple threads on dif-
ferent nodes try to synchronize with each other, the data and
ownership of the page will bounce back and forth.

The DSM layer provides a new primitive to synchronize
cross-node threads in a single system call. Only one thread
has to invoke the system call, which does two things: first,
it broadcasts a notification message to other nodes; second,
it spins until receiving a response from all other nodes for
the same synchronization point. Upon returning from this
function, the cross-node synchronization is finished. This
causes zero page faults.

4 IMPLEMENTATION
Our system is built on top of Popcorn [4], which implements
inter-node thread migration and DSM in kernel space.

We implement the MW DSM protocol (Section 4.1), smart
region (Section 4.2), page prefetch (Section 4.3), and cross-
node synchronization (Section 4.4) mechanisms at the OS
level. We also adopted an OpenMP runtime (Section 4.5) that
transparently integrates the aforementioned mechanisms for
work-sharing regions. Thus, OpenMP applications targeting
simultaneous cross-domain execution in heterogeneous-ISA
systems can benefit from these new mechanisms without
changing any lines of application code.

4.1 Multiple Writer Protocol
The MW protocol enables multiple writers to concurrently
operate on the same page without coherency to amortize net-
working latency overheads. In our setup (described in Table 2),
the Intel Xeon executes the serial phases of the application and
is chosen as the default-owner because it has better single-
threaded performance than the Cavium ThunderX. Doing

SYSTOR ’20, June 2–4, 2020, Haifa, Israel H-R. Chuang, R. Lyerly, S. Lankes, and B. Ravindran

so lowers the number of page faults incurred during the se-
rial phase since the default-owner gains exclusive ownership
when merging pages.

The kernel maintains per work-sharing region (per-region)
data structures to record relevant information (hashkey, pages
written, statistics). The MW protocol’s implementation can
be split into two phases – the MW parallel phase and the MW
merging phase.
MW Parallel Phase. When there is a write to a read-only
shared page inside a work-sharing region (a write fault), the
fault will be trapped by the OS-level page fault handler. Dur-
ing the write fault handling process, the DSM system records
the virtual address of the faulting page in a hashmap con-
tained in the per-region data structure; this hashmap is used
to construct the delayed invalidation message and detect con-
flicts during the MW merging phase. Additionally, if it is the
default-owner node, it adds write permissions to the corre-
sponding Page Table Entry (PTE) and returns to user space. If
it is not, before correcting the PTE, the DSM layer duplicates
the page and records the address of the copy in a per-node
hashmap indexed by virtual address. After returning to user
space, subsequent read or write operations to the page will
not incur any further page fault.
MW Merging Phase. Once threads exit a work-sharing re-
gion, the DSM enters the MW merging phase. In the merging
phase, nodes exchange lists of pages written during the work-
sharing region to handle invalidations and detect which pages
were written by multiple nodes and therefore need merging.
The DSM layer batches invalidation requests up to a tunable
threshold (4087) by iterating over the hashmap containing
write-faulting pages. Plus, due to OpenMP work-sharing se-
mantics, no two threads will ever write to the same address
without synchronization, meaning the merge process will
never have to resolve conflicting writes to the same address.
We adopt differential logging [29] to both create a differ-
ential between the current and copied page, and apply the
differential to the same page on the default-owner.

4.2 Smart Regions
The DSM layer can decide whether to use the MW protocol
for each work-sharing region. The kernel records execution
characteristics from previous invocations of the same work-
sharing region to make protocol selection decisions for the
next invocation of those regions. If a region is marked as non-
beneficial, threads entering the work-sharing region avoid
MW meta-data initialization and fall back to SC.

The DSM layer determines whether a region is beneficial at
the end of the MW merging phase by recording the number of
invalidation messages. If the number of invalidation messages
is lower than an invalidation threshold, then using the MW
protocol does not pay off and it is declared a probational

region. If a region is determined to be a probational region for
consecutive iterations, it is marked as a non-beneficial region
and falls back to SC for the rest of execution. Our current
invalidation threshold is set to be the core count on its node.
The probation threshold is set to 10. We found that some
applications have different numbers of invalidation requests
for the same work-sharing region. The probation threshold is
utilized to gather more profiling information across several
invocations of the region to make more accurate decisions
regarding whether the MW protocol will be beneficial.

4.3 Profiling Page Prefetching
The in-kernel per-region data structure also records all read
faults. The DSM layer uses this record to prefetch those pages
in the next execution of the same work-sharing region. The
prefetcher relies on the fact that many High Performance Com-
puting (HPC) applications execute the same work-sharing
region with the same input/output buffers multiple times, lead-
ing to repetitive page access patterns for executions. To iden-
tify repeated invocations of a work-sharing region, the DSM
layer uniquely identifies regions with a key using the con-
taining function’s name, line number, file name, and iteration.
This information is supplied to the kernel by the OpenMP
runtime (Section 4.5). The key and per-thread hashmap can
be used to quickly determine whether the region has been
previously executed.

During the first program execution of a work-sharing re-
gion, the kernel records read-faulting pages in a hashmap.
Upon subsequent program executions of the region, the prefet-
cher iterates over the faults observed from the previous exe-
cution. The prefetcher sends requests as batches, maximizing
the number of pages fetched in a single message to better
utilize network bandwidth. Upon receiving the response mes-
sage, the prefetcher maps the pages by fixing permissions and
copying the page content to the proper pages. Once pages
have been placed across nodes, the threads are released to
begin computation.

4.4 Cross-Node Barrier Synchronization
To replace the traditional fetch-and-add and futex synchro-
nization used in the SHM programming model (Section 3.4),
we implement a new system call invoked by threads to syn-
chronize across nodes. Each kernel maintains a local barrier
counter and a remote barrier counter per remote node. The
system call does two things. First, it increases the local bar-
rier counter by 1 and sends a message to the other nodes
for increasing remote barrier counter by 1 on remote nodes.
Second, the node spins until the remote barrier counter is
equal to or larger than the local barrier counter (i.e., until the
remote nodes have sent corresponding response messages for

Scaling Shared Memory Multiprocessing Applications in Non-cache-coherent Domains SYSTOR ’20, June 2–4, 2020, Haifa, Israel

Table 2: Experimental setup
Machine Intel Xeon E5-2620 Cavium ThunderX

ISA X86-64 ARMv8
Cores 8 (16HT) 96 (48 * 2 socket)

Clock (Ghz) 2.1 (3.0 boost) 2.0
LLC Cache L3 - 16MB L2 - 32MB

RAM (Channels) 32GB (2) 128GB (4)
Interconnection Mellanox ConnectX-4 56Gbps

synchronization). Upon completion of spinning, the thread is
released back to user-space to continue execution.

4.5 Runtime Support
To utilize the previously described mechanisms, we modified
Popcorn’s OpenMP runtime (which is derived from GNU’s
libgomp) to integrate the proposed primitives. Popcorn’s
OpenMP runtime provides the ability to migrate threads of a
team executing a parallel region between nodes to take advan-
tage of remote compute resources. Our modifications to the
runtime added/removed 11(+), 3(-) lines of code for replacing
futexes with our primitive, 54(+) for the hash function, and
33(+) for our API library.
Regions. Popcorn’s OpenMP runtime marks the start of a
work-sharing region with calls to __kmpc_dispatch/static_init().
When entering a work-sharing region, the thread performs a
system call to set the MW region flag inside the thread’s in-
kernel descriptor. At this point the DSM layer decides whether
to enable prefetching if the region has been previously seen
or logging of read faults if it is the first time executing the
region.

When a thread hits the work-sharing region exit point (de-
noted by calls to __kmpc_dispatch/static_fini()), it will unset
the MW region flag. At this point the MW merge phase will
begin and propagate writes between nodes.

In between an MW begin and end, there may be barriers
besides the implicit end-of-work–sharing barrier. In this case,
the DSM does not exit the MW region. Threads reaching the
barrier will instead invoke the MW merging phase to force a
consistent memory view across nodes.
Barriers. OpenMP uses explicit and implicit barriers to syn-
chronize threads. We invoke OS-level synchronization primi-
tives inside the OpenMP runtime in place of the traditional
SHM barrier to optimize cross-node synchronization.

5 EVALUATION
We evaluate our DSM system through a series of micro and
macro benchmarks to understand how the MW protocol, ag-
gressive page pre-fetching, and new synchronization primi-
tive improve cross-domain performance. Table 2 displays our
setup. We envision in the near future heterogeneous domains
(likely 2 domains) will appear in datacenters. So, we experi-
ment on a X86-ARM combination integrated via a high speed

interconnect to mimic the envisioned future architectures.
We implement our prototype using Linux kernel 4.4.137 and
OpenMP 4.5 [8]. In our evaluation, we answer the following
questions. With zero lines of application code changed,

• How does the new cross-node synchronization primi-
tive improve barrier performance? (Section 5.1)

• How much does the MW protocol improve performance
vs. SC? Is the smart region heuristic able to accurately
determine when the MW protocol will and will not
improve performance? (Section 5.2.3, 5.2.2)

• How much performance improvement does aggressive
data page prefetching provide? (Section 5.2.4)

Benchmark Applications. We choose the following bench-
marks to represent HPC applications. We select Blackscholes
(BLK) from PARSEC (native input) [35]. BT Class C (BT-C),
SP-C, EP-C, CG-D from the C + OpenMP version of the
NAS Parallel Benchmarks [32] (NPB) from Seoul National
University [42]. Due to compiler limitations, CG-D is slightly
modified. This does not change the behaviour or the execution
time of the application. We additionally select Lava Molecular
Dynamics (LavaMD/LAVA), Lower–Upper Decomposition
(LUD) and Hotspot2D (HS) from Rodinia [13], which is a
benchmark suite for heterogeneous computing. Last, we in-
clude an in-house OpenMP version of Kmeans (KM) written
by slightly modifying the pthreads version of Kmeans from
Phoenix [43]. These benchmarks cover a variety of different
computation and memory access patterns.

OpenMP loop-based work-sharing regions distribute paral-
lel work by assigning loop iterations to threads participating
in the thread team. Because we use a heterogeneous setup
(Table 2) where each server consists of different numbers
and different types of cores, we manually skew the ratio of
work distributed to each thread based on each core’s relative
performance. This ratio is determined experimentally per ap-
plication. As the focus of this work is not to determine the
optimal loop iteration scheduler policy, we leave exploring
dynamic scheduling policies as future work.

5.1 Micro Benchmarks
Cross-Node Synchronization. To understand the performa-
nce improvement gained from the new synchronization primi-
tive, we ran a microbenchmark that executes fifty thousand
OpenMP barriers in a loop across both nodes. We created
a thread team consisting of 16 threads on the Xeon and 96
threads on the Cavium for a total of 112 threads across the sys-
tem. The average barrier time for cross-node execution using
the original and optimized barrier is shown in Figure 3. For
the single-node cases, X86 (16 cores) and ARM (96 cores),
synchronization contention overhead caused by OpenMP bar-
riers is only inside the cache hierarchy (as opposed to DSM
which causes cross-node page transfers). The remaining two

SYSTOR ’20, June 2–4, 2020, Haifa, Israel H-R. Chuang, R. Lyerly, S. Lankes, and B. Ravindran

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Sp
ee
du
p

(a) EP-C
0.00

0.50

1.00

1.50

2.00

S
pe
ed
up

(b) CG-D
0.00

0.20

0.40

0.60

0.80

1.00

S
pe
ed
up

(c) SP-C
0.00

0.50

1.00

1.50

S
pe
ed
up

(d) BT-C
0.00
0.50

1.00
1.50
2.00
2.50
3.00

3.50

S
pe
ed
up

(e) BLK

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

Sp
ee
du
p

(f) HS
0.00

1.00

2.00

3.00

4.00
S
pe
ed
up

(g) KM
0.00

0.50

1.00

1.50

2.00

S
pe
ed
up

(h) LUD
0.00

0.50

1.00
1.50

2.00
2.50

3.00

1

Sp
ee
du

p

(i) LAVA

Figure 2: Speedup of benchmarks normalized to single node execution time on the X86 for several system
configurations.

0
100
200
300
400
500
600
700
800
900

X86-only
(16)

ARM-only
(96)

Hierarchical
futex

(16+96)

Our Work
(16+96)

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

Pe
r-b

ar
rie

r (
us

)

Figure 3: Average execution time per barrier.

bars correspond to the original futex-based barrier as imple-
mented inside the OpenMP runtime and barriers instrumented
using in-kernel message passing for synchronization. With
the message-passing-based synchronization design, barriers
demonstrate a 3.18x speedup compared to solely relying on
shared memory and traditional futexes. This shows removing
redundant page transfers by using an OS-level cross-node syn-
chronization primitive provides large speedups versus relying
entirely on the DSM abstraction while providing a flexible
design as well.

5.2 Real Applications
To evaluate performance, we use DEX’s [28] kernel-space
SC DSM as our baseline, which is built on top of Popcorn [4].
DEX is a working prototype that allows running multithreaded
applications across real non-cache-coherent domains. It uses
SC, which the gold standard among DSM models because
when using a weaker memory model, developing and de-
bugging applications becomes extremely difficult. Indeed,

there are many optimized or relaxed consistency models (Sec-
tion 6.1), but they require code modification and only support
heap-allocated objects. Without modification to application
code, these DSM systems do not support legacy applications.

5.2.1 Experimental Results and Explanation. Fig-
ure 2 demonstrates the speedup compared to single-node
execution on X86 for several system configurations on 9
benchmarks. For each application, the different colored bars
on the x-axis show speedups for single-node X86 with 16
threads (always 1), single-node ARM with 96 threads, cross-
node execution with 112 threads (16 Xeon + 96 Cavium)
with the SC DSM, cross-node with the MW protocol and
no smart regions (MW no smart), cross-node with the MW
protocol and smart regions (MW), and cross-node with the
MW protocol, smart regions and prefetching (MWPF). SC,
MW no smart, MW and MWPF all transparently execute
SHM applications on two nodes with 16 + 96 threads for par-
allel regions by leveraging Popcorn’s [4]’s thread migration
ability. SC does not use any of the optimizations described
in Section 3. Conversely, except SC, all adopt the improved
cross-node synchronization primitive. We present the result
of each application as a smaller plot (Figures 2a∼2i).

Our final result shows 7 out of 9 applications perform bet-
ter than single-node execution when using our DSM design.
Among these 7 applications, 6 applications are originally
scale-out across nodes when using SC [28] compared with
running on a single node. These 9 applications experience
improved performance when applying the DSM optimiza-
tions included in our design. Compared to SC, MW’s average
speedup over all 9 benchmarks is 8% and up to 22% for BT-C
and SP-C. MWPF is up to 33% faster for SP-C and on average
11% faster than SC. We argue 8%∼11% average speedup is

Scaling Shared Memory Multiprocessing Applications in Non-cache-coherent Domains SYSTOR ’20, June 2–4, 2020, Haifa, Israel

very significant with the constraint of not modifying any line
of code of existing SHM applications.

5.2.2 MW Protocol and Smart Regions. Solely using
MW without applying the smart region design will, in many
cases, make performance worse versus SC – for example, CG-
D, BLK, HS, and KM all suffer from using MW without smart
regions. This is because the MW protocol is not overhead-
free. For those regions with only a few invalidation requests,
the MW protocol’s overhead will be larger than the benefits
brought by the protocol. This is solved by our smart region
design. Applying the MW protocol and smart region mecha-
nisms together, all benchmarks except EP, LUD, and LAVA
experience performance improvements. The 6 applications
that benefit from smart regions have multiple independent
work-sharing regions inside the benchmark. Some of the re-
gions are not be able to benefit from the MW protocol. Thus
the smart region automatically reverts to SC for these non-
benefit regions to avoid excessive MW protocol overheads.
Other regions inside these benchmarks do benefit from the
MW protocol. For example, BT and SP perform matrix oper-
ations, which have a variety of different computations spread
across different work-sharing regions and thus some of the
regions have very short computation and others have long
computation. Another extreme example is BLK, which has
about 500 iterations of a single work-sharing region. However,
it has very few invalidation requests in each iteration. Hence,
the smart region heuristic reverts to the SC DSM. Contrarily,
for EP and LAVA, we believe smart regions do not provide
significant benefits due to the small number of work-sharing
regions (less than 10) in these applications. Because of this,
the smart region heuristic does not gather enough information
before making a protocol determination. LUD has around
a thousand regions. None of invocations of any region are
determined as non-beneficial regions. This means the smart
region only brings overheads such as collecting data and mak-
ing decision as none of the regions should fall back to SC.
Although using smart regions slightly impairs performance,
LUD, LAVA, and EP still run faster using a cross-node config-
uration than any single-node case. This shows smart regions
preserve stable performance results and provide moderately
better performance in many cases.

5.2.3 MW Protocol with Smart Regions versus SC.
BT, SP, LUD, LAVA, KM, and CG all benefit from the MW
protocol; 98.63%∼99.9% of all invalidation messages are
batched, allowing applications to enjoy smaller overheads.
Among these applications, LUD is the most interesting case
as it has parallel regions benefiting from running on a cross-
node configuration. However, simply using SC for LUD is not
faster than solely running on ARM because the computation
benefit afforded by multiple machines is eliminated due to

high communication costs. With the MW protocol, invalida-
tion messages in LUD are reduced by 99.77% across nodes.
In addition, without using our design, around 4% of the writes
cause pages to keep bouncing between nodes. The redesigned
DSM boosts LUD’s performance by up to 14% compared to
using SC. Additionally, when using the MW protocol, BT and
SP run 22% faster versus using SC. Conversely, BLK, HS,
EP iteratively compute using well-partitioned memory access
patterns that do not generate many write faults. While these 3
applications do not benefit from the MW protocol, they do not
have obvious performance degradation as well. This shows
that even in the worst case of using the MW protocol, it has
very low overhead.

In summary, using the MW protocol with smart regions,
BT, SP, LUD, LAVA, KM, and CG benefit from disabling MW
for only a selected few regions while enabling it for others.
The result shows an average speedup over all 9 benchmarks
of 8% (with up to 22% for BT-C and SP-C) versus SC. This
result proves that the MW protocol indeed can bring better
performance by delaying and batching invalidation messages
until the end of the region (or barrier) and by solving the false
page sharing problem.

5.2.4 Profiling Prefetch. When using profile-guided
prefetching, the results can be categorized into two types. BT,
SP, CG, LUD, and KM benefit from the profiling prefetch
mechanism. We recorded the number of read page faults re-
duced in work-sharing regions inside these applications. We
discovered 84%∼99% of total cross-node page faults were
eliminated for these applications after applying the profiling
prefetch design. These pages are aggressively prefetched in
batches before entering the work-sharing region so as to re-
duce run-time page fault handling overheads and the latency
that the interconnect introduces. HS, however, suffers from
4% slowdown because our current prefetch implementation
requires nodes to synchronize for prefetching before entering
each region. The overhead of synchronizing is larger than
the benefit. The concept of smart regions can also be applied
to solve this problem. For, LAVA, BLK, and EP, prefetching
does not provide benefit as the applications have only a small
number of read faults to begin with. Pre-fetching will not
bring much benefit but instead will only add overhead.

6 RELATED WORK
Scaling out SHM applications across nodes is not a new idea.
Our unique challenge is how to efficiently leverage existing
programming frameworks while transparently scaling out a
SHM application on multiple incoherent domains. Compared
to previous DSM works [4, 5, 28, 34], our work endeavors
to optimize the DSM protocol and implementation to reduce
DSM overheads. Our work builds upon a variety of techniques

SYSTOR ’20, June 2–4, 2020, Haifa, Israel H-R. Chuang, R. Lyerly, S. Lankes, and B. Ravindran

Table 3: Comparison of related work on leveraging remote computational resources
and how much programming effort is required by a developer. oundaries across multiple nodes.

Traditional & Recent DSM systems
[2, 6, 11, 18, 47] [7, 27, 46] [19, 30, 31]

Dynamic Process Migration
[4, 5]

Dynamic Thread Migration
[28, 34]

(A) Goal Programmability Migrate execution Distribute execution
(B) Memory model Shared On-demand offloading Shared

(C) Execution replacement No Yes Yes
(D) Relocation unit - Process Thread

(E) Concurrent execution - Single-node Multi-node
(F) Programming effort High / Low No No

and mechanisms [4] such as DSM and thread migration. Ta-
ble 3 shows a comparison of traditional and recent DSM
works, process migration works, and thread migration works
including our work. The features of these systems are catego-
rized into different aspects (rows in Table 3) for comparing
these works. (A) Goal is the primary objective for which these
systems were designed. (B) Memory model indicates the view
of memory in the system. (C) Execution replacement means if
execution can be dynamically replaced. (D) Relocation unit is
the minimal migration unit. (E) Concurrent execution shows
how much of the node(s) is concurrently utilized by threads
in a process. (F) Programming effort explains how hard it
is to use each system to concurrently leverage cross-node
computing resources.

6.1 Traditional and Recent DSM Systems
MPI [20] and DSM are two extreme ways to scale out an
application. One of our main focuses is to run legacy appli-
cations as-is. Thus, MPI is not considered in Table 3. Unlike
MPI, DSM systems (Column 1 in Table 3) give the illusion
of a single shared memory across non-cache-coherent nodes.
Memory is automatically kept coherent across multiple in-
coherent domains by the DSM system software. Traditional
DSM systems automatically transfer data across nodes for
applications; developers however have to manually place ex-
ecution at startup and synchronize/assign work along with
execution. Additionally, cross-node execution synchroniza-
tion mechanisms require developers’ involvement.

Recent DSM systems such as K2 [31], Reflex [30], and
ADSM [19] adopt DSM to ease programming efforts for these
systems. DSM is utilized to enable execution on multiple non-
cache-coherence domains by transparently exchanging data.
However, in K2 and Reflex, peripheral processor code still
executes separately and communicates with remote procedure
calls (RPC). Although ADSM significantly relaxes program-
ming efforts for CPU-GPU systems, applications must be
rewritten to use their alloc/free/call/sync APIs.

The aforementioned DSM systems require refactoring ap-
plications to exploit remote computing resources (row F in
Table 3). DSM systems do not provide execution replacement,

but rather require developers to take distributed execution into
consideration while programming. Static execution placement
(row C in Table 3) also loses the opportunity to dynamically
migrate execution to utilize remote computation.

6.2 Live Process and Thread Migration
While utilizing DSM, [4, 5] (Column 2 in Table 3) provide
dynamic process-level migration. By supporting dynamic mi-
gration capability, these works dynamically and transparently
replace a process on a different node. This gives great im-
provements in power efficiency [4] and performance [26].

Although Popcorn [4, 5] offers execution migration, it does
not fully utilize the benefit of DSM in that these works only
demonstrate process migration (D in Table 3) which cannot
concurrently leverage multiple nodes’ resources (E in Table 3)
such as computational power and storage. Additionally, even
though researchers [28, 34] (Column 3 in Table 3) proposed
a framework to simultaneously run threads of a process on
multiple nodes, these works suffer from the same problem of
tremendous DSM overhead.

While preserving programmability and considering perfor-
mance, they neglect cross-node performance, which stresses
the DSM (B in Table 3). They use SC DSM leading to ex-
cessive communication overheads. We instead provide better
DSM primitives to relieve the cross-node overheads that DSM
creates. In addition, none of these works provide a solution to
efficiently support cross-node synchronization. We propose a
design to transparently synchronize execution across nodes
with lower overhead.

6.3 Mechanisms for Thread Migrations
Thread Migration and Execution on Different ISA Nodes.
Our system exploits OS and runtime extensions such as het-
erogeneous binaries and dynamic stack transformation [4] to
dynamically migrate a thread to other nodes. A thread context
consists of live register values and the virtual process address
space. The migration process is triggered by a system call.
The thread invoking the system call will migrate to a remote
node – the kernels cooperate to transfer the thread context

Scaling Shared Memory Multiprocessing Applications in Non-cache-coherent Domains SYSTOR ’20, June 2–4, 2020, Haifa, Israel

to the destination node. The destination kernel then creates a
new thread and reconstructs the thread context by using the
transferred information. Then, the thread resumes execution
by returning back to user space. During execution, in addition
to DSM maintaining memory consistency, a stack transforma-
tion runtime is required to dynamically transform the stack
between ISA-specific formats.

7 CONCLUSION
DSM is a powerful tool to eliminate programming complexity
and aggregate remote computational power on different non-
cache-coherent domains in the cloud and datacenters. There
are many performance bottlenecks caused by existing DSM
systems such as too many long-latency invalidation messages,
page faults caused by false sharing, and redundant communi-
cation from synchronization. These problems are solved by
our OS-level MW protocol, aggressive page prefetching and
cross-node synchronization. We utilize these design changes
for work-sharing regions and develop a runtime to evaluate
our design, demonstrating the ease of integrating them into ex-
isting parallel runtimes. Our work enables better performance
by allowing applications to concurrently execute across non-
cache-coherent domains while simultaneously maintaining
SHM programmability. Existing SHM applications can trans-
parently leverage our system and scale out. We evaluated our
system on a setup composed of an Intel Xeon x86-64 server
and a Cavium ThunderX ARMv8 server interconnected with a
high-speed network fabric. From the evaluation, we show that
versus SC, MW’s average speedup over all 9 benchmarks is
8% (MWPF 11%) faster and up to 22% (MWPF 33%) faster
with the constraint of not changing a single line of code.

Our complete implementation is available as open-source
as part of the Popcorn Linux project: http://popcornlinux.org/

ACKNOWLEDGEMENTS
This work is supported by the US Office of Naval Research
(ONR) under grants N00014-16-1-2711, N00014-16-1-2104,
and N00014-18-1-2022, and by NAVSEA/NEEC under grant
N00174-16-C-0018.

REFERENCES
[1] Jan. 2020. ScaleMP vSMP. https://www.scalemp.com/.
[2] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Kele-

her, Honghui Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy
Zwaenepoel. 1996. TreadMarks: Shared memory computing on net-
works of workstations. Computer 29, 2 (Feb. 1996), 18–28.

[3] Amazon AWS. 2019. Now Available: Bare Metal Arm-Based EC2
Instances. https://tinyurl.com/y6fd7w5n.

[4] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony
Carno, Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017.

Breaking the Boundaries in Heterogeneous-ISA Datacenters. In Pro-
ceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’17). ACM, New York, NY, USA, 645–659. https:
//doi.org/10.1145/3037697.3037738

[5] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jelesnian-
ski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and Binoy
Ravindran. 2015. Popcorn: Bridging the Programmability Gap in
heterogeneous-ISA Platforms. In Proceedings of the Tenth European
Conference on Computer Systems (EuroSys ’15). ACM, New York, NY,
USA, Article 29, 16 pages. https://doi.org/10.1145/2741948.2741962

[6] John K. Bennett, John B. Carter, and Willy Zwaenepoel. 1990. Munin:
Distributed shared memory based on type-specific memory coherence.
In Proceedings of the 2nd PPoPP. Seattle, WA, USA, 168–176.

[7] Brian N Bershad, Matthew J Zekauskas, and Wayne A Sawdon. 1993.
The Midway distributed shared memory system. In Compcon Spring
’93, Digest of Papers.

[8] OpenMP Architecture Review Board. 2015. OpenMP Application
Program Interface v4.5. Technical Report. https://tinyurl.com/yxzbx5cn
(2015).

[9] Broadcom. Jan. 2020. Stingray™ SmartNIC Adapters and IC. https:
//tinyurl.com/y6q46rxx.

[10] Francois Cantonnet, Yiyi Yao, Mohamed Zahran, and Tarek El-
Ghazawi. 2004. Productivity analysis of the UPC language. In Proceed-
ings of the 18th IPDPS. Phoenix, AZ, USA.

[11] John B. Carter, John K. Bennett, and Willy Zwaenepoel. 1991. Im-
plementation and performance of Munin. In Proceedings of the 13rd
SOSP. Pacific Grove, CA, 152–164.

[12] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek
Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster
computing. In ACM SIGPLAN Notices, Vol. 40. ACM, 519–538.

[13] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-
mark suite for heterogeneous computing. In 2009 IEEE international
symposium on workload characterization (IISWC). IEEE, 44–54.

[14] Stephanie Condon. 2017. Intel unveils the Nervana Neural Network
Processor. https://tinyurl.com/ydfjwfls.

[15] Ian Cutress. 2017. Qualcomm Launches 48-core Centriq for $1995:
Arm Servers for Cloud Native Applications. https://tinyurl.com/
yd6obvtl.

[16] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an industry
standard API for shared-memory programming. IEEE computational
science and engineering 5, 1 (1998), 46–55.

[17] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankar-
alingam, and Doug Burger. 2011. Dark silicon and the end of multicore
scaling. In Proceedings of the 38th ISCA. San Jose, California, USA,
365–376.

[18] Brett Fleisch and Gerald Popek. 1989. Mirage: A coherent distributed
shared memory design. Vol. 23. ACM.

[19] Isaac Gelado, John E Stone, Javier Cabezas, Sanjay Patel, Nacho
Navarro, and Wen-mei W Hwu. 2010. An asymmetric distributed
shared memory model for heterogeneous parallel systems. In Proceed-
ings of the 15th ASPLOS. New York, NY, 347–358.

[20] William D Gropp, William Gropp, Ewing Lusk, Anthony Skjellum, and
Argonne Distinguished Fellow Emeritus Ewing Lusk. 1999. Using MPI:
portable parallel programming with the message-passing interface.
Vol. 1. MIT press.

[21] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D. Nguyen, Ri-
cardo Bianchini, and Kathryn S. McKinley. 2017. Exploiting Het-
erogeneity for Tail Latency and Energy Efficiency. In Proceedings

http://popcornlinux.org/
https://www.scalemp.com/
https://tinyurl.com/y6fd7w5n
https://doi.org/10.1145/3037697.3037738
https://doi.org/10.1145/3037697.3037738
https://doi.org/10.1145/2741948.2741962
https://tinyurl.com/y6q46rxx
https://tinyurl.com/y6q46rxx
https://tinyurl.com/ydfjwfls
https://tinyurl.com/yd6obvtl
https://tinyurl.com/yd6obvtl

SYSTOR ’20, June 2–4, 2020, Haifa, Israel H-R. Chuang, R. Lyerly, S. Lankes, and B. Ravindran

of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO-50 ’17). ACM, New York, NY, USA, 625–638.
https://doi.org/10.1145/3123939.3123956

[22] Nicole Hemsoth. 2017. Cray ARMs Highest End Supercomputer with
ThunderX2. https://tinyurl.com/y95ljwd4.

[23] HPC Advisory Council. Jan. 2018. Introduction to High-Speed Infini-
Band Interconnect. https://tinyurl.com/y7xl2df7.

[24] Joel Hruska. 2017. Intel Kills Knights Hill, Will Launch Xeon Phi
Architecture for Exascale Computing. https://tinyurl.com/yckk77ar.

[25] IDC. 2014. The Digital Universe of Opportunities: Rich Data and the
Increasing Value of the Internet of Things. https://tinyurl.com/ya8oasf8.

[26] Mohamed L. Karaoui, Anthony Carno, Robert Lyerly, Sang-Hoon Kim,
Pierre Olivier, Changwoo Min, and Binoy Ravindran. 2019. POSTER:
Scheduling HPC Workloads on Heterogeneous-ISA Architectures. In
Proceedings of the 24nd PPoPP. Washington, DC.

[27] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. 1992. Lazy release
consistency for software distributed shared memory. In Proceedings of
the 19th ISCA. Queensland, Australia, 13–21.

[28] Sang-Hoon Kim, Ho-Ren Chuang, Robert Lyerly, Pierre Olivier, Chang-
woo Min, and Binoy Ravindran. 2020. DEX: Scaling Applications Be-
yond Machine Boundaries. In 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS). IEEE.

[29] Juchang Lee, Kihong Kim, and Sang Kyun Cha. 2001. Differential
logging: A commutative and associative logging scheme for highly
parallel main memory database. In Proceedings 17th International
Conference on Data Engineering. IEEE, 173–182.

[30] Felix Xiaozhu Lin, Zhen Wang, Robert LiKamWa, and Lin Zhong.
2012. Reflex: using low-power processors in smartphones without
knowing them. In Proceedings of the 17th ASPLOS. London, UK.

[31] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. 2014. K2: A Mobile
Operating System for Heterogeneous Coherence Domains. In Proceed-
ings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’14). ACM,
New York, NY, USA, 285–300.

[32] NASA Advanced Supercomputing Division. Sep 2017. NAS Parallel
Benchmarks. https://tinyurl.com/y47k95cc.

[33] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. 2015. Latency-tolerant software
distributed shared memory. In Proceedings of the 2015 ATC. Santa
Clara, CA, 291–305.

[34] Pierre Olivier, Sang-Hoon Kim, and Binoy Ravindran. 2017. OS Sup-
port for Thread Migration and Distribution in the Fully Heterogeneous
Datacenter. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems (HotOS ’17). ACM, New York, NY, USA, 174–179.
https://doi.org/10.1145/3102980.3103009

[35] Princeton University. 2017. The PARSEC Benchmark Suite. http:
//parsec.cs.princeton.edu.

[36] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. 1996. Dis-
tributed shared memory: concepts and systems. IEEE Parallel & Dis-
tributed Technology: Systems & Applications 4, 2 (1996), 63–71.

[37] Keith Harold Randall. 1998. Cilk: Efficient multithreaded computing.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[38] James Reinders. 2007. Intel threading building blocks: outfitting C++
for multi-core processor parallelism. “O’Reilly Media, Inc.".

[39] Karl Rupp, M Horovitz, F Labonte, O Shacham, K Olukotun, L Ham-
mond, and C Batten. Feb. 2018. 42 Years of Microprocessor Trend
Data. Figure available on webpage https://tinyurl.com/yyzzm73w 6
(Feb. 2018).

[40] Marina Sadini, Antonio Barbalace, Binoy Ravindran, and Francesco
Quaglia. 2013. A page coherency protocol for Popcorn replicated-
kernel operating system. In Proceedings of the 2013 Many-Core Archi-
tecture Research Community Symposium (MARC).

[41] Jason Sanders and Edward Kandrot. 2010. CUDA by example: an
introduction to general-purpose GPU programming. Addison-Wesley
Professional.

[42] Seoul National University Centers for Manycore Programming. Sep
2017. SNU NPB Suite. https://tinyurl.com/y3jrfrqg.

[43] Justin Talbot, Richard M Yoo, and Christos Kozyrakis. 2011.
Phoenix++: modular MapReduce for shared-memory systems. In Pro-
ceedings of the second international workshop on MapReduce and its
applications. ACM, 9–16.

[44] Ashish Venkat, Sriskanda Shamasunder, Hovav Shacham, and Dean M.
Tullsen. 2016. HIPStR: Heterogeneous-ISA program state relocation.
In Proceedings of the 21st ASPLOS. Atlanta, GA, 727–741.

[45] Ashish Venkat and Dean M. Tullsen. 2014. Harnessing ISA diversity:
design of a heterogeneous-ISA chip multiprocessor. In Proceedings of
the 41st ISCA. Minneapolis, MN, 121–132.

[46] Yuanyuan Zhou, Liviu Iftode, and Kai Li. 1996. Performance Eval-
uation of Two Home-Based Lazy Release Consistency Protocols for
Shared Virtual Memory Systems. In Proceedings of the 2nd OSDI.
Seattle, WA, 75–88.

[47] Yuanyuan Zhou, Liviu Iftode, Jaswinder Pal Sing, Kai Li, Brian R.
Toonen, Ioannis Schoinas, Mark D. Hill, and David A. Wood. 1997.
Relaxed Consistency and Coherence Granularity in DSM Systems: A
Performance Evaluation. In Proceedings of the 6th PPoPP. Las Vegas,
Nevada, USA, 193–205.

https://doi.org/10.1145/3123939.3123956
https://tinyurl.com/y95ljwd4
https://tinyurl.com/y7xl2df7
https://tinyurl.com/yckk77ar
https://tinyurl.com/ya8oasf8
https://tinyurl.com/y47k95cc
https://doi.org/10.1145/3102980.3103009
http://parsec.cs.princeton.edu
http://parsec.cs.princeton.edu
https://tinyurl.com/y3jrfrqg

	Abstract
	1 INTRODUCTION
	2 MOTIVATION
	3 DESIGN
	3.1 Multiple Writer Protocol
	3.2 Profiling Page Prefetching
	3.3 Smart Regions
	3.4 Cross-Node Barrier Synchronization

	4 IMPLEMENTATION
	4.1 Multiple Writer Protocol
	4.2 Smart Regions
	4.3 Profiling Page Prefetching
	4.4 Cross-Node Barrier Synchronization
	4.5 Runtime Support

	5 EVALUATION
	5.1 Micro Benchmarks
	5.2 Real Applications

	6 RELATED WORK
	6.1 Traditional and Recent DSM Systems
	6.2 Live Process and Thread Migration
	6.3 Mechanisms for Thread Migrations

	7 CONCLUSION
	References

