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ABSTRACT

Modern transactional processing systems need to be fast and
scalable, but this means many such systems settled for weak
consistency models. It is however possible to achieve all of
strong consistency, high scalability and high performance, by
using fine-grained partitions and light-weight concurrency
control that avoids superfluous synchronization and other
overheads such as lock management. Independent transac-
tions are one such mechanism, that rely on good partitions
and appropriately defined transactions. On the downside,
it is not usually straightforward to determine optimal par-
titioning schemes, especially when dealing with non-trivial
amounts of data. Our work attempts to solve this problem
by automating the partitioning process, choosing the correct
transactional primitive, and routing transactions appropri-
ately.
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1. INTRODUCTION

Distributed transactional storage systems nowadays re-
quire increasing isolation levels, scalable performance, fault-
tolerance and a simple programming model for being eas-
ily integrated with transactional applications. The recent
growth of large scale infrastructures with dozens or hun-
dreds of computational nodes needs transactional support
ready to scale with them.
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Many of the modern transactional storage systems have
abandoned strong consistency (e.g., serializability) in order
to achieve good scalability and high performance [4, 10, 17].
Weak consistency models (e.g., eventual consistency) incur
the expense of allowing some non-serializable executions,
which, if at all tolerated by the application requirements,
are more difficult to deal with for the developers [28]. In
fact, it was observed that developers prefer strong consis-
tency when possible [6].

For this reason, transactional storage systems that offer
serializability without forsaking high speed and high scala-
bility, represent a very promising sweet spot in the overall
design space. One system that approaches this sweet spot
for On-Line Transaction Processing (OLTP) workloads is
Granola, as proposed by Cowling and Liskov in [8]. Granola
employs a novel transactional model, independent transac-
tions, to keep overheads and synchronization to a minimum
while guaranteeing serializable distributed transactions. To
help reach its high transaction throughput, Granola relies
on storing the data in main memory and operating upon
it using transactions expressed in the application’s native
programming language, as opposed to a query language like
SQL. This essentially qualifies Granola as a Distributed Trans-
actional Memory (DTM) system.

One key enabler for good performance in the Granola
model is having the data organized in fine-grained, high-
quality partitions that promote the use of single-partition
and independent distributed transactions. This can be con-
sidered a drawback for Granola, as developers need to man-
ually organize the data, choose the transaction primitives,
and route transactions appropriately. This work focuses on
eliminating this drawback by automating the three tasks.

To reach our goal, we adapt and extend an existing graph-
based data partitioning algorithm, Schism [9], originally pro-
posed for traditional, SQL-based databases. Our major con-
tributions are:

e We extend Schism to support independent transac-
tions. The extended algorithm will propose partitions
that favor fast single-partition and independent trans-
actions against the slower, Two-Phase Commit (2PC)
coordinated transactions.

e We develop a mechanism based on static program anal-
ysis for determining edge weights in the graph that
Schism uses for proposing partitions. This essentially
enables applying an algorithm like Schism to indepen-
dent transactions, or, more generally, to any DTM-
style transactions expressed in a native programming
language.



e We develop a routing mechanism based on machine
learning, for routing transactions to an appropriate set
of partitions. This is essential for enabling any kind of
automatic partitioning for Granola or any other DTM-
style environment, where a transaction’s access set is
not known a priori.

Additional minor contributions include automatic program
refactoring for run-time transaction trace collection, and au-
tomatic choice of an appropriate transaction primitive based
on static program analysis. To the best of our knowledge,
this is the first work that provides an end-to-end automated
framework for exploiting independent transactions.

We frame our work in a DTM environment for two rea-
sons: (i) similar environments were shown to support much
higher transaction throughputs than traditional Relational
Database Management Systems (RDBMS) for OTLP work-
loads [29], and (ii) our choice presents us with some very
interesting problems that allow us to innovate.

The rest of the paper is organized as follow. In Sec-
tion 2 we describe the Granola model and the Schism tech-
nique. Section 3 overviews the system model. The auto-
matic framework is presented in Sections 4, 5, 6. In Section 7
the framework’s evaluation is reported. Section 8 discusses
past and related works and Section 9 concludes the paper.

2. BACKGROUND

2.1 Granola: Independent Transactions

Granola [8] is a transaction coordination infrastructure
proposed by Cowling and Liskov. Granola targets On-Line
Transaction Processing (OLTP) workloads. Granola is a
Transactional Memory (TM) system, as it expresses trans-
actions in a native programming language and operates on
data stored in main memory for performance reasons. Syn-
chronization overheads are kept to a minimum by executing
all transactions within the context of a single thread. This
approach reduces the need for locking, and was shown to
significantly improve performance compared to conventional
databases in typical OLTP workloads [29, 12, 15].

Granola employs a novel timestamp-based transaction co-
ordination mechanism that supports three classes of one-
round transactions. Single-Repository Transactions are in-
voked and execute to completion on one repository (parti-
tion) without requiring any network stalls. Coordinated Dis-
tributed Transactions are the traditional distributed trans-
actions that use locking and perform a two-phase commit-
ment process. Additionally, Granola proposes Independent
Distributed Transactions, which enable atomic commitment
across a set of transaction participants, without requiring
agreement, locking and with only minimal communication
in the coordination protocol.

Single-repository and independent transactions execute in
timestamp mode. These transactions are assigned an up-
coming timestamp, and execute locally in timestamp order.

Repositories participating in an independent distributed trans-

actions need to coordinate to select the same timestamp.
Each participant proposes a timestamp for executing the
transaction, and broadcasts its proposal (vote) to the other
participants. Once all votes are received, the final times-
tamp is selected locally as the maximum among all propos-
als. This selection is deterministic, and the coordination
it requires is very light-weight (needs only one messaging

round). At the selected time, the transaction can execute
without any stalls or network communication.

In order to execute coordinated transactions, the reposi-
tory needs to switch to locking mode. In locking mode, all
transactions must acquire locks (thus incurring overheads),
and can not use the fast timestamp-based execution. Fur-
thermore, coordinated transactions must undergo a slow
two-phase commit. The repository can revert to timestamp
mode when all coordinated transactions have completed.

Granola provides strong consistency (serializability) and
fault-tolerance. Data is partitioned between the Granola
repositories — with each repository managing one partition
— although it is also possible to keep some of the data repli-
cated between repositories to improve performance. Each
repository consists of one master and several replicas. The
replicas are used for fault-tolerance, not for scalability. Most
transactions must be executed by the master node of each

repository — the only exception is for read-only, single-repository

transactions, which can be serviced by replicas.

In Granola, single-repository and independent distributed
transactions never conflict, because they are executed se-
quentially using a single thread. This means mechanisms
employed for rollback and aborts, such as locking and undo-
or redo-logging, are not needed for these transaction classes,
reducing overheads and improving performance.

Granola transactions do have restrictions that limit their
applicability and place further requirements on the potential
partitioning schemes:

e Independent transactions must reach the same commit
decision, independently, on every participating repos-
itory. This is possible when the transaction never
aborts (e.g., read-only transactions), or the commit
decision is based on data replicated at every partici-
pating repository.

e All transactions must be able to complete using only
data available at the current repository. This is a
firm requirement for single-repository and independent
transactions, but could potentially be relaxed for co-
ordinated transactions.

Performance in Granola depends on how the workload and
partitioning scheme are able to exploit fast single-repository
and independent transactions. The user must manually de-
fine the partitioning scheme, implement the transactions us-
ing the appropriate classes, and route transactions correctly.
Furthermore, the partitioning scheme must be compatible
with the Granola restrictions outlined above. This paper
aims to automate this partitioning process.

2.2 Schism: Graph-Based Partitioning

Curino et al. presented Schism [9], the approach for auto-
mated data partitioning that we build upon in our present
work. Besides lacking support for independent transactions,
Schism as it stands can not be applied to stored-procedure
style DTM transactions, which further motivates our work.
For the sake of completeness, in this section we overview
Schism and describe how it works.

Schism takes as input a representative workload in the
form of an SQL trace, and the desired number of partitions.
It then proposes partitioning and replication schemes that
minimize the proportion of distributed transactions, while
promoting single-partition transactions. This is done in or-
der to increase performance, as single-partition transactions
are fast. The proportion of distributed transaction repre-



Objects

Bank Accounts

{id=1, amount=$100}
{id=2, amount=$100}
{id=3, amount=$50}
{id=4, amount=%$0}
{id=5, amount=$50}

Transactions

- transfer(from=2, to=4, amt=$50)
- transfer(from=2, to=1, amt=$25)
- transfer(from=4, to=3, amt=$50)
- balance(accounts=Array(1, 4, 5))

Possible
Partition Boundary

Figure 1: Example graph representation in Schism.
The shaded areas are the transactions, which are
represented in the graph by edges connecting all ac-
cessed objects.

Legend
[ Replication edges
Il Transaction edges
Partition boundary

Object placement
1=>P0

2 => Replicated {PO, P1}
3=>P1

4 =>P1

5=>P0

Figure 2: Example graph representation in Schism,
with replication.

sents a measure of the partitioning quality. The fewer dis-
tributed transactions there are, the higher the quality of the
partitioning. The partitioning process has four phases:

First, the graph representation phase converts the SQL
trace into a graph. Nodes in this graph represent data items
(database tuples/transactional objects) that were encoun-
tered in the trace. Two nodes are connected by an edge
if they were accessed together within the same transaction.
Thus, the representation of a transaction takes the form of
a clique: the tuples accessed by the transaction are all inter-
connected. An example is shown in Figure 1. A number of
heuristics are applied to promote scalability, such as tuple
and transaction sampling, and coalescing tuples accessed by
the same set of transactions into a single node.

The graph is then modified by replacing each node with
a star-shaped configuration of nodes. This is done in sup-
port for data replication. A node A which previously had n
neighbors, is replaced by n + 1 nodes: one in the center, Ao,
which is connected to n new nodes (A;...A,) by edges rep-
resenting the cost of replicating the original node A. Each
of these new nodes is then connected by a single edge to
another node representing the original neighbors. This pro-
cessing can also be explained as replacing each edge in the
original graph by three edges connected in sequence: the two
outer edges represent the cost of replicating the data, and
the middle edge represents the cost of entering a distributed
transaction. An example is illustrated in Figure 2.

In the partitioning phase, the previously constructed
graph is partitioned using a standard k-way graph partition-
ing algorithm. The authors used the program METIS [16]
for this purpose. This is an optimization problem, where

the primary target is minimizing the cumulative cost of
the edges that cut across partitions. This is equivalent to
minimizing the number of distributed transactions. A sec-
ondary target is balancing the partitions with respect to
node weights. Node weights can be assigned based on either
data size, or number of transactions, depending on whether
the partitions should be balanced in storage size or load.

For small workloads, the output of the partitioning phase
can be used as-is, by means of a lookup table. Newly cre-
ated tuples would initially be placed on a random partition,
while a separate background task periodically recomputes
the lookup table and migrates data appropriately. This
method however can not be applied to large datasets for
two reasons: (i) creating and partitioning the graph without
sampling is limited by the available memory and processing
time, and (ii) the lookup table size is similarly limited by
the available memory.

These reasons motivated Schism’s explanation phase.
In the explanation phase a more compact model is formu-
lated to capture the tuple — partition mappings as they
were produced in the partitioning phase. Schism does this
by employing machine learning, or more specifically, C4.5
decision trees [25] as implemented in the Weka data min-
ing software [19]. The resulting models are essentially sets
of range rules, and are useful if they satisfy several criteria:
they are based on attributes present as WHERE clauses in most
SQL queries, they do not significantly reduce the quality of
the partitions by misclassification, and finally, they work for
new, previously unseen queries, as opposed to being over-
fitted to the training set. To satisfy these criteria, the au-
thors employed strategies such as placing limitations on the
input attributes to the classifier, using aggressive pruning
and cross-validation, and discarding classifiers that degrade
the partitioning quality.

Lastly, the final partitioning scheme is chosen in the fi-
nal validation phase. The candidates considered are (i)
the machine-learning based range rules, (ii) the fine-grained
lookup table, (iii) a simple hash-based partitioning, and (iv)
full-table replication. The scheme chosen is the one with the
fewest distributed transactions. In case two schemes lead to
similar results, the simpler of the two is chosen.

3. SYSTEM OVERVIEW

Our partitioning methodology was designed and imple-
mented in the context of a Distributed Transactionl Memory
(DTM) system. DTM systems store data in main-memory,
and access it using transactions expressed in a programming
language (usually the same as the rest of the application),
as opposed to a separate query language. Declaring and
running transactions in DTM should be as simple as possi-
ble: ideally the transaction code is simply written inside an
atomic block, as exemplified in Figure 3(a).

Our choice of environment (DTM) and transaction model
(Granola’s independent transactions) make Schism impossi-
ble to apply directly, for several reasons:

e Schism does not support independent transactions. Any
distributed transactions in Schism would have to be
2PC-coordinated, which degrades performance.

e Schism makes no effort to prevent data dependencies
across partitions. At best, such dependencies are in-
compatible with independent transactions. At worst,
they are incompatible with Granola’s single-round trans-
action model, leading to unusable partitions.



atomic { implicit txn =>
val accl = Hyflow.dir.open[BankAccount]("accl")
val acc2 = Hyflow.dir.open[BankAccount]("acc2")
accl.amt() += value
acc2.amt() -= value

atomic {

accl.amt += value
acc2.amt -= value

a b

Figure 3: Example atomic blocks. In a. objects are
assumed to not need opening before being accessed,
as is common for Software Transactional Memory
(STM). b. shows the same atomic block written to
Hyflow’s API, also including object opening.

e Schism assumes transactions are expressed in SQL code,
whose WHERE clauses can trivially be inspected to
obtain information about the dataset of a transaction,
which is then used to route each transaction to the
appropriate partitions. Given that transactions in our
system are not expressed in parsable query code, but
are stored procedures written in a programming lan-
guage, the task of routing transactions becomes signif-
icantly more complicated.

Our implementation is based around Hyflow?2 [32], a JVM-
based DTM framework written in Scala. We implemented
the Granola protocol in this DTM framework. Unlike Gra-
nola, which relies on opaque up-calls from the framework to
the application and lets the application code handle locking
and rollback mechanisms when needed, we opted to provide
a more friendly API and let the framework deal with these
mechanisms. Figure 3 (b) shows an example transaction.

3.1 Partitioning Process

This section provides a brief description of the partitioning
process. In a production system, this process would run pe-
riodically alongside transaction processing, and dynamically
migrate objects at run-time. Our implementation however,
being only a prototype, performs the partitioning off-line.

The first phase in our partitioning workflow performs static
analysis and byte-code rewriting on all transactional
routines in the workload. This step serves three purposes.
Firstly, it collects data dependency information which is
later used to ensure the proposed partitioning schemes are
able to comply to our chosen one-round transactional model
(no data dependencies are allowed across partitions). Sec-
ondly, it extracts summary information about what oper-
ations may be performed inside each atomic block, to de-
termine whether an atomic block is abort-free or read-only.
Finally, each transactional operation is tagged with a unique
identifier to help make associations between the static data
dependencies and the actual objects accessed at run-time.

The second phase is collecting a representative trace
for the current workload, which includes a record for every
transactional operation performed. Each record contains the
transaction identifier, the type of operation, the affected ob-
ject, and the operation’s identifier as previously tagged.

The next three phases are similar to the corresponding
phases in Schism. The graph representation phase con-
verts the workload trace into a graph where nodes repre-
sent objects and edges represent transactions. This graph is
governed by the same rules as in Schism (see Section 2.2).
Additionally, edge weights are updated to reflect the new
transaction models, along with their restrictions and desir-
ability. The graph is then partitioned using METIS in the
partitioning phase. The result from this step is a fine-

grained association from object identifiers to partitions. A
concise model of these associations is created using WEKA
classifiers in the explanation phase.

The final phase is concerned with transaction routing
and model selection. While in Schism routing informa-
tion was easily extracted from the WHERE clause of SQL
queries when available, our atomic block model for express-
ing DTM transactions prohibits using a similar approach.
We thus introduce a machine-learning based routing phase.
The data used to train this classifier is derived from the
workload trace, using the object-to-partition mapping. Fi-
nally a transaction model is selected for every transaction
class based on the number of partitions it needs, whether it
may abort, and whether it writes any data (or is read-only).

3.2 Run-Time Behavior

During the previously described process, we train two sets
of classifiers. The first set is tasked with object-to-partition
mapping. These classifiers determine the object placement,
and we will call them the placement classifiers. While it may
reduce the quality of the resulting partitions, misclassifica-
tion at this stage is mostly harmless, since it is the classifier
that dictates the final object placement.

The second set of classifiers are the routing classifiers.
They are used on the client side (i.e., in the thread that in-
vokes the transaction) to decide which nodes to contact for
the purpose of executing the current transaction. Due to
the transactions being expressed as regular executable code,
this information is not readily available until the code is run.
Inputs for these classifiers are the parameters passed to the
transaction. Misclassification at this stage has the poten-
tial to be harmful, as a misrouted transaction may not have
access to all objects needed to execute successfully. We ad-
dress this situation by allowing such a misrouted transaction
to abort and restart on a larger set of nodes.

Finally, we do not require users to be aware of the par-
titioning scheme or the transaction execution model when
writing transaction code. Thus, users should be able to write
a single atomic block, and the system would make sure the
appropriate code branches will execute at the corresponding
partitions. In our prototype implementation, the same code
is expected to execute properly on all partitions. This re-
quires a defensive programming style, which checks that the
return value of certain object open operations is not null.
While this is a good practice anyway for error handling, our
current implementation explicitly uses null references to de-
note an object is located at another partition.

4. STATIC ANALYSIS

Our static analysis phase is motivated by three factors:
(i) determining data dependencies in order to avoid depen-
dencies across partitions, (ii) determining which transac-
tions can abort in order to choose the correct transaction
model, and (iii) help with recording workload traces. Sim-
ply observing runtime behavior is insufficient — for instance,
observing a particular transaction profile never aborted as
recorded in a runtime trace does not constitute a guarantee
that it can never abort.

Our static analysis phase is implemented using the Soot
Java Optimization Framework [18]. Since we operate on
JVM bytecode, few of the mechanisms described in this sec-
tion are actually specific to Scala — transactions could just
as easily be expressed in Java, with only simple changes re-



quired to the static analysis mechanisms. We make several
passes over every application method.

4.1 First Pass

The first pass serves three purposes: (i) it identifies trans-
actional methods, (ii) it tags transactional operations, and
(iii) it records associations between the classes Scala uses for
anonymous functions and their main method which contains
the actual application code.

To identify transactional methods, we iterate over all units
of each method (units are Soot’s abstraction over the JVM
byte-code). We look for invocations of certain methods and
references to objects of certain classes that are usually as-
sociated with transactions — these are listed in Table 1.
Methods that match are recorded as transactional methods.

In addition to recording transactional methods, we tag
units representing invocations to the methods in Table 1.
Tags are a feature in Soot that can associate information
with any unit, for easier retrieval. Within the tag we store
what kind of transactional operation this invocation repre-
sents (e.g., object open, object delete, field read, field write,
transaction abort, etc.), and an integer uniquely identifying
each invocation site (we name this integer the tag id).

Scala uses classes inheriting AbstractFunctionN* to imple-
ment anonymous functions (closures). The application code
is usually located in a method named apply which takes ar-
guments of the appropriate types. Scala however defines
another polymorphic method with the same name, but with
arguments of type Object (the root base class on the JVM).
This method acts as a stub — its purpose is to convert
(typecast or un-box) all arguments to the correct specific
type and call the apply method containing the application
code. For the purpose of our static analysis the stub method
is not interesting. We thus record the association between
the AbstractFunctionN-derived class and the apply method
containing application code, but only if apply is a transac-
tional method as defined above.

4.2 Second Pass

Once all transactional methods and transactional anony-
mous function classes are known, we construct a static in-
vocation graph. This is done in the second analysis pass.
As before, we pay attention to method invocations, but this
time our targets are the previously identified transactional
methods. We first add all transactional methods as nodes
in the invocation graph. Any invocation of method g from
within method f adds to the graph directed edge f — g.

Besides direct invocations of transactional methods, we
also add indirect invocations to the graph. Scala is a func-
tional language and has support for higher-order functions
(functions that take other functions as parameters). An in-
vocation site is included in the graph when a previously
identified transactional AbstractFunctionN object is passed
to a higher-order function (either user-defined, or from the
standard library: map, filter, etc.). The edge added to the
static invocation graph points from the invoking function f
to the apply method of the transactional AbstractFunctionN
object, which is invoked indirectly by the higher-order func-
tion. Alongside constructing the static invocation graph, all
invocation sites (direct and indirect) are tagged as before.

"Where N is an integer standing for the number of argu-
ments taken by the function.

4.3 Third Pass

The third analysis pass extracts internal data dependency
information for each transactional method. It processes each
method, taking as input its bytecode as tagged in passes 1
and 2. The output is a directed graph representing data
dependencies between the various accessed objects and ex-
ternal methods invoked. Firstly, nodes are created in the
output graph for important transactional operations that
are the target of the dependency analysis. Such operations
are object open, create, delete, transaction abort, and also
external method invocations, as tagged in previous steps.

This pass is implemented as a forward data-flow analysis.
Each Soot unit has an associated state data-structure that
can hold a representation of its dependencies. This repre-
sentation has two parts: (i) a set of node dependencies and
(ii) a set of value dependencies. A node dependency occurs
when the result of an important operation (i.e. a transac-
tional object that has been opened) is used in a subsequent
statement. Value dependencies occur when any other (i.e.,
non-node) value is used in a subsequent statement. The lat-
ter do not have a presence in the dependency graph, but
help propagate dependencies between nodes.

Initially, all the state data-structures are empty. We iden-
tify the direct dependencies for every Soot unit, and cate-
gorize them into two sets, for node and value dependencies.
The value dependencies are traced back to the origin unit
that defined each of the values. The states associated with
the origin units are then retrieved and merged. We further
merge this state with a state object formed from the value
and node dependencies. Finally, we store the resulting state
for the current Soot unit. Pseudocode for this process is
shown in Algorithm 1.

Algorithm 1 Forward data-flow analysis pseudocode.

for each unit < allUnits do
allDeps < unit.getDirectDeps()
(nodeDeps, valueDeps) < allDeps.partition( isNodeDep _ )
valueDeps_originUnits <+ valueDeps.getOriginUnits()
valueDeps_states +—

getStateForAll( valueDeps_originUnits )

merged_valueDepState <— mergeAll( valueDeps_states )
currentState < new DepState( valueDeps, nodeDeps )
newState <— merge( currentState, merged_valueDepState )
storeStateForUnit( unit, newState )

end for

After the data-flow analysis, we construct the dependency
graph. Starting with an empty graph, we add nodes for all
the units of interest. Then we iterate over all nodes A in
the graph, adding edges from from B to A, for all node-
dependencies B of A.

We illustrate this process in Figure 4. The source code
to be analyzed is shown in Figure 4(a). Notice how many
intermediate values are held in variables of their own. This
emulates the behavior of Soot, which will indeed use separate
locations for every intermediate value, greatly simplifying
the static analysis. For clarity, we show a simplified version.
In Figure 4(b) we show the direct dependencies of each node
and value in the code. Following the data-flow analysis,
units have an associated state storing all their dependencies,
shown in Figure 4(c) as the set of all edges pointing to a
particular block. Finally, the dependency graph is created
by discarding all non-node values (Figure 4(d)).



Method signature / Ref type

Description

TxnExecutor.apply
(block: Function)

Invokes a transaction given an anonymous function as an atomic block. The block can poten-
tially be a top-level transaction, and thus an entry point for the subsequent analysis phases.

TxnExecutor.apply
(name: String, args: Array)

Invokes a pre-registered transaction given its name.

Hyflow.register Atomic
(name: String, block: Function)

Registers an atomic block to execute as a transaction when invoked by name.

HRef.apply()
HRef.update(val: X)

Reads and writes, respectively, a field of a transactional object. Used to extract data depen-
dencies between objects. Also used to identify read-only transactions.

Txn.rollback()
Txn.retry()

Permanently or temporarily aborts a transaction. Used to identify non-aborting transactions
and data dependencies leading to an abort decision.

Directory.open(id: Product)
Directory.delete(id: Product)

Opens and deletes a transactional object, respectively. Used to extract data dependencies
between objects.

HObj, HRef

Transactional objects and fields, respectively. Any references to these types flag the containing
method as transactional (and therefore, of interest).

InTxn

Transaction context type. Same as above.

Table 1: Method invocations and reference types that aid in identifying transactional methods and their

features (static analysis, first pass).

val srcl = Hyflow.dir.open[Counter]("source 1")
val src2 = Hyflow.dir.open[Counter]("source 2")
val templ = srcl.value() * 2

val temp2 = src2.value() * 3

val dest = Hyflow.dir.open[Counter]("dest")

val result = templ + temp2

dest.value() = result

(a) Analyzed source code.

[srcl=..][src2=..] [srcl=..][src2=..]

(templ =..) ) (templ=..) (emp2=..)

result = ..) \|dest = ...

dest() = result

dest() = result

(b) Direct dependencies (c) Data-flow analysis

src2 = ...

dest() = result
(d) Final dep graph

Figure 4: Forward data-flow analysis example for
extracting the intra-method dependency graph. The
rectangles represent nodes (units of interest), while
the rounded rectangles are values.

4.4 Byte-code Rewriting and Trace Collection

Once all transactional method invocation sites are known
and tagged, we rewrite the method byte-code to make cer-
tain information available at run-time. For every invocation
of a transactional operation (object open, field read/write,
etc.), we change the invocation to a different method that
acts as a wrapper around the desired operation. This wrap-
per method takes an extra argument, the tag id (i.e., an
invocation site identifier), which it logs before passing con-
trol to the transactional operation. The tag id is filled in by
the byte-code rewriter, as an integer constant.

Other outputs from the static analysis process are the
static dependency graphs for all the methods, the global
static invocation graph, and a number of other details:

e Method Unique Identifier (MUID) for each transac-

tional method.

e For each transactional operation invocation: tag id,

type of operation.

e For each transactional method call: tag id, type of

method call, MUID and name for the invoked method.

e For each type of transaction: transaction name, MUID

for transaction entry point.

Next, a representative trace is collected by running the
workload using the modified byte-code. This will result in
a log of all the transactions executed, and within those, the
important transactional operations. Log entries contain:

e Transaction id. Differentiates between multiple con-

current transactions.

e Operation name, such as atomic (transaction request),
tzn begin / commit / abort, obj create/open, field read /write.
Tag id. Identifies the static invocation site that gen-
erated this log entry. Available for txn abort, obj cre-
ate/open, field read/write.

e Operation specific data. Generally, this is the run-time
object id this operation acts upon. For atomic and tzn
begin, this is a string representing the transaction type.

S. GRAPH REPRESENTATION AND PAR-
TITIONING

Once a trace is available, it is parsed and converted to
a graph where nodes represent objects and edges represent
transactions, as described in Section 2.2. A number of heuris-
tics limit the size of the graph, such as object and transaction
sampling, and coalescing the nodes that are accessed by the
same set of transactions. Edges are assigned weights such
that the resulting partitioning is optimized.

5.1 Edge Weights

We now explain the process of assigning edge weights. We
alm to satisfy several conditions and optimization criteria:
e Due to the Granola transaction model, we can not eas-
ily allow data dependencies between partitions. Make
a best effort attempt not to allow such dependencies.
e When possible, favor independent transactions to co-
ordinated transactions.
e Favor single-node transactions to any kind of distributed
transactions.
To satisfy the first rule, we assign the highest weights
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Figure 5: Example partitioning graph for a transac-
tion with data dependencies.

to all edges that connect objects having data dependency
relationships with each other (heavy edges). For example,
in Figure 5(a) we show the static dependency graph for a
transaction. Nodes 1, 2, 8 and 4 represent static invocation
sites for some transactional operations. At run-time, one
execution of this transaction uses objects A, B, C' and re-
spectively, D, at the four static invocation sites. The system
would assign the following heavy edges: A-B, A-C, A-D and
C-D (Figure 5(b)). They denote the A — B dependency,
and the A — C — D chain.

In our current implementation we use a very high weight
(10,000) for heavy edges, effectively enforcing that no such
edges will be broken. We should note that, with the Granola
repository in locking mode, accessing remote objects would
be possible, but with a penalty in performance. As such,
instead of making heavy edges unbreakable, we could let the
optimization process figure out if it may be, in fact, more
desirable to break a small number of heavy edges instead of
breaking a larger number of lighter edges. Thus our process
could be extended with a heuristic that assigns weights to
heavy edges based on the workload characteristics, instead
of using a large constant as we do now.

The second rule refers to independent transactions as com-
pared to coordinated transactions. These two models differ
in that coordinated transactions execute a two-phase com-
mit round, and thus allow reaching the commit/abort de-
cision based on data not available at all repositories. Inde-
pendent transactions can be used when the transaction does
not need to abort, or reaches a commit/abort decision based
on data available to all participating repositories.

To encode this in the partitioning graph, we first identify
abort operations. If a transaction does not have any abort
operations, it may be executed using the independent trans-
action model. Thus all remaining edges in such a transaction
receive the lightest weight possible (100, we call these light
edges). On the other hand, if a transaction does have abort
operations, we want to encourage replication of all objects
that were used in the commit/abort decision, as opposed
to engaging in a coordinated transaction. Thus we use a
medium weight (500) for the edges that connect to all such
objects. We call these mid-weight edges.

This use-case may lead to replicating an object, even if the
object is only accessed by one transaction. This behavior is
new to our work, and requires an adjustment to Schism’s
handling of replicated nodes, which was described in Sec-
tion 2.2. Previously, a replicated node for object A was
created for each transaction that accessed object A. With
our use-case, it is possible that more than one replicated
node is required for the same transaction. This applies for
the objects that lead to a commit/abort decision and may
be replicated internally.

To better explain this behavior, we provide an example

T

) Static dependency graph

.............. Replication edges
—————— Light edges
Mid-weight edges
= Heavy edges

partitioning (d) Possible partitioning (co-

c) Possible
ordinated txn preferred)

replication preferred)

Figure 6: Partitioning graph example in the pres-
ence of aborts. The correspondence between the
static invocation sites and objects accessed at run-
time is: 1-A, 2-B, 3-C, 4-D

in Figure 6. The static dependency graph is shown in Fig-
ure 6(a). The transaction makes an abort decision based
on an object opened at invocation site 1. Separately, it ac-
cesses three more objects (at sites 2, 3 and /), with a data
dependency between sites 2 and 3. Assuming at run-time,
the objects accessed are A, B, C' and respectively, D, this
transaction translates to the partitioning graph shown in
Figure 6(b). Object A has three replica nodes, one for each
other object in the transaction, arranged in a star-shaped
configuration. The cost of replication edges are determined
based on access patterns to object A throughout the work-
load. Because object A is used to make a commit/abort de-
cision, its replicas connect to the other objects in the trans-
action using mid-weight edges Ar — B, Ar—C, and Ar —
The other edges are heavy or light edges, based on the exis-
tence of dependency relationships.

Two possible partitioning schemes are shown in Figures 6(c)
and 6(d). In Figure 6(c), object D and one replica of object
A are separated from the rest of the objects. This may hap-
pen, for example, when object A is rarely written to, and the
cost of replicating it is therefore low. In this case, the trans-
action runs as an independent transaction. Alternatively,
Figure 6(d) shows a partitioning scheme where only object
D is separated from the others. There is no replication of
object A, but the transaction must be coordinated.

5.2 Partitioning and Explanation

Once weights are assigned, we let METIS solve the opti-
mization problem and propose a partitioning scheme. The
result is a fine-grained association from objects to partitions.
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This can be used as-is only for small workloads. Specifically,
we can not use object sampling to keep the problem size
small, because the system would not know what to do with
objects that do not appear in the mapping. If the problem
size increases too much, running time and memory require-
ments rapidly increase as well.

We thus employ an explanation phase, where we train ma-
chine learning classifiers (using the Weka library) based on
the fine-grained mapping. As opposed to Schism, we do not
need to restrict our classifiers to be rule-based. Instead, we
can use any classifier that works best for the current work-
load. This is possible because we have the whole stack under
our control, and thus we do not need to restrict ourselves
to what could be encoded efficiently in SQL. Although the
current prototype hard-codes a single classifier type, we en-
vision training a forest of classifiers in parallel, and choosing
the ones that produce the best end-to-end results.

We train one classifier for each different type of objects.
As in Schism, we use virtual partition numbers to represent
replicated objects. For example, if there are two partitions in
the system, P=1 and P=2, we use P=3 as a virtual partition
to represent objects replicated on both partitions.

6. TRANSACTION ROUTING

Our system uses a stored procedure execution model, in-
voking transactions using the transaction’s name and a list
of arguments. Not knowing in advance the data each trans-
action is going to access makes it difficult to determine the
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: [ Manual Partitioning

Percent Distributed Txns
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Nodes/Warehouses

Figure 8: Best partition quality with increasing
number of warehouses (lower is better). Horizon-
tal line represents theoretical minimum. Differences
are minimal (less than 0.3%)

partitions each transaction needs to be routed to. Using
a simple directory based approach would be impossible. In
Schism, the data a transaction will access is essentially known
in advance — one looks at the WHERE clause of the SQL query
for a quick decision about where to route transactions. This
approach does not work in our situation.

Instead, we need to establish a link between a transac-
tion’s input arguments and the set of partitions it needs to
be routed to for execution. For this, we again turn to ma-
chine learning, and employ another set of Weka classifiers.
We train these routing classifiers using a workload trace. For
each transaction in the trace, we want to route to at least
the following partitions:

e Partitions that replicate any object in the write-set.

e A minimal set of partitions R, such that for any ob-
ject X in the read-set, at least one partition P € R
replicates object X.

Finding R is known as the hitting-set problem, which is NP-
complete. Algorithms exist that approximate R, but are
exponential in time [2]. We compute an approximation of
the set R using a simple heuristic (Greedy), and we use
that approximation to train our classifiers. This will be the
output of the classifier. The input to the classifier is the list
of arguments being passed to the transaction.

In our current implementation, we let the clients route
transactions as they issue them. This is acceptable in a
DTM environment where clients and servers are co-located.
If clients can not be trusted with the identity of the servers,
or the servers are located behind a firewall, it would be pos-
sible to employ a dedicated router/gateway process.

Classifiers do not always yield 100% accuracy. Misclas-
sification at the routing stage may mean more nodes are
contacted than strictly necessary, which is a benign situa-
tion. However, it is also possible that not enough nodes
are contacted to allow completing the transaction. In such
a situation, the transaction should abort on all currently
participating nodes, and restart on a superset of the nodes.
Algorithm 2 describes how to handle this situation (our pro-
totype does not implement this mechanism yet).

The primitive to be used when executing a transaction is
decided after the transaction has been routed. If only one
repository is involved, the single-repository model will be
chosen. For distributed transactions that do not explicitly
abort (as identified in the static analysis phase) the inde-



Algorithm 2 Proposal for handling misrouted transactions.

Ncrr = the set of nodes participating in this transaction
upon open(X) = failed do
> find Nrgpr, the set of nodes that replicate object X
NgrEepr < placement classifier (X)
if NREPL n NCRT 75 @ then
return > X can be processed on a different node and
> the transaction can continue normally
end if
if current txn may write to X then > from static analysis
Restart txn on Nopr U NrEpPL

else
Restart txn on Nogrr U ANY (Nrepr)
end if
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pendent transaction model is chosen. All other transactions
use the coordinated model. This approach can be further re-
fined by determining whether the decision to abort is made
based on data available at all nodes. If so, an independent
transaction can be used.

7. EVALUATION

We evaluate our partitioning process using TPC-C [7], a
popular On-line Transaction Processing (OLTP) also used in
other significant recent works [30, 15, 8]. While these works
assume optimal manual partitioning, we employ our sys-
tem in order to automatically derive a partitioning scheme.
TPC-C emulates an order processing system for a whole-
sale supplier with multiple districts and warehouses. The
workload was configured with between 3 and 15 warehouses.
Throughput measurements were obtained on FutureGrid [11]
with up to 15 virtual machines. Each node is an 8-core
2.9GHz Intel Xeon with 7TGB RAM.

We used three classifier types (Naive Bayes [14], Multi-
layer Perceptron [13] and C4.5 decision trees [25]) for both
object placement and transaction routing. Figure 7 shows
results for a sample TPC-C workload. In this workload, ap-
proximately 10.3% of all issued transactions span more than
one warehouses. These transactions would be executed as
distributed transactions under the best known manual parti-
tioning for TPC-C, i.e., each warehouse in its own partition,
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Figure 10: Total throughput with increasing number
of nodes/warehouses and 10.3% distributed txns.
The bar is the average value. The lower error bar is
the standard deviation. The upper error bar is the
maximum value.

and all item objects replicated at all partitions. We find
that (for this workload) using C4.5 decision trees for place-
ment and routing gives the best results, both in terms of
minimizing distributed transactions and in terms of avoid-
ing misrouted transactions.

Our systems proposes high quality partitions. By man-
ual inspection of the resulting decision trees, we determined
that many of our best partitions were identical to the best
known manual partitioning scheme for TPC-C. The same
conclusion is also supported by Figure 8, which compares
the ratio of distributed transaction between our best parti-
tions and the optimal manual partitioning, as the data size
(number of warehouses) is increased.

We scope out a direct comparison against Schism — both
our system and Schism essentially propose the same parti-
tions (optimal) on TPC-C. Unlike Schism, our system is able
to use the independent transaction model for all distributed
transactions in this workload. Instead, Schism would use
all 2PC-coordinated transactions, leading to lower perfor-
mance. A direct comparison would only serve to showcase
the differences between independent transactions and 2PC-
coordinated transactions, and was done elsewhere [8].

Due to the random sampling of tuples and transactions,
not every partitioning attempt had the same optimal result.
This can be observed in Figure 7(a), where the best cases
match the theoretical minimum of distributed transactions,
but the average case is a few percentage points away. Sev-
eral of the trained classifiers managed to reach 100% rout-
ing accuracy on our testing set, as seen in Figure 7(c). To
deal with the inherent variability of random sampling, we
recommend repeating the partitioning process several times
(possibly in parallel) and choosing the best result.

As the data size is increased, however, the size of the
trace that is the input to the system must also increase,
otherwise the partition quality decreases. For example, if
3 warehouses only needed a trace with 1.2k transactions to
give good partitions, 7 warehouses required 3.5k transac-
tions and 15 warehouses needed 11k transactions. Figure 9
shows how the quality of partitioning and routing evolves
with increasing the trace size, for 15 warehouses. In prac-
tice, one would likely start with a short trace (which can be
evaluated faster) and progressively increase the trace size
until the partition quality stops improving.



Tuple-level Creating graph METIS Train placement Compute partitions &
sampling rate from txn trace | partitioning classifiers train routing classifiers
5% 1m56 26s 22s 2mb51s
10% 3m55 1mO1s 37s 7m30s
20% 9m49 1m44s 1m02s 6m18

Table 2: Per phase running time, with 15 warehouses and a 89MB input trace containing 42k transactions.
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Figure 11: Total transactional throughput (3 ware-
houses), with a varying fraction of distributed txns.

To show how our process scales as we increase the graph
size, we present running times for the various phases in Ta-
ble 2. We varied the graph size by adjusting the tuple-level
sampling factor (i.e., the ratio of data items present in the
transaction trace that we represent as nodes in the graph,
the remaining data items are ignored). We notice that a
majority of the time is spent in the graph representation
and evaluation phase. In the evaluation phase, most time is
spent computing routing information for each transaction in
the input trace (training the routing classifiers is relatively
fast). We believe these two most time-consuming operations
could benefit from further optimization.

Figure 10 shows transactional throughput measurements,
compared to manual partitioning and routing. Experiments
were allowed sufficient time for warming-up before measure-
ments were started. Data points represent the average across
eight measurements, and also relay standard deviation and
the maximum value. We observed that enabling automatic
routing and partitioning lead to 9-27% slow-down. The CPU
time spent in additional code was measured to be negligible,
and the total CPU load is light. By recording the execution
time of the various routines and the communication latency,
we observed the standard deviation becomes disproportion-
ately larger than the average. This indicates the presence of
large periodic breaks. It makes us believe the loss in perfor-
mance is an indirect effect of the increased garbage collector
(stop-the-world) activity caused by garbage generation in
the classification code. This can be solved by careful mem-
ory optimization (e.g., object pooling), or using a different
machine learning library.

We additionally varied the fraction of distributed trans-
actions in a TPC-C workload to simulate the effect of par-
tition quality has on throughput. Results are shown in Fig-
ure 11. Fewer distributed transactions clearly lead to better
performance. It is noticeable how the effect is strongest
when distributed transactions account for less than about
10-15% of the total workload. Thus, optimizing the qual-
ity of partitioning can bring large benefits and is especially
important for workloads with less than 10-15% distributed
transactions.

8. RELATED WORK

In the last decade, several proposals for scalable transac-
tional storage [10, 1, 5, 3] are presented. Some of them target
large scalability relaxing strong consistency [10, 5] ensuring
respectively eventual and timeline consistency. Megastore
in [3] is designed for very large scale on the Internet and it
is based on state machine replication. Sinfonia [1] is similar
to Granola but it requires a-priori knowledge of lock-set and
it does not support independent transactions.

In context of DTM, a number of papers recently appeared [23,

24, 21, 27]. They provide new protocols optimizing particu-
lar scenarios but none of them reaches performance compa-
rable to Granola. Additionally, some of them are based on
partial replication where data is always stored manually over
the nodes without exploiting any automation that allows op-
timizing the application access pattern. Our new automatic
framework for partitioning data, although it is suited for the
Granola [8] model, can be adopted (partially or totally) by
any of previous published works for improving the locality
of transactional accesses.

Partitioning techniques have been widely studied in con-
text of DBMS where the typical approach is to enumerate
possible partition schemes and evaluate them using differ-
ent methodologies. In [31] the authors propose a stochastic
approach for clustering data in object oriented DBMS. In
context of distributed storage systems, in [4] and [5] are pro-
posed systems acting with continuously re-partition data to
increase the balancing. Unfortunately these strategies can-
not be easily ported in transaction processing due to the
presence of incoming transactional requests. AutoPart [22]
is an automated scheme designed for multi-terabyte datasets,
without any OLTP requirements. A dynamic vertical parti-
tioning approach based on query patterns was recently pro-
posed in [26]. However it is better suited for applications
where such information does not tend to change over time.
Autoplacer [20] approaches data placement in distributed
key-value stores as an optimization problem.

9. CONCLUSION

We have developed a methodology for using automatic
data partitioning in a Granola-based Distributed Transac-
tional Memory. We perform static byte-code analysis to de-
termine transaction classes that can be executed using the
independent transaction model. We also use the analysis re-
sults to propose partitions that promote independent trans-
actions. Due to our DTM focus, we take a machine-learning
approach for routing transactions to the appropriate parti-
tions.
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