
An Experimental Evaluation of
Real-Time DVFS Scheduling Algorithms

Sonal Saha
ECE Dept., Virginia Tech, Blacksburg, VA, USA

sonal3@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech, Blacksburg, VA, USA

binoy@vt.edu

Abstract
We implement and experimentally evaluate the timeliness and en-
ergy consumption behaviors of fourteen state-of-the-art Real-Time
Dynamic Voltage and Frequency Scaling (RT-DVFS) schedulers
on two hardware platforms. The schedulers include CC-EDF, LA-
EDF, REUA, DRA, and AGR1, among others, and the hardware
platforms include the Intel i5 processor and the AMD Zacate pro-
cessor. We implemented the schedulers in a real-time Linux ker-
nel and measured their timeliness and energy consumption under
a range of workloads including CPU-intensive, memory-intensive,
mutual exclusion lock-intensive, and processor-underloaded and
overloaded workloads. Our studies reveal that measuring the CPU
power consumption as the cube of CPU frequency – as often done
in the simulation-based RT-DVFS literature – ignores the idle state
CPU power consumption, which is orders of magnitude smaller
than the active power consumption. Consequently, power savings
obtained by optimizing active power (i.e., RT-DVFS) is offset by
completing tasks sooner by running at high frequency and quickly
transitioning to the idle state (i.e., no DVFS). Thus, the active
power consumption savings of the RT-DVFS techniques’ revealed
by our measurements are orders of magnitude smaller than their
simulation-based savings reported in the literature.

Categories and Subject Descriptors C.3 [Special-Purpose and
Application-based Systems]: Real-time and embedded systems;
D.4.1 [Operating Systems]: Process Management–scheduling; D.4.7
[Operating Systems]: Organization and Design–real-time systems
and embedded systems; D.4.8 [Operating Systems]: Performance–
modeling and prediction

General Terms Design, Experimentation, Measurement

Keywords Real-time, Power, Energy, Dynamic voltage scaling,
Power management, Operating systems

1. Introduction
A significant amount of research has been devoted to computer
system power management at various levels of abstraction. For
example, techniques such as clock gating [36] and low-power flip-
flops [20] are hardware-level techniques that reduce active power
during normal operation and reduce leakage power during sleep

[Copyright notice will appear here once ’preprint’ option is removed.]

mode. Dynamic Voltage and Frequency Scaling (DVFS) [13, 37]
and Dynamic Power management (DPM) [34, 27] are exam-
ple techniques that optimize power consumption at the oper-
ating system-level. While DVFS involves adjusting the CPU
voltage and frequency dynamically to reduce power consump-
tion, DPM involves transitioning devices, including the CPU, to
low-power/sleep states. Compiler-level power management tech-
niques [16] optimize code to reduce execution time and memory
accesses to save power. Application-level power management has
also been studied. Examples include doing DVFS from the user
space [26] by exchanging information between the user space and
the OS, while maintaining soft real-time guarantees [42].

DVFS works on the following principle: In most of the CMOS-
based modern processors, the maximum frequency of operation is
dependent on the supply voltage and is given by [28]:

f = k × (Vdd − Vt)
2

Vdd
(1)

Here, Vdd is the supply voltage, f is the clock frequency, Vt is the
threshold voltage [28], and k is a constant. (1) can be rewritten
as [8]:

f = a× Vdd (2)
where a is a constant. Thus, frequency has a linear relation with the
supply voltage. When the CPU operates at a frequency f , its active
power consumption, denoted Pactive, is given by:

Pactive = Cef × V 2
dd × f (3)

Here, Cef is the effective switch capacitance, Vdd is the supply
voltage, and f is the clock frequency. By substituting (2) in (3):

Pactive =
Cef

a2
× f3 (4)

This, in turn, is equivalent to:

Pactive = S3 × f3, (5)

where S3 is a constant. Thus, the dynamic power consumption of
a CMOS processor is directly proportional to the cube of CPU
frequency [28].

Real-time DVFS (RT-DVFS) is a branch of DVFS, which in-
volves reducing the CPU energy consumption by scaling the CPU
frequency, while at the same time, ensuring that task time con-
straints are satisfied. Broadly, RT-DVFS techniques have two objec-
tives: (i) Reduce energy consumption (through DVFS), and (ii) op-
timize task timeliness behavior through real-time resource manage-
ment (i.e., real-time scheduling and synchronization). These two
objectives may conflict, because reducing the frequency may in-
crease task execution times, which is antagonistic to timeliness op-
timization. Most RT-DVFS scheduling algorithms consider satis-
faction of time constraints as a “hard” constraint. They often utilize
task slack times (i.e., time between task deadlines and worst-case

1 2012/2/21

task execution times) to reduce the frequency (to the extent possi-
ble), and thus reduce energy consumption [29, 4, 42, 22].

A number of RT-DVFS algorithms [1, 19, 33, 6, 45, 10, 17,
44, 24, 25] have been developed in the past two decades. These
algorithms have been extensively analyzed and their fundamen-
tal properties have been established – e.g., schedulable utiliza-
tion bounds below which they meet all deadlines; conditions un-
der which they satisfy energy budgets. These algorithms have also
been experimentally studied using simulations [4, 41, 39, 43, 18],
where the primary focus has been on understanding their normal-
ized real-time and power consumption behaviors (e.g., normal-
ized to no DVFS; normalized to highest frequency), and relative
real-time/power trends. Only a very small fraction of these algo-
rithms have been implemented and evaluated on real hardware plat-
forms [29, 22, 42].

Simulation-based experimental studies have several advantages.
First, it provides an effective way to evaluate the performance of
an algorithm, especially to understand relative performance trends.
Second, it is highly scalable and repeatable: a vast number of exper-
imental settings can be constructed, and deterministically repeated,
all programmatically. Additionally, it hides platform-specific issues
through an abstract (often, discrete-event) simulation model, which
significantly reduces development time.

However, simulation-based studies, especially those for RT-
DVFS, have drawbacks. Unlike simulators used in the computer ar-
chitecture community [38, 21, 30], there does not exist OS/platform
simulators that have been rigorously evaluated and accepted by the
(RT-DVFS) community as a whole. This has resulted in researchers
developing their “home grown” simulators with many built-in as-
sumptions (e.g., idle states of CPUs, number of idle states, tran-
sition overheads) that are not easy to verify against any particu-
lar hardware. Since the power savings of RT-DVFS techniques are
highly platform- (and application-) dependent, this can potentially
lead to incorrect conclusions. To illustrate this, we note that, many
RT-DVFS works that have relied on simulation-based experimental
studies have made the following assumptions:

(i) A CPU has a continuous range of frequencies [4, 41, 42].
However, actual CPUs do not have a continuous range, but discrete
frequency steps. Some processors have a rich frequency set (e.g.,
10), such as the Intel i5, and some have a smaller set (e.g., AMD
Zacate has 3 steps; Via C7 has two steps). Thus, modeling a CPU
with a continuous range of frequencies can give highly optimistic
results, which may not hold on actual hardware.

(ii) The CPU’s idle state power consumption is negligible [4,
41, 42]. These works only consider CPU’s dynamic (or active)
power consumption, which is assumed to be directly proportional
to the cube of frequency, as illustrated by (5). In contrast, CPUs of
most modern hardware have idle states (C states) and performance
states (P states), and the CPU’s power consumption is the summa-
tion of the power consumed in both these states [15]. Abstracting
away this detail can lead to significantly optimistic, and sometimes,
erroneous power savings, as our results show (Section 4).

(iii) Non-CPU power consumption is insignificant. In most of
the RT-DVFS algorithms [4, 29, 42], only the CPU’s power con-
sumption is considered and the system level power consumption is
ignored. The interaction between the CPU and other components
(e.g., memory, bus, disk) is often ignored. This again can lead to
erroneous power savings, as non-CPU devices’ power consump-
tion is DVFS-independent. Consequently, the overall power sav-
ings depend on the power profile of such devices and application
workload characteristics – e.g., DVFS may prolong the CPU ac-
tive state, which may potentially increase memory power consump-
tion. In [3], Aydin et. al. have shown that below a particular speed,
DVFS has a negative impact on the system-level energy consump-
tion; in [35], Snowdon et. al. show that the optimal voltage and fre-

quency setting is dependent on the system characteristics as well as
the application.

1.1 Contributions
In this paper, we implemented and measured the timeliness and
power consumption behavior of fourteen RT-DVFS schedulers. The
schedulers target single processor systems, and include Static Earli-
est Deadline First (Static-EDF) [29], Cycle Conserving EDF (CC-
EDF) [29], Look-Ahead EDF (LA-EDF) [29], a variant of [22],
REUA [40], Dynamic Reclaiming Algorithm (DRA), and Aggres-
sive Speed Reduction Algorithm (AGR) [4], among others (Sec-
tion 2). Static-EDF utilizes static slack for determining the CPU
frequency, whereas CC-EDF, LA-EDF, DRA, and AGR utilize dy-
namic slack as well. LA-EDF, AGR, and DRA are more aggressive,
compared to the other algorithms, in the sense that, they try to re-
duce the frequency as much as possible, while still satisfying task
time constraints.

We implemented the schedulers in a Linux-based real-time ker-
nel called ChronOS [12], and measured their real-time/power be-
haviors on two hardware platforms, including an Intel i5 processor
and an AMD Zacate processor (Section 3).

We used a synthetic application to generate a broad range of
workload conditions including CPU-intensive, memory-intensive,
mutual exclusion lock-intensive, and processor-underloaded and
overloaded workloads. We measured the actual CPU power by
accounting for the power consumption in the active and idle states,
and also the system power using a multimeter. We also measured
the normalized CPU energy consumption1, where the CPU power
is considered to be proportional to the cube of the frequency, so as
to compare with the simulated results of the algorithms.

Our studies reveal that measuring the CPU power consump-
tion as the cube of CPU frequency can lead to incorrect conclu-
sions (Section 4). In particular, it ignores the idle state CPU power
consumption, which is orders of magnitude smaller than the ac-
tive power consumption. Consequently, power savings obtained by
exclusively optimizing active power (i.e., RT-DVFS) is offset by
completing tasks sooner by running them at the highest frequency
and quickly transitioning to the idle state (i.e., no DVFS). Thus, the
active power consumption savings of the RT-DVFS techniques’ re-
vealed by our measurements are orders of magnitude smaller than
their simulation-based savings reported in the literature.

Our studies also revealed important inconsistencies between
previously reported power savings (in simulation-based studies)
and actual power savings. For example, algorithms such as Static-
EDF, CC-EDF, and [22], which have been reported to outperform
Base-EDF (on power savings) do not actually do so. These algo-
rithms outperform Base-EDF on normalized CPU energy. How-
ever, they consume only slightly lesser CPU power and system
power as Base-EDF, or in some cases, even more. Aggressive en-
ergy saving algorithms such as LA-EDF, DRA, DRA-OTE, AGR1,
and AGR2 do consume less actual CPU power and system power
than Base-EDF. But their energy savings are not as high as reported
in past simulation-based studies.

In the past, a small subset of RT-DVFS algorithms have been
implemented and evaluated on actual hardware platforms. Exam-
ple such works include [29, 42, 13, 22] (Section 5). However, these
works also have largely ignored the idle state CPU power consump-
tion, or have measured the CPU power as proportional to the cube
of the frequency, which can lead to inaccuracies. Moreover, they
haven’t implemented a comprehensive set of RT-DVFS schedulers
and experimentally evaluated them on a broad range of workloads,
like our work has done.

1 The normalized CPU energy is the same as the normalized CPU power, as
the time factor gets cancelled in both the numerator and the denominator.

2 2012/2/21

2. Candidate RT-DVFS Algorithms
Before describing the candidate RT-DVFS algorithms, we briefly
discuss the rationale behind their design.

Two types of slack time are exploited by RT-DVFS algorithms:
(i) Static slack. This is the idle time interval due to low CPU

demand of the application. For a periodic real-time application, the
total CPU demand is the ratio of the task period to the worst-case
task execution time (WCET), aggregated for all tasks. When the
total CPU demand is less than 100%, then there exists time intervals
during which the CPU idles. This is called the static slack, which
can be utilized to scale the CPU frequency.

Figure 1. Dynamic Slack Example

(ii) Dynamic slack. This is the slack time that is available when
the actual execution time of a task (ACET) is smaller than its
(predicted) WCET, as shown in Figure 1. Dynamic slack time can
only be obtained when the task completes—i.e., at run-time, in
contrast to the static slack, which is known off-line, as task periods
and WCETs are presumed to be known off-line for hard real-time
applications. Once the dynamic slack becomes available, it can then
be distributed to other eligible tasks by scaling their frequency,
increasing their time budgets, and thus saving energy.

Most of the RT-DVFS algorithms differ in the way they estimate
and utilize the static and dynamic slacks.

The candidate RT-DVFS algorithms that we selected for im-
plementation can be classified based on their target task model
as follows: (i) schedulers for independent underloaded task sets,
(ii) schedulers for dependent underloaded task sets, and (iii) sched-
ulers for overloaded task sets (both independent and dependent task
sets). We briefly overview algorithms in each category. (Detailed
descriptions are out of scope of this paper.)

2.1 Schedulers for Independent Underloaded Task Sets
2.1.1 Base-EDF
This is the basic EDF scheduler [14], which doesn’t involve any
frequency scaling and operates at the maximum frequency. The
task with the earliest deadline is always dispatched for execution,
and simply runs at the maximum frequency. We include this as a
baseline case in the experimental study (similar to [29]).

Table 1. An Example Three Task Set
Task WCET ACET Period
T1 2 1.6 5
T2 1 0.8 5
T3 3 2.4 15

Figure 2 shows the Base-EDF schedule for the task set shown
in Table 1.

2.1.2 Static-EDF
This scheduler, described in [29], uses the static slack estima-
tion technique to scale the CPU frequency. The frequency is
scaled based on the static utilization of the task set, i.e., U =

Figure 2. Base-EDF Schedule

∑n
i=1(Ci/Ti), where Ci and Ti are the WCET and period of a

task τi, respectively. (The task deadline is assumed to be equal to
the task period.) All n tasks are run at the same frequency such that
the utilization U of the processor at the scaled frequency becomes
1. We call this frequency, Soptimal. Static-EDF, thus ensures that
no deadlines are missed, becauseU ≤ 1, for which EDF guarantees
no deadline misses [14].

Figure 3. Static-EDF Schedule

Figure 3 shows the Static-EDF schedule for the task set shown
in Table 1.

2.1.3 CC-EDF
Cycle conserving EDF (CC-EDF) [29] utilizes the dynamic slack
to scale the CPU frequency. When a task is released, it is assumed
that the task will execute up to its WCET, and the frequency is
set accordingly. However, on completion, if the actual execution
time is lesser, then the extra unused cycles are transferred to the
remaining tasks. As the remaining tasks now get more cycles than
they require to execute, the frequency is scaled down.

Figure 4. CC-EDF Schedule

Figure 4 shows the CC-EDF schedule for the task set shown in
Table 1.

3 2012/2/21

2.1.4 LA-EDF
Similar to CC-DF, Look-Ahead EDF (LA-EDF) [29] also reclaims
dynamic slack to determine the task frequency. Here, the idea is to
operate at the lowest possible frequency. At a scheduling event, the
algorithm tries to do the minimum possible work before the next
earliest deadline by “pushing” as much work as possible beyond
that deadline, while making sure that all future deadlines are met,
even if it has to run at a higher frequency in the future.

Figure 5. LA-EDF Schedule

Figure 5 shows the LA-EDF schedule for the task set shown in
Table 1.

2.1.5 Snowdon-min
This is a subset of the RT-DVFS scheduler implemented by Law-
itzky et. al. [22], which scales the frequencies of the CPU, the mem-
ory, and the bus. We do not consider scaling the memory frequency
or the bus frequency (which is platform-specific), but only the CPU
frequency, for a fair comparison. We call this subset, “Snowdon-
min.” In this algorithm, the amount of dynamic slack of a com-
pleted task is added to the budget of the next runnable task, and its
frequency is scaled accordingly.

Figure 6. Snowdon-min Schedule

Figure 6 shows the Snowdon-min schedule for the task set
shown in Table 1.

2.1.6 DRA
Dynamic Reclaiming Algorithm (DRA) is another dynamic slack
reclaiming-based RT-DVFS algorithm [4]. In DRA, a data structure
called an α queue is maintained. Whenever a task arrives, it pushes
its WCET at the Soptimal frequency in the α queue. Each element
of the α queue is characterized by the deadline Di of a task τi,
and the remaining WCET of τi at the Soptimal frequency, which
is denoted as remi. The α queue is ordered according to EDF*.
(EDF* is similar to EDF, except that, deadline ties are broken in
favor of the task that arrived earlier.) With the progress of time,

the remi field of the head of the α queue is subtracted from the
elapsed time since the last scheduling event. If remi is smaller
than the time elapsed, then after updating the remi of the head,
the head is deleted. The update continues with the new head, till
the entire elapsed time is exhausted. Whenever a task is selected
for execution, the α queue is checked, and the remi field of all the
α queue elements having a deadline lesser than or equal to τbest is
added to the remi of τbest. (We will call the task with the earliest
deadline as τbest in all the remaining algorithms unless specified
otherwise.) In this way, the unused slack time of all those tasks
which completed earlier than the scheduled task is transferred to
the scheduled task and the frequency is scaled accordingly.

2.1.7 DRA-OTE
The Dynamic Reclaiming Algorithm-One Task Technique (DRA-
OTE) is an extension to the DRA algorithm [4]. This algorithm uses
the concept of next task arrival time (or NTA). The next arrival time
of any task instance in a system is known as NTA [19]. If there
is only one task in the ready queue, and if its remi at Soptimal

is less than the time available till the NTA, then the frequency of
execution of this task can be reduced to utilize the entire time till
NTA. Thus, DRA-OTE exploits this extra slack to further decrease
the frequency of execution.

2.1.8 AGR1 and AGR2
Agressive Speed Reduction 1 (AGR1) and Agressive Speed Re-
duction 2 (AGR2) [4] are also extensions of DRA. They are based
on the idea that whenever there is more than one task in the ready
queue and when all the tasks have to complete before the NTA, then
the CPU time can be transferred among these tasks. For example,
consider three tasks τ1, τ2, and τ3 in the ready queue. Assume that
all of them must complete before the NTA. If τ1 has the earliest
deadline, then it can obtain CPU time from τ2 and τ3, such that its
speed can be reduced, while ensuring that all tasks complete before
the NTA. This additional frequency scaling is done to the frequency
obtained as a result of DRA-OTE.

In addition to dynamic slack reclaiming, AGR1 uses average
workload information to predict the early completion of the fu-
ture workloads and thus obtain extra slack to further reduce the
frequency.

2.1.9 EUA
Energy-efficient Utility Accrual Algorithm (EUA) is an RT-DVFS
algorithm that aims to maximize accrued timeliness utility per unit
energy consumed, while reducing the total system power [40]. Un-
like the previous works, the algorithm uses Martin’s system-level
energy consumption model for predicting task energy consump-
tion toward determining frequency [28]. During underloads (i.e.,
U ≤ 1), EUA accrues the maximum utility and scales the fre-
quency in the same way as LA-EDF [29]. During overloads (i.e.,
U > 1), it accrues the maximum utility possible by running the
tasks at the maximum speed. Schedule construction is done by ex-
amining tasks in the decreasing order of utility accrued per unit
energy consumption. Tasks are tentatively included in a schedule,
tested for schedule feasibility, and rejected if the schedule becomes
infeasible.

2.2 Schedulers for Dependent Underloaded Task Sets
2.2.1 HS
High Speed (HS) is an RT-DVFS algorithm for task sets with non-
preemptible blocking sections [43]. The algorithm determines a
static speed, called high speed, to ensure that no deadlines are
missed when the tasks are scheduled with EDF in the presence
of non-preemptible blocking sections. Non-preemptible blocking

4 2012/2/21

sections are modeled as a special case of the Stack Resource Policy
(SRP) [5], in which there is one resource that is shared by all
the tasks. When tasks are scheduled with EDF under SRP, then
feasibility is given by ∀k, 1 ≤ k ≤ n

∑n
k=1 Ci/Di+Bk/Dk ≤ 1,

where Bk is the maximum blocking time of task τi. Thus, a static
speed H can be selected as follows (which ensures that all deadlines
are met): ∀k, 1 ≤ k ≤ n

∑n
k=1 Ci/Di +Bk/Dk ≤ H .

Figure 7. HS Schedule

Figure 7 shows the HS schedule for the task set in Table 1.

2.2.2 DS
In the HS algorithm, the processor can operate only at one constant
speed. Dual Speed (DS) is an improvement over HS by operating
at two speeds and thereby aiming to save more energy [43]. The
two speeds include the static high speed calculated by HS (H), and
the Soptimal speed calculated by Static-EDF (L). The processor
operates at the high speed only if a task is blocked by a lower
priority task, for a duration which is till the completion time of
the blocking task. At all other times, the processor operates at the
low speed, thus saving energy, while making sure that no deadlines
are missed.

Figure 8. DS Schedule

Figure 8 shows the DS schedule for the task set in Table 1.

2.2.3 USFI EDF
The algorithm, Uniform Slowdown with Frequency Inheritance-
EDF (USFI-EDF) [18] allows any real-time resource access pro-
tocol (e.g., PIP [32], PCP [32], SRP [5]) for task synchronization.
(Since we use EDF for scheduling in our experimental studies,
we choose SRP, as it works with both fixed and dynamic prior-
ity scheduling.) The algorithm does frequency inheritance i.e., a
low priority job is allowed to inherit the frequency of the highest
priority job that it blocks to minimize deadline misses.

2.3 Schedulers for Overloaded Task Sets
2.3.1 REUA
REUA [41] is an extension of the EUA algorithm [40] for task
models with dependencies. It extends EUA in the following way:
a task’s dependent tasks (i.e., dependencies arising due to transi-
tive mutual exclusion) is first determined by following the chain
of resource request and ownership. A task and its dependents are
then considered together in determining the (aggregated) utility ac-
crued per unit energy consumption for executing the task and its
dependents. Potential deadlocks are detected by running a cycle
detection algorithm and resolved by aborting the task with the least
utility. Schedule construction is done as before: a task is examined
(together with its dependents) in the decreasing order of the (ag-
gregated) utility accrued per unit energy consumption, tentatively
included in a schedule (together with the dependents), tested for
schedule feasibility, and rejected (together with the dependents) if
the schedule becomes infeasible. When there are no dependencies,
REU defaults to EUA.

3. Experimental Environment
3.1 Platform
We implemented the fourteen candidate RT-DVFS algorithms in
the ChronOS real-time Linux kernel [12]. Our evaluation was con-
ducted on two hardware platforms. The first platform is an ASUS
laptop with the Intel i5 processor and uses the Enhanced Intel
Speedstep technology for scaling the processor voltage and fre-
quency on-the-fly. The processor has 10 frequencies (see Table 2).
The driver used is acpi cpufreq. The second platform is an AMD
Zacate mini-ITX Motherboard [2]. This processor operates at 3 fre-
quencies, including 800 MHz, 1.28 GHz, and 1.6 GHz, and uses the
powernow! technology for DVFS. The driver used is powernow k8.

3.2 Test Application
To evaluate the schedulers, we extended and used the test applica-
tion in [11, 12]. This application allows a configurable task set de-
scription, including task parameters such as WCET, period, dead-
line, ACET, and critical section length. The application creates
each task as a thread. Each instance of a periodic task is auto-
matically created to use ChronOS scheduling segments (i.e., code
segments subject to time constraints) [12], with the configured
time constraints. Scheduling segments trigger scheduling events
in ChronOS, which invoke the (RT-DVFS) scheduler. Depending
upon the workload chosen, a scheduling segment either burns the
CPU for its ACET or WCET (in case of CPU-intensive workload),
or does heavy memory accesses during its ACET or WCET (in case
of memory intensive workload).

3.3 Timeliness Measurements
We measure task timeliness by measuring the deadline satisfaction
ratio (DSR). DSR is defined as the ratio of the number of tasks that
met their deadlines to the total number of task releases.

3.4 Power Measurements
The ACPI specifications [15] define the following idle and perfor-
mance states of the CPU:

P state
This is the CPU’s performance (or active) state. The number of
P states supported by a CPU is CPU-specific. The processor
operates at a different frequency/voltage pair in different P
states, and thus consumes different amounts of power in each
state. The lower the P state is, the higher the frequency the CPU
operates in, and thus consumes more power. The P states, the

5 2012/2/21

frequency of operation, and the power consumed in each P-state
of the Intel i5 processor is given in Table 2.

C0 state
This is the CPU’s operating state. The CPU is operating in one
of the P-states when in this state. The power consumed in this
state is dependent on the P-state in which it is operating in.

C1 state
This is the first idle state. In this state, only the CPU’s main
internal clocks are halted (via software). In Intel i5, the CPU
consumes 1000mW in this state.

C2 state
In this state, only the CPU’s main internal clocks are halted (via
hardware) and the CPU takes longer time to wake up from this
state. For Intel i5, the power consumed in this state is 500mW.

C3 state
In this state, most parts of the processor is stopped, such as
caches. As a result, the processor is no longer cache-coherent
in this state, and takes longer time to wake up from this state.
The power consumed in this state for Intel i5 is 300mW.

Table 2. P-states in Intel i5 processor
P-state Frequency (MHz) Power (watts)

P0 2400 25000
P1 2399 25000
P2 2266 23316
P3 2133 21689
P4 1999 20116
P5 1866 18531
P6 1733 17021
P7 1599 15517
P8 1466 14068
P9 1333 12640
P9 1199 11250

System power measurement. We measured the total system
power using the Fluke 289 RMS multimeter [9], which is a high
resolution multimeter (resolution is 0.5 mA). The multimeter has
an averaging mechanism, wherein it can obtain the average of the
current measurements over an interval of time (while it is measur-
ing). We made a slit in the cord of the power supply, and attached
the multimeter in series, to measure the current. We obtained the
rms value of the average current and multiplied it with the rms
voltage, which is 120 V, to obtain the average power consumed in
that time interval.

Normalized and actual CPU power measurement. We used the
CPUpower tool [23] to obtain the normalized and the actual CPU
power measurements. When an user application is fed as input,
CPUpower tool gives information about the average frequency in
the active state as well as the percentage of time spent in the
respective performance (P states) and idle (C states) states for the
duration of the application execution.

Normalized CPU energy consumption. We calculate the normal-
ized CPU energy as (favg/fmax)

3, where favg is the average fre-
quency for the duration of the application execution. favg is ob-
tained from the Freq field of the CPUpower tool’s output.

Actual CPU power. We calculate the actual CPU power as the
sum of the power consumed in the idle state and the active state.
Thus, for Intel i5, actual CPU power = active power + C1 power +
C2 power + C3 power, where:
• active power= (% of time spent in C0) × (power consumed in

the corresponding P-state)
• C1 power= (% of time spent in C1) × 1000mW
• C2 power= (% of time spent in C2) × 500mW

• C3 power= (% of time spent in C3) × 300mW

4. Experimental Results
4.1 Timeliness
Figures 9 and 10 show the DSR of the schedulers, on Intel i5, for a 5
task set with deadlines and periods in the range [500ms, 5000ms]
and per-task utilization in the range [0.1, 0.4]. The figures show
the DSR at increasing CPU utilization for ACET= 0.4WCET and
ACET= 0.7WCET, respectively. We observe that all schedulers
meet all deadlines during underloads. During overloads, we ob-
serve that aggressive algorithms such as AGR1 and AGR2 miss
deadlines at a faster rate than others. REUA performs quite well
during overloads; for the ACET= 0.7WCET case, it meets the most
number of deadlines.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5

D
S

R

Utilization

0.4 WCET-DSR vs Utilization

Base-EDF
Static-EDF

CC-EDF
LA-EDF

DRA
DRA_OTE

Snowdon_min
AGR_1

AGR_2
REUA

Figure 9. DSR vs. CPU Utilization for a 5 task set, at 0.4 WCET,
on Intel i5

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.5 1 1.5 2 2.5

D
S

R

Utilization

0.7 WCET-DSR vs. Utilization

Base-EDF
Static-EDF

CC-EDF
LA-EDF

DRA
DRA-OTE

Snowdon-min
AGR_1

AGR_2
REUA

Figure 10. DSR vs. CPU Utilization for a 5 task set, at 0.7 WCET,
on Intel i5

DSR results for other ACET cases are omitted here for brevity,
and can be found in [31]. They confirm the trend that aggressive
algorithms such as AGR1 and AGR2 miss deadlines at a faster
rate than others during overloads, when ACET becomes closer to
WCET. Moreover, REUA continues to perform well during over-
loads.

4.2 Energy Consumption vs. CPU Utilization on Intel i5
Figures 11 and 12 show the normalized CPU energy and the ac-
tual CPU power, respectively, on the Intel i5, for the same task set
as that in Section 4.1. The figures show the the normalized CPU

6 2012/2/21

energy and the actual CPU power, as the CPU utilization is varied
from 50% to 250% at ACET = 0.7WCET. We conduct this experi-
ment, because it helps us understand the energy consumption of the
schedulers when the offered load increases while the slack remains
the same.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5

 N
o
rm

a
liz

e
d

 C
P
U

 E
n
e
rg

y

Utilization

0.7 WCET-Normalized CPU Energy vs Utilization

Base-EDF
Static-EDF

CC-EDF
LA-EDF

DRA
DRA_OTE

Snowdon_min
AGR_1

AGR_2
REUA

Figure 11. Normalized CPU Energy vs. CPU utilization for a 5
task set, at ACET = 0.7WCET, on Intel i5

 5

 10

 15

 20

 25

 30

 0.5 1 1.5 2 2.5

A
ct

u
a
l
C

P
U

 P
o
w

e
r

in
 W

a
tt

s

Utilization

0.7 WCET-Actual CPU Power vs. Utilization

Base-EDF
Static-EDF

CC-EDF
LA-EDF

Snowdon-min
AGR_1
AGR_2

DRA

DRA-OTE
REUA

Figure 12. Actual CPU Power vs. CPU utilization for a 5 task set,
at ACET = 0.7WCET, on Intel i5

We observe that the normalized CPU energy consumption is
different from the actual CPU power consumption. The relative
energy savings of the schedulers (relative to Base-EDF) observed
from the normalized CPU energy savings plot, is much higher than
that observed from the actual CPU power consumption plot. Even
though the normalized CPU energy consumption of the schedulers
is consistent with their theoretical results, their actual CPU power
consumption shows significantly less energy savings (compared to
Base-EDF).

This is because, the total CPU power consumption depends on
the power consumed in the active and the idle state of the CPU. For
Base-EDF, the CPU runs at a higher frequency for a shorter dura-
tion, whereas for algorithms such as LA-EDF, the CPU runs at a
lower frequency, but for a shorter duration. If the energy efficiency
of the CPU’s idle states is high, then the power saved by running
at a lower frequency for a longer duration is offset by running at a
higher frequency for a shorter duration, and transitioning to the idle
state sooner.

The idle state power consumption of Intel i5 is in the range of
0.3W to 1W, while the active state power consumption is in the
range of 11.25W to 25W. Due to the high energy efficiency of the

idle states, we therefore do not obtain significant energy savings
from the RT-DVFS algorithms.

Results for other ACET cases (0.2 WCET, 0.4 WCET, etc.) and
task set cases are omitted here for brevity; they show consistent
trends, and can be found in [31].

4.3 Energy Consumption vs. ACET on Intel i5
Figures 13 and 14 show the normalized CPU energy and the actual
CPU power, respectively, on Intel i5, when the ACET is varied
from 0.1WCET to 1.0WCET, for a fixed CPU utilization of 70%.
The task set is the same as that in Section 4.1. We conduct this
experiment, because it helps us understand the energy consumption
when the slack varies and thus the impact of RT-DVFS (recall that
RT-DVFS techniques exploit slack to save energy).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 N

o
rm

a
liz

e
d

 C
P
U

 E
n
e
rg

y

ACET

70% Utilization-Normalized CPU Energy vs ACET

Base-EDF
DRA

Static-EDF
CC-EDF

LA-EDF
DRA

DRA_OTE
Snowdon_min

AGR_1
AGR_2

Figure 13. Normalized CPU Energy vs. ACET for a 5 task set, at
70% CPU Utilization, on Intel i5

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ct

u
a
l
C

p
u
 P

o
w

e
r

in
 W

a
tt

s

ACET

70% Utilization-Actual Cpu Power vs ACET

Base-EDF
Static-EDF

CC-EDF

LA-EDF
Snowdon_min

AGR_1

AGR_2
DRA

DRA_OTE

Figure 14. Actual CPU Power vs. ACET for a 5 task set, at 70%
CPU Utilization, on Intel i5

We observe that, as the ACET increases, the actual power con-
sumption increases much steeply than in the case of the normal-
ized CPU energy consumption. This is because, with the increase
in ACET, the dynamic power consumption increases due to the in-
crease in frequency, as well as due to the increase in the time spent
in the active state. The normalized CPU energy plots capture the
dynamic power increase due to the increase in frequency, but not
due to the increase in time. Both these parameters are captured by
the actual CPU power consumption plots.

Results for other CPU utilizations and task set cases show con-
sistent trends, and can be found in [31].

7 2012/2/21

4.4 Energy Consumption on AMD Zacate
Figure 15 shows the normalized CPU energy consumption on the
AMD Zacate, as the CPU utilization is varied from 50% to 250%
at ACET = 0.7WCET (same case as in Section 4.2). Note that,
the curves in this figure are not as smooth as that for the Intel i5
in Figure 11. This is due to the lesser number of frequency steps
(i.e., 3) of AMD Zacate (Intel i5 has 10). The relative normalized
CPU energy savings of the schedulers (relative to Base-EDF) on
AMD is much lower than that on Intel i5, as can be observed from
Figures 11 and 15 (due to the same reason).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

 C
P
U

 E
n
e
rg

y

Utilization

0.7 WCET-Normalized CPU Energy vs Utilization

Base-EDF
Static-EDF

CC-EDF
LA-EDF

Snowdon_min
AGR_1

DRA
DRA_OTE

REUA

Figure 15. Normalized CPU Energy vs. CPU utilization for a 5
task set, at ACET = 0.7WCET, on AMD Zacate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

 C
P
U

 E
n
e
rg

y

Utilization

0.6 WCET-Normalized CPU Energy vs Utilization

Base-EDF
Static-EDF

CC-EDF

LA-EDF
Snowdon_min

AGR_1

AGR_2
DRA

DRA_OTE

Figure 16. Normalized CPU Energy vs. ACET for a 5 task set, at
70% CPU Utilization, on AMD Zacate

Figure 16 shows the normalized CPU energy consumption when
the ACET is varied from 0.1WCET to 1.0WCET, for a fixed CPU
utilization of 70% (same case as in Section 4.3). The trends are
similar to that of the Intel i5 case (similar reasons as in Section 4.3).

4.5 Energy Consumption of Dependent Task Sets
Recall that the schedulers HS, DS, USFI-EDF, and REUA al-
low dependent tasks. We now measure their energy consumption.
We use a 10 task set with deadlines and periods in the range
[400ms20000ms] and per-task utilization in the range [0.010.4].
The tasks share a single lock-guarded shared resource. A task crit-
ical section is equal to 20% of its WCET.

Figures 17 and 18 show the normalized CPU energy consump-
tion and the actual CPU power consumption, respectively. Similar

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d

 C
P
U

 E
n
e
rg

y

Utilization

20% Critical Section-Normalized CPU Energy vs. Utilization

HS DS USFI-EDF REUA

Figure 17. Normalized CPU Energy vs. CPU utilization for a 10
task set, with critical section equal to 20% of WCET

 0

 5

 10

 15

 20

 25

 30

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ct

u
a
l
C

p
u
 P

o
w

e
r

in
 W

a
tt

s

Utilization

20% Critical Section-Actual Cpu Power vs. Utilization

HS DS USFI-EDF REUA

Figure 18. Actual CPU Power vs. CPU utilization for a 10 task
set, with critical section equal to 20% of WCET

to the schedulers for independent task sets, the normalized CPU en-
ergy consumption and the actual CPU power consumption is differ-
ent for these schedulers as well. The normalized energy consump-
tion of DS, USFI EDF, and REUA is very low when compared to
that of HS. REUA performs the best. However, from Figure 18, we
observe that the actual CPU power consumption of these schedulers
is similar.

Results for other critical section lengths, number of locks, and
task sets show consistent trends, and can be found in [31].

4.6 System Power on AMD Zacate
We measured the total system power for the 5 task set, for
ACET=0.6 WCET, on AMD Zacate. Figures 19 and 20 show the
system power for CPU intensive and memory-intensive workloads,
respectively. We observe that Base-EDF consumes the maximum
power and LA-EDF, the least. The power consumption of the other
schedulers lie between these two extremes. Note that the difference
between the scheduler power consumption is not significant. This is
because of the high energy efficiency of AMD Zacate’s idle states.

We also observe that the power consumed for the memory-
intensive workloads is similar to that for the CPU-intensive case.
This illustrates that, memory power consumption is DVFS-independent.

Results for other ACET cases, fixed-CPU utilization cases, and
task sets show consistent trends, and can be found in [31].

8 2012/2/21

 62

 64

 66

 68

 70

 72

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
y
st

e
m

 P
o
w

e
r

in
 W

a
tt

s

Utilization

0.6 WCET-System power vs. Utilization

Base-EDF
Static-EDF

CC-EDF

LA-EDF
Snowdon_min

DRA

AGR1

Figure 19. Total System Power vs. CPU Utilization for a 5 task set
(CPU intensive workload), ACET = 0.6WCET, on AMD Zacate

 62

 64

 66

 68

 70

 72

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
y
st

e
m

 P
o
w

e
r

in
 W

a
tt

s

Utilization

0.6 WCET-System power vs. Utilization

Base-EDF
Static-EDF

CC-EDF

LA-EDF
Snowdon_min

DRA

AGR1

Figure 20. Total System Power vs. CPU Utilization for a 5 task set
(memory intensive workload), ACET = 0.6WCET, on AMD Zacate

5. Related Work
Even though RT-DVFS has been a highly active of research [1, 19,
33, 6, 45, 10, 17, 44, 24, 25], very few of the algorithms have been
implemented and evaluated on actual hardware platforms.

One of the earliest such efforts is by Pillai and Shin [29].
They devised five RT-DVFS algorithms, which reduce the energy
consumption while ensuring 100% deadline satisfaction ratio, im-
plemented them in the Linux 2.2.16 kernel, and measured real-
time/power behaviors on an AMD K6-2+ processor with power-
now! technology. They found that EDF-based schedulers outper-
form RMA based ones. (Among the EDF based ones, Static-EDF
utilizes the static slack, whereas CC-EDF and LA-EDF reclaim the
dynamic slack to scale the CPU frequency.) Additionally, they con-
cluded that the energy savings of RT-DVFS algorithms are highly
dependent on the voltage and frequency settings available on the
hardware, and not much on the number of tasks or on the energy
efficiency of the CPU’s idle states. In contrast, our results show that
the savings are, actually, highly dependent on the energy efficiency
of the idle states. [29] is also limited to processor underloads (i.e.,
the offered task load is less than 100% of processor capacity), in-
dependent tasks (i.e., no synchronization), and CPU-intensive (no
memory-intensive) workloads. In contrast, our workloads cover all
these cases.

Yuan et. al. [42] designed and implemented a statistical DVFS
scheduler in an OS called the Grace-OS. Similar to other simulation-

based studies of DVFS algorithms, they also assume that CPU
power is proportional to the cube of the frequency, and measure ac-
tual CPU energy accordingly. However, as mentioned before, this
may lead to inaccuracies, as the actual CPU power consumption
differs and depends on the energy consumed in the CPU’s active
and idle states.

Grunwald et. al. [13] implemented DVFS algorithms developed
by Weiser et. al. [37] in the Linux kernel, running on the Itsy
pocket computer. They measured the system power consumption
and concluded that the algorithms did not give significant energy
savings. The algorithms studied were not real-time.

Snowdon et. al. [22], designed and implemented a DVFS al-
gorithm, which aims to reduce system-level power. They develop
a time/energy model, and use it to calculate the time and the en-
ergy required by an application at a particular CPU, memory, and
bus frequency. They integrate this model with the RBED real-time
scheduler [7], which then uses the time-energy model to select a
feasible set of frequencies that minimizes the total energy con-
sumption while satisfying hard real-time constraints. They imple-
ment this scheduler in the OKL4 microkernel on the Gumstix plat-
form with the XScale PXA255 processor, and measure the system
power consumption. They conclude that, the good performance
of a microkernel is dependent on the small overhead of context
switches, and a DVFS scheduler introduces large overheads due
to the scheduler complexity. The work does not report energy mea-
surements or real-time measurements.

6. Conclusions
Our work reveals that the actual power savings of RT-DVFS
scheduling algorithms (that we studied) are orders of magnitude
smaller than their (largely simulation-based) savings previously re-
ported in the literature. To illustrate this, Tables 3 and 4 show the
normalized CPU energy consumption and the actual CPU power
consumption of the schedulers (relative to Base-EDF), respectively,
at 70% CPU utilization for the cases when the ACET is 0.3, 0.6,
and 0.9 of the WCET. We observe that algorithms such as Static-
EDF, CC-EDF, and Snowdon-min reduce normalized CPU energy
consumption by 65% to 80% over Base-EDF, for the 0.6 WCET
case, for example. However, we observe (in Table 4) that their ac-
tual energy savings is only in the 10%–12% range. These savings
are smaller than the savings previously reported for these algo-
rithms [29, 4, 22, 40, 41].

Aggressive energy saving algorithms such as LA-EDF, DRA,
DRA-OTE, AGR1, and AGR2 do perform better: they reduce nor-
malized energy consumption by 84%–87% over Base-EDF (for
the 0.6 WCET case). However, their actual energy savings is only
≈15%, which is again smaller than the previously reported sav-
ings [29, 4, 22, 40, 41].

Table 3. Normalized CPU Energy Consumption
Scheduler 0.3 WCET 0.6 WCET 0.9 WCET

Static-EDF 0.373 0.373 0.373
CC-EDF 0.250 0.250 0.328
LA-EDF 0.125 0.125 0.238

Snowdon-min 0.157 0.185 0.238
DRA 0.166 0.166 0.262

DRA-OTE 0.148 0.166 0.262
AGR1 0.140 0.166 0.262
AGR2 0.140 0.166 0.262

This discrepancy can be explained as follows: the CPU’s energy
consumption is given by Ecpu = Pidle ∗ tidle + Pactive ∗ tactive,
where Pidle and Pactive are the idle state and the active state
power consumption of the CPU, respectively, and tidle and tactive

9 2012/2/21

Table 4. Actual CPU Power Consumption
Scheduler 0.3 WCET 0.6 WCET 0.9 WCET

Static-EDF 0.935 0.92 0.914
CC-EDF 0.912 0.89 0.906
LA-EDF 0.872 0.852 0.862

Snowdon-min 0.879 0.877 0.864
DRA 0.872 0.85 0.89

DRA-OTE 0.873 0.853 0.89
AGR1 0.87 0.854 0.863
AGR2 0.87 0.854 0.863

are the time spent in the idle and active states, respectively. If
Pidle � Pactive then it makes more sense to keep tidle high
and tactive low. However RT-DVFS algorithms (almost always)
minimize the idle time. In modern processors, Pidle � Pactive

e.g., Intel i5’s power consumed in the active state ranges from
11.25W to 25W, whereas the energy consumed in the idle state
ranges from 0.3W to 1W. Thus, by reducing the CPU frequency and
increasing tactive, the energy savings obtained by the reduction of
active power consumption can be offset by completing tasks sooner,
by running them at the highest frequency and transitioning to the
idle state earlier, so that tactive decreases.

Therefore, the energy efficiency of RT-DVFS algorithms is
highly dependent on the relative power consumption of the active
and the idle states, which in turn, is dependent on the character-
istics of the platform used. In both the platforms used by us, the
energy efficiency of idle states is very high and consequently, the
power savings obtained, was not high. This might be the case with
most modern processors.

We also observe that the performance of an RT-DVFS algorithm
is highly dependent on the number of frequency steps available on
the processor.

Our RT-DVFS scheduler implementations (in the ChronOS real-
time Linux kernel) are publicly available at chronoslinux.org.

References
[1] T. A. AlEnawy and H. Aydin. On energy-constrained real-time

scheduling. In ECRTS, pages 165–174, 2004.

[2] AMD. AMD fusion mini-itx motherboard, 2011. http://www.
gigabyte.com/press-center/news-page.aspx?nid=963.

[3] H. Aydin, V. Devadas, and D. Zhu. System-level energy management
for periodic real-time tasks. In RTSS, pages 313–322, 2006.

[4] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez. Power-
aware scheduling for periodic real-time tasks. IEEE Trans. Comput.,
53:584–600, May 2004.

[5] T. P. Baker. A stack-based resource allocation policy for realtime
processes. In RTSS, pages 191–200, 1990.

[6] E. Bini, G. Buttazzo, and G. Lipari. Minimizing cpu energy in real-
time systems with discrete speed management. ACM Trans. Embed.
Comput. Syst., 8:31:1–31:23, July 2009.

[7] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic
integrated scheduling of hard real-time, soft real-time, and non-real-
time processes. In RTSS, pages 396–, 2003.

[8] A. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power CMOS
digital design. In IEEE Journal of Solid-State Circuits, volume 27,
pages 473–484, April 1992.

[9] F. Corporation. Fluke 289 true-rms industrial logging mul-
timeter. Available: http://www.fluke.com/fluke/usen/
digital-multimeters/fluke-289.htm?PID=56061, Last ac-
cessed 2012.

[10] F. Dabiri, A. Vahdatpour, M. Potkonjak, and M. Sarrafzadeh. Energy
minimization for real-time systems with non-convex and discrete

operation modes. In DATE, pages 1416–1421, 2009.

[11] M. Dellinger. An experimental evaluation of the scalability of
real-time scheduling algorithms on large-scale multicore plat-
forms. Master’s thesis, Virginia Tech, Blacksburg, VA, USA, 2011.
Available http://scholar.lib.vt.edu/theses/available/
etd-05122011-142219/.

[12] M. Dellinger, P. Garyali, and B. Ravindran. ChronOS Linux: a best-
effort real-time multiprocessor Linux kernel. In DAC, pages 474–479,
2011.

[13] D. Grunwald, C. B. Morrey, III, P. Levis, M. Neufeld, and K. I.
Farkas. Policies for dynamic clock scheduling. In OSDI, pages 6–6,
2000.

[14] W. Horn. Some simple scheduling algorithms. Naval Research
Logistics Quarterly, 21:177–185, 1974.

[15] HP, Intel, et al. Advanced configuration and power interface
specification, 2011. http://www.acpi.info/spec.htm.

[16] C.-H. Hsu and U. Kremer. The design, implementation, and
evaluation of a compiler algorithm for CPU energy reduction. In
PLDI, pages 38–48, 2003.

[17] C.-M. Hung, J.-J. Chen, and T.-W. Kuo. Energy-efficient real-
time task scheduling for a DVS system with a non-DVS processing
element. In RTSS, pages 303–312, 2006.

[18] R. Jejurikar and R. Gupta. Energy-aware task scheduling with task
synchronization for embedded real time systems. In CASES, pages
164–169, 2002.

[19] W. Kim, D. Shin, H.-S. Yun, J. Kim, and S. L. Min. Performance
comparison of dynamic voltage scaling algorithms for hard real-time
systems. In RTAS, pages 219–, 2002.

[20] U. Ko and P. T. Balsara. High-performance energy-efficient d-flip-
flop circuits. IEEE Trans. Very Large Scale Integr. Syst., 8:94–98,
February 2000.

[21] J. Larus. SPIM: A mips32 simulator, 1990. http://pages.cs.
wisc.edu/~larus/spim.html.

[22] M. P. Lawitzky, D. C. Snowdon, and S. M. Petters. Integrating
real-time and power management in a real system. In Workshop on
Operating System Platforms for Embedded Real-Time Applications,
Prague, Czech Republic, 2008.

[23] Linux Kernel Mailing List Post. Cpupowerutils. http://lwn.net/
Articles/433002/, 2011.

[24] S. Liu, Q. Qiu, and Q. Wu. Energy aware dynamic voltage and
frequency selection for real-time systems with energy harvesting. In
DATE, pages 236–241, 2008.

[25] S. Liu, Q. Wu, and Q. Qiu. An adaptive scheduling and voltage/fre-
quency selection algorithm for real-time energy harvesting systems.
In DAC, pages 782–787, 2009.

[26] X. Liu, P. Shenoy, and M. D. Corner. Chameleon: Application-
level power management. IEEE Transactions on Mobile Computing,
7:995–1010, August 2008.

[27] Y.-H. Lu, L. Benini, and G. De Micheli. Power-aware operating
systems for interactive systems. IEEE Trans. Very Large Scale Integr.
Syst., 10:119–134, April 2002.

[28] T. L. Martin. Balancing batteries, power, and performance: system
issues in CPU speed-setting for mobile computing. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, 1999.

[29] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. In SOSP, pages 89–102,
2001.

[30] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos. SESC simulator,
January 2005. http://sesc.sourceforge.net.

[31] S. Saha. An experimental evaluation of real-time DVFS scheduling
algorithms. Master’s thesis, Virginia Tech, Blacksburg, VA, USA,
2011. http://scholar.lib.vt.edu/theses/available/

10 2012/2/21

etd-09122011-125316/unrestricted/Saha_S_T_2011.pdf.

[32] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Trans.
Comput., 39:1175–1185, September 1990.

[33] D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage scheduling
using static timing analysis. In DAC, pages 438–443, 2001.

[34] T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Dynamic power
management for portable systems. In MobiCom, pages 11–19, 2000.

[35] D. C. Snowdon, S. Ruocco, and G. Heiser. Power management and
dynamic voltage scaling: Myths and facts. In Workshop on Power
Aware Real-time Computing, Sep 2005.

[36] A. G. M. Strollo, E. Napoli, and D. De Caro. New clock-gating
techniques for low-power flip-flops. In ISLPED, pages 114–119,
2000.

[37] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced CPU energy. In OSDI, 1994.

[38] Wind River. Wind River Simics, 2012. http://www.windriver.
com/products/simics/.

[39] H. Wu, B. Ravindran, and E. D. Jensen. On bounding energy
consumption in dynamic, embedded real-time systems. In ACM
SAC, pages 933–934, 2006.

[40] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. CPU scheduling
for statistically-assured real-time performance and improved energy
efficiency. In CODES+ISSS, pages 110–115, 2004.

[41] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Energy-efficient, utility
accrual scheduling under resource constraints for mobile embedded
systems. In ACM EMSOFT, pages 64–73, 2004.

[42] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time CPU
scheduling for mobile multimedia systems. In SOSP, pages 149–163.
ACM Press, 2003.

[43] F. Zhang and S. T. Chanson. Processor voltage scheduling for real-
time tasks with non-preemptible sections. In RTSS, pages 235–,
2002.

[44] J. Zhuo and C. Chakrabarti. System-level energy-efficient dynamic
task scheduling. In DAC, pages 628–631, 2005.

[45] J. Zhuo and C. Chakrabarti. Energy-efficient dynamic task scheduling
algorithms for DVS systems. ACM Trans. Embed. Comput. Syst.,
7:17:1–17:25, January 2008.

11 2012/2/21

