
Systor ’12

On Open Nesting in Distributed Transactional Memory

Alexandru Turcu
Virginia Tech
talex@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Abstract
Distributed Transactional Memory (DTM) is a recent but
promising model for programming distributed systems. It
aims to present programmers with a simple to use distributed
concurrency control abstraction (transactions), while main-
taining performance and scalability similar to distributed
fine-grained locks. Any complications usually associated
with such locks (e.g., distributed deadlocks) are avoided.
Building upon the previously proposed Transactional For-
warding Algorithm (TFA), we add support for open nested
transactions. We discuss the mechanisms and performance
implications of such nesting, and identify the cases where
using open nesting is warranted and the relevant parameters
for such a decision. To the best of our knowledge, our work
contributes the first ever implementation of a DTM system
with support for open nested transactions.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming–distributed program-
ming; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming–parallel programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features–concurrent pro-
gramming structures

General Terms Algorithms, Experimentation, Languages,
Performance.

Keywords transactional memory, distributed systems, nested
transactions, open nesting

1. Introduction
Transactional Memory (TM) is a promising model for pro-
gramming concurrency control that is aiming to replace
locks. Distributed locks, the traditional solution for concur-
rency control in distributed systems, can often lead to prob-
lems that are much harder to debug than their multiprocessor

[Copyright notice will appear here once ’preprint’ option is removed.]

counterparts. Issues such as distributed deadlocks and live-
locks can significantly impact programmer productivity, as
finding and resolving the problem is not a trivial task. More-
over, it is easy to accidentally introduce such errors. Addi-
tional difficulties arise when code composability is desired,
because locks would need to be exposed across composition
layers, contrary to the practice of encapsulation. This makes
building enterprise software with support for concurrency
especially difficult, as such software is usually built using
proprietary third-party libraries, often without access to the
libraries’ source code.

To address these problems, Distributed Transactional
Memory (DTM) was proposed as an alternative concurrency
control mechanism [9]. DTM systems can be classified by
the mobility of the transactions or data. In the data-flow
model [9, 15, 22], objects are migrated between nodes to
be operated upon by immobile transactions. Alternatively,
in the control-flow model [7], objects are immobile and
are accessed by transactions using Remote Procedure Calls
(RPCs).

In TM, nesting is used to make code composability easy.
A transaction is called nested when it is enclosed within
another transaction. Three types of nesting models have been
previously studied [7, 13]: flat, closed and open. They differ
based on whether the parent and children transactions can
independently abort:

Flat nesting
is the simplest type of nesting, and simply ignores the ex-
istence of transactions in inner code. All operations are
executed in the context of the outermost enclosing trans-
action, leading to large monolithic transactions. Aborting
the inner transaction causes the parent to abort as well
(i.e., partial rollback is not possible), and in case of an
abort, potentially a lot of work needs to be rerun.

Closed nesting
In closed nesting, each transaction attempts to commit
individually, but inner transactions do not write to the
shared memory. Inner transactions can abort indepen-
dently of their parent (i.e., partial rollback), thus reducing
the work that needs to be retried, increasing performance.

Open nesting
In open nesting, operations are considered at a higher

On Open Nesting in Distributed Transactional Memory 1 2012/2/21

T1

T2

Flat subtx accessing shared data structure T1 successfully commits

T2 must abort while T1 is still executing
T2 may proceed after T1 commits

(a) Flat nesting

T1

T2

Closed subtx accessing shared data structure T1 successfully commits

T2's subtx must abort while T1 is still executing
T2's subtx may proceed after T1 commits

(b) Closed nesting

T1

T2

Open subtx accessing shared data structure

T1 successfully commits

T1 subtx commits and releases isolation

T2 subtx only has to abort
while T1 subtx is executing

T2 subtx may proceed as
soon as T1 subtx commits

T2 successfully
commits

(c) Open nesting

Figure 1. Simple example showing how the execution time-
line for two transactions may differ under flat, closed and
open nesting.

level of abstraction. Open-nested transactions are al-
lowed to commit to the shared memory independently
of their parent transactions, optimistically assuming that
the parent will commit. If however the parent aborts, the
open-nested transaction needs to run compensating ac-
tions to undo its effect. The compensating action does
not simply revert the memory to its original state, but
runs at the higher level of abstraction. For example, to
compensate for adding a value to a set, the system would
remove that value from the set. Although open-nested
transactions breach the isolation property, this potentially
enables significant increases in concurrency and perfor-
mance.

We illustrate the differences between the three nest-
ing models in Figure 1. Here we consider two transac-
tions, which access some shared data-structure using a sub-
transaction. The data-structure accesses conflict at the mem-
ory level, but the conflict is not fundamental (we will ex-
plain fundamental conflicts later, in Section 3.3), and there
are no further conflicts in either T1 or T2. With flat nesting,
transaction T2 can not execute until transaction T1 com-
mits. T2 incurs full aborts, and thus has to restart from the
beginning. Under closed nesting, only T2’s sub-transaction
needs to abort and be restarted while T1 is still executing.

@Atomic T p o p F ro n t () {
i f (t h i s . head == n u l l) r e t r y ;
T r e s u l t = t h i s . head . v a l u e ;
t h i s . head = t h i s . head . n e x t ;
re turn r e s u l t ;

}

Figure 2. Example usage for retry construct. Transactions
are marked using the @Atomic annotation.

@Atomic T c h o o s e F i r s t A v a i l a b l e () {
t r y { re turn queue1 . p o p F r o n t () ; }
o r E l s e { re turn queue2 . p o p F r o n t () ; }

}

Figure 3. Example usage for try...orElse construct.

The portion of work T2 executes before the data-structure
access does not need to be retried, and T2 can thus finish
earlier. Under open nesting, T1’s sub-transaction commits
independently of its parent, releasing memory isolation over
the shared data-structure. T2’s sub-transaction can proceed
immediately after that, thus enabling T2 to commit earlier
than in both closed and flat nesting.

Besides providing support for code composability, nested
transactions are attractive when transaction aborts are ac-
tively used for implementing specific behaviors. For ex-
ample, conditional synchronization can be supported by
aborting the current transaction if a pre-condition is not
met, and only scheduling the transaction to be retried when
the pre-condition is met (for example, a dequeue operation
would wait until there is at least one element in the queue, as
shown in Figure 2). Aborts can also be used for fault man-
agement: a program may try to perform an action, and in the
case of failure, change to a different strategy (try...orElse, ex-
ample in Figure 3). In both these scenarios, performance can
be improved with nesting by aborting and retrying only the
inner-most sub-transaction.

Previous DTM works have largely ignored the subject of
partial aborts and nesting [3, 4, 15, 17]. We extend the TFA
algorithm [17], which provides atomicity, isolation, and con-
sistency properties for flat-nested DTM transactions, to sup-
port open nesting. The resulting algorithm is named Transac-
tional Forwarding Algorithm with Open Nesting(TFA-ON).
We also extend the HyFlow Java DTM framework [17] with
mechanisms to support open nesting. The transactional op-
erations from TFA (most importantly commit and forward)
are updated for open nesting. Abstract locks, and commit
and compensating actions are introduced in HyFlow.

We test our implementation through a series of bench-
marks and observe throughput improvements of up to 167%
in specific cases. We identify the kinds of workloads that are
a good match for open nesting, and we explain how the var-
ious parameters influence the gain (or loss) in throughput.

On Open Nesting in Distributed Transactional Memory 2 2012/2/21

To the best of our knowledge, this work contributes the
first ever DTM implementation with support for open nest-
ing.

The remainder of the paper is organized as follows: Sec-
tion 2 presents related work on nested transactions. The sec-
tion also overviews the TFA algorithm for completeness. In
Section 3, we describe our system model and multi-level
transactions. TFA-ON and its mechanisms and implemen-
tation are presented as an extension to TFA in Section 4. We
report on experimental studies in Section 5. Finally, we con-
clude the paper in Sections 6.

2. Related work
2.1 Nested Transactions
Nested transactions (using closed nesting) originated in
the database community and were thoroughly described by
Moss in [11]. His work focused on the popular two-phase
locking protocol and extended it to support nesting. In ad-
dition to that, he also proposed algorithms for distributed
transaction management, object state restoration, and dis-
tributed deadlock detection.

Open nesting also originates in the database commu-
nity [6], and was extensively analyzed in the context of
undo-log transactions and the two-phase locking proto-
col [21]. In these works, open nesting is used to decompose
transactions into multiple levels of abstraction, and maintain
serializability on a level-by-level basis.

One of the early works introducing nesting to Transac-
tional Memory was done by Moss and Hosking in [13].
They describe the semantics of transactional operations in
terms of system states, which are tuples that group together
a transaction ID, a memory location, a read/write flag, and
the value read or written. They also provide sketches for sev-
eral possible HTM implementations, which work by extend-
ing existing cache coherence protocols. Moss further focuses
on open nested transactions in [12], explaining how using
multiple levels of abstractions can help in differentiating be-
tween fundamental and false conflicts and therefore improve
concurrency.

Moravan et al. [10] implement closed and open nesting
in their previously proposed LogTM HTM. They implement
the nesting models by maintaining a stack of log frames,
similar to the run-time activation stack, with one frame for
each nesting level. Hardware support is limited to four nest-
ing levels, with any excess nested transactions flattened into
the inner-most sub-transaction. In this work, open nesting
was only applicable to a few benchmarks, but it enabled
speedups of up to 100%.

Agrawal et al. combine closed and open nesting by intro-
ducing the concept of transaction ownership [2]. They pro-
pose the separation of TM systems into transactional mod-
ules (or Xmodules), which own data. Thus, a sub-transaction
would commit data owned by its own Xmodule directly
to memory using an open-nested model. However, for data

owned by foreign Xmodules, it would employ the closed-
nesting model and would not directly write to the memory.

From a different perspective, Herlihy and Koskinen pro-
pose transactional boosting [8] as a methodology for im-
plementing highly concurrent transactional data structures.
Boosted transactions act as an abstraction above the physi-
cal memory layer, being similar to open nesting. They also
employ abstract locks for concurrency control in commuta-
tive objects. However, boosting works with an existing con-
current data structure (which it treats as a black box), while
open nesting is used to implement transactional objects from
scratch.

2.2 Transactional Forwarding Algorithm
TFA [16, 18] was proposed as an extension of the Transac-
tional Locking 2 (TL2) algorithm [5] for DTM. It is a data-
flow based, distributed transaction management algorithm
that provides atomicity, consistency, and isolation proper-
ties for distributed transactions. TFA replaces the central
clock of TL2 with independent clocks for each node and
provides a means to reliably establish the “happens be-
fore” relationships between significant events. TFA uses
optimistic concurrency control, buffering all operations in
per-transaction read and write sets, and acquiring the object-
level locks lazily at commit time. Objects are updated once
all locks have been successfully acquired. Failure to acquire
a lock aborts the transaction, releasing all previously ac-
quired locks.

Each node maintains a local clock, which is incremented
upon local transactions’ successful commits. An object’s
lock also contains the object’s version, which is based on the
value of the local clock at the time of the last modification
of that object. When a local object is accessed as part of a
transaction, the object’s version is compared to the starting
time of the current transaction. If the object’s version is
newer, the transaction must be aborted.

Transactional Forwarding is used to validate remote ob-
jects and to guarantee that a transaction observes a consis-
tent view of the memory. This is achieved by attaching the
local clock value to all messages sent by a node. If a remote
node’s clock value is less than the received value, the remote
node would advance its clock to the received value. Upon
receiving the remote node’s reply, the transaction’s starting
time is compared to the remote clock value. If the remote
clock is newer, the transaction must undergo a transactional
forwarding operation: first, we must ensure that none of the
objects in the transaction’s read-set have been updated to
a version newer than the transaction’s starting time (early-
validation). If this has occurred, the transaction must be
aborted. Otherwise, the transactional forwarding operation
may proceed and advance the transaction’s starting time.

We illustrate TFA with an example. In Figure 4, a transac-
tion Tk on node N1 starts at a local clock value LC1 = 19. It
requests object O1 from node N2 at LC1 = 24, and updates
N2’s clock in the process (from LC2 = 16 to LC2 = 24).

On Open Nesting in Distributed Transactional Memory 3 2012/2/21

N1

N2

N3

x
Tk starts at LC=19

Tk requests O1 at LC=24

O1 is updated at LC=14
ver(O1)=14

RC=24 > LC=16
LC updated to 24

RC=14 < LC=24, OK

O2 is updated at LC=21
ver(O2)=21

RC=29 < LC=39

Tk requests O2 at LC = 29 RC=39 > LC=29; LC:= 39, must fwd txn
First validate ver(O1) < start(Tk)

OK, now start(Tk):=39

ver(O1)=14, still
LC updated to 39

other txn upd O1
ver(O1):=40

T1 tries to commit
T1 locks writeset
and validates readset

O1 is invalid because
ver(O1)=40, was 14

Tk aborts

ver(O1)=40

ver(O2)=21

...

Figure 4. Transactional Forwarding Algorithm Example, from [20]

Later, at time LC1=29, Tk requests object O2 from node N3.
Upon receiving N3’s reply, since RC3 = 39 is greater than
LC1 = 29, N1’s local clock is updated to LC1 = 39 and
Tk is forwarded to start(Tk) = 39 (but not before validat-
ing object O1 at node N2). We next assume that object O1

gets updated on node N2 at some later time (ver(O1) = 40),
while transaction Tk keeps executing. When Tk is ready to
commit, it first attempts to lock the objects in its write-set. If
that is successful, Tk proceeds to validate its read-set one last
time. This validation fails, because ver(O1) > start(Tk),
and the transaction is aborted (it will retry later — not shown
in the figure).

We extended TFA with support for closed nesting in [20].
Our current work continues upon [20].

3. System model
3.1 Base model
As in [9], we consider a distributed system with a set of
nodes {N1, N2, · · · } that communicate via message-passing
links. Let O = {O1, O2, ...} be the set of objects accessed
using transactions. Each object Oj has an unique identifier,
idj . For simplicity, we treat them as shared registers which
are accessed solely through read and write methods, but
such treatment does not preclude generality. Each object has
an owner node, denoted by owner(Oj). Additionally, they
may have cached copies at other nodes and they can change
owners. A change in ownership occurs upon the successful
commit of a transaction which modified the object.

Let T = {T1, T2, ...} be the set of all transactions. Each
transaction has an unique identifier. A transaction contains
a sequence of operations, each of which is a read or write
operation on an object. An execution of a transaction ends
by either a commit (success) or an abort (failure). Thus,
transactions have three possible states: active, committed,
and aborted. Any aborted transaction is later retried using
a new identifier.

3.2 Nesting Model
Our nesting model is based on Moss and Hoskin [13]. While
their description uses the abstract notion of system states, we
describe our model in terms of concrete read and write-sets,
as used in our implementation.

As mentioned before, with non-nested TFA, each trans-
action maintains a redo-log of the operations it performs in
the form of a read-set and a write-set. When an object is read
from the globally committed memory, its value is stored in
the read-set. Similarly, when an object is written, the actual
value written is temporarily buffered in the write-set. Subse-
quent reads and writes are serviced by these sets in order to
maintain consistency: two reads of the same object (not sep-
arated by a write within the same transaction) must return the
same value. On abort, the sets are discarded and the transac-
tion is retried from the beginning. On commit, the changes
buffered in the write-set are saved to the globally committed
memory.

With transactional nestings, let parent(Tk) denote the
parent (enclosing) transaction of a transaction Tk. A root
transaction has parent(Tk) = ∅. A parent transaction may
execute sub-transactions using any of the three nesting mod-
els: flat, closed, or open. We denote this by defining the nest-
ing model of any sub-transaction Tk:

nestingModel(Tk) ∈ {CLOSED,OPEN}

Furthermore, root transactions can be considered as a special
case of the OPEN nesting model.

Let’s briefly examine how transaction nesting affects the
four important transactional operations. Reading an object
Ok first looks at the current transaction’s (Tk) read and
write-sets. If a value is found, it is immediately returned.
Otherwise, depending on the transaction’s nesting model,
two possibilities arise:

• For nestingModel(Tk) = OPEN , the object is fetched
from the globally committed memory. This case includes
the root transaction.

On Open Nesting in Distributed Transactional Memory 4 2012/2/21

• For nestingModel(Tk) = CLOSED, the read is at-
tempted again from the context of parent(Tk).

Read operations are thus recursive, going up Tk’s ancestor
chain until either a value is found or an open-nested ances-
tor is encountered. Write operations simply store the newly
written value to the current transaction’s write-set.

The read and write-sets of a transaction Tk are denoted by
readset(Tk) and writeset(Tk), respectively. The commit
of a closed-nested transaction Tk merges readset(Tk) into
readset(parent(Tk)) and writeset(Tk) into
writeset(parent(Tk)) [20]. Open-nested transactions com-
mit to the globally committed memory just like root transac-
tions do. They optionally register abort and commit handlers
to be executed when the innermost open ancestor transac-
tion aborts or respectively, commits. These handlers are de-
scribed in Section 4.3.

3.3 Multi-level transactions
We now introduce the concept of multi-level transactions.
Consider a data-structure, such as a set implemented using
a skip-list. Each node in the list contains several pointers
to other nodes, and is in turn referenced by multiple other
nodes. When a (successful) transaction removes a value from
the skip-list, a number of nodes will be modified: the node
containing the value itself, and all the nodes that hold a refer-
ence to the deleted value. As a result, other transactions that
access any of these nodes will have to abort. This is correct
and acceptable if the transactions exist for the sole purpose,
and only for the duration of the data-structure access oper-
ations. If however, the transactions only access the skip-list
incidentally while performing other operations, aborting one
of them just because they accessed neighboring nodes in the
skip-list would be in vain. Such conflicts are called false-
conflicts: transactions do conflict at the memory level, as one
of them accesses data that was written by the other. However,
looking at the same sequence of events from a higher level
of abstraction (the remove operation on a set, etc.), there is
no conflict because the transactions accessed different items.

It is therefore desirable to separate transactions into mul-
tiple levels of abstraction. By making the operations shorter
at the lower memory level, isolation at that level is released
earlier, thus enabling increased concurrency. This breaches
serializability and must be used with care. Multi-level seri-
alizability is sufficient in most cases, and can be achieved
by reasoning about the commutativity of operations at the
higher level of abstraction. Two such operations are concep-
tually allowed to commute if the final state of the abstract
data-structure does not depend on the relative execution or-
der of the two operations [8]. For example, in deleting two
different elements from a set, the final state is the same re-
gardless of which of the deletes executes first. In contrast,
inserting and deleting the same item from a set can not com-
mute: which of the two operations executes last will deter-
mine the state of the set.

In order to achieve level-by-level serialization, non-
commutative higher-level operations, when executed by two
concurrent transactions, must conflict. Such a conflict is
called fundamental, as it is essential for a correct execu-
tion. One mechanism for detecting fundamental conflicts is
by using an abstract lock. Two non-commutative operations
would try to acquire the same abstract lock. The first one to
execute succeeds at acquiring the abstract lock. The second
operation would be forced to wait (or abort) until the lock
is released. Abstract locks are acquired by open-nested sub-
transactions at some point during their execution. When their
parent transaction commits, the lock can be released. In case
the parent aborts, however, before the lock can be released,
the data-structure must be reverted to its original semantic
state, by performing compensating actions that undo the ef-
fect of the open-nested sub-transaction. Referring back to
the set example, to undo the effect of an insertion, the parent
would have to execute a deletion in case it has to abort.

3.4 Open nesting safety
Multi-level transactions become ambiguous when open sub-
transactions update data that was also accessed by an ances-
tor. As described by Moss [12], TM implementations have
multiple alternatives for dealing with that situation (such as
leaving the parent data-set unchanged, updating it in-place,
dropping it altogether, and others), which may be confus-
ing for the programmers using those implementations. We
thus decide to disallow this behavior in TFA-ON: open sub-
transactions may not update objects which were accessed by
any of their ancestors, and thereby, impose a clear separation
between the multiple transactional levels.

Furthermore, the open nesting model’s correctness de-
pends on the correct usage of abstract locking. Should the
programmers misuse this mechanism, race conditions and
other hard to trace concurrency problems will arise. For
these reasons, previous works have suggested that open-
nesting be used only by library developers [14] – regular
programmers can then use those libraries to take advantage
of open-nesting benefits.

4. TFA-ON, Mechanisms and
Implementation

We first describe TFA-ON, the algorithmic changes that
open nesting imposes on TFA. We then describe key details
of its implementation in the HyFlow DTM framework.

4.1 Transactional Forwarding Algorithm with Open
Nesting (TFA-ON)

We describe TFA-ON with respect to the TFA algorithm
and N-TFA [20], its closed-nesting extension. The low-level
details of TFA were summarized in Section 2.2, and we
omit them here. In TFA-ON, just as in TFA, transactions are
immobile. They are started and executed to completion on
the same node. Furthermore, all sub-transactions of a given

On Open Nesting in Distributed Transactional Memory 5 2012/2/21

c l a s s Txn {

/ / TFA−ON read−s e t v a l i d a t i o n r o u t i n e
v a l i d a t e () {

/ / v a l i d a t e r e a d s e t s from s e l f u n t i l
/ / i n n e r m o s t open a n c e s t o r
Txn t = t h i s ;
do {

i f (! t . ReadSet . v a l i d a t e (
i n n e r O p e n A n c e s t o r . s t a r t i n g T i m e))

a b o r t () ; / / v a l i d a t i o n f a i l e d
t = t . p a r e n t ;
} whi le (t != i n n e r O p e n A n c e s t o r) ;
/ / v a l i d a t i o n s u c c e s s f u l
}

f o r w a r d (i n t r emoteClk) {
i f (remoteClk>i n n e r O p e n A n c e s t o r . s t a r t i n g T i m e))
{ v a l i d a t e () ; / / a b o r t s t x n on f a i l u r e

i n n e r O p e n A n c e s t o r . s t a r t i n g T i m e = remoteClk ;
}
}

/ / TFA−ON commit p r o c e d u r e
commit () {

i f (n e s t i n g M o d e l == OPEN) {
i f (checkCommit ()) {

w r i t e S e t . commitAndPubl ish () ;
h a n d l e r s . onCommit () ;

p a r e n t . h a n d l e r s += myCommitAbortHandlers ;
} e l s e h a n d l e r s . onAbor t () ;
} e l s e i f (n e s t i n g M o d e l == CLOSED) {

/ / merge r e a d S e t , w r i t e S e t , l o c k S e t and
/ / h a n d l e r s i n t o p a r e n t ’ s
}
}

/ / C a l l e d when a b o r t i n g a t r a n s a c t i o n due t o
/ / e a r l y−v a l i d a t i o n / commit f a i l u r e , e t c
a b o r t () {

i f (! c o m m i t t i n g)
h a n d l e r s . onAbor t () ;

throw TxnExcep t ion ;
}

/ / a c q u i r e s l o c k s , v a l i d a t e s read−s e t
checkCommit () {

t r y {
w r i t e S e t . acqLocks () ;
l o c k S e t . acqAbsLocks () ;
v a l i d a t e () ;
re turn true ;

} ca tch (TxnExcep t ion) {
l o c k S e t . r e l e a s e () ;
w r i t e S e t . r e l e a s e () ;
re turn f a l s e ;

}
}

Figure 5. Simplified source code for supporting Open Nesting in TFA’s main procedures.

transaction Tk are created and executed on the same node as
Tk.

Open-nested sub-transactions in TFA-ON are similar to
top-level, root transactions, in the sense that they commit
their changes directly to the shared memory. This affects
the behavior of their closed-nested descendants. Under TFA
and N-TFA, only the start and commit of root transactions
were globally important events. As a result, the node-local
clocks were recorded when root transactions started, and the
clocks were incremented when root transactions committed.
Also, transactional forwarding was performed upon the root
transaction itself.

Under TFA-ON, open-nested sub-transactions are impor-
tant as well: their starting time must be recorded and the
node-local clock incremented upon their commit. Closed-
nested descendants treat open-nested sub-transactions as a
local root: they validate read-sets and perform transactional
forwarding with respect to the closest open-nested ancestor.
Simplified source code of the important TFA-ON procedures
is given in Figure 5.

When transactional forwarding is performed, all the read-
sets up to the innermost open-nested boundary must be
early-validated. Validating read-sets beyond this boundary
is unnecessary, because the transactional forwarding oper-

ation that is currently underway poses no risk of erasing
information about the validity of such read-sets.

4.2 Abstract locks
Additionally, TFA-ON has to deal with abstract lock man-
agement and the execution of commit and compensating ac-
tions. Abstract locks are acquired only at commit time, once
the open-nested sub-transaction is verified to be free of con-
flicts at the lower level. Since abstract locks are acquired in
no particular order and held for indefinite amounts of time,
deadlocks are possible. Thus, we choose not to wait for a
lock to become free, and instead abort all transactions until
the innermost open ancestor. This releases all locks held at
the current abstraction level.

We implemented two variants of abstract locking: read-
/write locks and mutual exclusion locks. Locks are associ-
ated with objects, and each object can have multiple locks.
Our data-structure designs typically delegate one object as
the higher level object, which services all locks for the data-
structure, and its value is never updated (thus never causing
any low-level conflicts).

4.3 Defining transactions and compensating actions
Commit and compensating actions are registered when an
open-nested sub-transactions commits. They are to be ex-

On Open Nesting in Distributed Transactional Memory 6 2012/2/21

new Atomic<Boolean >(Nes t ingModel . OPEN) {
p r i v a t e boolean i n s e r t e d = f a l s e ;
@Override boolean a t o m i c a l l y (Txn t) {
BST b s t = (BST) t . open (” t r e e −1”) ;
i n s e r t e d = b s t . i n s e r t (7 , t) ;
t . acqu i r eAbsLock (b s t , 7) ;
re turn i n s e r t e d ;
}
@Override onAbor t (Txn t) {
BST b s t = (BST) t . open (” t r e e −1”) ;
i f (i n s e r t e d) b s t . d e l e t e (7 , t) ;
t . r e l e a s e A b s L o c k (b s t , 7) ;
}
@Override onCommit (Txn t) {
BST b s t = (BST) t . open (” t r e e −1”) ;
t . r e l e a s e A b s L o c k (b s t , 7) ;
}
} . e x e c u t e () ;

Figure 6. Simplified transaction example for a BST in-
sert operation. Code performing the actual insertion is not
shown.

ecuted as open-nested transactions by the innermost open-
nested ancestor, when it commits, or respectively, aborts.
Closed-nested ancestors simply pass these handlers to their
own parents when they commit, but they have to execute the
compensating actions in case they abort.

We chose to use anonymous inner classes for defining
transactions and their optional commit and compensating
actions. Compared to automatic or manual instrumenta-
tion, our approach enables rapid prototyping as the code
for driving transactions is simple and resides in a single file.
Thus, for using open-nested transactions, one only needs to
subclass our Atomic<T> helper class and override up to
three methods (atomically, onCommit, onAbort). The de-
sired nesting model can be passed to the constructor of the
derived class; otherwise a default model will be used. The
performance impact of instantiating an object for each exe-
cuted transaction is insignificant in the distributed environ-
ment, where the main factor influencing performance is the
network latency.

Figure 6 shows how a transaction would look within our
system. Notice how the onAbort and onCommit handlers
must request (open) the objects they operate on. They cannot
rely on the copy opened by the original transaction, as such
a copy may be out-of-date by the time the handler executes
(automatic re-open may be a way to address this issue in the
future).

4.4 Transaction context stack
Meta-data for each transaction (such as read and write-sets,
starting time, etc.) is stored in Transaction Context objects.
While originally in HyFlow each thread had its own context
object, in order to support nesting, we arrange the context

objects in thread-local stacks. Each sub-transaction (closed
or open) has a context object on the stack. For convenience,
we additionally support flat-nested sub-transactions, which
reuse an existing object from the stack instead of creating a
new one for the current sub-transaction.

5. Experimental analysis
The goals of our experimental study are finding the impor-
tant parameters that affect the behavior of open nesting, and
based on those, identifying which workloads open nesting
performs best in. We evaluate and profile open nesting in our
implementation. We quantify any improvements in trans-
actional throughput relative to flat transactions and com-
pare these with the improvements enabled by closed nest-
ing alone. We focus in our study on micro-benchmarks with
configurable parameters.

5.1 Experimental settings
The performance of TFA-ON was experimentally eval-
uated using four distributed micro-benchmarks including
three distributed data structures (skip-list, hash-table, binary
search tree), and an enhanced counter application.

We ran the benchmarks under flat, closed, and open
nesting for a set of parameters. We measured transactional
throughput relative to TFA’s flat transactions. Each mea-
surement is the average of nine repetitions. Additionally, we
quantify how much time is spent under each nesting model
executing the various components of a transaction execution:

• Committed/aborted transactions.
• Committed/aborted sub-transactions (closed and open-

nesting).
• Committed/aborted compensating/commit actions (open-

nesting only).
• Waiting time after aborted (sub-)transactions (for expo-

nential back-off).

Other data that we recorded includes:

• Number of objects committed per (sub-)transaction.
• Which sub-transaction caused the parent transaction to

abort.

Unfortunately, we cannot compare our results with any
competitor DTM, as none of the two competitor DTM
frameworks that we are aware of support open nesting [3, 4].

The skip-list, hash-table, and BST benchmarks instanti-
ate three objects each, and then perform a fixed number of
random set operations on them using increasing number of
nodes. Three important parameters characterize these bench-
marks:

• Read-only ratio (r) is the percentage of the total transac-
tions which are read-only. We used r ∈ {20, 50, 80}.

On Open Nesting in Distributed Transactional Memory 7 2012/2/21

0 10 20 30 40 50
of nodes

0.8

0.9

1.0

1.1

1.2

1.3

th
ro

ug
hp

ut
 re

la
tiv

e
to

 fl
at

C/N 20% reads
O/N 20% reads
C/N 50% reads
O/N 50% reads
C/N 80% reads
O/N 80% reads

(a) Skip-list

0 10 20 30 40 50
of nodes

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

th
ro

u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

C/N
O/N 20% reads
O/N 50% reads
O/N 80% reads

(b) Hash-table

Figure 7. Performance relative to flat transactions, with c = 3 calls per transaction and varying read-only ratio. Both closed-nesting and
open-nesting are included.

0 10 20 30 40 50
of nodes

0.7

0.8

0.9

1.0

1.1

1.2

1.3

th
ro

u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

C/N
O/N c=2
O/N c=3
O/N c=4
O/N c=8

(a) Hash-table 20% reads

0 10 20 30 40 50
of nodes

0.5

0.6

0.7

0.8

0.9

1.0

1.1
th

ro
u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

C/N
O/N c=2
O/N c=3
O/N c=4
O/N c=8

(b) Hash-table 50% reads

0 10 20 30 40 50
of nodes

0.7

0.8

0.9

1.0

1.1

1.2

1.3

th
ro

u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

C/N
O/N c=2
O/N c=3
O/N c=4
O/N c=8

(c) Skip-list 20% reads

0 10 20 30 40 50
of nodes

0.2

0.4

0.6

0.8

1.0

1.2

th
ro

u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

C/N
O/N c=2
O/N c=3
O/N c=4
O/N c=8

(d) Skip-list 50% reads

Figure 8. Performance relative to flat transactions at a fixed read-ratio with varying number of calls. Closed-nesting is depicted, but the
individual curves are not identified to reduce clutter.

On Open Nesting in Distributed Transactional Memory 8 2012/2/21

0 10 20 30 40 50
of nodes

200

400

600

800

1000

1200

1400

1600

1800

cu
m

u
la

ti
v
e
 e

x
e
cu

ti
o
n
 t

im
e
 (

s)

committed O/N
aborted O/N
committed C/N
aborted C/N
committed F/N
aborted F/N

Figure 9. Time spent in committed vs. aborted transactions, on
hash-table with r = 20 and c = 4. Lower lines (circle markers)
represent time spent in committed transactions, while the upper
lines (square markers) represent the total execution time. The dif-
ference between these lines is time spent in aborted transactions.

• Number of calls (c) controls the number of data-structure
operations performed per test. Each operation is executed
in its own sub-transaction. We used c ∈ {2, 3, 4, 8}.

• Key domain size (k) is the maximum number of objects
in the set. Lower k values lead to increased fundamental
conflicts. Unless otherwise stated, we used k = 100.

The fourth benchmark (enhanced counter) was designed
as a targeted experiment where the access patterns of a
transaction are completely configurable. Transactions access
counter objects which they read or increment. Transactions
are partitioned into three stages: the preliminary stage, the
sub-transaction stage, and the final stage. The first and last
stages are executed as part of the root transaction, while
the middle runs as a sub-transaction. Each stage accesses
objects from a separate pool of objects. The number of
objects in the pool, the number of accesses, and the read-
only ratio are configurable for each stage. We also enable
operation without acquiring abstract locks, thus emulating
fully commutative objects.

Our experiments were conducted on a 48-node testbed.
Each node is an AMD Opteron processor clocked at 1.9GHz.
We used the Ubuntu Linux 10.04 server OS and a network
with 1ms end-to-end link delay.

5.2 Experimental results
For all the data-structure micro-benchmarks, we observed
that open-nesting’s best performance improvements occur
at low read-only ratio workloads. For brevity, we only fo-
cus on skip-list and hash-table in this paper. The BST plots,
and other plots that we considered redundant for inclusion
in the paper, can be found in the technical report available at
our website [19]. Figure 7 shows how open-nesting through-
put climbs up to a maximum and then falls off faster than

either flat or closed nesting as contention increases due to
more nodes accessing the same objects. Figure 7 also shows
the effect that read-only ratio has on the throughput. It is
noticeable that on read-dominated workloads, open-nesting
actually degraded performance. Closed-nesting constantly
stayed in the 0-10% improvement range throughout our ex-
periments (closed nesting behavior is uninteresting and will
henceforth be either omitted from the plots or shown without
identification markers to reduce clutter).

Focusing on write-dominated workloads (r = 20 and r =
50), Figure 8 shows how the maximum performance benefit
of open nesting generally increases as the number of sub-
transactions increases. For more sub-transactions however,
the benefit of open nesting occurs at fewer nodes and falls off
much faster with increasing number of nodes. The maximum
improvements we have observed (with reduced key-domain,
k = 100) are 30% on skip-list with r = 20 and c = 4, 31%
on hash-table with r = 20 and c = 8, and 29% on BST
with r = 20 and c = 8 [19]. On skip-list it is noticeable
that at high contention (c = 8) the region of maximum
benefit disappears altogether and the performance decreases
monotonously.

These observations can be explained by examining how is
the time spent when using open-nesting. Figure 9 shows how
the time taken by successfully committed transactions under
open nesting and closed nesting increases at a similar rate.
However, open nesting has a significant overhead, caused
by the increased rate of commits. This effect is more pro-
nounced in read-dominated workloads, where object updates
are rare, and as a result, read-set early-validations under flat-
nesting are also rare (early-validations are performed when
a commit is detected at another node). In open-nesting how-
ever, the read-set must be validated for every sub-transaction
commit, thus adding multiple network accesses to the cost
of successful transactions. Figure 10 shows that the aver-
age overheads of open-nesting relative to flat transactions
(50-80% on hash-table and 40-50% on skip-list) are signif-
icant and higher than that of closed nesting (3-7% on hash-
table and 5-16% on skip-list). We observe the overheads are
benchmark dependent, and are lower for workloads which
access more objects in every sub-transaction. This is appar-
ent when comparing Figures 10(b) and 10(a), and further ex-
periments we have performed with higher nodal levels on
skip-list [19] confirm our observation.

On the other hand, the time taken by aborted transactions
in open-nesting (Figure 9) is much lower at low node-counts,
but increases rapidly for higher node-counts. Examining the
average time taken by the various stages of a single transac-
tion (Figures 11(a) and 11(b)), we see that the duration of a
single transaction (committed or aborted) does increase with
increasing number of nodes, but this increase is relatively
small. Moreover, individual failed transactions consistently
take less time than committed ones. Thus, the rapid increase
in total time taken by aborted transactions (and therefore

On Open Nesting in Distributed Transactional Memory 9 2012/2/21

0 10 20 30 40 50
of nodes

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

re
la

ti
v
e
 d

u
ra

ti
o
n
 o

f
co

m
m

it
te

d
 t

x

c=2, r=50
c=2, r=20
c=3, r=50
c=3, r=20
c=4, r=50
c=4, r=20
c=8, r=50
c=8, r=20

(a) Hash-table

0 10 20 30 40 50
of nodes

1.0

1.2

1.4

1.6

1.8

2.0

2.2

re
la

ti
v
e
 d

u
ra

ti
o
n
 o

f
co

m
m

it
te

d
 t

x

c=2, r=50
c=2, r=20
c=3, r=50
c=3, r=20
c=4, r=50
c=4, r=20
c=8, r=50
c=8, r=20

(b) Skip-list

Figure 10. Overhead of successful open-nested transactions. Plotted is the relative ratio of the average time taken by successful
open-nested transactions to the average time taken by successful flat transactions. Closed-nested transactions are also shown,
with dotted markers and without identification.

(a) Committed transactions (b) Aborted transactions due to abstract lock acquisition failure

Figure 11. Breakdown of the duration of various components of a transaction under open-nesting, on hash-table with r = 20 and c = 4.

a decrease in overall throughput) can only be explained if
there is a significant increase in the number of aborts. The
data upholds this hypothesis, as shown in Figure 12. Note
that in our data-structure benchmarks under open-nesting, all
transaction (full) aborts are caused by abstract lock acquisi-
tion failure. Abstract locks are acquired eagerly (on-access)
and thus when fundamental conflicts are frequent, will cause
more aborts and lower performance compared to TFA’s de-
ferred lock acquisition.

Intuitively, the number of aborts is lower when there are
fewer sub-transactions competing for the same number of
locks, or when the number of available abstract locks is in-
creased. These effects are also illustrated in Figure 12. In-
creasing the number of calls leads to a rapid increase in the

number of aborts. However, the key space k has a more pro-
nounced effect. Setting k = 1000 reduced the frequency of
fundamental conflicts and abstract lock contention. As a re-
sult, the number of aborts as compared to other configura-
tions in Figure 12 became negligible, and thus the perfor-
mance increase of open nesting is more stable and more sig-
nificant than for the cases we previously discussed. In Fig-
ure 13, we show throughput increase up to 51% on Skip-list
(at c = 4 and r = 20) and up to 167% on Hash-table (at
c = 8 and r = 20). Benefits for open-nesting become possi-
ble even in non-write-dominated workloads: with c = 3 on
skip-list, we have found 12% improvement at r = 80 and
21% improvement at r = 50 [19].

On Open Nesting in Distributed Transactional Memory 10 2012/2/21

(a) Hash-table

0 10 20 30 40 50
of nodes

0

2000

4000

6000

8000

10000

12000

14000

#
 o

f
tr

a
n
sa

ct
io

n
s

committed
aborts r=50, c=2, k=100
aborts r=20, c=2, k=100
aborts r=50, c=3, k=100
aborts r=20, c=3, k=100
aborts r=50, c=4, k=100
aborts r=20, c=4, k=100
aborts r=20, c=4, k=1000

(b) Skip-list

Figure 12. Number of aborted transactions under open-nesting, with various parameters. The figure shows the effect of read-only ratio,
number of calls, and key domain size. Note that all aborts depicted in this plot are full aborts due to abstract lock acquisition failure. The
number of committed transactions is fixed for each experiment.

0 10 20 30 40 50
of nodes

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

th
ro

u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

C/N
O/N c=2
O/N c=3
O/N c=4

(a) Skip-list

0 10 20 30 40 50
of nodes

0.5

1.0

1.5

2.0

2.5

3.0

th
ro

u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

C/N
O/N c=2
O/N c=3
O/N c=4
O/N c=8

(b) Hash-table for r=20

Figure 13. Throughput relative to flat nesting with increased key space k = 1000 and write-dominated workloads r = 20.

In our enhanced counter micro-benchmark we observed
improvements consistent with our previous findings (plot
in [19]). However, these improvements only manifested if
the root transaction does not experience significant con-
tention after the open-nested sub-transaction commits. Any
increase in contention at this stage quickly leads to perfor-
mance degradation. This result is in agreement with the the-
ory, because by releasing isolation early, open-nesting opti-
mistically assumes the parent will commit. Increased con-
tention after the open-nested sub-transaction comes against
this assumption.

In the context of this benchmark we also briefly experi-
mented with fully commutative objects, by not acquiring ab-
stract locks at all. For our particular case, this resulted in a

further 20-30% performance benefit for open-nesting. Better
improvements are however entirely possible if the post-sub-
transaction contention is even lower (in our test, a majority
of aborts were caused by post-sub-transaction contention).

6. Conclusions
We presented TFA-ON, an extension of the Transactional
Forwarding Algorithm that supports open nesting in a Dis-
tributed Transactional Memory system. We implemented
TFA-ON in the HyFlow DTM framework, thus providing
(to the best of our knowledge) the first-ever DTM imple-
mentation to support open nesting. Our TFA-ON implemen-
tation enabled up to 30% speedup when compared to flat
transactions, for write-dominated workloads and increased

On Open Nesting in Distributed Transactional Memory 11 2012/2/21

fundamental conflicts. Under reduced fundamental conflicts
workloads, speedup was as high as 167%.

We determined that open nesting performance is limited
by two factors: commit overheads and fundamental conflict
rate. Fundamental conflicts limit the scalability of open nest-
ing at higher node-counts, and depend on the available key
space for abstract locking. Commit overheads determine the
baseline performance of open nesting, at lower node counts,
under reduced contention. Commit overheads are significant
under read-dominated workloads, and are also influenced by
the number of objects accessed in sub-transactions. Further-
more, we confirm that open nesting does not apply well to
workloads which incur significant contention after the open-
nested sub-transaction commits.

References
[1] 24th IEEE International Symposium on Parallel and Dis-

tributed Processing, IPDPS 2010, Atlanta, Georgia, USA, 19-
23 April 2010 - Conference Proceedings, 2010. IEEE.

[2] K. Agrawal, I.-T. A. Lee, and J. Sukha. Safe open-nested
transactions through ownership. In D. A. Reed and V. Sarkar,
editors, PPOPP, pages 151–162. ACM, 2009. ISBN 978-1-
60558-397-6.

[3] A. Bieniusa and T. Fuhrmann. Consistency in hindsight: A
fully decentralized stm algorithm. In IPDPS DBL [1], pages
1–12.

[4] N. Carvalho, P. Romano, and L. Rodrigues. A generic frame-
work for replicated software transactional memories. In NCA,
pages 271–274. IEEE Computer Society, 2011. ISBN 978-1-
4577-1052-0.

[5] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii.
In S. Dolev, editor, DISC, volume 4167 of Lecture Notes in
Computer Science, pages 194–208. Springer, 2006. ISBN 3-
540-44624-9.

[6] H. Garcia-Molina. Using semantic knowledge for transaction
processing in distributed database. ACM Trans. Database
Syst., 8(2):186–213, 1983.

[7] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory,
2nd edition. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2010.

[8] M. Herlihy and E. Koskinen. Transactional boosting: a
methodology for highly-concurrent transactional objects. In
S. Chatterjee and M. L. Scott, editors, PPOPP, pages 207–
216. ACM, 2008. ISBN 978-1-59593-795-7.

[9] M. Herlihy and Y. Sun. Distributed transactional memory for
metric-space networks. In P. Fraigniaud, editor, DISC, volume
3724 of Lecture Notes in Computer Science, pages 324–338.
Springer, 2005. ISBN 3-540-29163-6.

[10] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D.
Hill, B. Liblit, M. M. Swift, and D. A. Wood. Supporting
nested transactional memory in logtm. In J. P. Shen and
M. Martonosi, editors, ASPLOS, pages 359–370. ACM, 2006.
ISBN 1-59593-451-0.

[11] J. E. B. Moss. Nested transactions: An approach to reliable
distributed computing, 1981.

[12] J. E. B. Moss. Open nested transactions: Semantics and sup-
port (poster). In Workshop on Memory Performance Issues,
Feb 2006.

[13] J. E. B. Moss and A. L. Hosking. Nested transactional mem-
ory: Model and architecture sketches. Sci. Comput. Program.,
63(2):186–201, 2006.

[14] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L.
Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman. Open
nesting in software transactional memory. In K. A. Yelick and
J. M. Mellor-Crummey, editors, PPOPP, pages 68–78. ACM,
2007. ISBN 978-1-59593-602-8.

[15] P. Romano, L. Rodrigues, N. Carvalho, and J. P. Cachopo.
Cloud-tm: harnessing the cloud with distributed transactional
memories. Operating Systems Review, 44(2):1–6, 2010.

[16] M. M. Saad. Hyflow: A high performance distributed software
transactional memory framework. Master’s thesis, Virginia
Tech, April 2011.

[17] M. M. Saad and B. Ravindran. Supporting stm in distributed
systems: Mechanisms and a java framework. In TRANSACT
(ACM SIGPLAN Workshop on Transactional Computing), San
Jose, California, USA, June 2011.

[18] M. M. Saad and B. Ravindran. Transactional forwarding
algorithm. Technical report, Virginia Tech, January 2011.

[19] A. Turcu and B. Ravindran. On open nesting in distributed
transactional memory. Technical report, Virginia Tech, 2012.
URL http://hyflow.org/hyflow/chrome/site/pub

/opennesting-systor12-tech.pdf.

[20] A. Turcu, B. Ravindran, and M. M. Saad. On closed nesting
in distributed transactional memory. In TRANSACT, 2012.

[21] G. Weikum. Principles and realization strategies of multilevel
transaction management. ACM Trans. Database Syst., 16(1):
132–180, 1991.

[22] B. Zhang and B. Ravindran. Dynamic analysis of the relay
cache-coherence protocol for distributed transactional mem-
ory. In IPDPS DBL [1], pages 1–11.

On Open Nesting in Distributed Transactional Memory 12 2012/2/21

