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ABSTRACT

Hardware vendors constantly design new architecture extensions to
improve software security. Due to intellectual property protection
and architecture design issues, these hardware extensions are often
CPU-specific. This creates an availability gap between different
CPU types (security extensions) and software code that runs on
top. This is particularly an issue for low-end, embedded devices as
they often utilize wimpy CPU cores. This paper aims to bridge this
availability gap for security-related CPU extensions, focusing on
low-end embedded devices’ access to hardware trusted execution
environments (TEEs). We present PorSGX, a framework to trans-
parently offload security-sensitive workloads to a remote enclave
of a centralized edge server. The low-end embedded devices act as
clients, taking advantage of hardware security features provided
by the edge server. We have built an early prototype of PorSGX on
top of an open-sourced hardware-agnostic Open Enclave SDK [21].
Any application written using the Open Enclave SDK can lever-
age the framework without modifying source code. We evaluate
our prototype on a simulated IoT/edge computing environment (a
Raspberry Pi and an SGX-enabled laptop). The result shows that
PorSGX has reasonable performance overhead but secures confi-
dential computations running on the Raspberry Pi.
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1 INTRODUCTION

The hybrid-CPU architecture environment has gained more at-
tention due to the growing popularity of mobile computing, the
internet of things (IoT), machine learning, and data centers. Many
new computing patterns have been developed. For example, an
edge server can be a hub for smart home devices to process in-
formation [28]. An ARM-based smart NIC can process distributed
transactions [24] or run network server applications [26]. The work-
loads on these new computing environments are often split across
the hybrid-CPU architecture boundary. As a result, very few exist-
ing software security models can apply to such workloads.
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Some barriers hinder securing a program on a hybrid-CPU ar-
chitecture. For example, several existing software protection tech-
niques require architecture-specific hardware features [3, 12, 35],
but lacks an effective way to utilize them to protect software run-
ning on a hybrid-CPU architecture. Furthermore, code splitting
and data movement are difficult for a hybrid-CPU architecture.
This is partly because many heterogeneous architecture nodes are
cache-incoherent; moving sensitive data closer to a CPU core with
a particular security extension requires code instrumentation and
data synchronization. Thus, few works have considered software
security enhancement for executing code across heterogeneous
cores.

One way to solve this is to build a universal API for different
CPU types and security extensions [8, 18, 21]. Open Enclave is such
a project aiming to build a universal programming interface by
abstracting different enclave types of various architectures [21].
Although the goal is ambitious, supporting multiple enclave types
with a single API seems hard as, e.g., Open Enclave developers
recently confirmed that ARM TEE support is still under develop-
ment [7]. Other research efforts, such as FlexOS [18], build an
abstraction for each memory isolation extension so that users can
switch between different protection primitives at deployment time.
However, FlexOS’s approach only works on a single machine node
(one architecture) with different isolation primitives. It cannot be
easily applied to a smart NIC or an IoT/edge environment of varying
CPU types.

This paper presents our early work on bridging the availability
gap of security-related CPU extensions in a hybrid-architecture en-
vironment. We use the hardware enclave as an example and present
the design and implementation of PorSGX, a framework to securely
offload security-sensitive computations from low-end CPU cores to
remote CPU cores with hardware enclave support. PorPSGX mainly
consists of two parts: an extended version of the Open Enclave SDK
and a user-space PorSGX code monitor. Applications written using
the Open Enclave SDK can directly run on low-end CPU cores and
transparently offload their confidential computations to a remote
node with SGX support.

The PorSGX monitor is implemented as a user-space program
and runs in a separate address space from the target process. The
PoprSGX monitor transparently maintains a synchronized shared
memory region between cache in-coherent computing nodes. A
page update on one node will be transparently synchronized with
the other node. The PorSGX monitor leverages a recent kernel
feature named userfaultfd [23] to delegate page faults to the
user-space monitor; thus, PopPSGX does not require any kernel mod-
ifications. We have supported several applications from SPEC CPU
2017, a web server, and sample programs from the Open Enclave
SDK. We ran the experiments on a simulated IoT/edge computing
environment (a Raspberry Pi and an SGX-enabled laptop) using
PorSGX.
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In summary, we make the following contributions:

e We explore the research space and design requirement of
utilizing hardware security extensions on cache-incoherent,
heterogeneous architectures to secure program code and
data;

o We use the hardware enclave as an example to demonstrate
the feasibility of such a vision and present PorSGX for se-
curely offloading confidential computations to a remote en-
clave across different architectures;

e We extend a popular hardware-agnostic open-source Open
Enclave SDK to ease the integration of PoPSGX with security-
sensitive applications;

e We evaluate PorSGX on a Raspberry Pi and an SGX-enabled
laptop using SPEC CPU 2017 and a web server; the results
show that PorSGX can protect encryption keys on low-end
embedded devices from Heartbleed-alike attacks (CVE-2014-
0160) with a reasonable performance overhead.

The rest of the paper is organized as follows. Section 2 describes
the background and motivation. We describe the design and im-
plementation of PoPSGX in Section 3. In Section 4, a number of
experiments are carried out to analyze security and performance
aspects. We summarize related work and discuss open questions
and future work in Section 5. Finally, we conclude in Section 6.

2 BACKGROUND AND MOTIVATION

The Trusted Execution Environment (TEE) is a hardware sandbox
to safeguard an application’s security-sensitive code and data [34].
In the TEE model, application code and data is split into a trusted
part (enclave) and an untrusted part (host). Functions that handle
confidential data are written as enclave code. At runtime, the hard-
ware TEE (e.g., Intel SGX) enforces memory and computation safety
for the trusted component. Should the host need to access enclave
data, it will have to require explicit authorization from the enclave,
which exposes a list of functions that can be called from the outside,
known as ecalls. Similarly, the host side of the application includes
a list of functions that can be called from the enclave, referred to as
ocalls. The ecall and ocall interfaces are defined by an enclave
definition language (EDL) file. Both Intel SGX SDK and the Open
Enclave SDK provide tools (e.g., oeedger8r) to convert a . ed1 file
into interface files for enclaves and host code to communicate.
Although the general idea of TEE has gained traction, different
hardware vendors have their own hardware implementation of
enclaves (e.g., Intel SGX [14], ARM TrustZone [2], AMD SEV [1],
RISC-V Keystone [17]). The different API specifications increases
the challenge in developing trusted applications. This is the primary
motivation behind projects such as the Open Enclave project [21]
and the Asylo project [8], which aim to make enclave deployment
flexible. For example, Open Enclave is an open-source and hard-
ware agnostic API interface (SDK) for enclave development. Open
Enclave was initially designed to support Intel SGX and ARM Trust-
Zone as the enclave targets. However, due to the different hardware
interfaces, at the time of writing this paper, the ARM TrustZone is
not fully supported yet [7]. Besides the various hardware interfaces,
hardware enclaves are not ubiquitous. There is a lack of enclave
support for low-end embedded devices. Furthermore, Intel plans
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only to support SGX on server CPUs while deprecating SGX sup-
port on its 11th and 12th-gen desktop CPUs [27]. Thus, there is a
need to support existing confidential computation applications and
their use scenarios on devices without hardware TEE support.

DSM and userfaultfd: Distributed shared memory (DSM) is a
form of memory architecture where physically separated memo-
ries can be addressed as a single shared address space [22]. DSM
can be implemented in either hardware or software. Examples of
hardware-based DSM include the cache-coherent hardware for
uniform memory access (cc-NUMA) and the network interface con-
troller card. Software-based DSM can be implemented in different
ways. For example, a modified kernel handles page fault caused by
memory modifications on remote nodes, following an invalidation-
based MSI protocol [16]. We argue that existing designs are too
heavy-weight and cannot be directly applied for low-end CPU
cores. In our design, we leverage the existing Linux kernel inter-
faces, userfaultfd and ptrace, for lightweight shared memory
between nodes.

Userfaultfd is a Linux kernel facility that allows code to handle
page faults in userspace. It allows an application to register re-
gions of memory with a file descriptor. When a page fault happens
(e.g., when some memory has not been loaded into memory), the
application is notified of it and is able to serve the fault. Once a
userfaultfd file descriptor is opened, it can also be passed to a
manager process using UNIX domain sockets so that the same man-
ager process can handle the page faults of a multitude of different
processes [15].

3 SYSTEM DESIGN

PorSGX aims to transparently offload confidential computations to
a computing node with SGX support. To achieve this, PoPSGX needs
to transparently split the code and data into different nodes and
later synchronize the results back. Figure 1 depicts an overview of
PopSGX running on cache-incoherent heterogeneous cores. PorSGX
is mainly composed of two components: a PorPSGX monitor for ex-
ecution monitoring and synchronization, and an extended Open
Enclave SDK for enclave/host code split across heterogeneous-ISA
nodes.

A security-sensitive application running on low-end CPU cores
behaves like a client, while the actual enclave code runs on SGX-
enabled cores. A PoPSGX monitor intercepts the ecall/ocall exe-
cution and redirects the control flow across the nodes. The PorSGX
monitor handles the page faults from the target process’s specific
memory regions and maintains a distributed shared memory region
to synchronize the data. Thus, the target application is transpar-
ently aware of any memory updates caused by the remote enclave
execution. The PorSGX monitor is designed as a userspace pro-
gram that runs on commodity software/hardware stacks to ease
deployment.

Cross-architecture enclave code generation. The Open Enclave
SDK can only generate the enclave/host code for x86_64 architec-
tures at the time of writing this paper. However, application code
must be compiled and split on different architectures. To solve
this issue, we extended the Open Enclave SDK and automatically
generated the cross-architecture host/enclave code.
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Figure 1: Overview of PoPSGX design.

SGX SDKs allow users to define the enclave interfaces and pro-
vide tools to transform the enclave interfaces into auxiliary interface
files (i.e., x_u.c, *_t.c, *_args.h when using the Open Enclave
SDK) [21]. These auxiliary files contain the trampoline code to
the enclave functions, the function table for enclaves to call the
host (including system calls), data structures of operating system
resources, and code for parameter marshaling. PorPSGX extends
this SDK framework.

As mentioned earlier, the enclave/host code generation mainly
consists of two steps: generating the auxiliary interface files from
the .edl file, and host/enclave code compilation and binary genera-
tion. PopSGX modifies this process and instruments the code for
running on heterogeneous architectures. Specifically, PorSGX pro-
vides a helper library for host code generation. The helper library
replaces the ecall functions with a dispatcher function. On each
ecall to the enclave, the dispatcher function looks up the calling ID,
marshals the function parameters, and forwards the ecall request
to the PopSGX monitor. This is achieved by raising a user-defined
signal, which is captured by the PoPSGX monitor. Note that ecall
replacement is realized by modifying the oeedger8r tool that gen-
erates the SGX auxiliary interface files. This process is transparent
to the application source code.

PopSGX does not modify enclave code generation. Instead, it cre-
ates a proxy on the server node that loads the enclave into memory.
The proxy also handles ecall requests from a remote node and for-
wards ocalls back. Although the overall software stack is complex,
PopSGX does not burden code development and deployment. This
is achieved by the lightweight userspace PorPSGX monitor.

PorSGX monitor. The PorPSGX monitor runs as a separate pro-
cess from the target application but maintains a distributed shared
memory for the target program. PopPSGX uses a kernel interface,
ptrace [33], to monitor code execution and synchronize the mem-
ory content of the target. ptrace is widely used by debuggers to
inspect and control the execution of tracees. ptrace allows a tracer
(i.e., the POPSGX monitor) to intercept signals from the tracee, read
tracee’s memory contents, and modify its program states (e.g., reg-
ister values) [33].

Figure 2 demonstrates PoPSGX monitor’s design. Users launch
the target program as a child process of PoPSGX monitor. Next,
the PoPSGX monitor reads the process information from the /proc
filesystem and then enters an event-loop. The PorSGX monitor
receives a signal when the host program issues an ecall. For the
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Figure 2: PopSGX monitor for userspace DSM support.

ecalls that only contain values, the PorSGX monitor directly for-
wards the ecall request to the remote server. For ecalls that
contain both value and memory pointer as arguments, the ecall
forwarding becomes tricky because the other node does not have
access to the same virtual memory regions. Consequently, PorSGX
needs to synchronize the memory pages used for the ecall/ocall
transaction on both sides of the connection.

To solve this issue, the PoPSGX monitor creates a thread for han-
dling page faults caused by remote enclave execution. The PorSGX
monitor registers the memory region used by the ecall and then
marks it as read-only. Whenever one node modifies the pages, the
page fault handler captures the event and broadcasts the modi-
fication to the other node. The counterpart node invalidates the
pages. The PopSGX monitor uses this invalidation-based approach
to transparently synchronize the memory contents of the target
application. Currently, we have implemented a simpler version of a
userspace DSM (u-DSM in Figure 2) that copies the pages directly
for ecall/ocalls without considering the read/write details to
memory.

Note that the userfaultfd file descriptor can only be created
within the target process’s address space. To solve this issue, cur-
rently, we leverage the instrumented auxiliary interface files gen-
erated by our modified oeedger8r tool to create the userfaultfd
descriptor and then use a Unix Domain Socket (UDS) to pass the file
descriptor to the PopSGX monitor process. Future improvements
could use the compel library from the CRIU project to implant par-
asite code into applications directly from the PopSGX monitor’s
address space [5, 20]. In this way, userfaultfd descriptor creation
will be fully transparent to the target process.

4 PRELIMINARY EVALUATION

We now present our preliminary evaluation of PopSGX from secu-
rity and performance aspects. We simulated an IoT/edge computing
scenario using a Raspberry Pi 4 Model B as the client and a Lenovo
ThinkPad as the server, both running Ubuntu 20.04 as the operating
system. Table 1 shows the experimental setup.

We first examined the CVE list regarding the sensitive data leak-
age on embedded and IoT devices, and found at least 7 CVEs in
the past five years [6]. Next, we reproduced the heartbleed attack
on a Raspberry Pi and used PorSGX to prevent it. Heartbleed is a
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Table 1: Experimental setup

[ Description [ Lenovo ThinkPad [ Raspberry Pi 4 ]

CPU Core 19-9880H Cortex-A72 (ARMv7/v8)
Cores 8 (16 HT) 4
Clock (GHz) 2.3 1.5
RAM 16 GB 8 GB
Intel SGX Yes No
Interconnect Wireless network (IPv4/IPv6)

vulnerability in OpenSSL 1.0.1 through 1.0.1f (CVE-2014-0160). In
particular, it is a buffer overflow that allows an attacker to overread
the server’s memory. The flaw is triggered when a client tells the
server to send a message of a certain amount of bytes, but then
sends a shorter message. An unpatched OpenSSL library will not
check the length of the data but reads the data required by the
client from memory and sends it back. We replicated the attack
with a vulnerable version of the OpenSSL (version 1.0.1) on an SSL
server running on the Raspberry Pi. Lastly, we repeated the experi-
ment and protected the SSL keys using PopSGX. In our experiment,
we offload the SSL key’s access/store to the SGX node, preventing
Heartbleed.

Process isolation mechanisms guarantee security of the PoPSGX
monitor. The PorPSGX monitor runs in a separate address space
from the target program so that an attacker cannot directly access
the monitor’s code to hijack the monitor. The target process is
unaware of the underlying memory page synchronization mecha-
nisms. When it passes the parameters to a remote enclave through
ecalls, the pages are automatically shared between two nodes. This
is achieved by the userfaultfd running inside the monitor pro-
cess that tracks the page faults. An attacker may potentially raise a
malicious signal as a fake ecall. In that case, the PorSGX monitor
can maintain an allowlist of legal ecall locations and raise an alert
when receiving a SIGUSR other than from these locations.

To understand the performance impact of PorSGX, we ported
two sample programs from the Open Enclave SDK (hello world
and file encryptor), one open-sourced computer vision application
(openFABMAP [13]), and six C/C++ applications from the SPEC
CPU 2017 benchmark suite using PopSGX. There are about 8%
performance overhead for hello world, file encryptor, and open-
FABMAP applications. This is likely because we only insert a single
ecall/ocall pair during whole program execution. The single
ecall/ocall execution does not significantly affect the overall
performance. We also evaluated the execution time of running each
SPEC CPU application natively on the Raspberry Pi, and the time
for offloading five ecall/ocalls, and 50 ecall/ocalls to a remote
SGX machine node, respectively. Figure 3 shows the normalized re-
sults. We found that more ecall/ocalls incur larger performance
overhead. In general, applications with longer execution time have
relatively less performance overhead. Ecalls with more param-
eters or a larger memory footprint will have more considerable
performance overhead (possibly because of more memory pages
to be synchronized). However, from our previous research effort
on DSM, the overall performance can be significantly improved if
the network connection is faster [16]. We expect that deploying
PorSGX on closely-coupled devices (e.g., a SmartNIC) will have
better performance.
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CPU 2017 on PorSGX.

5 RELATED WORK AND DISCUSSION

Several existing works aim to enable applications running on CPUs
of heterogeneous-ISAs by dynamic binary translation (DBT) [10],
code offloading [30], and code migration [4, 9]. In particular, dy-
namic binary translation takes short code sequences (i.e., basic
blocks) and translates sequences of instructions from a source in-
struction set to the target instruction set [10]. In [30], Wang et
al. propose cross-ISA binary offloading, which leverages a DBT
engine to offload code to a server to reduce energy consumption of
mobile devices. Popcorn Linux bridges the programmability gap for
applications running on heterogeneous-ISA CPUs using a compiler
that generates “migratable” binaries [4]. A kernel-space DSM is
also implemented to allow the migrated code to synchronize stack,
heap, or other global data [4, 16]. HeterSec is another related work
that diversifies the program state using heterogeneous CPUs [31].
However, HeterSec cannot handle architecture-specific code. Unlike
these works, PorSGX is designed to offload confidential compu-
tations in heterogeneous CPUs. PorSGX is also implemented as
a lightweight approach, thus applications written using the Open
Enclave SDK can be directly ported without any modification.

The second category of related work focuses on improving the
usability of hardware enclaves. As mentioned earlier, Open En-
clave [21] and Asylo [8] are two open-source projects aiming to
build portable enclave applications. Asylo provides application
developers with choices of security backends (e.g., TEEs or VMs).
Asylo also uses a secure enclave gRPC channel to transit data [8]. In
contrast, PopPSGX implements a userspace DSM layer, which enables
transparent offloading of enclaves. Rust-SGX [29] and EGo [25] are
two projects that extend the SGX programming interface to other
high-level memory-safe languages. Rust-SGX creates a secure bind-
ing for Rust applications to utilize Intel SGX APIs and libraries
written in C/C++, and formally verifies the memory model [29].
PorSGX, on the other hand, transparently binds low-end devices
with remote hardware enclaves. Although currently PorSGX only
supports C/C++ applications, we believe that porting SGX SDK and
the monitor to Rust and Go is feasible.
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SGXJail is another related work that isolates the enclave within
a sandbox process [32]. SGX]Jail also forwards ecall/ocall requests
through a dispatcher; thus, SGXJail can prevent a malicious en-
clave from compromising the host code. In contrast, PopSGX has a
different goal: to bridge the availability gap of hardware security
extensions from different architectures.

There are several other open questions on borrowing a remote
hardware extension for local confidential computations. For exam-
ple, what hardware extensions can be remotely shared? Our work
explores how a shared memory system can be utilized for offloading
confidential computations. Besides hardware enclaves, there exists
a number of other potentially "offloadable" hardware security ex-
tensions, including hardware-based control flow enhancement [11],
pointer authentication, and memory tagging [19]. Determining the
offloadable security workload is an interesting future direction.

6 CONCLUSION

We presented the design and implementation of PopSGX, a system
to offload confidential computations from low-end embedded de-
vices to a remote centralized edge server. PopPSGX consists of two
parts: an extended Open Enclave SGX SDK for cross-architecture
enclave code compilation and generation, and a PoPSGX monitor for
transparent ecall/ocall interception and memory synchronization.
The user-space PopPSGX monitor is implemented using ptrace and
userfaultfd mechanisms. We have built a prototype of PorPSGX
and evaluated the prototype using applications from the SPEC CPU
2017, two sample programs from the Open Enclave SDK, and a
server application simulating the Heartbleed attack. The evaluation
results show that PopSGX secures confidential computations for
IoT devices with an acceptable performance overhead.
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