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Abstract. Remote Method Invocation (RMI), Java’s remote procedure
call implementation, provides a mechanism for designing distributed Java
technology-based applications. It allows methods to be invoked from
other Java virtual machines, possibly at different hosts. RMI uses lock-
based concurrency control, which suffers from distributed deadlocks, live-
locks, and scalability and composability challenges. We present Snake-
DSTM, a distributed software transactional memory (D-STM) that is
based on the RMI as a mechanism for handling remote calls and trans-
actional memory for distributed concurrency control, as an alternative
to RMI/locks. Critical sections are defined as atomic transactions, in
which reads and writes to shared, local and remote objects appear to
take effect instantaneously. The novelty of Snake-DSTM is in manipu-
lating transactional memory by moving control to remote nodes, rather
than remote nodes’ data being copied to the node at which the trans-
action runs. Transaction metadata is detached from the transactional
context, and the dynamic two phase commitment protocol (D2PC) is
employed to coordinate the voting process among participating nodes
toward making distributed transactional commit decisions. We propose
a simple programming model using (Java 5) annotations to define crit-
ical sections and remote methods. Instrumentation is used to generate
code at class-load time, which significantly simplifies user-space end code.
No changes are needed to the underlying virtual machine or compiler.
We describe Snake-DSTM’s architecture and implementation, and re-
port on experimental studies comparing it against competing models
including RMI with mutual exclusion and read/write locks, distributed
shared memory (DSM), and dataflow-based D-STM. Our studies show
that Snake-DSTM outperforms competitors by up to 12× on different
workloads using a 120-node system.

1 Introduction

Lock-based concurrency control suffers from drawbacks including deadlocks, live-
locks, lock convoying, and priority inversion. In addition, it has scalability and
composability challenges [10]. These difficulties are exacerbated in distributed
systems with nodes, possibly multicore, interconnected using message passing
links, due to additional, distributed versions of their centralized problem coun-
terparts [12]. Transactional memory (TM) promises to alleviate these difficulties.



In addition to providing a simple programming model, TM provides performance
comparable to highly concurrent, fine-grained locking [13, 11]. In TM, atomic
sections are defined as transactions in which reads and writes to shared objects
appear to take effect instantaneously. A transaction maintains its read set and
write set, and at commit time, checks for conflicts on shared objects. If con-
flicts are detected, the transaction rolls-back its changes and retries; otherwise,
the changes are made to take effect. Numerous multiprocessor TM implemen-
tations have emerged in software (STM) [27], in hardware (HTM) [11], and in
a combination (Hybrid TM) [16]. Distributed STM (or D-STM) implementa-
tions also exist. Examples include Cluster-STM [5], D2STM [7], DiSTM [14],
and Cloud-TM [21]. Communication overhead, balancing network traffic, and
network failures are additional concerns for D-STM.

Previous research on D-STM has largely focused on the dataflow model [30,
17], in which objects are replicated (or migrated) at multiple nodes, and trans-
actions access local object copies. Using cache coherence protocols [12, 8, 33],
consistency of the object copies is ensured. However, this model is not suitable
in applications (e.g., P2P), where objects cannot be migrated or replicated due
to object state dependencies, object sizes, or security restrictions. A control flow
model, where objects are immobile and transactions invoke object operations
via remote procedure calls (RPCs), is appropriate in such instances.

This paper focuses on the design and implementation of D-STM based on
Java’s Remote Method Invocation (RMI) mechanism. We are motivated by the
popularity of the Java language, and the need for building distributed systems
with concurrency control, using the control flow model. Support for distributed
computing in Java is provided using RMI since release 1.1. However, distributed
concurrency control is (implicitly) provided using locks. Besides, the RMI archi-
tecture lacks the transparency required for distributed programming, supporting
a remote method requires defining an interface, skeleton and stub objects, plus
changing the prototype to throw remote exceptions and extending special base
class UnicastRemoteObject. We present Snake-DSTM, an RMI/D-STM im-
plementation that uses D-STM for distributed concurrency control in (RMI’s)
control flow model, and exports a simpler programming model with transpar-
ent object access. Using (Java 5’s) annotations, and our instrumentation engine,
a programmer can define remote objects (or methods), and define atomic sec-
tions as transactions, in which reads and writes to shared (local and remote)
objects appear to take effect instantaneously. Distributed atomicity, object reg-
istration, and remote method declarations are handled transparently without
any changes to the underlying virtual machine or compiler. Our experimental
studies show that Snake-DSTM outperforms RMI with read/write locks by as
much as 12times on a broad range of transactional workloads, and shows com-
parable performance to distributed shared memory, and dataflow D-STM. To
the best of our knowledge, this is the first D-STM design and implementation
in the control flow model, and constitutes the paper’s contribution.

Snake-DSTM is freely available as part of the HyFlow project [22], which
is producing a Java D-STM framework for the design, implementation, and



evaluation of D-STM algorithms and mechanisms, under both control flow and
dataflow. We hope this will increase momentum in the TM community in D-STM
research.

The rest of the paper is organized as follows. We overview past and related
efforts in Section 2. In Section 3, we detail the Snake-DSTM design and imple-
mentation and underlying mechanisms. In Section 5, we experimentally evaluate
Snake-DSTM against competing distributed programming models and report
results. We conclude in Section 6.

2 Related Work

The high popularity of the Java language for developing large, complex systems
has motivated significant research on distributed and concurrent programming
models. DISK [28] is a distributed Java Virtual Machine (DJVM) for network of
heterogenous workstations, and uses a distributed memory model using multiple-
writer memory consistency protocol. Java/DSM [32] is a DJVM built on top of
the TreadMarks [2] DSM system. JESSICA2 [34] provides transparent memory
access for Java applications through a single system image (SSI), with support for
thread migration for dynamic load balancing. These implementations facilitate
concurrent access for shared memory. However, they rely on locks for distributed
concurrency control, and thereby suffer from (distributed) deadlocks, livelocks,
lock-convoying, priority inversion, non-composability, and the overhead of lock
management.

TM, proposed by Herlihy and Moss [11], is an alternative approach for shared
memory concurrent access, with a simpler programming model. Memory trans-
actions are similar to database transactions: a transaction is a self-maintained
entity that guarantees atomicity (all or none), isolation (local changes are hidden
till commit), and consistency (linearizable execution). TM has gained significant
research interest including that on STM [27], HTM [11], and HyTM [16]. STM
has relatively larger overhead due to transaction management in software and
architecture-independence. HTM has the lowest overhead, but assumes architec-
ture specializations. HyTM seeks to combine the best of HTM and STM.

Similar to multiprocessor STM, D-STM was proposed as an alternative to
lock-based distributed concurrency control. In [12], Herlihy et. al. classified dis-
tributed execution models into control-flow and dataflow models. In the control-
flow model [4, 15, 29], objects are immobile and transactions invoke object op-
erations through remote calls, resulting in a distributed locus of control flow
movement — “distributed thread” [20] — for a transaction. On the other hand,
in the dataflow model [30, 17], objects are replicated (or migrated) at multiple
nodes, and transactions access local copies. While the dataflow model preserves
the locality of reference principle, it is not applicable in many cases in which
objects cannot be transferred due to state, size, or security restrictions. Ex-
ample dataflow D-STM implementations include Cluster-STM [5], D2STM [7],
DiSTM [14], and Cloud-TM [21]. Communication overhead, balancing network
traffic, and network failure models are additional concerns for such designs. These



implementations are mostly specific to a particular programming model (e.g., the
partitioned global address space or PGAS model [1]) and often need compiler
or virtual machine modifications (e.g., JVSTM [6]), or assume specific architec-
tures (e.g., commodity clusters). While dataflow D-STM has been intensively
studied, relatively little efforts have focused on applying TM concepts under the
control-flow model.

Snake-DSTM is a control-flow D-STM implementation, based on the Java
RMI mechanism for supporting remote procedure calls. Unlike [1, 6], it doesn’t
require any changes to the underlying virtual machine or compiler, as it uses
embedded library as a JVM agent, which is loaded at runtime.

3 System Overview

3.1 System Model

We consider an asynchronous distributed system model, similar to Herlihy and
Sun [12], consisting of a set of N nodes N1, N2, ....., Nn, communicating through
weighted message-passing links. We assume that each shared object has an
unique identifier. We use a grammar similar to the one in [9], but extend it
for distributed systems.

A transaction is a sequence of instructions that are guaranteed to be executed
atomically. Any object changes within transactional code must appear to take
effect instantaneously. Each transaction has an unique identifier, and is invoked
by a node (or process) in a distributed system of N nodes. A transaction can be
in one of three states: active, busy, and aborted, or committed. When a transaction
is aborted, it is retried by the node again using a different identifier.

Objects are resident at their originating nodes. Every object has, one “owner”
node that is responsible for handling requests from other nodes for the owned
object. Any node that wants to read from, or write to an object, contacts the
object’s owner using a remote call. A remote call may in turn make other remote
calls, which construct, at the end of the transaction, a global graph of remote
calls. We call this graph, a call graph.

3.2 Programming Model

The Java RMI specifications require defining a Remote interface for each re-
motely accessible class, and modifying class signatures to throw remote excep-
tions. Server side should register the implementation class, while client uses a
delegator object that implements the desired Remote interface.

In our model, a programmer annotates remotely accessible methods with the
@Remote annotation, and critical sections are defined as methods annotated with
@Atomic. An object that contains at least one @Remote method is named remote
object, and it must implement the IDistinguishable interface to provide our
registry with a unique object identifier. Remote objects register themselves au-
tomatically at construction time, and are populated to other node registries. A



1 public class SearchAgent implements I D i s t i n g u i s h a b l e {
2 public Object get Id ( ) {
3 return id ;
4 }
5 @Remote
6 @Atomic{ r e t r i e s = 10}
7 public L i s t search ( S t r ing keyword ) {
8 L i s t found = new LinkedLis t ( ) ;
9 // search at n e i g h b o r s

10 for ( S t r ing neighbor : ne ighbors ) {
11 SearchAgent remoteAgent = Locator . open ( ne ighbor ) ;
12 found . addAll ( remoteAgent . s earch ( keyword ) ) ;
13 }
14 . . . . // search at l o c a l da tabase
15 return found ;
16 }
17 }

Fig. 1. A P2P agent using an atomic remote TM method.

transactional object is one that defines one (or more) @Atomic methods. Atomic
annotation can be, optionally, parametrized by the maximum number of transac-
tional retries. Currently, we support the closed nesting model [19], which extends
the isolation of an inner transaction until the top-level transaction commits. We
“flatten” nested transactions into the top-level one, resulting in a complete abort
on conflict, or allow partial abort of inner transactions.

Transactional or remote objects are accessed using locators. Traditional ob-
ject references cannot be used in a distributed environment. Further, locators
monitor object accesses and act as early detectors for possible transactional con-
flicts. Objects can be located (or opened) in read-only or read-write modes. This
classification permits concurrent access for concurrent read transactions.

Figure 1 shows a distributed transactional code example. A peer-to-peer
(P2P) file sharing agent atomically searches for resources and return a list of
resources owners to the caller node. The agent may act recursively and propa-
gate the call to a set of neighbor agents. At the programming level, no locks are
used, the code is self-maintained by retrying on failures, and atomicity, consis-
tency, and isolation are guaranteed (for the search transaction). Composability
is also achieved: any other atomic method can be called within the higher-level
atomic search operation. A conflicting transaction is transparently retried. Note
that the location of the agents is hidden from the program. It is worth noting
that other distributed programing models such as DSM or dataflow D-STM can-
not be used in such applications, as an agent must search files at its node. This
is an example of objects with system-state property.



4 Implementation

Figure 2 shows a layered architecture of our implementation. Similar to the
official RMI design, we have the three layers of: 1) Transport Layer, where ac-
tual networking and communication handling is performed, 2) Remote Reference
Layer, which is responsible for managing the “liveliness” of the remote objects,
and 3) Stub/Skeleton Layer, which is responsible for managing the remote object
interface between hosts. Additionally, we define an Object Access Layer, which
provides the required transparency to the application layer. Local and remote
objects are accessed in an uniform manner, and a dummy object is created to del-
egate calls to the RMI stub. Transactional code is maintained by a Transaction
Manager module, which provides distributed atomicity and memory consistency
for applications. As described in Section 4.1, an Instrumentation Engine is re-
sponsible for load-time code modifications, which is required for the Transaction
Manager and Object Access Layer.
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Fig. 2. Snake-DSTM layered architecture overview.

4.1 Instrumentation Engine

Java Instrumentation provides a run-time ability to modify and generate byte-
code at class load-time. We exploited this feature to modify class code at runtime,
add new fields, modify annotated methods to support remote and transactional
behavior, and generate helper classes. We consider a Java method as the basic
annotated block. This approach has two advantages. First, it retains the famil-
iar programming model, where @Atomic replaces synchronized methods and
@Remote substitutes for RMI calls. Secondly, it simplifies transactional memory
maintenance, which has a direct impact on performance. Transactions need not
handle local method variables as part of their read or write sets.

Our Instrumentation Engine works in two phases; the first phase processes
remote objects. For any class with one (or more) methods annotated as @Remote,



a Remote interface is generated with the remote method’s signature. Further, a
delegator class that implements the Remote interface is generated to work as the
RMI-client stub. The original class constructors are modified to register objects
at the object registry and populate object IDs to other nodes. That has two
purposes: i) objects are accessed with a reference of the same type, so objects
and object proxies are treated equally and transparently; and ii) no changes
to remote method signatures are required, as the modified signature versions
are defined by delegator generated code. This phase simplifies the way remote
objects are accessed, and reduces the burden of writing complex code.

The second phase handles transactional code generation. This transformation
occurs as follows:
– Classes. A synthetic field is added to represent the state of the object as

local or remote. The class constructor(s) code is modified to register the
object with the Directory Manager at creation time.

– Fields. For each instance field, setter and getter methods are generated to
delegate any direct access for these fields to the transaction context. Class
code is modified accordingly to use these methods.

– Methods. Two versions of each method are generated. The first version is
identical to the original method, while the second one represents the trans-
actional version of the method. During the execution of transactional code,
the second version of the method is used, while the first version is used
elsewhere.

– @Atomic methods. Atomic methods are duplicated as described before,
however, the first version is not similar to the original implementation. In-
stead, it encapsulates the code required for maintaining transactional behav-
ior, and it delegates execution to the transactional version of the method.
Figure 3 shows part of the instrumented version of a SearchAgent class

defined in Figure 1.

4.2 Distributed Software Transactional Memory

Supporting shared memory-like access in distributed systems requires an addi-
tional level of indirection. Each transaction must preserve memory consistency,
and must expose its local changes instantaneously. In order to do that, old or
new values of modified objects must be stored at local-transaction buffers till
commit time. Two strategies can be used to achieve this: i) undo-log [16], where
changes are made to the main object, while old values are stored in a sepa-
rate log; and ii) write-buffer [10], where changes are made to transaction-local
memory and written to the main object at commit time. Both strategies are ap-
plicable in the distributed context. However, (distributed) transactions cannot
move between nodes during their execution with all these metadata (undo-logs
or write-buffers) due to high communication costs. Instead, transaction meta-
data must be detached from the transaction context, while keeping the minimal
information mobile with the transaction. In Snake-DSTM, we implemented both
approaches. Using a distributed mechanism for storing transaction read-set and
write-set, distributed transactions are managed with minimum amount of mobile



1 // Generated Remote i n t e r f a c e
2 interface $HY$ ISearchAgent
3 extends Remote , S e r i a l i z a b l e {
4 public L i s t search ( Object id , ControlContext context ,

S t r ing keyword ) throws RemoteException ;
5 . . . .
6 }
7 // Generated Proxy d e l e g a t o r s t u b
8 class $HY$ Proxy SearchAgent
9 extends UnicastRemoteObject

10 implements $HY$ ISearchAgent{
11 . . . .
12 }
13 public class SearchAgent implements I D i s t i n g u i s h a b l e {
14 // Remote Proxy r e f e r e c e
15 $HY$ ISearchAgent $HY$ proxy ;
16 // Modif ied c o n s t r u c t o r
17 SearchAgent ( S t r ing id ) {
18 . . . .
19 DirectoryManager . r e g i s t e r ( id , this ) ;
20 }
21 // S y n t h e t i c d u p l i c a t e method
22 public L i s t search ( S t r ing keyword , Context c ) {
23 i f ( $HY$ proxy!=null ) // Invoke remote c a l l
24 return $HY$ proxy . search ( id , c , keyword ) ;
25 . . . . // e x e c u t e c a l l l o c a l l y
26 }
27 // O r i g i n a l method instrumented
28 public L i s t search ( S t r ing keyword ) {
29 // Transact ion a c t i v e thread
30 Context context = ContextDelegator . g e t In s tance ( ) ;
31 boolean commit = true ;
32 L i s t r e s u l t = null ;
33 for ( int i =10; i >0; −− i ) {
34 // I n i t i a l i z e t r a n s a c t i o n
35 context . i n i t ( ) ;
36 try{
37 r e s u l t=search ( keyword , context ) ; //Try e x e c u t e
38 } catch ( Transact ionExcept ion ex ) {
39 commit = fa l se ; // Aborted
40 } catch ( Throwable ex ) {
41 throwable = ex ; // A p p l i c a t i o n Except ion
42 }
43 i f ( commit ) {
44 i f ( context . commit ( ) ) {
45 i f ( throwable == null )
46 return r e s u l t ; //Committed
47 throw ( IOException ) throwable ; // Rethrow Except ion
48 }
49 } else {
50 context . r o l l b a c k ( ) ; // R o l l b a c k
51 commit = true ;
52 }
53 }
54 throw new Transact ionExcept ion ( ) ; //Maximum R e t r i e s
55 }
56 }

Fig. 3. Instrumented version of SearchAgent class.



data (e.g. transaction id, priority). The complete algorithm and more implemen-
tation details are available in a technical report [24].

Undo Log (Eager-Pess)
On Write

If(owned) resolve
set owned by me
Backup and Change in master copy

On Read
If(owned) resolve
Read value and version

Try Commit
Validate reads (version < current)

On Commit
Increment owned versions
Release owned

On Rollback
Undo changes for owned
Release owned

Write Buffer (Lazy-Opt)
On Write

Change in private copy
On Read

If(in Write Set) read local value
else read master copy value
Read version

Try Commit
Acquire ownership of write-set
Validate reads (version ¡ current)

On Commit
Write values to main copy
Increment owned versions
Release owned

On Rollback
Discard local changes

Fig. 4. Snake D-STM implementations.

Before (and after) accessing any transactional object field, the transaction is
consulted for read (or written) value. A transaction builds up its write and read
sets, and handles any private buffers accordingly. At commit time, a distributed
validation step is required to guarantee consistent memory view. In this phase,
transaction originator nodes trigger a voting request to the participating nodes.
Each node uses its portion of write and read sets to make its local decision.
If validation succeeds on all nodes, the transaction is committed; otherwise, an
abort handler rolls-back the changes. During the validation phase, the transac-
tion state is set to busy, which ensures that a transaction cannot be aborted. This
helps in ensuring the correctness of the validation (i.e., all nodes unanimously
agree on the transaction to be committed and the transactions to be aborted),
and also, it prevents transactions at later stages from being aborted by newly
started ones.

Figure 4 shows our two implementations of the Snake-DSTM: write-buffer
and undo log. Objects use verrsioned lock to enable ownership and validation.
Try Commit procedure is used during the voting to make sure that all nodes are
ready to commit.

4.3 Distributed Contention Management

Two transactions conflict if they concurrently access the same object, and one
of them is a write transaction. Upon detecting a conflict, a contention manage-
ment policy (CM) is used to resolve this situation (arbitrarily or priority-based)
e.g., one of the transactions is stalled or aborted and retried. A wide range of



transaction contention management policies has been studied for non-distributed
STM [26, 25]. We classify CMs into three categories: 1. Incremental CM (e.g.,
Karma, Eruption, Polka), where the CM builds up the priorities of the trans-
actions during transaction execution; 2. Progressive CM (e.g., Kindergarten,
Priority, Timestamp, Polite), which ensures a system-wide progress guarantee
(i.e., at least one transaction will proceed to commit); and 3. Non-Progressive
CM (e.g., Backoff, Aggressive), which assumes that conflicting transactions will
eventually complete, however, livelock situations can occur.

As mentioned earlier, in the control flow model, a distributed transaction Tx
is executed over multiple nodes. Under Incremental CM, Tx can have different
priorities at each node. This is because, a transaction builds its priority during
its execution over multiple nodes. Under this behavior, a live-lock situation can
occur. Consider transactions Tx and Ty with priorities Px, P ′

y and P ′
x, and Py

at nodes N1 and N2, respectively. It is clear that, if P ′
x > Py and P ′

y > Px, then
both transactions will abort each other, and this will continue forever. The lack
of a central store for transactional priorities causes this problem. However, hav-
ing such a central store will significantly increase the communication overhead
during transaction execution, causing a system bottleneck. Non-Progressive CM
shows comparable performance for non distributed STM [3]. Nevertheless, our
experiments show that it cannot be extended for D-STM due to the expensive
cost of retries (see Appendix).

4.4 Global Commitment Protocol

In the control flow model, a remote call on an object may trigger another remote
call to a different object. The propagated access of objects forms a call graph,
which is composed of nodes (i.e., sub-transactions) and undirected edges (i.e.,
calls). This graph is essential for making a commit decision. Each participating
node may have a different decision (on which transaction to abort/commit)
based on conflicts with other concurrent transactions. Thus, a voting protocol is
required to collect votes from nodes, and the originating transaction can commit
only if it receives an “yes” message from all nodes. By default, we implement the
D2PC protocol [18], however, any other protocol may substitute it. We choose
D2PC, as it yields the minimum possible time for collecting votes [18], which
reduces the possibility of conflicts and results in the early release of acquired
objects. Furthermore, it balances the overhead of collecting votes by having a
variable coordinator for each vote.

5 Experimental Evaluation

Distributed Benchmarks. We developed a set of distributed benchmarks to
evaluate Snake-DSTM against competing models including: i) classical RMI,
which uses mutual exclusion locks and read/write locks with random timeout
mechanism to handle deadlocks and livelocks; ii) distributed shared memory
(DSM), which uses the Home directory protocol such as Jackal [31]; and iii)



distributed dataflow STM implementation [23]. Our benchmark suite includes
a distributed version of the vacation benchmark from the STAMP benchmark
suite [35] (vacation) and two monetary applications (bank and loan).

Testbed. We conducted our experiments on a multiprocessor/multicomputer
network comprising of 120 nodes, each of which is an Intel Xeon 1.9GHz proces-
sor, running Ubuntu Linux, and interconnected by a network with 1ms end-to-
end delay. Each node invokes 50-200 sequential transactions. In a single experi-
ment, we thus executed 6-24 thousands transactions, and measured the through-
put for each concurrency model, for each benchmark. Our experiments shows
that Snake-DSTM write-buffer implementation outperforms undo-log implemen-
tations under all benchmarks. The reason for this is that undo-log pessimistic
approach incur relatively larger number of retries, which in turn increases objects
requests over the network. In this section we focus on Snake-DSTM write-buffer
results against other concurrency models.
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Fig. 5. Snake-DSTM speedup for a distributed benchmark suit over 120-node system.

Evaluation. Figure 5 1 shows the relative throughput speedup achieved by
Snake-DSTM over other concurrency models on the benchmarks. We observe
that Snake-DSTM outperforms all other models under loan and vacation (the
speedup ratio ranges between 1.3× and 12.8×). Under Bank benchmark only two
nodes are involved into the transfer transaction, so Snake-DSTM overhead (vot-
ing, validation and versioning) outweighs the performance gain for this simple
transaction, relative to RMI.

Using the Loan benchmark, transaction execution time was 200ms under
ideal conditions. Six different objects were accessed per each transaction, issu-
ing twenty remote calls. Figure 6(a) shows the scalability of Snake-DSTM under

1 High and low indicate the benchmark contention which is controlled by either in-
creasing write transactions or reducing the number of objects
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Fig. 6. Throughput of Loan benchmark: a) under increasing number of nodes, b) using
pure read transactions over 12 nodes, and variable object count per transaction.

increasing number of nodes, and using 50% and 10% read-only transactions. Fig-
ure 6(b) shows the throughput under increasing number of participating objects
in each transaction (transaction execution time under no contention is 350ms in
this experiment). Greater the number of accessed objects, higher the algorithm
overhead, and higher the number of remote calls per each transaction (e.g., a
transaction of twelve objects issues 376 remote object calls during its execution).

From Figure 6(a), we observe that Snake-DSTM outperforms classical RMI
using mutual exclusion locks (RMI-Locks), and also using read/write locks (RMI-
R/W), by 180% at high contention (10% reads), and by 150% at normal con-
tention (50% reads). Though RMI with read/write locks shows better perfor-
mance at a single point (6 nodes) due to the voting protocol overhead, yet, it
suffers from performance degradation at increasing loads. It worth noting that
the y-axis represents the nodal throughput, which means that in Figure 6(a)
Snake-DSTM sustains almost the same nodal throughput with increasing the
objects contention.

Figure 6(b) uses the no-contention situation (100% reads) to compare the
overhead of Snake-DSTM and RMI-R/W. At small number of shared objects
per transaction, the TM overhead outweighs the provided concurrency, and both
Snake-DSTM and RMI-R/W incur the same overhead. With increasing num-
ber of objects, Snake-DSTM outperforms RMI-R/W by 50%. Notice that the
throughput degradation is not due to contention (100% reads), but it is because
the transaction execution time is different (more objects at each data point), so
the relevance of this figure is the relative implementation overhead of RMI and
Snake-DSTM appraoches.

Figure 7(a) compares control-flow and dataflow D-STM implementations us-
ing the Bank Benchmark, where the end-to-end latency is changed, due to net-
work conditions or object size. Figure 7(b) shows the effect of increasing the
number of calls per a single remote object on Snake-DSTM throughput. This
experiment illustrates the trade-off between employing locality of reference under
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Fig. 7. Throughput of Bank benchmark: a) under dataflow and control-flow models us-
ing different end-to-end delay (ρ=1 and #calls/object=1), b) Snake-DSTM throughput
under increasing number of calls per object.

dataflow model, and invoking remote calls at immobile objects using control-flow
model. The best strategy is application based, which leaves a space for having
both models in use.

End-to-end delay plays an important role in the design of distributed systems.
We can decompose it into: network delay (propagation, processing, transmission,
and queuing delay) and JVM delay (serialization, marshaling, and type check-
ing). We define the object-to-parameter ratio (ρ) as the ratio of the end-to-end
delay incurred in sending an object to the end-to-end delay incurred in sending
the remote call parameters for this object. For example, ρ=2, when sending an
object requires double the end-to-end delay of sending parameters of a remote
call.

Figure 7(a) shows the effect of end-to-end delay on throughput when ρ=1
(i.e., sending the object is equivalent to sending the remote call parameters).
Here, only one call is issued per any remote object within a transaction, which
means that, for an application with ρ=4, the throughput of the dataflow flow
model should be compared to the control-flow throughput multiplied by four.
Similarly, for an application that invokes four calls per each object within a
transaction, the equivalent control-flow throughput is divided by four.

Figure 7(b) demonstrates the effect of not employing locality of reference: in
the control flow model, each remote call incurs a round-trip network delay. As
shown in the figure, it reduces throughput by 25% for four to eight calls. This
should be considered in environments with high link latency.

6 Conclusions

We presented Snake-DSTM, a high performance, scalable, distributed STM
based on the control flow execution model. Our experiments show that Snake-
DSTM outperforms other distributed concurrency control models, with accept-



able number of messages and low network traffic. Control flow is beneficial under
non-frequent object calls or when objects must be immobile due to object state
dependencies, object sizes, or security restrictions. Our implementation shows
that Snake-DSTM provides comparable performance to classical distributed con-
currency control models, and exports a simpler programming interface, while
avoiding dataraces, deadlocks, and livelocks.

The HyFlow project provides a testbed for the TM research community to
design, implement, and evaluate algorithms for D-STM. HyFlow is publicly avail-
able at hyflow.org.
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Appendix: Distributed Contention Policy

As illustrated in Section 4.3, progressive contention management policies are the
most suitable CM for distributed environments.

In Figure 8, the effect of progressive contention management policies is shown.
Six shared objects for the Loan benchmark (and two for the Bank benchmark)
were accessed using twelve nodes issuing concurrent transactions. To increase
contention, we forced every transaction to access all shared objects during its
execution.
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Fig. 8. Throughput and number of aborts of Loan and Bank benchmarks under differ-
ent progressive contention management policies.

From Figure 8, we observe the effect of CMs on throughput under the Loan
and Bank benchmarks. The Timestamp CM performs better than the Polite
and Priority CMs, but it results in the highest abort rate, and thus incurs more
processing overhead. The Polite back-off mechanism with retries manages to
significantly reduce aborts (7-14 times less), while yielding moderate throughput.
The Static Priority CM gives the worst performance. Besides, it suffers from
starvation situations for low priority transactions.


