
Lightweight Live Migration for High Availability
Cluster Service ?

Bo Jiang1, Binoy Ravindran1, and Changsoo Kim2

1 ECE Dept., Virginia Tech {bjiang,binoy}@vt.edu
2 ETRI, Daejeon, South Korea cskim7@etri.re.kr

Abstract. High availability is a critical feature for service clusters and cloud

computing, and is often considered more valuable than performance. One com-

monly used technique to enhance the availability is live migration, which repli-

cates services based on virtualization technology. However, continuous live mi-

gration with checkpointing will introduce significant overhead. In this paper, we

present a lightweight live migration (LLM) mechanism to integrate whole-system

migration and input replay efforts, which aims at reducing the overhead while

providing comparable availability. LLM migrates service requests from network

clients at high frequency during the interval of checkpointing system updates.

Once a failure happens to the primary machine, the backup machine will continue

the service based on the virtual machine image and network inputs at their respec-

tive last migration rounds. We implemented LLM based on Xen and compared

it with Remus—a state-of-the-art effort that enhances the availability by check-

pointing system status updates. Our experimental evaluations show that LLM

clearly outperforms Remus in terms of network delay and overhead. For certain

types of applications, LLM may also be a better alternative in terms of downtime

than Remus. In addition, LLM achieves transaction level consistency like Remus.

1 Introduction

High availability (HA) is a critical feature of modern enterprise-scale data and ser-
vice clusters. Any downtime that a server cluster experiences may result in severe
loss on both revenue and customer loyalty. Therefore, high availability is often con-
sidered more valuable than performance [1]. Especially along with the development
of cloud computing—one of the most remarkable development opportunities for the
Internet—computation and storage are gradually moving from clients to cluster servers
in a cloud [2]. Thus the availability of the resources in a cloud is essential to the success
of cloud computing. Nowadays, high availability is still a very challenging problem [3],

? This work was supported by the IT R&D program of MKE/KEIT, South Korea [2007S01602,

Development of Cost Effective and Large Scale Global Internet Service Solution]

because there are many failure categories to handle so as to guarantee the continuous
operation. Among the failure models, hardware fail-stop failure is one of the most com-
monly studied [4].

Naturally, replication is an important approach to increase the availability by pro-
viding redundancy—once a failure occurs to a replica, services that run upon it can
be taken over by other replicas [5]. Replication may be realized as several redundancy
types: spatial redundancy, temporal redundancy, and structural (or contextual) redun-
dancy [6]. For example, service migration used in server clusters [7] provides spatial
redundancy, since it requires extra hardware as running space of services.

For any redundancy type, the consistency among multiple replicas needs to be guar-
anteed, in a certain consistency level. Based on Brewer’s CAP theorem [8], the consis-
tency is a competing factor to the availability, i.e., there is a trade-off between them.

By running multiple virtual machines (VM) on a single physical machine, virtual-
ization technology can facilitate the management of services, such as replication via
migration. Virtualization technology separates service applications from physical ma-
chines with a virtual machine monitor (VMM), thus provides increased flexibility and
improved performance [9]. With these advantages, virtualization technology makes it
easy to migrate services across physical machines. Usually we call the machine which
provides regular services as the primary machine, and the one which takes over the
services at a failure as the backup machine.

To achieve high availability, live migration is typically used to minimize the down-
time. Here live migration means executing the migration without suspending the pri-
mary machine. Instead, the primary machine keeps running until the migration is com-
pleted. Live migration was first studied in [7], where the migration is executed only once
and triggered on demand of users. Such a one-time live migration is suitable for data
processing or management purposes. However, it does not work for disaster recovery
because the migration cannot be triggered by a failure event.

In [10], the authors introduced the idea of checkpointing to live migration by pre-
senting Remus—a periodical live migration process for disaster recovery. Using check-
pointing, the primary machine keeps migrating a whole system, including CPU/memory
status updates as well as writes to the file system to the backup machine at config-
ured frequency. Once a failure happens so that the migration data stream is broken,
the backup machine will take over the service immediately starting from the latest stop
point of checkpointing. However, checkpointing at high frequency will introduce sig-
nificant overhead, as plenty of resources such as CPU and memory are consumed by
the migration. In this case clients that request services may experience significantly
long delays. If on the contrary the migration runs at low frequency trying to reduce the
overhead, there maybe many service requests that are duplicately served. Actually this
will produce the same effect of increasing the downtime from the perspective of those
new requests that come after the duplicately served requests.

In fact, there is another approach for service replication—input replay [11]. With
input replay, the data to replicate will be much less than whole-system replication. Al-
though input replay cannot replicate the system status exactly, such a Point-in-Time
consistency is actually very challenging equally for all the replication approaches in
real implementations [12].

Based on input replay, the objective of this paper is to reduce the overhead of whole-
system checkpointing when achieving comparable downtime and the same level con-
sistency as those of Remus. In this way, we will be able to leverage the advantage of
input replay without suffering from its flaw on consistency.

Based on the checkpointing approach of Remus, we developed an integrated live
migration mechanism, called Lightweight Live Migration (LLM), which consists of
both whole-system checkpointing and input replay. The basic idea is as follows:

1) The primary machine keeps migrating to the backup machine: a) the guest VM
image (including CPU/memory status updates and new writes to the file system) at low
frequency; and b) service requests from network clients at high frequency; and

2) Once a failure happens to the primary machine, the backup machine will con-
tinue the service based on the guest VM image and network inputs at their respective
last migration rounds.

Especially when the network service involves a lot of computation or database up-
dates, CPU/memory status updates and writes to the file system will be a big bulk of
data. Compared with past efforts such as Remus, migrating the guest VM image at
low frequency with input replay as an auxiliary may significantly reduce the migration
overhead.

We compared LLM with Remus in terms of the following metrics: 1) downtime,
which demonstrates the availability; 2) network delay, which reflects the client ex-
perience; and 3) overhead, which is measured with kernel compilation time. The ex-
perimental evaluations show that LLM sharply reduces the overhead of whole-system
checkpointing and network delay on the client side compared with Remus. In addition,
LLM demonstrates a downtime that is comparable, or even better for certain type of
applications, to that of Remus. We also analyzed that LLM achieves transaction level
consistency, which is the same as Remus.

The paper makes the following contributions:
1) We integrate the idea of input replay with whole-system checkpointing mech-

anism. Such an integrated effort outperforms the existing work with a single effort of
checkpointing, especially for applications with intensive network workload;

2) LLM migrates the service requests from the primary machine independently,
instead of depending on a special load balancer hardware. This means we can apply
LLM more generally in practical use; and

3) We developed a fully functional prototype for LLM, which can be used as a basis
for further research and practical application.

The rest of the paper is organized as follows. Related work is discussed in Section 2.
In Section 3, we describe the system model and assumptions. We then introduce the
design and implementation of LLM in Section 4. In Section 5, we report our experiment
environment, benchmarks and the evaluation results. In Section 6, we finally conclude
and discuss the future work.

2 Related Work

In [13], high availability is defined as a system design protocol and associated imple-
mentation that ensures a certain degree of operational continuity during a given mea-

surement period. Based on this definition, the availability may be estimated with a per-
centage of continuously operation time in a year, also known as “X nines” (for example
“five nines”, i.e., 99.999%) [6]. In fact, this percentage is determined by two factors—
the number of failure events and the downtime of each failure event. We mainly consider
the downtime at a failure in this paper.

State migration was studied in many literatures such as [14, 15]. For Xen [16], live
migration was added in [7] to reduce the downtime thereby increasing the availability.
However, this one-time migration effort is not suitable for disaster recovery, which re-
quires frequent checkpointing protection. The wide-area live migration was also studied
in [17]. But it is out of the scope of this paper. We only study the live migration locally
in a cluster.

Checkpointing is a commonly used approach for fault tolerance. The idea of check-
pointing was introduced to live migration by Cully et al. in Remus [10]. Remus is a
remarkable effort on live migration, which aims to handle hardware fail-stop failure on
a single host with whole-system migration. By checkpointing the status updates of a
whole system, Remus can achieve generality, transparency, and seamless failure recov-
ery. It is designed to use pipelined checkpoints, which means the active VM is bounded
by short pauses, in each of which the state change is quickly migrated to the backup ma-
chine. Moreover, both memory and CPU state backup and network/disk buffering were
carefully designed based on live migration [7] and Xen’s intrinsic services. In general,
Remus is a practical effort based on Xen, and most of its functions have already been
merged into Xen.

In terms of shortcomings, though the downtime of Remus can be controlled within
one second, it experiences about 50% performance penalty such as on network delay
and CPU execution time. This penalty comes from data migration at high frequency—
it supports up to 40 times of migration per second. If we decrease the frequency, the
backup machine may serve a lot of service requests that have already been served by
the primary machine.

Input replay is also a commonly studied approach for high availability. In [11], Bres-
soud et al. provided fault tolerance by forwarding the input events and deterministically
replay them. Another example is ReVirt [18], in which VM logging and replay were
discussed yet for intrusion analysis instead of high availability. However like Remus,
these efforts also involve a single approach only. On the contrary, we integrate the ef-
forts of both checkpointing and input replay to provide high availability with reduced
overhead.

Xen [16] is an open source virtual machine monitor under the GPL2 license, which
makes it very flexible for the purpose of research. We evaluated LLM on the platform
of Xen.

3 System Model

In this paper, we discuss a whole-system replication. Therefore, for each primary ma-
chine, we assume there is a backup machine as the replica, and there is a high-speed
network connection between the two machines. We also assume that the primary ma-

chine and the backup machine share a single storage, so that we do not have to migrate
the whole file system.

We only consider hardware fail-stop failure model. Fail-stop failure makes the fol-
lowing assumptions: 1) any correct server can detect whether any other server has failed;
and 2) every server employs a stable storage which reflects the last correct service state
of the crashed server. This stable storage can be read by other servers, even if the owner
of the storage has crashed.

We implemented LLM based on the existing codes of Remus, which was developed
on Xen [16]. With Xen, network services run in guest virtual machines (called domain
U or domU in Xen terminology). There is a unique VM for management purpose, called
domain 0 or dom0, which has direct access to all physical hardware. Therefore service
requests go through the back-end driver (called netback) in dom0 first, and then are dis-
tributed to the front-end driver (called netfront) in a specific domU. This will facilitate
our network buffer management and migration.

We do not make any assumptions about the load balancer in a cluster, since a load
balancer is a special hardware which is out of scope of this paper. This means LLM mi-
grates the service requests from the primary machine independently. Moreover, since
we do not consider the application-level migration, we do not distinguish the services
running on a single guest virtual machine. All the migrated service requests are man-
aged in the same manner.

Finally, we assume that there is an algorithm to map each egress response packet to
a specific ingress request packet. A straight-forward approach is to append a sequence
number for each ingress request packet and egress response packet, and keep this se-
quence number during the service. Hence, it is easy to pare up the two types of packets
and map them accordingly.

4 Design and Implementation

We design the implementation architecture of LLM as shown in Figure 1. Beyond Re-
mus, we also migrate the change in network driver buffers. The entire process works as
follows:

1) First, on the primary machine, we setup the mapping between the ingress buffer
and the egress buffer, signifying which packets are generated corresponding to which
service request(s), and which requests are yet to be served. Moreover, LLM hooks a
copy for each ingress service request.

2) Second, at each migration pause, LLM migrates the hooked copy as well as the
boundary information to the backup machine asynchronously, using the same migration
socket as the one used by Remus for CPU/memory status updates and writes to the file
system.

3) Third, all the migrated service requests are buffered in a queue in the “merge”
module. Those buffered requests that have been served will be removed based on the
migrated boundary information. Once a failure occurs on the primary machine that
breaks the migration data stream, the backup machine recovers the migrated memory
image and merges the service requests into the corresponding driver buffers.

Hook

Netback

Remus CP

engine*

Migration

Manager

Netfront

Guest

VM

VMM

Primary Machine

 Merge

Netfront

Remus CP

engine*

Migration

Manager

Netback

Guest

VM

Replica

VMM

Backup Machine

Mapping

External Network*CP: Checkpointing

Fig. 1: LLM Architecture

In Figure 1, solid lines represent the regular input/output of network packets, dash-
dotted lines show the migration of system status updates, and dashed lines mean the
migration of network buffers.

Next, we will first introduce LLM’s release of egress responses, analyze the con-
sistency, then discuss the function modules in separate subsections: 1) egress response
release and consistency analysis in Section 4.1; 2) mapping and hooking of services in
Section 4.2; 3) asynchronous migration, especially its time sequence, in Section 4.3;
and 4) buffering and merging of requests in Section 4.4.

4.1 Egress Response Release and Consistency Analysis

Unlike the block/commit case used by Remus, LLM releases the response packets im-
mediately after they are generated on VMs. In the block/commit case, all the outputs
are blocked using IMQ [19] until the migration in a checkpointing epoch is acknowl-
edged. This can avoid losing any externally visible state, which helps to maintain the
consistency. However, at low checkpointing frequency, network clients may experience
very long delays with the block/commit mechanism of Remus.

In fact, the immediate release case and the block/commit case can achieve the same
operation correctness on the client side, and the same consistency level on the server
side. First on the client side: 1) for the block/commit case, there won’t be any duplicated
response packets. However, network clients may re-transmit requests after the timer
expires; 2) for the immediate release case, on the contrary, there maybe duplicated
response packets. Nevertheless, the re-transmission of service requests won’t increment
because of the increased delay. Given the fault tolerance of Internet, the duplication of
either service requests or responses will be handled correctly. Therefore, both cases are
correct and transparent to the clients.

Then on the server side, LLM achieves the same level of consistency, i.e., transac-
tional consistency, as that of Remus. In Remus, all the service to request packets in the
speculative execution phases will be re-transmitted by the client and re-served by the
backup machine. In fact, this is equivalent to input replay, and the backup machine will
have to recover the status at the failure point by replaying these re-transmitted requests.
Though LLM migrates the requests directly, it recovers the status at the failure point in
the same fashion. The only difference in consistency of LLM from Remus is the work-
load of input replay: as LLM usually runs at low frequency, it produces more requests
to replay.

Therefore with the immediate release of egress response packets, LLM achieves the
same operation correctness on the client side, and the same consistency level on the
server side.

4.2 Hooking and Mapping of Service Requests

Without a special load balancer hardware, LLM has to migrate the service requests
itself. Obviously, the first step of this migration is to make a copy.

Linux, which Xen is built on, provides a netfilter system consisting of a series of
hooks in various points in a protocol stack. Figure 2 shows the netfilter system in the
IPv4 protocol stack. This system makes it easy to copy or filter network packets to and
from a specific guest VM [20].

1 Route 3 4

2

dom0

5

Route

Fig. 2: Netfilter System

There is a netback driver in domain 0 of Xen, which is responsible for routing the
packets to and from the guest VM. Domain “U”s are considered as external network
devices. Thus, all the packets to and from guest VMs are routed through the path from
1 to 3 to 4 in the figure. Along this path, we choose point 3—NF IP FORWARD—to
hook both ingress requests and egress responses.

We implemented this hook function module in two parts: 1) a hook module in the
kernel that copies sk bu f f and sends it up to the user space, and 2) a separate thread
in the user space that receives copies and analyzes (for egress responses) or write them
into the migration buffer (for ingress requests).

In Linux kernel, network packets are managed using sk bu f f . The information in
the sk bu f f header is specific to the local host. Therefore we only copy the contents
between the head pointer and the tail pointer. To recognize the packet header offsets

when the sk bu f f header is absent, we append a metadata in front of the packet con-
tent, which includes the header offsets of each layer as well as the content length. This
metadata will help the backup machine to create a new sk bu f f header.

LLM manages a mapping table in the user space on the primary machine. For each
hooked ingress request, we append an entry in the mapping table including 1) a se-
quence number, 2) a completion flag, and 3) a pointer to memory in the migration
buffer. For each entry, the sequence number helps to distinguish requests from each
other, and setting the completion flag as “True” means the service for this request has
been completed. Then for each hooked egress response packet, we decide which request
packet should be matched with using the algorithm that we assumed. Then we will set
the completion flag of this request packet in the mapping table as appropriate.

4.3 Asynchronous Network Buffer Migration

Checkpointing was used to migrate the ever-changing updates of CPU/memory/disk
to the backup machine by Remus. Only at the beginning of each checkpointing cycle,
the migration occurs in a burst mode after the guest virtual machine resumes. Most
of the time, there is no traffic flowing through the network connection between the
primary machine and the backup machine. During this interval, we can migrate the
service requests at higher frequency than that of checkpointing.

Like the migration of CPU/memory/disk updates, the migration of service requests
is also in an asynchronous manner, i.e., the primary machine can resume its service
without waiting for the acknowledgement from the backup machine.

…...Checkpointing cycles …...

Migration of CPU/memory/

disc updates and network

buffers in each cycle

Fail

Continue the service
+

Fig. 3: Checkpointing Sequence

Figure 3 shows the time sequence of migrating the checkpointed resources and the
incoming service requests at different frequencies on a single network socket. The entire
sequence within an epoch is described as follows:

1) The dashed blocks represent the suspension period when the guest virtual ma-
chine is paused. During this suspension period, all the status updates of CPU/memory/disk
are collected and stored in a migration buffer.

2) Once the guest VM is resumed, the content stored in the migration buffer is
migrated first (shown as a block shaded area that is adjacent to the dashed area in the
figure).

3) Then, the network buffer migration starts at high frequency until the guest VM
is suspended again. At the end of each network buffer migration cycle (the thin, shaded
strips in the figure), LLM transmits two boundary sequence numbers for the moment:
one is for the first service request in the current checkpointing period, and the other
is for the first service request that has a “False” completion flag. All the services after
the first boundary need to be replayed on the backup machine for consistency, but only
those after the second boundary need to be responded to the clients. If there is no new
requests, LLM transmits the boundary sequence numbers only.

Anytime a failure happens to a primary machine, the backup machine will 1) con-
tinue the execution of VM from the latest checkpointed status; 2) replay the requests
after the first boundary to achieve consistency; and 3) respond to those un-responded
requests after the second boundary. This recovery process is shown with the “+” com-
bination signal in the figure.

4.4 Buffering and Merging of Requests

The migrated service requests are first stored in a queue (implemented with a double
linked list as shown in Figure 1) in the user space on the backup machine. With this dou-
ble linked list, the storage can be allocated dynamically and the complexity of insertion
at tail and removal from head will be constant.

Everytime when a network buffer migration burst arrives, the backup machine will
first enqueue the incoming new requests at the tail, then dequeue and free requests from
the head until the one with the first boundary sequence number. In this way, the queue
only stores those needed to recover the system state. These requests will not be released
to the kernel space until the migration data stream is broken.

As on the primary machine, there is also a module running in the kernel space on
the backup machine. This module is responsible for creating a sk bu f f header based
on the metadata and inserting the requests into the queue in the kernel space. As shown
in Figure 2, the requests will also be inserted to point 3, i.e., NF IP FORWARD. In this
way, the protocol stack in the kernel will be able to recognize these migrated requests,
just like local ingress request packets.

5 Evaluation

We evaluated LLM and compared it with Remus in terms of its correctness, downtime,
delay for clients, and overhead under various checkpointing periods. The downtime is
the primary factor to estimate the availability of a cluster, whereas network delay mainly
represents clients’ experience. Finally, the overhead must be considered in the picture so
that the effectiveness of the service will not be overly compromised by checkpointing.

5.1 Experiment Environment

The hardware experiment environment included two machines (one as primary and the
other as backup), each with an IA32 architecture processor and a 3 GB RAM. We
set up a 100 Mbps network connection between the two machines specifically used
for migration. In addition, we used a third PC as a network client to transmit service
requests and examine the results based on responses.

As for the software environment, we built Xen from source which was downloaded
from its unstable tree [21], and let all the protected virtual machines run PV (i.e., par-
avirtualization) guests with Linux 2.6.18. We also downloaded Remus version 0.9 codes
from [22]. Then we allocated 256 MB RAM for each guest virtual machine, the file sys-
tem of which is an image file of 3 GB shared by two machines using NFS (i.e., Network
File System).

5.2 Benchmarks and Measurements

We utilized three network application examples to evaluate the downtime, network de-
lay and overhead of LLM and Remus:

1) Example 1 (HighNet)—The first example is flood ping [23] with the interval of
0.01 second, and there is no significant computation task running on domain U. In this
case, the network load will be extremely high, but the system updates are not significant.
We named it “HighNet” to signify the intensity of network load.

2) Example 2 (HighSys)—In the second example, we designed a simple application
to taint 200 pages (4 KB per page on our platform) per second, and there are no service
requests from external clients. Therefore, this example involves a lot of computation
workload on domain U. The name “HighSys” reflects its intensity on system updates.

3) Example 3 (Kernel Compilation)—We used kernel compilation as the third ex-
ample which involves all the components in a system, including CPU/memory/disk
updates. As part of Xen, we used Linux kernel 2.6.18 directly. Given the limited re-
source on domain U, we cut the configuration to a small subset in order to reduce the
time required to run each experiment.

Here example 1 and 2 represent opposite types of network application, whereas
example 3 is a typical application type entailing almost all aspects of system workload.

We measured the downtime and network delay under example 1 and 2, and the
overhead under example 3. The details of each measurement are described below.

The downtime and network delay were measured using ping program on the client
side, and the key index we selected here is the round-trip time of ping packets. We
believe it makes more sense to measure on the client side since the client experience
during a downtime is what actually matters. The flood ping used by example 1 is in
itself a way of measurement. Yet for example 2, since it does not involve network ac-
tivities, we have to use ping as an additional measure. To avoid the extra migration
load, we increased the ping interval to 0.1 second and disabled the hooking function of
LLM for ping packets. For each test case, we stopped the ping program after breaking
the migration data stream. Then, in each ping program log file, we record the last peak
value of the round-trip time as the downtime, since it represents the delay of the first

ping packet at the beginning of the disruption, therefore reflects the wait time of net-
work clients. Lastly, we calculated the average value of round-trip times in a checkpoint
period as the network delay.

Though there is no response for ping requests before the VM that fails is recovered
completely, we are still able to guarantee that no ping packets are lost during the down-
time. This is based on the configurable timer that ping program provides. As long as
this timer does not expire, ping program will wait for the response (the transmission of
following requests will not be influenced) without acknowledging a ping failure. In the
experiments, we configured this timer long enough regarding the downtime that we may
experience, so that each ping request will be responded, sooner or later. In this way, the
response with the longest round-trip time could be used to estimate the downtime.

The overhead was measured using the incremental time (as a percentage) of ker-
nel compilation. Specifically, the baseline, i.e., a 0% overhead, is the kernel compila-
tion time without checkpointing, whereas a 100% overhead, for example, stands for a
doubling of kernel compilation time when checkpointing exists. We measured kernel
compilation time using a stop watch, so that it includes both the execution time and
suspension time of domain U.

Finally, we measured the performance and the overhead under various checkpoint-
ing periods. For Remus, the checkpointing period is the time interval of system updates
migration, whereas for LLM, the checkpointing period represents the interval of net-
work buffer migration. By configuring the same value for the checkpointing frequency
of Remus and the network buffer frequency of LLM, we are able to guarantee the fair-
ness of the comparison to the greatest extent. Furthermore, we executed our experi-
ments starting from one second of checkpointing period for two reasons. One is that the
network connection specifically between the primary and backup machines has limited
bandwidth in our experiment environment, thus will increase the migration time in each
period. The other is that the timer in the existing migration implementation used by Re-
mus and Xen is still under experiment. Therefore, at high checkpointing frequency, the
actual checkpointing period is highly likely to exceed what we configured, thus it does
not make sense to set checkpointing period of less than one second in the experiments.

5.3 Evaluation Results

First, we verified the correctness of LLM using two approaches:
1) We verified that the flood ping can be served continuously by the VM which

is taken over by the backup machine after a failure occurs. Moreover, we carefully
examined the sequence numbers, and observed that there was no disruption in the ping
flood; and

2) We verified the results of kernel compilation by installing and booting the com-
piled kernel in domU successfully.

These two approaches can fully prove that LLM functions correctly after the migra-
tion.

Secondly, we measured the downtime under HighNet and HighSys, the results of
which are shown in Figures 4 and 5.

We observe that under HighSys, LLM demonstrates a downtime that is longer than,
yet comparable to, that of Remus. The reason is that LLM runs at low frequency, hence

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

5000

6000

Checkpointing Period (s)

D
ow

nt
im

e
(m

s)

LLM
Remus

Fig. 4: Downtime under HighNet

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Checkpointing Period (s)

D
ow

nt
im

e
(m

s)

LLM
Remus

Fig. 5: Downtime under HighSys

the migration traffic in each period will be higher than that of Remus. Under HighNet,
the downtime of LLM and Remus show a reverse relationship where LLM outperforms
Remus. This is because, from the client side, there are too many duplicated packets to
be served again by the backup machine in Remus. In LLM, on the contrary, the primary
machine migrates the request packets as well as boundaries to the backup machine, i.e.,
only those packets yet to be served will be served by the backup. Thus the client does
not need to re-transmit the requests, therefore will experience a much shorter downtime.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Checkpointing Period (s)

N
et

w
or

k
D

el
ay

 (
m

s)

LLM
Remus

Fig. 6: Network Delay under HighNet

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

5000

6000

7000

Checkpointing Period (s)

N
et

w
or

k
D

el
ay

 (
m

s)

LLM
Remus

Fig. 7: Network Delay under HighSys

Thirdly, we evaluated the network delay under HighNet and HighSys as shown in
Figures 6 and 7. In both cases, we observe that LLM significantly reduces the network
delay by removing the egress queue management and releasing responses immediately.

In Figures 6 and 7, we only recorded the average network delay in a migration
period. Next, we show the details of the network delay in a specific migration period
in Figure 8, in which the interval between two adjacent peak values represents one
migration period. We observe that the network delay of Remus decreases linearly within
a period but remains at a plateau. In LLM, on the contrary, the network delay is very

high at the beginning of a period, then quickly decrease to nearly zero after a system
update is over. Therefore, most of the time, LLM demonstrates a much shorter network
delay than Remus.

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

Migration Time (s)

N
et

w
or

k
D

el
ay

 (
m

s)

LLM
Remus

Fig. 8: Detailed Network Delay

0 20 40 60 80 100
0

50

100

150

200

250

Checkpointing Period (s)

O
ve

rh
ea

d
on

 K
er

ne
l C

om
pi

la
tio

n
(%

)

LLM
Remus

Fig. 9: Overhead under Kernel Compilation

Finally, Figure 9 shows the overhead under kernel compilation. Actually, the over-
head significantly changes only in the checkpointing period interval of [1,60] seconds,
as shown in the figure. For checkpointing with shorter periods, the migration of system
updates may last longer than a configured checkpointing period, therefore the kernel
compilation time for these cases are almost the same with minor fluctuation. For check-
pointing with longer periods, especially when it is longer than the baseline (i.e., kernel
compilation without any checkpointing), a VM suspension may or may not occur dur-
ing one compilation process. Therefore, the kernel compilation time will be very close
to the baseline, meaning a zero percent overhead. Right in this interval, LLM’s over-
head due to the suspension of domain U is significantly lower than that of Remus, as it
runs at much lower frequency than Remus.

In the experiments above (except for the specific sample shown in Figure 8), each
data point was averaged from five sample values. The reason that we did not provide
standard deviations is that the sample values remain very stable for given application
examples. Generally the standard deviation is less than 5% of the mean value.

In summary, LLM clearly outperforms Remus in terms of network delay and over-
head. For certain types of applications, LLM may also be a better alternative in terms
of downtime than Remus.

6 Conclusions

In this paper, we designed an integrated live migration mechanism consisting of both
whole-system checkpointing and input replay. LLM achieves transactional consistency,
which is in the same level as Remus. From the experimental evaluations, we observed
that LLM can successfully reduce the overhead of whole-system checkpointing and
network delay on the client side while providing comparable downtime. Especially for

HighNet-like application types with intensive network workload, LLM demonstrates
an even shorter downtime than the state-of-the-art efforts. As most services that require
high availability usually involve a lot of network activities, LLM will be more efficient
than other high availability approaches.

Finally, we want to provide some thoughts and clarifications for further discussion
in this topic, namely, load balancer and multiple backup:

1) Load balancer—We did not depend on a special load balancer hardware to mi-
grate the requests. If we do, a load balancer may duplicate the ingress request packets
at the gateway, and distribute them to the primary and backup machines at the same
time. In this way, what we need to migrate besides the system updates will simply be
the boundary information. However, since the network buffer migration happens in the
interval between system updates migration, the savings from the migration traffic may
be negligible compared to the required investment on a load balancer.

2) Multiple backup—There are many scenarios for multiple backup, which in-
volves the internal architecture of clusters. This is out of scope of this paper, and that
is why we did not evaluate it in the experiment. If there is need to support multiple
backup, we expect the changes to the prototype will not be significant.

The directions of future work include: 1) evaluate the impact of LLM on the con-
sistency; and 2) compare LLM’s performance and overhead in an environment with a
load balancer.

References

1. Kopper, K.: The Linux Enterprise Cluster: build a highly available cluster with commodity

hardware and free software. No Starch Press (2004)

2. Michael Armbrust, Armando Fox, R.G.A.D.J.R.H.K.A.K.G.L.D.A.P.A.R.I.S., Zaharia, M.:

Above the clouds: A berkeley view of cloud computing. Technical report (2009)

3. Blake, V.: Five nines: A telecom myth. Communications Technology (2009)

4. Poledna, S.: Fault-Tolerant Real-Time Systems: The Problem of Replica Determinism.

Kluwer Academic Publishers (1996)

5. Mullender, S.: Distributed Systems. Addison Wesley Publishing Company (1993)

6. Carwardine, J.: Providing open architecture high availability solutions. HA forum (2005)

7. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live

migration of virtual machines. In: NSDI’05: Proceedings of the 2nd conference on Sym-

posium on Networked Systems Design & Implementation, Berkeley, CA, USA, USENIX

Association (2005) 273–286

8. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News 33(2) (2002) 51–59

9. Mergen, M.F., Uhlig, V., Krieger, O., Xenidis, J.: Virtualization for high-performance com-

puting. SIGOPS Oper. Syst. Rev. 40(2) (2006) 8–11

10. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A.: Remus: high

availability via asynchronous virtual machine replication. In: NSDI’08: Proceedings of the

5th USENIX Symposium on Networked Systems Design and Implementation, USENIX As-

sociation (2008) 161–174

11. Bressoud, T.C., Schneider, F.B.: Hypervisor-based fault tolerance. In: SOSP ’95: Proceed-

ings of the fifteenth ACM symposium on Operating systems principles, ACM (1995) 1–11

12. Aguilera, M.K., Spence, S., Veitch, A.: Olive: distributed point-in-time branching storage

for real systems. In: NSDI’06: Proceedings of the 3rd conference on Networked Systems

Design & Implementation, Berkeley, CA, USA (2006) 27–27

13. Wikipedia: High availability, http://en.wikipedia.org/wiki/High availability

14. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a solution. In:

SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD international conference on Man-

agement of data, ACM (1996) 173–182

15. Miloj́ičić, D.S., Douglis, F., Paindaveine, Y., Wheeler, R., Zhou, S.: Process migration. ACM

Comput. Surv. 32(3) (2000) 241–299

16. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,

Warfield, A.: Xen and the art of virtualization. In: SOSP ’03: Proceedings of the nineteenth

ACM symposium on Operating systems principles, ACM (2003) 164–177

17. Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live wide-area migration of

virtual machines including local persistent state. In: VEE ’07: Proceedings of the 3rd inter-

national conference on Virtual execution environments, ACM (2007) 169–179

18. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling intrusion

analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev. 36(SI) (2002)

211–224

19. MCHARDY, P.: Linux imq, http://www.linuximq.net/

20. Russell, R., Welte, H.: Linux netfilter hacking howto,

http://www.iptables.org/documentation/HOWTO/netfilter-hacking-HOWTO.html

21. Xen Community: Xen unstable source, http://xenbits.xensource.com/xen-unstable.hg

22. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A.: Remus source

code, http://dsg.cs.ubc.ca/remus/

23. Wikipedia: Ping program, http://en.wikipedia.org/wiki/Ping

